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Abstract
A binary linear [2n, n]-code with generator matrix [In|A] can be associ-
ated with a digraph on n vertices with adjacency matrix A and vice versa.
We use this connection to present a graph theoretic formula for the min-
imum distance of codes with information rate 1/2. We also formulate
the equivalence of such codes via new transformations on corresponding
digraphs.

1 Introduction

We start with some basic definitions about codes that will be used throughout the
paper. Let F2 be the binary field. A binary linear code C of length n is defined as
a subspace of Fn

2 . If the dimension of C is k, we say C is an [n, k]-code. A matrix
whose rows form a basis for C is called a generator matrix for C and is denoted by G.
By using elementary row and column operations, we can bring the generator matrix
G into a standard form [Ik|A] where A is a k × (n− k) matrix.

The Hamming weight wH(x) of a vector x ∈ F
n
2 is defined as the number of non-

zero coordinates in x. The Hamming distance between two vectors x and y in F
n
2 ,

denoted by dH(x,y), is defined as

dH(x,y) = wH(x− y).

The minimum distance of a code C, denoted by d(C), is defined to be the minimum
distance between distinct codewords in C. We write the standard parameters [n, k, d]
to describe a code C where n denotes the length of C, k its dimension, and d its
minimum distance. A matrix H is called a parity check matrix for the linear code C
if it is given by

C = {c ∈ F
n
2 |HcT = 0}.

We can find a parity check matrix for C in the standard form if we know the generator
matrix in the standard form:
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Theorem 1.1. If C is generated by G = [Ik|A], then H = [−AT |Ik] is a parity check
matrix of C.

Note that over the binary field, H = [−AT |Ik] = [AT |Ik].
There is a natural connection between the parity check matrix of a linear code

and the minimum distance which is given by the following theorem:

Theorem 1.2. Let C be a linear code and H a parity check matrix for C. Then
(i) d(C) ≥ d if and only if any d− 1 columns of H are linearly independent.
(ii) d(C) ≤ d if and only if H has d columns that are linearly dependent.

Corollary 1.3. [10, Theorem 2.2] If C is a linear code and H is a parity check
matrix for C, then C has minimum distance d if and only if any d − 1 columns of
H are linearly independent and some d columns of H are linearly dependent.

There is a natural interplay between graphs and codes and this connection has
been explored extensively in the literature. For some of these works, we refer to
([1–6]) and references therein. In most of these works, the code is obtained from the
graph by taking the adjacency matrix as the generator matrix. Recently in [7], the
idea of generating the code from [In|A], where A is the adjacency matrix of a simple
undirected graph was explored. In this work, we consider combinatorial approaches
to two classical problems in coding theory, namely the minimum distance problem
and the equivalence problem, using digraphs and their transformations. Determining
the minimum distance of a code is considered computationally intractable ([12]), so
it takes significant time to find the minimum distance of a single code when the
dimension is large.

Two codes over Fq are said to be equivalent if one can be obtained from the other
by a permutation of columns or by multiplying a column by a fixed non-zero element
in Fq. In other words two codes are equivalent if one can be obtained from the other
through a monomial transformation. If q = 2, code equivalence for binary codes
reduces to permutation equivalence. Equivalent codes have the same parameters
and share many of the same properties such as self-duality, cyclicity, etc. Code
equivalence also plays an important role in cryptographic applications of codes, such
as the McEliece Cryptosystem. However, determining code equivalence is considered
to be a difficult problem in coding theory. For some works that explore this aspect,
we refer to [9] and [11].

In this paper, we consider a special class of codes, namely rate 1/2 codes that
include some important classes of codes such as isodual codes, formally self-dual
codes, self-dual codes and 2-quasicyclic codes. Another important aspect of these
codes is that we can construct them from digraphs. This is because the generator
matrix of any such code, which has parameters [2n, n] for some n, can be put into
the standard form of [In|A], where In is the identity matrix and A is an n×n binary
matrix. We can then view A as the adjacency matrix of a digraph on n vertices.
Using this connection, we have been able to give purely graph theoretic descriptions
for the minimum distance of such codes and we have also been able to describe code
equivalence in terms of graph theoretic properties. Moreover, new transformations on
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Figure 1: Directed graphs Γ and Γ′

digraphs have been explored in an effort to preserve the equivalence of the underlying
code. This has resulted in some surprising results about equivalence of codes that
are otherwise difficult to verify. For example, we were able to prove that if A is
a non-singular n × n matrix, then the codes generated by [In|A] and [In|A−1] are
equivalent.

