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Abstract

An acyclic homomorphism of a digraph C to a digraph D is a function
ρ : V (C)→ V (D) such that for every arc uv of C, either ρ(u) = ρ(v), or
ρ(u)ρ(v) is an arc of D and for every vertex v ∈ V (D), the subdigraph of
C induced by ρ−1(v) is acyclic. A digraph D is a core if the only acyclic
homomorphisms of D to itself are automorphisms. In this paper, we
prove that for certain choices of p(n), random digraphs D ∈ D(n, p(n))
are asymptotically almost surely cores. For digraphs, this mirrors a result
from [A. Bonato and P. Pra�lat, Discrete Math. 309 (18) (2009), 5535–
5539; MR2567955] concerning random graphs and cores.

1 Introduction

In this paper, we follow [1] and [4] for definitions and terminology. Our digraphs
are simple, i.e., loopless and without multiple arcs. However, we allow two vertices
u, v to be joined by two oppositely directed arcs, uv and vu. By a cycle, we always
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mean a directed cycle in the digraph case. For a natural number n and 0 ≤ p ≤ 1, a
digraph D ∈ D(n, p) is defined to be a digraph on n vertices (we use V (D) = [n] =
{1, 2, . . . , n}) where each ordered pair of vertices is joined by an arc with probability
p, with the arcs chosen independently. Note that if D is any particular digraph on
n vertices, then the probability of obtaining D is p|A(D)|(1− p)n(n−1)−|A(D)|.

If Q is any digraph property (e.g., contains a
←→
K 3, is connected, etc.), we say

that D ∈ D(n, p(n)) has property Q (D ∈ Q) a.a.s. (asymptotically almost surely)
if P (D ∈ Q) → 1 as n → ∞. We use vC and aC to denote |V (C)| and |A(C)|,
respectively, for a digraph C. We sometimes use the asymptotic notations an � bn
and an 	 bn to denote an = o(bn) and an = Θ(bn), respectively, for positive sequences
(an) and (bn).

The maximum density of D is

m(D) := max

{
aC
vC

: C is a subdigraph of D and vC > 0

}
.

Let Q be a nontrivial digraph property (a property that is not satisfied by all or no
digraphs). We say that Q is monotone increasing if D ∈ Q implies that C ∈ Q for
every digraph C on the same set of vertices containing D as a subdigraph. Let Q be
a nontrivial monotone increasing digraph property, (p̂n) a sequence of probabilities,
and D ∈ D(n, p(n)). Then (p̂n) is a threshold for Q if

P (D ∈ Q)→
{

0 if p(n)� p̂n

1 if p(n)
 p̂n

as n→∞.

The following assertion is a digraph analogue of [6, Theorem 3.4] and can be
proved following the same technique.

Theorem 1.1. For an arbitrary digraph C with at least one arc,

lim
n→∞

P (C ⊆ D ∈ D(n, p(n))) =

{
0 if p(n)� n−1/m(C)

1 if p(n)
 n−1/m(C).

2 Asymptotic properties of random digraphs

We begin with Chernoff’s inequality, which is used extensively in the proof of
Lemma 2.3. Here X ∈ B(n, p) indicates that X is a binomial random variable with
parameters n and p, with n being the number of trials and p the success probability
of each trial.

Theorem 2.1 (Chernoff’s inequality [6]). If X ∈ B(n, p) and λ = np, then, with
ρ(x) = (1 + x) log(1 + x)− x for x ≥ −1 (and ρ(x) =∞ for x < −1), we have

P (X ≥ E(X) + t) ≤ exp(−λρ(t/λ)) ≤ exp
(
− t2

2(λ + t/3)

)
for t ≥ 0,
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and

P (X ≤ E(X)− t) ≤ exp(−λρ(−t/λ)) ≤ exp
(
− t2

2λ

)
for t ≥ 0.

One immediate consequence of Theorem 2.1 is

Corollary 2.2 ([6]). If X ∈ B(n, p) and ε > 0, then

P (|X − E(X)| ≥ εE(X)) ≤ 2 exp(−ρ(ε)E(X)).

In particular, if ε ≤ 3/2, then

P (|X −E(X)| ≥ εE(X) ≤ 2 exp
(
− ε2E(X)

3

)
.

In order to prove the main result of this paper—Theorem 3.1—we need several
lemmas, collected together in the following result. This extends Lemma 1 in [3] to
random digraphs.

Lemma 2.3. If n−1/9 log2 n < p = p(n) < 1 − n−1/9 log2 n, then a.a.s. D ∈ D(n, p)
has the following properties:

(a) the number of neighbours of a vertex of D is at least n(2p− p2)(1− o(1)) and
at most n(2p− p2)(1 + o(1));

(b) every pair of distinct vertices of D has at least np2(2 − p)2(1 − o(1)) and at
most np2(2− p)2(1 + o(1)) common neighbours;

(c) the largest acyclic subdigraph of D has fewer than n1/9 vertices;

(d) each set of k vertices, where k ≥ k0 = k0(n) = n1/9 log2 n/2, induces a subdi-
graph with at most 2p

(
k
2

)
(1 + o(1)) arcs;

(e) in each set of k disjoint pairs of vertices {{vi, wi}}, for i ∈ [k] where k ≥ k1 =
k1(n) = n1/9 log2 n, there are at least 2(1 − (1 − p)4)

(
k
2

)
(1 + o(1)) pairs (i, j)

such that at least one of vivj , viwj, wivj, wiwj is an arc of D.

Proof. (a) Let v be an arbitrary vertex of D ∈ D(n, p). We define the random
variable X as X = |ND(v)|. We have

E(X) = (n− 1)[1− (1− p)2] = (n− 1)(2p− p2) = n(2p− p2)−O(1).

Using Corollary 2.2 with ε = log n/
√

n(2p− p2) we have

P (X ≥ n(2p− p2) +
√
n(2p− p2) log n or X ≤ n(2p− p2)−

√
n(2p− p2) log n)
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≤ 2 exp (− log2 n

3
).

Now, suppose that the random variable Y counts all the vertices having at least
[n(2p−p2)+√

n(2p− p2) log n] or at most [n(2p−p2)−√n(2p− p2) logn] neighbours.
Using Markov’s inequality, we have

P (Y = 0) = 1− P (Y ≥ 1) ≥ 1− E(Y ) ≥ 1− 2n exp (− log2 n

3
)→ 1 as n→∞.

So a.a.s. the number of neighbours of every vertex of D ∈ D(n, p) lies between
n(2p− p2)(1− o(1)) and n(2p− p2)(1 + o(1)).

(b) Let v1 and v2 be two distinct vertices of D ∈ D(n, p) and let X count their
common neighbours. Then

E(X) = (n−2)[1− (1−p)2][1− (1−p)2] = (n−2)p2(2− p)2 = np2(2− p)2 − O(1).

Using Corollary 2.2 with ε = log n/
√

np2(2− p)2, we have

P (X ≥ np2(2−p)2 +
√
np2(2−p)2 log n or X ≤ np2(2−p)2−

√
np2(2−p)2) logn)

≤ 2 exp (− log2 n

3
).

Now, suppose that Y counts all pairs of vertices having at least [np2(2 − p)2 +√
np2(2− p)2 log n] or at most [np2(2−p)2−√np2(2− p)2 log n] common neighbours.

Then

P (Y = 0) = 1− P (Y ≥ 1) ≥ 1−E(Y ) ≥ 1−
(
n

2

)
2 exp (− log2 n

3
)

= 1− O(n2) exp (− log2 n

3
)→ 1 as n→∞.

So a.a.s. the number of common neighbours of any two distinct vertices lies between
np2(2− p)2(1− o(1)) and np2(2− p)2(1 + o(1)).

(c) It is enough to show that any subdigraph of D ∈ D(n, p) on n1/9 vertices
a.a.s. contains a cycle. To this end, let C be such a subdigraph. We can view C
as being sampled from D(n1/9, p). Using Theorem 1.1, we deduce that p = n−1/9 is
a threshold for containing a cycle in D(n1/9, p) (because the maximum density of a
cycle is 1), so because n−1/9 log2 n ≤ p = p(n), the subdigraph C a.a.s. contains a
cycle.

(d) For an integer k > n1/9 log2 n/2 and a set S ⊆ V (D) with |S| = k, let us
enumerate S as {1, 2, . . . , k}. Let the random variable X count the number of arcs
in the subdigraph induced by S. Then X =

∑
1≤i �=j≤k Xij, where Xij counts the

number of arcs (zero or one) from i to j. Thus

E(X) =
∑

1≤i �=j≤k

E(Xij) = 2

(
k

2

)
p.
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Using Corollary 2.2 with ε = 1/ logn, we have:

P
(
X ≥ 2p

(
k

2

)
(1 + 1/ logn) or X ≤ 2p

(
k

2

)
(1− 1/ logn)

)

≤ 2 exp

(
− 1

3 log2 n
2

(
k

2

)
p

)

≤ 2 exp

(
− 1

3 log2 n
k2n−1/9 log2 n

)
(1)

≤ 2 exp

(
−k

2n−1/9

3

)
, (2)

the estimate (1) following from the hypothesis p ≥ n−1/9 log2 n. Now, suppose that
Yt counts all the subsets of V (D) of fixed size t ≥ k0 whose induced subdigraphs have
at least 2p

(
t
2

)
(1 + 1/ logn) or at most 2p

(
t
2

)
(1 − 1/ logn) arcs. Then Y =

∑n
t=k0

Yt

counts all the subsets U of size at least k0 whose induced subdigraphs have at least
2p
(|U |

2

)
(1 + 1/ logn) or at most 2p

(|U |
2

)
(1− 1/ logn) arcs. We have:

E(Y ) =

n∑
t=k0

E(Yt)

≤
n∑

t=k0

2

(
n

t

)
exp

(
−t

2n−1/9

3

)
(3)

<

n∑
t=k0

2
(ne

t

)t

exp

(
−t

2n−1/9

3

)
(4)

=

n∑
t=k0

2 exp

(
−t log t + t logn + t− t2n−1/9

3

)

=

n∑
t=k0

2 exp
(
t
(

log n + 1− log t− tn−1/9

3

))

< 2

n∑
t=k0

e−t (5)

< 2

∞∑
t=k0

e−t =
2e−k0

1− e−1
= o(1). (6)

The estimate (3) follows from (2), relation (4) follows from the fact that
(
n
t

)
< (ne

t
)t,

and (5) follows from the bound log n + 1− log t− tn−1/9

3
< −1. Using the bound (6)

in Markov’s inequality, we find that

P (Y = 0) = 1− P (Y ≥ 1) ≥ 1−E(Y )→ 1 as n→∞.

So a.a.s. each set of k ≥ n1/9 log2 n/2 vertices induces a subdigraph with at most
2p
(
k
2

)
(1 + 1/ logn) = 2p

(
k
2

)
(1 + o(1)) arcs.
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(e) Let S be a set of k ≥ k1 = n1/9 log2 n disjoint pairs of vertices {vi, wi}, for
i ∈ [k] of D ