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Abstract. Certain decompositions of complete directed graphs with loops into 

collections of closed trails which partition the edge set of the graph give rise to, 

and arise from, quasigroups. Such decompositions are said to be 2-perfect. The 

existence of these 2-perfect decompositions in which the closed trails are all of the 

same length m is examined. In particular, the set of values of n for which the order 

n complete directed graph with loops can be decomposed into 2-perfect closed trails 

of length m is determined (with four possible exceptions; two in the case m = 5 

and two in the case m = 14) for all m :::; 15. 

1. Introduction 

A qua3igroup (Q, *) is usually defined as a set Q together with a binary operation 

* (called multiplication) which satisfy the conditions that for any a, b E Q, the 

equations 

a * x = band y * a = b 

have unique solutions for x and y in Q. It is well known and easy to show that the 

multiplication table of a quasigroup is a latin 3quare (each row and each column 

contains every element exactly once). 

It is sometimes useful to introduce two further binary operations, right division /, 

and left divi3ion \. These are defined by letting b / a denote the unique y satisfying 

y * a b, and a\b denote the unique x satisfying a * x = b. The three binary 

operations satisfy the following identities: 
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(1) (x*y)/y x; 

(2) (x/y) * y = x; 

(3) y\(y * x) = x; 

(4) y * (y\x) x. 

Conversely, if an algebra Q = (Q, *, /, \) satisfies the above identities, then (Q, *) is 

a quasigroup. Identities (2) and (4) give existence of solutions of the equations, and 

identities (1) and (3) give uniqueness of these solutions (see [4]). In this paper we 

will be looking at a class of graph decompositions which can be used to construct, 

or be constructed from, quasigroups. 

A trail in a graph is a walk with no repeated edges, and a cycle is a closed 

trail with no repeated vertices; see [2]. A great deal of work has been done on 

decompositions of complete undirected graphs into cycles so that the edge set of 

the graph is partitioned; see [5]. Analogous decompositions of directed graphs 

(sometimes referred to as Mendelsohn designs) have also attracted much attention, 

see [1] for example. More recently, decompositions of complete directed graphs 

with loops into collections of closed trails which partition the edge set of the graph 

have been studied; see [3J. The presence of loops necessitates decomposing into 

closed trails instead of cycles, because repeated vertices cannot be avoided. 

Definition 1.1. A closed trail system of a graph G is a pair (V, T) where V is the 

vertex set of the graph and T is a set of closed trails with the property that each 

edge of G occurs exactly once in T. If all the trails in a closed trail system of G 

are of length m, the system is called a closed m-trail system of G. 

A closed m-trail which contains the edges Xl X2, X2X3, ••• ,XTnXl is written as a 

cyclically ordered m-tuple (Xl, X2, • •• ,xm ) of vertices. 0 

It has been shown (see [3]) that there exists a closed m-trail system of Ln (the 

complete directed graph with loops on each of its n vertices) if and only if m 

divides n 2
. In [3J it was also shown that closed trail systems of Ln are in one-one 

correspondence with groupoids of order n whose multiplication table is a column­

latin square. The correspondence is obtained as follows: 

(1) Given a closed trail system (V, T) of Ln we define * on V by a * b = e if 

and only if the edge ab is immediately followed by the edge be in T. 

(2) Given a groupoid (G, *) of order n whose multiplication table is a column­

latin square we construct a closed trail system (G, T) of Ln by stipulating 

that in T the edge ab is followed by the edge b( a * b). 

It is not difficult to see that these groupoids are quasigroups if and only if the 

closed trail systems have the property described in the following definition. 
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Definition 1.2. Let (V, T) be a closed trail system of a graph G, and let T(2) 
be the set of trails obtained by replacing each closed trail of T by its correspond­

ing distance 2 graph. This can be done by replacing the trail (Xl, X2, ••• , xm) by 

(Xl, Xa, ... , Xm1 X2, X4,"" Xm-l) if m is odd, or by the trails (Xl, Xa, ... , Xm-l) and 

(X2' X4, • •• ,xm ) if m is even. If (V, T(2)) is again a closed trail system of G, then 

(V, T) is said to be 2-perfect. 0 

In the remainder of the paper we examine 2-perfect closed trail systems of Ln. 

We will determine precisely (with four possible exceptions; two in the case m = 5 

and two in the case m = 14) for all m ::; 15, the set S( m) of values of n for which 

there exist 2-perfect closed m-trail systems of Ln. 

2. Some Examples 

First, we introduce some notation for the graphs we will be considering. 

Definition 2.1. 

(1) Let the graph with vertex set V = {I, 2, ... ,9} x {I, 2, ... ,k} and edge set 

be denoted by M9,k. 

(2) Let V and H be sets with H ~ V, 1 V 1= nl and 1 H 1= n2, then the graph 

with vertex set V and edge set 

E = {xylx,y E V and {x,y} 1=. H} 

o 

Next, we present a table outlining the graphs for which we require 2-perfect 

closed m-trail systems. These systems are needed in Section 4, and either appear 

in the Appendix, or exist by Lemma 2.4. 
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Table 2.2. 

Case Graphs 

m=5 L5, L15 , L30 
m=6 L6 
m=7 L7 , L14 
m=8 L4, La 
m=9 L6, L9 , L 15 , L21 

L12 \ L3, L 15 \ L6 
m=10 L10 , L20 
m=l1 L11 ,L22 

m=12 L6 
m=13 L13 , L26 
m=14 L14 
m=15 L15 

Definition 2.3. Let G n be the groupoid obtained by defining a binary operation 

* on the set of elements of Zn by a * b = 2b - a + 1 (mod n). 0 

Lemma 2.4. If n is odd then G n corresponds to a 2-perfect closed n-trail system 

of Ln. 

Proof. It is convenient to introduce the following notation. Given a groupoid 

(V, *) whose multiplication table is a column-latin square we define a sequence of 

words Wi(X,y) by 

and inductively define 

WO(x,y) = x 

W1(x,y) = y 

W 2 (x,y) = x * Y 

W3 ( x, y) = y * (x * y) 

Let (V, T) be the closed trail system corresponding to (V, * ), a, b E V, and let T 

be the trail of T which contains the edge abo Then, starting at the vertex a of 

the edge ab, and counting t vertices to the right in T, leads to the vertex W t ( a, b). 

Clearly, if t is such that Wt ( a, b) = a and WH1 ( a, b) b, then the length of the 

trail containing the edge ab divides t and is equal to the smallest such t (t > 0). 
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Let a, b E Zn. Let x = &+;-1 then 

b+a-l 
a * x = 2 2 - a + 1 = b + a-I - a + 1 = b. 

Hence x is a solution to the equation a * x = b. If Xl and X2 are any two solutions 

to the equation then 2X1 - a + 1 = 2X2 - a + 1 (mod n), and so 2X1 = 2X2 (mod n). 

Thus, since n is odd, Xl = X2 (mod n). Hence x is a unique solution. 

Let y = 2a - b + 1 then 

y * a = 2a - (2a - b + 1) + 1 = b. 

Hence y is a solution to the equation y * a = b. If Yl and Y2 are any two solutions 

to the equation then 2a - Yl + 1 = 2a - Y2 + 1 (mod n), so Yl = Y2 (mod n). Hence 

Y is a unique solution and G n is a quasigroup of order n. 

Now, it is easy to show (by induction) that for any x, Y in G n and any non­

negative integer s, W 8 (x,Y) = x + s(y - x) + 8(8;1) (mod n). 

Now, let t E T where ({O,I,2, ... n -1},T) is the 2-perfect closed trail system 

corresponding to G n , let ab be any edge in t and suppose t has length 1. Then 

Wz(a,b) = a and Wz+l(a,b) = b. Since Wl(a,b) = a, 

l(l - 1) 
a + l(b - a) + -2- = a(mod n), 

l(l - 1) 
so l(b - a) + -2- = o (mod n) 

and then 21(b - a) + l(l - 1) = 0 (mod 2n). 

