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Abstract

This article studies the number of ways of selecting k objects arranged
in p circles of sizes n0, . . . , np−1 such that no two selected ones have less
than s objects between them. If ni ≥ sk + 1 for all 0 ≤ i ≤ p − 1, this
number is shown to be

n0+...+np−2

k

(
n0+...+np−2−sk−1

k−1

)
. A combinatorial proof

of this claim is provided, and two convolution formulas due to Rothe are
obtained as corollaries.

1 Introduction

The study of separated sets in circles and lines has been of great interest in combina-
torics throughout the years. The first important result was in 1943, when Kaplansky
[19] proved that the number of ways to choose k elements arranged in a circle (re-
spectively, a line) of n elements such that no two are consecutive is n

n−k

(
n−k
k

)
(respec-

tively,
(
n−k+1

k

)
). Later Konvalina [20] showed that the number of ways of selecting

k elements arranged in a circle of n elements, with no two selected elements having
unit separation, i.e. having exactly one object between them, is

(
n−k
k

)
+

(
n−k−1
k−1

)
if

n ≥ 2k + 1.

Afterwards Mansour and Sun [21] found that the number of ways of selecting k
out of n elements arrayed in a circle such that no two selected ones are separated
by m − 1, 2m − 1, . . . , qm − 1 elements is given by n

n−qk

(
n−qk
k

)
, where m, q ≥ 1 and

n ≥ mqk + 1. New proofs of this result were given in [5] and [9]. In particular [5]
provides a combinatorial proof, using partitions of Zn. The technique using partitions
was further explored in [11].

Recently, in [6] the problem was generalized to the study of sets where no two
elements are at even distance, or no two elements are at odd distance.

In [14, 15] Holroyd and Johnson introduced a problem concerning k-element sets
in a circle of size n, with the additional condition that no two elements can be at
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distance less than or equal to s. Such sets are said to be s-separated. This problem
was solved in 2003 by Talbot [23]. The main result in [23] is an Erdős-Ko-Rado-
type theorem, which characterizes the maximum-sized families of s-separated sets
satisfying the condition that no two are disjoint. These sort of results are called
Erdős-Ko-Rado-type because of [7], where Erdős, Ko and Rado bounded the size
of any family of pairwise intersecting k-element sets of a base set of size n and
characterized the families of maximum size. Nevertheless, we are interested in one of
the lemmas from said work, which states that the number of s-separated k-element
subsets of [n] = {1, . . . , n} containing a fixed element is

(
n−sk−1
k−1

)
.

Another way to look at this type of problem, which is on the rise, is the study
of independent sets of graphs; see [1, 2, 3, 4, 8, 12, 13, 16, 17, 18, 24]. In this sense,
the results in [19], restated into a graph-theoretical language, say that the number
of independent sets of size k on a cycle (respectively, a path) with n vertices is
n

n−k

(
n−k
k

)
(respectively,

(
n−k+1

k

)
). In the same way, the results in [5, 9, 11, 20, 21] can

be restated in terms of the k-element independent sets of the corresponding graph.
Nevertheless, most of the results are geared towards studying Erdős-Ko-Rado-type
theorems. In the case of [23], the result could be restated as a characterization of
maximum-sized families of pairwise intersecting independent k-element sets of the
sth power of a cycle.

Given a graph G and a vertex v, the k-star at v is the family of independent
k-element sets that contain the vertex v. A graph is said to be k-starred if the
size of a maximum intersecting family of k-element independent sets coincides with
the maximum size of a k-star. In [13], Hilton and Spencer proved that the union
of p vertex-disjoint powers of cycles is k-starred if a condition related to the clique
numbers of the different components is satisfied. Afterwards, in [12], Hilton, Holroyd
and Spencer proved that the union of two powers of cycles is k-starred, without
needing the condition on the clique numbers. Nevertheless, the size of the stars, and
thus the maximum size of an intersecting family, was not provided. Stars have been
studied on their own on trees [3].

Our aim is to study the number of k-element s-separated sets in p circles of sizes
n0, . . . , np−1. In Section 2 we study the number of k-element s-separated sets having
a fixed element in two circles of sizes n0 and n1. In Section 3 we generalize this result
to p circles of sizes n0, . . . , np−1. Then, in Section 4 we use the results obtained with
a fixed element to count the number of k-element s-separated sets in p circles of sizes
n0, . . . , np−1. Finally, in Section 5, we write our results in graph-theoretical notation,
providing the sizes of k-stars and the number of k-element independent sets in unions
of sth-powers of cycles.

2 s-separated k-sets in two circles with a fixed element

We begin this section by introducing notation. The set of the first n positive integers
is denoted by [n] := {1, 2, . . . , n} and the set of all s-separated k-element sets in a
circle of size n is denoted by [n]sk. In order to distinguish between the elements of
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different circles, we introduce the following.

Definition 2.1. Let n0, n1, . . . np−1 be positive integers, with p ≥ 2, and denote the
set

[n0, n1, . . . , np−1] = ([n0]× {0}) ∪ ([n1]× {1}) ∪ · · · ([np−1]× {p− 1}) .

Thus the elements of the ith circle are those whose second coordinate is i.

Definition 2.2. Given p ≥ 2 and a positive integer s we say that a k-element subset
of [n0, . . . , np−1] is s-separated if it does not contain two elements in a circle with less
than s elements between them. The set of all s-separated k-subsets of [n0, . . . , np−1]
is denoted by [n0, . . . , np−1]

s
k.

When we are considering the elements of an s-separated set, we sometimes say
that the elements are s-separated.

Using the notation we just introduced, the lemma from [23] mentioned in the
introduction can be written as follows.

Lemma 2.3. [23] If As,k
1 (n) = {A ∈ [n]sk : 1 ∈ A} then∣∣∣As,k

1 (n)
∣∣∣ = (

n− sk − 1

k − 1

)
.

On the other hand, the following is a weaker version of the main result from [21].

Theorem 2.4. [21]

|[n]sk| =
n

n− sk

(
n− sk

k

)
In this section we establish a bijection between the set

As,k
(1,0) (n0, n1) = {A ∈ [n0, n1]

s
k : (1, 0) ∈ A}

and the set in As,k
1 (n0 + n1) = {A ∈ [n0 + n1]

s
k : 1 ∈ A}. Together with Lemma 2.3

this yields the equality
∣∣∣As,k

(1,0) (n0, n1)
∣∣∣ = (

n0+n1−ks−1
k−1

)
.

First, we define a function from [n0, n1] to [n0+n1] and its inverse. These functions
will not be the required bijection as some s-separated sets will turn into sets that
are not s-separated. To obtain the bijection we will introduce a process that will
move the problematic elements (the ones that are not s-separated) in order to obtain
s-separated sets.

Definition 2.5. Let f : [n0, n1]→ [n0 + n1] be defined by

f (i, j) =

{
i if j = 0,

n0 + i if j = 1.
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So f transforms the two circles [n0]× {0} and [n1]× {1} into one circle [n0 + n1] by
relabeling the elements and making (1, 1) come right after (n0, 0) in the cyclic order.

Definition 2.6. Let g : [n0 + n1]→ [n0, n1] be defined by

g (i) =

{
(i, 0) if 1 ≤ i ≤ n0,

(i− n0, 1) if n0 + 1 ≤ i ≤ n0 + n1.

Note that the function g as defined above is the inverse of the function f .
The image of some s-separated sets (in their respective circles) under the func-
tions f and g will not be s-separated sets although those sets will remain k-sets.
Notice that if A ∈ As,k

(1,0) (n0, n1), then f (A) ∈ As,k
1 (n0 + n1) if and only if A ∩

({n1 − s+ 1, . . . , n1} × {1}) = ∅. If f (A) 	∈ As,k
1 (n0 + n1), then A ∩ ({n1 − s + 1,

. . . , n1} × {1}) consists of a single element (n1 − d, 1). But as A is s-separated and
(1, 0) ∈ A, we have (n0 − d, 0) 	∈ A. Then we can switch the element (n1 − d, 1)
by the element (n0 − d, 0), which through f will yield a set in As,k

1 (n0 + n1) unless
A ∩ ({n0 − d− s+ 1, . . . , n0 − d} × {0}) = (n0 − d− d′, 0). But as A is s-separated
and (n1 − d, 1) ∈ A, (n1 − d− d′, 1) 	∈ A. Thus we can switch again and keep going.
Notice that in order to do these switches we are identifying the elements in the circles
in descending order.

(n0, 0) ←→ (n1, 1)

(n0 − 1, 0) ←→ (n1 − 1, 1)

...

(n0 − s, 0) ←→ (n1 − s, 1)

...

(n0 − s (k − 1) , 0) ←→ (n1 − s (k − 1) , 1) .

We are now ready to introduce the processes that yield the bijection. In the
following definitions the first coordinate of an ordered pair is of importance; thus we
use the projection notation: π1 (a, b) = a.

Definition 2.7 (zig). Let A ∈ As,k
(1,0) (n0, n1), n0 ≥ sk + 1, n1 ≥ sk, and

Z0 = A, a−1 = n0 + 1, z−1 = n1 + 1.

For i = 0, 1, . . . , k − 2, do the following:

Let
Bi = {zi−1 − 1, . . . , zi−1 − s} × {(i+ 1) (mod 2)} .

If Zi ∩ Bi = ∅, then the zig of A is Z (A) = Zi, the z-order of A is i and the
process stops; else

ai = π1 (Zi ∩Bi) ,

di = zi−1 − ai,

zi = ai−1 − di.
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Zi+1 = (Zi − {(ai, (i+ 1) (mod 2))}) ∪ {(zi, i (mod 2))} .
If the process does not stop before defining Zk−1, then the zig of A is Z (A) =

Zk−1, and the z-order of A is k − 1.

Remark 1. Note that 1 ≤ di ≤ s. Furthermore, if f (Zi) is not s-separated in
[n0+n1] and i ≤ k− 2, then Zi∩Bi 	= ∅ and removing either (zi−1, (i− 1) (mod 2))
or (ai, (i+ 1) (mod 2)) yields an s-separated set. Hence, if the z-order of A is at
most k − 2, f (Z (A)) is s-separated in [n0 + n1].

Definition 2.8 (zag). Let ℵ ∈ As,k
1 (n0 + n1), n0 ≥ sk + 1, n1 ≥ sk, and

Ẑ0 = g (ℵ) , ā−1 = n1 + 1, z̄−1 = n0 + 1.

For i = 0, 1, . . . , k − 2, do the following:

Let
Ci = {z̄i−1 − 1, . . . , z̄i−1 − s} × {i (mod 2)} .

If Ẑi ∩ Ci = ∅, then the zag of ℵ is Ẑ (ℵ) = Ẑi the ẑ-order of ℵ is i and the
process stops; else

āi = π1

(
Ẑi ∩ Ci

)
,

d̄i = z̄i−1 − āi,

z̄i = āi−1 − d̄i.

Ẑi+1 =
(
Ẑi − {(āi, i (mod 2))}

)
∪ {(z̄i, (i+ 1) (mod 2))} .

If the process does not stop before defining Ẑk−1, then the zig of ℵ is Ẑ (ℵ) = Ẑk−1,
and the ẑ-order of ℵ is k − 1.

Remark 2. Again, note that 1 ≤ d̄i ≤ s. Furthermore, if Ẑi is not s-separated in
[n0, n1] and i ≤ k − 2, then Ẑi ∩ Ci 	= ∅ and removing either (z̄i−1, i (mod 2)) or
(āi, i (mod 2)) yields an s-separated set. Hence, if the ẑ-order of ℵ is at most k− 2,

Ẑ (ℵ) is s-separated in [n0, n1].

We want f (Z (A)) (respectively Ẑ (ℵ)) to be an s-separated k-set. Notice that
for every i, zi−1 ≥ ai,

∑i
j=0 dj ≤ s (i+ 1), and ai = n(i+1) (mod 2) + 1 −∑i

j=0 dj.
Hence, ak−2 ≤ n0 + 1 − s (i+ 1) if i ≡ 1 (mod 2) and ak−2 ≤ n1 + 1 − s (i+ 1) if
i ≡ 0 (mod 2). By Remark 1, if the z-order of A is less than or equal to k − 2, then
f (Z (A)) is s-separated in [n0 +n1]. Hence, we may assume that the z-order of A is
k − 1. Then Zk−2 ∩ Bk−2 	= ∅, k − 1 elements in total had to be moved around and
Zk−1 = {(1, 0) , (z0, 0) , (z1, 1) , . . . , (zk−3, (k + 1) (mod 2)) , (zk−2, k (mod 2))}. But

zk−2 ≥ n0 + 1− s (k − 1) ≥ s+ 1 if k is even

zk−2 ≥ n1 + 1− s (k − 1) ≥ s if k is odd.
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Then, if k is even, (1, 0) ∈ Zk−1 is s-separated from (zk−2, 0). On the other hand,
if k is odd, then (1, 1) 	∈ A, as A is s-separated and the z-order of A is k − 1
(a0 = n1 + 1 − d0 ∈ A). Hence, (zk−2, 1) is s-separated from the other elements of
Zk−1 and (1, 0) ∈ Zk−1. The only elements that are not separated in Zk−1 are (1, 0)
with (z0, 1). Thus f (Zk−1) is s-separated, and (1, 0) ∈ f (Zk−1). Furthermore, if the
z-order of A was less than k − 1 the same reasoning shows that (1, 0) ∈ Z (A).

A similar argument shows the same for Ẑ (ℵ). This has been summarized in the
following lemma.

Lemma 2.9. Let A ∈ As,k
(1,0) (n0, n1) and ℵ ∈ As,k

1 (n0 + n1). Then f (Z (A)) is

s-separated in [n0 + n1], Ẑ (ℵ) is s-separated in [n0, n1] and (1, 0) ∈ Z (A) ∩ Ẑ (ℵ).

Proof. The result follows from the discussion preceding the lemma.

Working from Definition 2.7, (ai, (i+ 1) (mod 2)) ∈ A for every i and

(zi, i (mod 2)) = (ai−1 − di, i (mod 2)) 	∈ A

because A is s-separated and di ≤ s. Notice that Zi is obtained from Zi−1 by deleting
(ai, (i+ 1) (mod 2)) and adding (zi, i (mod 2)) = (ai−1 − di, i (mod 2)). So at each
step an element that belonged to A is taken out, and an element that was not in A is
added. Hence the number of elements remains unchanged and |Zi| = |A| = k. This

works in a similar fashion for Ẑi. Hence we obtain the following.

Lemma 2.10. Let A ∈ As,k
(1,0) and ℵ ∈ As,k

1 . The sets Zi (A) and Ẑi (ℵ) have k-
elements for every i.

Proof. The proof follows from the discussion preceding the lemma.

We are ready to provide the bijections.

Definition 2.11. Define F : As,k
(1,0) (n0, n1)→ [n0 + n1]

s
k by

F (A) = f (Z (A)) .

Definition 2.12. Define G : As,k
1 (n0 + n1)→ [n0, n1]

s
k by

G (ℵ) = Ẑ (ℵ) .

The remainder of this section is dedicated to proving that F is a bijection from
As,k

(1,0) (n0, n1) onto As,k
1 (n0 + n1) (and that G is its inverse).

Lemma 2.13. If A ∈ As,k
(1,0)(n0, n1) and ℵ ∈ As,k

1 (n0+n1), then F (A)∈As,k
1 (n0+n1)

and G (ℵ) ∈ As,k
(1,0) (n0, n1).

Proof. By Lemma 2.9, 1 ∈ F (A) and (1, 0) ∈ G (ℵ), and they both are s-separated.
By Lemma 2.10, both F (A) and G (ℵ) contain k elements. Therefore F (A) ∈
As,k

1 (n0 + n1) and G (ℵ) ∈ As,k
(1,0) (n0, n1).
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Thus F : As,k
(1,0) (n0, n1)→ As,k

1 (n0 + n1) and G : As,k
1 (n0 + n1)→ As,k

(1,0) (n0, n1).

We can now prove that they are inverses of one another, i.e. G = F−1.

Lemma 2.14. If F and G are defined as in Definitions 2.11 and 2.12, then G = F−1.

Proof. We will prove that G (F (A)) = A, and F (G (ℵ)) = ℵ for every A ∈
As,k

(1,0) (n0, n1) and ℵ ∈ As,k
1 (n0,+n1).

Let A ∈ As,k
(1,0) (n0, n1) and let ℵ = F (A). Then ā0 = z0 and the first switch will

be z̄0 = a0 which means that āi = zi, d̄i = di and z̄i = ai. Hence the z-order of A is
the same as the ẑ-order of ℵ, thus we have that

G (ℵ) = G (F (A)) = A.

Now let ℵ ∈ As,k
1 (n0 + n1) and A = G (ℵ). Applying the same reasoning as

before, we have that
F (A) = F (G (ℵ)) = ℵ,

thus G ◦ F = id and F ◦G = id.

Theorem 2.15. Let n0 ≥ sk + 1 and n1 ≥ sk. Then∣∣∣As,k
(1,0) (n0, n1)

∣∣∣ = (
n0 + n1 − sk − 1

k − 1

)
.

Proof. From Lemma 2.14,
∣∣∣As,k

(1,0) (n0, n1)
∣∣∣ =

∣∣∣As,k
1 (n0 + n1)

∣∣∣. Thus, Lemma 2.3

yields ∣∣∣As,k
(1,0) (n0, n1)

∣∣∣ = (
n0 + n1 − sk − 1

k − 1

)
.

3 s-separated k-sets in p circles with a fixed element

In this section we show that the number of s-separated k-sets in p circles of sizes
n0, . . . , np−1 having a fixed element is equal to the number of s-separated k-sets in
one circle of size n0 + · · ·+ np−1 having a fixed element.

By As,k
(1,0) (n0, . . . , np−1) we denote all the s-separated k-sets in [n0, . . . , np−1]

containing the element (1, 0). Notice that any set in As,k
(1,0) (n0, . . . , np−1) with j

elements in the first p − 1 circles can be seen as a set in As,j
(1,0) (n0, . . . , np−2) ∪(

[np−1]
s
k−j × {p− 1}). Thus, adding over all possible j we obtain

|As,k
(1,0) (n0, . . . , np−1) | =

k∑
j=1

|As,j
(1,0) (n0, . . . , np−2) | × |[np−1]

s
k−j|. (1)

We can use Equation (1) inductively to obtain the following.
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Theorem 3.1. Let n0 ≥ sk + 1 and ni ≥ sk for i = 1, . . . , p− 1. Then∣∣∣As,k
(1,0) (n0, . . . , np−1)

∣∣∣ = (
N − sk − 1

k − 1

)
,

where N =
∑p−1

i=0 ni.

Proof. Notice that Lemma 2.3 states

|As,k
1 (n0 + · · ·+ np−1) | =

(
n0 + . . .+ np−1 − sk − 1

k − 1

)
.

We will show by induction on p, the number of circles, that

|As,k
(1,0) (n0, . . . , np−1) | = |As,k

1 (n0 + · · ·+ np−1) |,
and so the result will follow from Lemma 2.3. The case p = 2 is Theorem 2.15.
Consider p ≥ 3 and assume that

|As,k
(1,0) (n0, . . . , np−2) | = |As,k

1 (n0 + · · ·+ np−2) |.
Then, Equation (1) gives

|As,k
(1,0) (n0, . . . , np−1) | =

k∑
j=1

|As,j
1 (n0 + · · ·+ np−2) | × |[np−1]

s
k−j|. (2)

On the other hand, Equation (1) applied to a circle of size n0 + . . . + np−2 and a
circle of size np−1 implies

|As,k
(1,0) (n0 + . . .+ np−2, np−1) | =

k∑
j=1

|As,j
1 (n0 + · · ·+ np−2) | × |[np−1]

s
k−j|. (3)

Since the left side of Equation (2) equals the left side of Equation (3),

|As,k
(1,0) (n0, . . . , np−1) | = |As,k

(1,0) (n0 + . . .+ np−2, np−1) |.
By Theorem 2.15,

|As,k
(1,0) (n0 + . . .+ np−2, np−1) | =

(
N − sk − 1

k − 1

)
,

and by Lemma 2.3,

|As,k
1 (n0 + · · ·+ np−1) | =

(
N − sk − 1

k − 1

)
.

Therefore

∣∣∣As,k
(1,0) (n0, . . . , np−1)

∣∣∣ = (
N − sk − 1

k − 1

)
= |As,k

1 (n0 + · · ·+ np−1) |
and the proof follows by induction.
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Theorem 3.1 counts the number of sets in [n0, . . . , np−1]
s
k containing (1, 0). Notice

that if nj ≥ sk + 1, then the elements can be relabeled to count the number of sets
containing any element (a, j) in the j-th circle.

Corollary 3.2. Let nj ≥ sk+1 and ni ≥ sk for i = 0, . . . , p−1. Let (a, j) ∈ [nj]×{j}
and

As,k
(a,j) (n0, . . . , np−1) = {A ∈ [n0, . . . , np−1]

s
k : (a, j) ∈ A} .

Then ∣∣∣As,k
(a,j) (n0, . . . , np−1)

∣∣∣ = (
N − sk − 1

k − 1

)
,

where N =
∑p

i=1 ni.

Proof. The corollary follows from Theorem 3.1 after relabeling the elements and
circles such that (a, j) is labeled (1, 0).

Notice that the equalities

|As,k
(1,0) (n0, n1) | =

(
n0 + n1 − sk − 1

k − 1

)
,

|As,k
(1,0) (n0) | =

(
n0 − sk − 1

k − 1

)
,

and

|[n1]
s
k| =

n

n− sk

(
n− sk

k

)
,

together with Theorem 3.1 yield the following known equality, due to Rothe [22].