2 The [In|A] Construction for Codes from Directed Graphs

A binary linear code generated by [In|A] corresponds to a directed graph Γ on n
vertices that has A as the adjacency matrix. Note that Γ may have loops but no
multiple arcs (directed edges). Conversely a directed graph Γ on n vertices with
adjacency matrix A and possibly with loops corresponds to a binary linear code
generated by [In|A].
Observation 2.1. Linear codes generated by [In|A] and [In|P TA] are not necessarily
the same for some permutation matrix P . For example, consider Γ in Figure 1 with
adjacency matrix A and permutation matrix P generated by (1, 2):

[I3|A] =
⎡
⎣ 1 0 0 0 0 1

0 1 0 1 0 1
0 0 1 0 0 0

⎤
⎦

[I3|P TA] =

⎡
⎣ 1 0 0 1 0 1

0 1 0 0 0 1
0 0 1 0 0 0

⎤
⎦

(1, 0, 0, 0, 0, 1) ∈ C([I3|A]) = {(a, b, c, b, 0, a+ b) | a, b, c ∈ F2}
(1, 0, 0, 0, 0, 1) /∈ C([I3|P TA]) = {(a, b, c, a, 0, a+ b) | a, b, c ∈ F2}.

Note that AP is obtained from A by interchanging columns 1 and 2 which guar-
antees that C([I3|A]) and C([I3|AP ]) are equivalent. But it may not be clear whether
C([I3|A]) and C([I3|P TA]) are equivalent or they have the same minimum distances.
We develop combinatorial tools in this section and Section 3 that answer this.

Consider the directed graph Γ = (V,A) with vertex set V and arc set A. For a
vertex v ∈ V , an out-neighbor of v is a vertex u ∈ V such that (v, u) is an arc in Γ.
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Figure 2: A directed paw

The set of out-neighbors of v, denoted by N+(v), is given by

N+(v) = {u ∈ V | (v, u) ∈ A}.
An in-neighbor of v is a vertex u ∈ V such that (u, v) is an arc in Γ. The set of
in-neighbors of v, denoted by N−(v), is given by

N−(v) = {u ∈ V | (u, v) ∈ A}.
The out-degree and in-degree of v, denoted by d+(v) and d−(v), are defined by d+(v) =
|N+(v)| and d−(v) = |N−(v)| respectively.

To get a combinatorial interpretation of the minimum distance of C([In|A]), we
study the following set of vertices of a directed graph Γ with adjacency matrix A
and vertex set V : For a nonempty subset S of V , the set of vertices of Γ with odd
number of in-neighbors in S is denoted by vonin(S), i.e.,

vonin(S) = {v ∈ V : |N−(v) ∩ S| is odd}.
The concept and notation of vonin are motivated by that of von introduced in [7]

and used in [8] to find the minimum distance of an expander code. Note that S and
vonin(S) have no inclusion-exclusion relationship that holds for all graphs as evident
in the following examples.

Example 2.2.

1. Consider the directed paw in Figure 2. For S equals {1}, {3}, {1, 2}, {1, 2, 3},
and {1, 3, 4}, we have vonin(S) is {2}, {1, 2}, {2}, {1}, and ∅ respectively.

2. Note that in a directed graph, if a vertex v has N−(v) = ∅, then v /∈ vonin(S)
for all S. Also if S = {v}, then vonin(S) = N+(v).

Now we discuss linear dependence among columns of [AT |In] where A is the
adjacency matrix of a digraph Γ on n vertices.

Theorem 2.3. Let Γ be a digraph on n vertices with vertex set V and adjacency
matrix A. If S is a nonempty subset of V , then the columns of AT indexed by S
and the columns of In indexed by vonin(S) are (|S|+ | vonin(S)|) linearly dependent
columns of [AT |In]. Conversely if the set of columns of [AT |In] indexed by the set S ′ ⊆
{1, 2, . . . , 2n} is minimally linearly dependent, then it is the union of the columns of
AT indexed by S and the columns of In indexed by vonin(S) for some nonempty
subset S of V , in other words S ′ = S ∪ {n+ i | i ∈ vonin(S)}.
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Proof. Let ∅ �= S ⊆ V . Let c be the sum of columns of AT indexed by S. Then
ci, the ith entry of c, is the number vertices of S that are in-neighbors of vertex i.
Therefore if vertex i has an even number of in-neighbors in S, then ci ≡ 0 (mod 2).
Similarly if vertex i has an odd number of in-neighbors in S, then ci ≡ 1 (mod 2).
Thus the only entries of c that are 1 (mod 2) correspond to vonin(S). So if we add
c with the columns of In with indices corresponding to vonin(S), the sum would be
a zero vector.

Conversely suppose the set of d columns of [AT |In] indexed by the set S ′ ⊆
{1, 2, . . . , 2n} is minimally linearly dependent. Without loss of generality suppose S ′

is the union of S = {1, 2, . . . , k}, k ≤ n and T ⊆ {n+ 1, n+ 2, . . . , 2n}.
Case 1. T = ∅ (i.e., S ′ = S)

Since AT
1 , A

T
2 , . . . , A

T
k are minimally linearly dependent, AT

1 + AT
2 + · · · + AT

k ≡
0 (mod 2). It suffices to show that vonin(S) = ∅. If not, let i ∈ vonin(S). Then

(AT
1 + AT

2 + · · ·+ AT
k )i ≡ 1 (mod 2) ,

a contradiction.
Case 2. T �= ∅

Let T = {n+ i1, n+ i2, . . . , n+ id−k} and ej be column j of In for j = i1, i2, . . . , id−k.
Since AT

1 , A
T
2 , . . . , A

T
k , ei1 , ei2, . . . , eid−k

are minimally linearly dependent,

AT
1 + AT

2 + · · ·+ AT
k + ei1 + ei2 + · · ·+ eid−k

≡ 0 (mod 2) .

Then
AT

1 + AT
2 + · · ·+ AT

k ≡ ei1 + ei2 + · · ·+ eid−k
(mod 2)

which implies vonin(S) = {i1, i2, . . . , id−k} because ei1 , ei2 , . . . , eid−k
are columns of

In. Thus S
′ = S ∪ {n+ i | i ∈ vonin(S)}.

As a consequence of the preceding theorem, we have the following combinatorial
interpretation of the minimum distance of a [2n, n]-code:

Theorem 2.4. Let C be the binary linear code generated by [In|A] where A is the
adjacency matrix of a digraph Γ on n vertices with vertex set V . Then the minimum
distance d(C) of C is given by

d(C) = min
∅ �=S⊆V

(|S|+ | vonin(S)|).

Proof. First note that H = [AT |In] is a parity-check matrix of C. By Theorem 2.3,
a code word in C with weight d(C) corresponds to minimally dependent columns of
H = [AT |In] indexed by S ∪ {n + i | i ∈ vonin(S)} for some nonempty subset S of
V . Then

d(C) ≥ min
∅ �=S⊆V

(|S|+ | vonin(S)|).
If there is a nonempty subset S of V for which d(C) > |S| + | vonin(S)|, then by
Theorem 2.3 we find (|S| + | vonin(S)|) linearly dependent columns of H = [AT |In]
giving a codeword of C with weight less than d(C) by Corollary 1.3, a contradiction.
Thus the equality holds.
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Corollary 2.5. Let A be the adjacency matrix of a directed graph Γ on n vertices.
Let P be an n × n permutation matrix. Then the binary linear codes generated by
[In|A] and [In|P TAP ] are not necessarily the same but they have the same minimum
distance.

Proof. The directed graph with adjacency matrix P TAP is isomorphic to Γ. Then
the binary linear codes generated by [In|A] and [In|P TAP ] have the same minimum
distance by Theorem 2.4.

3 Equivalent Binary Codes Generated by [In|A]
In this section we study the equivalence of binary linear codes C([In|A]) and
C([In|A′]) where A and A′ are two n × n matrices over F2. We also investigate
the same given by transformations on graphs whose adjacency matrices are A and
A′.

3.1 Conditions for Equivalence

Lemma 3.1. Let A and A′ be two n× n matrices over F2. The binary linear codes
C([In|A]) and C([In|A′]) are equivalent if and only if there are an n×n invertible ma-
trix P and a 2n×2n permutation matrix Q such that [In|A′] = P [In|A]Q. Moreover,
if

Q =

[
W Z
Y X

]
,

for some n× n matrices X, Y,W,Z, then

P = (W + AY )−1 and A′ = (W + AY )−1(Z + AX).

Proof. Suppose C([In|A]) and C([In|A′]) are equivalent. Then there is a 2n × 2n
permutation matrix Q such that RS([In|A′]) = RS([In|A]Q), where RS denotes the
row space. Then there is an n× n invertible matrix P such that [In|A′] = P [In|A]Q.
Conversely suppose that [In|A′] = P [In|A]Q for some n × n invertible matrix P
and some 2n × 2n permutation matrix Q. Then RS([In|A′]) = RS([In|A]Q) and
consequently C([In|A]) and C([In|A′]) are equivalent.