Since WZ+l(a, b) = b, 

l(l + 1) 
a+ (1 + 1)(b - a) + -2- = b(mod n) 

l(1 + 1) 
so b + l(b - a) + -2- = b(mod n), 

l( 1 + 1) 
l(b - a) + -2- = o (mod n), 

and thus 21(b - a) + 1(1 + 1) = 0 (mod 2n). 

Hence, l(l-l) = l(l+l)(mod 2n). That is, 21 = o (mod 2n), and so 1 = O(mod n). 

Now, for any a and b, 

n( n - 1) n{ n - 1) 
Wn(a,b)=a+n(b-a)+ 2 =a+ 2 (modn) 

and 
(n + l)n (n + l)n 

Wn+l(a, b) = a + (n + 1)(b - a) + 2 = b + 2 ( mod n) 

Hence, if n is odd then for any a and b, W n( a, b) = a and W n+1 (a, b) = b so G n 

corresponds to a 2-perfect closed n-trail system of Ln. 0 
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3. The kn Construction 

In what follows we denote the entry in row i and column j of a rectangular array 

A by a(i,j). 

Definition 3.1. Two columns j1 and j2 in a k 2 by m rectangular array with entries 

chosen from K = {I, 2, ... , k} are orthogonal if 

{(a(i,h),a(i,h)) 11::; i::; k2} = {(a(i,h),a(i,jI)) 11::; i:S; k2} = K X K. 

o 

Definition 3.2. In a k 2 by m rectangular array, columns j and (j + 1) for j = 
1,2, ... ,m 1, as well as columns 1 and m, are said to be adjacent. Two columns 

are near adjacent if they are distinct and they have a common adjacent column. 0 

Definition 3.3. A (k, m )-[l,2j- Orthogonal Array (or (k, m )-[1,2]-OA ) is a k2 by m 

rectangular array with entries chosen from K {I, 2, ... k} and with the property 

that any pair of adjacent or near adjacent columns is orthogonal. 0 

We state a few well-known results concerning the number of mutually orthogonal 

latin squares of side k. 

(1) For each positive integer k, there exists a latin square of side k. 

(2) For each positive integer k, except k = 2 and 6, there exists a pair of 

orthogonal latin squares of side k, see [6]' for example. 

(3) For each positive integer k, except k = 2,3,6 and 10, there exists a set of 

3 mutually orthogonal latin squares of side k; see [7,8]. 

Lemma 3.4. For k i- 2,3,6 or 10, there exists a (k, 5)-[1,2}-OA. 

Proof. Since k i- 2,3,6 or 10, there exists a set of 3 mutually orthogonal latin 

squares of side k, and hence a set of three mutually orthogonal quasigroups (K, *1)' 

(K, *2) and (K, *3)' The required array is obtained as follows: 

(1) let columns 1 and 2 be any pair of orthogonal columns; 

(2) for i 1,2, ... , k2, let a(i,3) = a(i, 1) *1 a(i,2); 
(3) fori 1,2, ... ,k2,leta(i,4)=a(i,1)*2a(i,2); 

(4) for i = 1,2, ... , k2, let a(i,5) = a(i, 1) *3 a(i, 2). 

Lemma 3.5. For all positive integers k and all m 

(k, m)-[1,2}-OA. 
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Proof. Let (K, *) be a quasigroup. The required array is obtained as follows: 

(1) let columns 1 and 2 be any pair of orthogonal columns; 

(2) for i = 1,2, ... , k2 and for all j == l(mod 3) with j ::; m - 2 let a(i,j) = 
a(i,l); 

(3) for i = 1,2, ... , k2 and for all j == 2{mod 3) with j ::; m - 1 let a(i,j) = 
a(i, 2); 

(4) for i = 1,2, ... ,k2 and for all j == O(mod3) with j::; m let a(i,j) = 

a(i, 1) * a(i, 2). 

o 

Lemma 3.6. For all k =I- 2 or 6 and for all m == 1 (mod 3) (m 2:: 4) there exists a 

(k, m )-{1,2}-OA. 