Corollary 3.3. If m ≥ sk + 1 and n ≥ sk then

k∑
j=1

(
n− sj − 1

j − 1

)
m

m− s(k − j)

(
m− s(k − j)

k − j

)
=

(
m+ n− sk − 1

k − 1

)
.

4 s-separated k-sets in p circles

In this section we use Corollary 3.2 to count the number of s-separated k-element
sets in p circles of various sizes, provided all of the sizes are at least sk+ 1. In order
to do so, we add over every element of the circle the number of s-separated sets
containing it, and then divide by the number of elements in each set.

Theorem 4.1. Let ni ≥ sk + 1 for i = 0, . . . , p− 1. Then

|[n0, . . . , np−1]
s
k| =

N

k

(
N − sk − 1

k − 1

)
,

where N =
∑p−1

i=0 ni.
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Proof. As ni ≥ sk + 1, Corollary 3.2 ensures that the number of s-separated k-sets
containing a fixed element from the i-th circle is

(
N−sk−1

k−1

)
. Then, adding this number

over all elements yields

N

(
N − sk − 1

k − 1

)
.

Notice that in doing this we counted each s-separated k-set k times, once per element
in said set. Thus,

N

(
N − sk − 1

k − 1

)
= k |[n0, . . . , np−1]

s
k| ,

and hence

|[n0, . . . , np−1]
s
k| =

N

k

(
N − sk − 1

k − 1

)
.

Using that any s-separated k-set with j elements in one circle and (k − j) elements
in another is the union of an s-separated j-set in one circle with an s-separated
(k − j)-set in the other we get the following:

|[n0, n1]
s
k| =

k∑
j=0

∣∣[n0]
s
j

∣∣× ∣∣[n1]
s
k−j

∣∣ .
We can now follow the ideas from Corollary 3.3 and apply Theorem 4.1 to get the
following.

Corollary 4.2.

n0 + n1

k

(
n0+n1−sk−1

k − 1

)
=

k∑
j=0

n0

n0−sj
(
n0−sj

j

)
n1

n1 − s (k − j)

(
n1 − s (k−j)

k − j

)
.

Corollaries 3.3 and 4.2 are famous in the literature and are due to Rothe [22].
Other nice bijective proofs of these formulas were given by Guo [10].

5 From the graph-theoretical point of view

In this section we restate our results in graph-theoretical notation. We start by
giving some definitions.

The family of all independent sets of a graph G is denoted by I (G), the family
of independent k-sets by Ik (G) := {A ∈ I (G) : |A| = k} and the family of inde-
pendent k-sets containing a given vertex v by Ikv (G) :=

{
A ∈ Ik (G) : v ∈ A

}
.

The s-th power of a graph G, denoted Gs, is obtained from G by adding edges
between vertices at distance less than or equal to s. Thus, V (Gs) = V (G), and
{v, w} ∈ E (Gs) if and only if the distance between v and w in G is less than or
equal to s. In [4, 12, 13] the authors worked on proving an intersecting property
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on the subfamilies of Ik (G) where the graph G is the disjoint union of powers of
graphs; said property is that the largest intersecting family of k-sets is Ikv (G) for
some vertex v. However, they do not give the sizes of those families as in [23].

We label the vertices as in 2.1 and note that an independent k-set of Cs
n0
∪ · · · ∪

Cs
np−1

corresponds to an s-separated k-set in [n0, . . . , np−1]. Theorem 3.1 yields the
following result.

Corollary 5.1. For every i ∈ {0, . . . , p− 1} let ni ≥ sk be an integer. If v is a
vertex of Cs

nj
and nj ≥ sk + 1, then

∣∣∣Ikv (Cs
n0
∪ · · · ∪ Cs

np−1

)∣∣∣ = (∑p−1
i=0 ni − sk − 1

k − 1

)
.

Furthermore, ∣∣∣Ik (Cs
n0
∪ · · · ∪ Cs

np−1

)∣∣∣ = ∑p−1
i=0 ni

k

(∑p−1
i=0 ni − sk − 1

k − 1

)
.

Let α (G) denote the independence number of G, Corollary 5.1 gives the sizes

of Ikv
(
Cs

n0
∪ · · · ∪ Cs

np−1

)
and Ik

(
Cs

n0
∪ · · · ∪ Cs

np−1

)
when 1 ≤ k ≤ mini

{
α
(
Cs

ni

)}
,

that is, when ni ≥ (s+ 1)k for each i.
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