Suppose [In|A′] = P [In|A]Q and

Q =

[
W Z
Y X

]
,

for some n× n matrices X, Y,W,Z. Then

[In|A′] = [P |PA]

[
W Z
Y X

]
= [P (W + AY )|P (Z + AX)]

which implies
P (W + AY ) = In, P (Z + AX) = A′.
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Then we have

P = (W + AY )−1, A′ = P (Z + AX) = (W + AY )−1(Z + AX).

Observation 3.2. In the preceding lemma:

(a) W (respectively X) is a permutation matrix if and only if Y = Z = O and X
(respectively W ) is a permutation matrix. In that case, A′ = W TAX.

(b) Y (respectively Z) is a permutation matrix if and only if W = X = O and Z
(respectively Y ) is a permutation matrix. In that case, AY and A are invertible
and A′ = (AY )−1Z = Y TA−1Z.

Theorem 3.3. Let A be an n×n matrix over F2. Let Pσ and Pσ′ be the permutation
matrices obtained by permuting columns of In by the permutations σ and σ′ respec-
tively. Then the binary linear codes C([In|A]) and C([In|P T

σ′APσ]) are equivalent.

Proof. Consider the following 2n× 2n permutation matrix Q:

Q =

[
Pσ′ O
O Pσ

]
.

Observe that
[In|P T

σ′APσ] = P T
σ′ [In|A]Q.

Then C([In|A]) and C([In|P T
σ′APσ]) are equivalent by Lemma 3.1.

Theorem 3.4. Let A be an n × n invertible matrix over F2. Let Pσ and Pσ′ be
the permutation matrices obtained by permuting columns of In by the permutations
σ and σ′ respectively. Then the binary linear codes C([In|A]) and C([In|P T

σ′A−1Pσ])
are equivalent.

Proof. Consider the following 2n× 2n permutation matrix Q:

Q =

[
O Pσ

Pσ′ O

]
.

Observe that
[In|P T

σ′A−1Pσ] = P T
σ′A−1[In|A]Q.

Then C([In|A]) and C([In|P T
σ′A−1Pσ]) are equivalent by Lemma 3.1.

Corollary 3.5. Let A be an n× n invertible matrix over F2. Then the binary linear
codes C([In|A]) and C([In|A−1]) are equivalent.

Remark 3.6. The results in Theorem 3.3 and Corollary 3.5 are striking results in
coding theory. It is quite clear that any permutation of columns of a generator matrix
will leave the code equivalent. However, what is also done here is to permute the
rows of A alone, and not those of the generator matrix and the results show that
these will also preserve equivalence. This answers the question about the equivalence
of C([I3|A]) and C([I3|P TA]) in Observation 2.1.
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Figure 3: Directed paths Γ1 and Γ2

3.2 Transformations on Digraphs

Now we explore transformations on digraphs with adjacency matrices A and A′ and
their effects on equivalence of binary linear codes C([In|A]) and C([In|A′]).

Observation 3.7. Let Γ and Γ′ be two labelled isomorphic digraphs on n vertices
1, 2, . . . , n with adjacency matrices A and A′ respectively. Suppose σ is a permutation
on vertices giving a graph isomorphism from Γ to Γ′. Then A′ = P T

σ APσ where Pσ

is the n× n permutation matrix obtained by permuting the columns of In by σ.

Now we define some graph operation on digraphs which are generalization of
isomorphism.

Definition 3.8. Let Γ be a labelled digraph on n vertices 1, 2, . . . , n with adjacency
matrix A. Let σ and σ′ be permutations on 1, 2, . . . , n.

(a) The permuted digraph of Γ by (σ′, σ) is the labelled digraph, denoted by Γσ′,σ, on
n vertices 1, 2, . . . , n such that (i, j) is an arc in Γσ′,σ if and only if (σ′(i), σ(j))
is an arc in Γ.

(b) The out-permuted digraph of Γ by σ is the labelled digraph, denoted by Γσ, on
n vertices 1, 2, . . . , n and with adjacency matrix Aσ such that (i, j) is an arc in
Γ if and only if (i, σ(j)) is an arc in Γσ.