Proof. Since k =I- 2 or 6, there exists a pair of orthogonal latin squares of side k 

and hence a pair of orthogonal quasigroups (K, *1) and (K, *2)' The required array 

is obtained as follows: 

(1) let columns 1 and 2 be any pair of orthogonal columns; 

(2) for i = 1,2, ... ,k2 and for all j l{mod 3) with j ~ m - 3 let a(i,j) = 
a(i,l); 

(3) for i 1,2, ... , k2 and for all j == 2(mod 3) with j ~ m - 2 let a(i,j) = 
a( i, 2); 

(4) for i 1,2, ... ,k2 and for all j == O(mod 3) with j ~ m -1 let a(i,j) = 
a(i, 1) *1 a(i,2); 

(5) for i = 1,2, ... k2 let a(i,m) = a(i, 1) *2 a(i, 2). 

o 

Lemma 3.7. For all k =I- 2 or 6 and for all m == 2(mod 3) (m 2:: 8) tbere exists a 

(k, m)-{1,2}-OA. 

Proof. Since k =I- 2 or 6, there exists a pair of orthogonal latin squares of side k 

and hence a pair of orthogonal quasigroups (K, *1) and (K, *2)' The required array 

is obtained as follows: 

(1) let columns 1 and 2 be any pair of orthogonal columns; 

(2) for i 1,2, ... ,k2 for j = m - 3 and for all j l{mod 3) with j ::; m - 7 

let a(i,j) = a(i,l); 
(3) for i 1,2, ... ,k2 for j = m - 2 and for all j 2{mod 3) with j ::; m - 6 

let a(i,j) = a(i,2); 
(4) for i 1,2, ... ,k2 for j = m -1 and for all j == O{mod 3) with j ::; m - 5 

let a(i,j) = a(i,l) *1 a(i,2); 
(5) for i 1,2, ... k2 let a(i,m) = a(i,m - 4) = a(i,l) *2 a(i,2). 
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Theorem 3.8. Ifn E 5(m) and there exists a (k,m)-[1,2}-OA then kn E 5(m). 

Proof. Let (V, T) be a 2-perfect closed m-trail system of Ln and K = {I, 2, ... , k}. 

We construct a 2-perfect closed m-trail system (V x K, T') of Lkn as follows. For 

each (Xl, X2, ... , Xm) E T and each row [Yl Y2, ... , Ym] of a (k, m)-[1,2]-OA let 

o 

4. The Main Results 

A necessary condition for the existence of a 2-perfect closed m-trail system of 

Ln is that m divides n 2
, since the number of edges in Ln is n 2 and each m-circuit 

contains m edges. Clearly 5(1) = {I}. There can't be a closed 2-trail containing a 

loop precisely once, as the closed trail (a,a) contains the loop aa twice, and trails 

(a,a,b, ... ) have length at least 3. Hence 5(2) = 0. 
Any closed 3-trail (V, T) of Ln is necessarily 2-perfect since for any a, b E V, the 

edge ab occurs in the distance 2 graph of the closed 3-trail in T which contains the 

edge ba. Hence, 5(3) = {nln == O(mod 3). If a loop aa is contained in the distance 

2 graph of a closed 4-trail then it immediately occurs twice, and hence 5(4) = 0. 
Summarising the above two paragraphs gives: 

(1) 5(1) = {I}; 
(2) 5(2) = 0; 
(3) 5(3) = {nln == O(mod 3)}; 

(4) 5(4)=0. 

Theorem 4.1. 5(5) 

and n = 50. 

{nln == O(mod 5)}, with the possible exceptions n = 10 

Proof. There are 2-perfect closed 5-trail systems of L5 , L 15 and L 30 , and there is 

a (k,5)-[1,2]-OA for all positive integers k =I 2,3,6 and 10 (see Lemma 3.4). Hence, 

by Theorem 3.8, there is a 2-perfect closed 5-trail system of L5k for all k =f. 2,3,6 

or 10. Hence the only possible exceptions are n = 10 and n = 50. No 2-perfect 

closed 5-trail systems have been found in these cases. 0 

Remark. The existence of a 2-perfect closed 5-trail system of L 10 implies the 

existence of a set of 3 mutually orthogonal latin squares of side 10. 

Theorem 4.2. 5(6) = {nln == O(mod 6)}. 
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Proof. There is a 2-perfect closed 6-trail system of L6 , and there is a (k, 6)-[1,2]­

OA for all positive integers k (see Lemma 3.5). Hence, by Theorem 3.8, there is a 

2-perfect closed 6-trail system of L6k for all positive integers k. o 

Theorem 4.3. 8(7) = {nln == O(mod 7)}. 

Proof. There is a 2-perfect closed 7-trail system of L7 , and there is a (k, 7)-[1,2]­

OA for all positive integers k ~ {2,6} (see Lemma 3.6). Hence, by Theorem 3.8, 

there is a 2-perfect closed 7-trail system of L7k for all positive integers k ~ {2,6}. 

There is a 2-perfect closed 7-trail system of L 14 , and Lemma 3.6 and Theorem 3.8 

hence give a closed 7-trail system of L42 • o 

Theorem 4.4. 8(8) = {nln == O(mod 4)}. 

Proof. There is a 2-perfect closed 8-trail system of L41 and there is a (k, 8)-[1,2]­

OA for all positive integers k ~ {2,6} (see Lemma 3.7). Hence, by Theorem 3.8, 

there is a 2-perfect closed 8-trail system of L4k for all positive integers k ~ {2,6}. 

There is a 2-perfect closed 8-trail system of La, and Lemma 3.7 and Theorem 3.8 

hence give a closed 8-trail system of L 24 . o 

Lemma 4.5. There is no 2-perfect closed 9-trail system of L 3 • 

Proof. A 9-quasigroup of order 3 would consist of a single 9-circuit. The loops 

11,22 and 33 must be separated in this circuit. That is, ( ... a, a, b, b ... ) is not 

allowed, since its distance 2 graph contains the edge ab twice. Hence, without loss 

of generality we may assume the circuit looks like (1,1,.,2,2,.,3,3, .). From here 

it is clear that the only possibility is (1,1,3,2,2,1,3,3,2), and this is not allowed 

since (among other things) the edge 13 occurrs twice. 0 

The non-existence of a 2-perfect closed 9-trail system of La means that a different 

technique is needed to determine 8(9). 

Lemma 4.6. {nln == O(mod 9)} ~ 8(9). 

Proof. There is a 2-perfect closed 9-trail system of Lg , and there is a (k, 9)-[1,2]­

OA for all positive integers k (see Lemma 3.5). Hence, by Theorem 3.8, there is a 

2-perfect closed 9-trail system of Lgk for all positive integers k. o 

Lemma 4.7. For all positive integers k =I- 2 there is a 2-perfect closed 9-trail 

system of M9,k' 
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Proof. Define a (k, 9)-[1,2]-OA as in Lemma 3.5 but ensure that the quasigroup 

(K, *) is idempotent (there exist idempotent quasigroups of order k for all positive 

integers k =I- 2, see [9]). Then construct a (k2 
- k) by m rectangular array B from 

this array by removing the k rows in which all the entries are the same. 

Let ({1, 2, ... , 9}, T) be a 2-perfect closed 9-trail system of L9 and for each 

(Xl,X2, ... ,X9) E T and each row [Yl,Y2'''',Y9] of the array B let 

Then (V x K, T') is the required system. o 

Lemma 4.8. {nln =I- 3 and n == 3(mod 9n ~ 5(9). 

Proof. Since 6 E 5(9), Lemma 3.5 and Theorem 3.8 give 12 E 5(9). Also, 21 E 

5(9). Let n = 9k + 3 where k ~ 3. Let (V x K, T') be a 2-perfect closed 9-trail 

system of M 9 ,k. Introduce three new vertices VI,V2 and V3. Let ((V x {1}) U 

{VI, V2, V3}, TI ) be a 2-perfect closed 9-trail system of L12 and for i = 2,3, ... , k 

let (( V x {i}) U {VI, V2, va}, Ti) be a 2-perfect closed 9-trail system of LI2 \ L3 (the 

elements in H being VI, V2 and V3). 

Then ((V x K) U {VI, V2, V3}, T' UTI U T2 U T3 U ... U T k ) is a 2-perfect closed 

9-trail system of L 9k+3 . 0 

Lemma 4.9. {nln == 6(mod 9)} ~ 5(9). 

Proof. There are 2-perfect closed 9-trail systems of L6 and LIS. Since 6 E 

5(9), 24 E 5(9) by Lemma 3.5 and Theorem 3.8. Let n = 9k + 6, where k ~ 

3. Let (V x K, T') be a 2-perfect closed 9-trail system of M9 ,k. Introduce six 

new vertices VI,V2,V3,V4,VS and V6. Let ((V x {1}) U {Vl,V2,V3,V4,VS,V6},Td 

be a 2-perfect closed 9-trail system of L1S and for i 2,3, ... k let ((V x {i}) U 

{Vl,V2,V3,V4,VS,V6},Td be a 2-perfect closed 9-trail system of LIS \ L6 (the ele­

ments in H being Vl,V2,V3,V4,VS and V6). 

Then ((V x K) U {Vl,V2,V3,V4,VS,V6},T' U TI U T2 U T3 U··· U Tk) is a 2-perfect 

closed 9-trail system of L 9 k+6. 0 

Theorem 4.10 follows from Lemmas 4.5,4.6,4.8 and 4.9. 

Theorem 4.10. 5(9) = {nln =I- 3 and n == O(mod 3n. 

Theorem 4.11. 5(10) = {nln == O(mod 10n. 
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Proof. There is a 2-perfect closed 10-trail system of L lO , and there is a (k, 10)-[1,2]­
OA for all positive integers k rt. {2,6} (see Lemma 3.6). Hence, by Theorem 3.8, 

there is a 2-perfect closed 10-trail system of LlOk for all positive integers k rt. {2,6}. 

There is a 2-perfect closed 10-trail system of L 20 , and Lemma 3.6 and Theorem 3.8 

hence give a closed 10-trail system of Lao. 0 

Theorem 4.12. S(11) = {nln == O(mod 11)}. 

Proof. There is a 2-perfect closed 11-trail system of Lll , and there is a (k, 11)-[1,2]­
OA for all positive integers k rt. {2,6} (see Lemma 3.7). Hence, by Theorem 3.8, 

there is a 2-perfect closed 11-trail system of Lllk for all positive integers k rt. {2,6}. 

There is a 2-perfect closed 11-trail system of L 22 ) and Lemma 3.7 and Theorem 3.8 

hence give a closed 11-trail system of Laa. 0 

Theorem 4.13. S(12) = {n\n == O(mod 6)}. 

Proof. There is a 2-perfect closed 12-trail system of La, and there is a (k,12)­
[1,2]-OA for all positive integers k (see Lemma 3.5). Hence, by Theorem 3.8, there 

is a 2-perfect closed 12-trail system of Lak for all positive integers k. 0 

Theorem 4.14. S(13) = {nln == O(mod 13)}. 

Proof. There is a 2-perfect closed 13-trail system of Ll3 , and there is a (k, 13)-[1,2]­

OA for all positive integers k rt. {2,6} (see Lemma 3.6). Hence, by Theorem 3.8, 

there is a 2-perfect closed 13-trail system of L 13 k for all positive integers k rt. {2,6}. 

There is a 2-perfect closed 13-trail system of L 2a , and Lemma 3.6 and Theorem 3.8 

hence give a closed 13-trail system of L 78 . o 

Theorem 4.15. S(14) = {nln == O(mod 14)}, witb tbe possible exceptions n = 28 

and n = 84. 

Proof. There is a 2-perfect closed 14-trail system of L14 and there is a (k,14)­
[1,2]-OA for all positive integers k rt. {2,6} (see Lemma 3.7). Hence, by Theorem 

3.8, there is a 2-perfect closed 14-trail system of L14k for all k rt. {2,6}. Hence 

the only possible exceptions are n = 28 and n = 84. No 2-perfect closed 14-trail 

systems have been found in these cases. 0 

Theorem 4.16. S(15) = {nln == O(mod 15)}. 

Proof. There is a 2-perfect closed 15-trail system of L I5 and there is a (k,15)­
[l,2]-OA for all positive integers k (see Lemma 3.5). Hence, by Theorem 3.8, there 

is a 2-perfect closed 15-trail system of L 15 k for all positive integers k. 0 
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5. Concluding Remarks 

In this paper, we have determined the set S(m) of values of n for which there 

exist 2-perfect closed m-trail systems of Lnl for all m :::; 15, with four possible 

exceptions, The results are summarised in the following table. 

m S(m) Undecided Values 

1 {I} 
'2 '0 

3 {nln O(mod 3)} 
4 0 
5 {nln O(mod 5)} n = 10,n = 50 
6 {nln == O(mod 6)} 
7 {nln == O(mod 7)} 
8 {nln O(mod 4)} 
9 {nln =I 3, n == O(mod 3)} 
10 {nln O(mod 10)} 
11 {nln O(mod II)} 
12 {nln O{mod 6)} 
13 {nln == O(mod 13)} 
14 {nln == O(mod 14)} n=28,n=84 
15 {nln == O{mod 15)} 
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6. Appendix 

Within this appendix, each 2-perfect closed m-trail system of a graph G is given 
as (V, T), where V is the vertex set of G, and T is the collection of m-trails. 

Im=sl 
I L 1s 1 V = {if I 0 ~ i ~ 4; j = 1.,2, 3}. T as follows, with i cycled modulo 5: 

(01,11,12,41, II), (01,31,02, b, 03), (01,12,43,22,23), 
(01,32,21,43,42), (01, 42, h, 13, 33), (01,03) 41 ) 03,43), 
(01,33,42,32,01), (01,43,23,33,02), (02,22,33,22,02)~ 

I L30 I V {if I 0 ~ i ~ 14; j = 1,2}. T as follows, with i cycled modulo 15: 

(01,82,81,122,112), (01,22,121,132,121), (01,01, h, 51,41), 
(01,02,91,11,131), (01,101, 72, 81,132), (01,142,42; 91,21), 
(01, 51,lb, 02, 122), (01,61,92,42,72), (01,91,12,82,42), 
(01,112,21,112,22), (01,102,82,92,32), (01, 132,62,62,82) . 

. Im=61 
~ V = {ij I 0 ~ i ~ 2; j = 1,2}. T as follows, with i cycled modulo 3: 

(01, h, 01, 01, 02, 22), (01, b,12,22, 21,12), 

Im=7! 
1 L141 V = {if I 0 ~ i ~ 6; J' = 1,2}. T as follows, with i cycled modulo 7: 

(01,02,02,01,12,21,52), (01,61,01,52,31,61,12), 
(01,01,41,61, 52) 32, 42), (01 ,51,22,12,52,12,32). 
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im =81 
V Z4. T as follows, uncycled: 

(0,1,0,0,2,3,2,2), (0,3,1,1,2,1,3,3). 

v = Zs. T as follows, uncycled: 

(0,0,1,3,6,1,2,7), (0,2,0,3,4,2,1, 
(0,6,7,3,1,4,3,3), (0,7,2,2,6,4,6, 

4,5,2,3,2,5,5), (0,5,6,2,4,7,4,4), 
5,4,1,7,1,6,5), (3,5,3,7,7,5,7,6). 

Im=91 
V Z6. T as follows, uncycled: 

(0,1,0,0,2,1,2,2,3), (0,3,3,4,3,5,2,5,4), 
(0,4,4,2,4,1,1,4,5), (0,5,5,1,3,1,5,3,2). 

V {ij i ° ~ i ~ 4; j = 1,2, 3}. T as follows, with i cycled modulo 5: 

(01,02,02,01,iI,32,22,01,32), (01, 42,31, 42,01, 21,11, 03,03), 
(01,33,23,02,03,13,32,12,33), (01,01,13,41,21,43,42,33,13), 
(01,03,42, h, 22, 03,12,23,43), 

V {ij I 0 ~ i ~ 6; j = 1,2, 3}. T as follows, with i cycled modulo 7: 

(01,01,02,01, iI, 31, 02, 02,12), (01,31,03,23,31,23,52,31, 2I), 
(01, 52, 61,03,41,02,22, 53, 13), (01,22, 12,52,23, Is, iI, 51,42), 
(01,12,23,41,43,13,41,23,23), (01,23,33,32, h, 02,03,22,52), 
(01,33,13,62,53,62, Is, 52, 32). 

V {ij! 0 ~ i ~ 2; J' = 1,2, 3} U {A, B, C}. T follows, with i 
3: 

(A, 01,01, B, 02, 03, C, 03, 02), 
(A, 03, 22, B, iI, 02, C, 12,01), 
(01,03,13,01,23,23,02,22,02), 

(A, 02, Is, B, 03,11, C, 01, h), 
(01, iI, 01, 02, h, 22,22,13,03), 

V {ij I ° ~ i ~ 2; j = 1,2,3} U {A,B,C,D,E,F}. 

T as follows, with i cycled modulo 3: 

(A, 01,01, A, 02, 02, A, 03, 03), 
(C, 01, 21, C, 02,22, C, 03, 23), 
(E, 01, Is, E, 02, iI, E, 03,1 2 ), 

(01, b, h, 02,13,12, 03,11,13)' 

(B,01,11,B,02,12,B,03,1 3), 
(D, 01, 02, D, 02, 03, D, 03, 01), 
(F, 01, 23, F, 02, 21, F, 03, 22), 
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5: 

Im= 101 
I L10 I V {ij 10 :s; i :s; 4; j = 1, 2}. T as follows, with i cycled modulo 5: 

I L20 1 

(01,01,02,12,11,42,11,02,41,31), (01,11,41,02,22,01,22,22,12,42), 

V = {ij 'O:S; i::;; 4; j = 1,2,3,4}. T as follows, with i cycled modulo 

(01,01,02,03,03,04,02,01, 13,33), (01,21,12,02,41,44,44,01,31,23), 
(01,03,01, h, 43,02,21, 43, 42, 04), (01,41,14,03,24,42,44,02, h, 22), 
(01,22,44,43,24,02,02,34,24,34), (01, 32,24,12,22,02,22,33,21,14), 
(01,34, h,24,44, 03, 33, 43, b, 43), (02,43,04,23,12,33,24,04,33,23), 

Im= 111 
I L221 V = {ij 10:S; i:S; 10; j = l,2}. T as follows, with i cycled modulo 11: 

(01, h, 01, 01,21, 51, 01,81, 11,02,02), (01,51,02, h, 81, 22, 11, 12, 71,42,22), 
(01,91,22,61,42,32,02,21,42,92,42), (°1,12,52, 101,62,82, O2,31,62,72,32)' 

~ V Z6. T as follows, uncycled: 

(0,1,0,0,2,1,1,2,3,2,4,3), (0,3,3,5,2,5,4,2,2,0,5,5), 
(0,4,4,1,5,1,4,5,3,1,3,4). 

1m = 13\ 

V {ij' ° :s; i :s; 12; j = 1, 2}. T as follows, with i cycled modulo 13: 

(01,11,02,81,81, 101,02,91,61,11,32,02,11), 
(01,31,11,61, 101,31,02,71,11,12,71,12,02), 
(01,91,12,41,02,21,62,02,101,82,122,42,22), 
(01,12,42,31,112,122,122,41,102,122,72,32,92), 

Im= 141 
I L 14 \ V {ij I ° ::;; i ::;; 6; j = 1, 2}. T as follows, with i cycled modulo 7: 

(°1,11,01,01,21,51,31,02,01,41,02,02,12,32), 
(01,02,42,01,12,62,41,62,01,52,12,01,62,52). 

(Received 22/7/92; revised 13/5/93) 
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