(c) The in-permuted digraph of Γ by σ is the labelled digraph, denoted by Γ−
σ , on

n vertices 1, 2, . . . , n and with adjacency matrix A−
σ such that (i, j) is an arc

in Γ if and only if (σ(i), j) is an arc in Γ−
σ .

Note that if σ′ = σ, then Γσ′,σ is isomorphic to Γ. In general Γ and Γσ′,σ are not
isomorphic.

Example 3.9.

1. Directed paths Γ1 and Γ2 in Figure 3 are isomorphic and Γ2 = (Γ1)σ,σ for the
permutation σ = (1, 3).

2. Directed graphs Γ and Γ′ in Figure 1 are not isomorphic. But Γ′ = (Γ)σ′,σ for
the permutations σ = (1) and σ′ = (1, 2).

Observation 3.10. Let Γ be a digraph on n vertices 1, 2, . . . , n. Let σ and σ′ be
permutations on 1, 2, . . . , n. Let Pσ and Pσ′ be the permutation matrices obtained
by permuting columns of In by the permutation σ and σ′ respectively.
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1. Γ and its permuted digraph Γσ′,σ have the same in-degree sequence and out-
degree sequence.

2. The adjacency matrices of Γσ, Γ
−
σ , and Γσ′,σ are Aσ = APσ, A

−
σ = P T

σ A, and
P T
σ′APσ respectively.

3. (Γσ)
−
σ is isomorphic to Γ via the permutation of vertices by σ because Aσ = APσ

implies P T
σ Aσ = P T

σ APσ.

The following result shows when a digraph Γ and an out-permuted digraph Γσ of
Γ are isomorphic.

Theorem 3.11. Let Γ be a labelled digraph on n vertices 1, 2, . . . , n with adjacency
matrix A. Let σ be a permutation on 1, 2, . . . , n. Then Γ is isomorphic to its out-
permuted digraph Γσ via a permutation σ′ on 1, 2, . . . , n if and only if Γ−

σ′ = Γ(σ′)−1σ.

Proof. Let Pσ and Pσ′ be the permutation matrices corresponding to permutations
σ and σ′ respectively. Then Aσ = APσ. Note that Γ is isomorphic to Γσ via a
permutation σ′ if and only if Aσ = P T

σ′APσ′ . The result follows from the following:

APσ = P T
σ′APσ′ ⇐⇒ APσP

T
σ′ = P T

σ′A,

where PσP
T
σ′ is the permutation matrix corresponding to the permutation (σ′)−1σ.

The following result shows when a digraph Γ and a permuted digraph Γσ′,σ of Γ
are isomorphic.

Theorem 3.12. Let Γ and Γ′ be labelled digraphs on n vertices 1, 2, . . . , n with adja-
cency matrices A and A′ respectively without any isolated vertices. Then Γ′ = Γσ′,σ
for some permutations σ and σ′ on 1, 2, . . . , n if and only if bipartite digraphs given

by adjacency matrices

[
On A
On On

]
and

[
On A′

On On

]
are isomorphic.

Proof. Suppose Γ′ = Γσ′,σ for some permutations σ and σ′ on 1, 2, . . . , n. Then A′ =
P T
σ′A−1Pσ where Pσ and Pσ′ are the permutation matrices obtained by permuting

columns of In by the permutations σ and σ′ respectively. Note that

[
On A′

On On

]
=

[
Pσ′ On

On Pσ

]T [
On A
On On

] [
Pσ′ On

On Pσ

]
.

Thus bipartite digraphs given by adjacency matrices

[
On A
On On

]
and

[
On A′

On On

]

are isomorphic.
Conversely suppose bipartite digraphs given by adjacency matrices

B =

[
On A
On On

]
and B′ =

[
On A′

On On

]
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are isomorphic. Then there is a permutation matrix X =

[
P S
R Q

]
such that

B′ = XTBX , i.e.,

[
On A′

On On

]
=

[
P S
R Q

]T [
On A
On On

] [
P S
R Q

]
=

[
P TAR P TAQ
STAR STAQ

]
.

Since X is a permutation matrix, R = On if and only if S = On in which case P
and Q are n× n permutation matrices. So it suffices to show that S = On. Suppose
S �= On. Since P TAQ = A′ �= On, we have P,Q �= On. Moreover, since Γ and
Γ′ have no isolated vertices, A and A′ have nonzero row i or nonzero column i for
each i = 1, 2, . . . , n. Since P �= On and S �= On, column i and column n + j of
B are interchanged and also row i and row n + j of B are interchanged to obtain
B′ = XTBX for some j = 1, 2, . . . , n. If column j of A is nonzero, one of the first n
columns of B′ = XTBX is nonzero, a contradiction. If row j of A is nonzero, one of
the last n rows of B′ = XTBX is nonzero, a contradiction.

3.3 Equivalence from Digraph Transformations

In this subsection we explore how digraph transformations give rise to equivalent
linear codes.

Theorem 3.13. Let Γ be a labelled digraph on n vertices 1, 2, . . . , n with adjacency
matrix A. Let Γσ′,σ be a permuted digraph of Γ with adjacency matrix A′ for some
permutation σ and σ′ on 1, 2, . . . , n. Then the binary linear codes C([In|A]) and
C([In|A′]) are equivalent.

Proof. Let Pσ and Pσ′ be the permutation matrices obtained by permuting columns
of In by the permutation σ and σ′ respectively. Then A′ = P T

σ′APσ. Consider the
following 2n× 2n permutation matrix Q:

Q =

[
Pσ′ O
O Pσ

]
.

Observe that
[In|A′] = [In|P T

σ′APσ] = P T
σ′ [In|A]Q

and consequently C([In|A]) and C([In|A′]) are equivalent.

Note that the preceding proof is based on that of Theorem 3.3.

Corollary 3.14. Let Γ be a labelled digraph on n vertices 1, 2, . . . , n with adja-
cency matrix A. Let Γσ be an out-permuted digraph of Γ for some permutation σ on
1, 2, . . . , n. Then the binary linear codes C([In|A]) and C([In|Aσ]) are equivalent.

Corollary 3.15. Let Γ be a labelled digraph on n vertices 1, 2, . . . , n with adja-
cency matrix A. Let Γ−

σ be an in-permuted digraph of Γ for some permutation σ on
1, 2, . . . , n. Then the binary linear codes C([In|A]) and C([In|A−

σ ]) are equivalent.
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Definition 3.16. Let Γ be a labelled digraph on n vertices 1, 2, . . . , n with adjacency
matrix A that is invertible in F2. The inverse digraph of Γ is the labelled digraph,
denoted by Γ−1, on n vertices 1, 2, . . . , n that has adjacency matrix A−1. Let σ, σ′

be permutations on 1, 2, . . . , n. The inverse-permuted digraph of Γ by (σ′, σ) is the
labelled digraph, denoted by Γ−1

σ′,σ, on n vertices 1, 2, . . . , n such that (i, j) is an arc

in Γ−1
σ′,σ if and only if (σ′(i), σ(j)) is an arc in Γ−1.

Observation 3.17. The adjacency matrix of Γ−1
σ′,σ is P T

σ′A−1Pσ where Pσ and Pσ′ are
the permutation matrices obtained by permuting columns of In by the permutations
σ and σ′ respectively.

Theorem 3.18. Let Γ be a labelled digraph on n vertices 1, 2, . . . , n with adjacency
matrix A that is invertible over F2. Let Γ−1

σ′,σ be an inverse-permuted digraph of Γ
with adjacency matrix A′ for some permutation σ, σ′ on 1, 2, . . . , n. Then the binary
linear codes C([In|A]) and C([In|A′]) are equivalent.

Proof. Let Pσ and Pσ′ be the permutation matrices obtained by permuting columns
of In by the permutations σ and σ′ respectively. Then A′ = P T

σ′A−1Pσ. Consider the
following 2n× 2n permutation matrix Q:

Q =

[
O Pσ

Pσ′ O

]
.

Observe that
[In|A′] = [In|P T

σ′A−1Pσ] = P T
σ′A−1[In|A]Q

and consequently C([In|A]) and C([In|A′]) are equivalent.

Note that the preceding proof is based on that of Theorem 3.4.

Corollary 3.19. Let Γ be a labelled digraph on n vertices 1, 2, . . . , n with adjacency
matrix A that is invertible over F2. Let Γ

−1 be the inverse digraph of Γ with adjacency
matrix A−1. Then the binary linear codes C([In|A]) and C([In|A−1]) are equivalent.

Question 3.20. Let A and A′ be two n × n matrices over F2. Let Γ and Γ′ be
directed graphs with adjacency matrices A and A′ respectively. Find necessary and
sufficient common graph properties of Γ and Γ′ for which the binary linear codes
C([In|A]) and C([In|A′]) are equivalent.

This is a hard question because two digraphs such as Γ and Γ−1 with distinctive
features produce equivalent codes by Corollary 3.19.
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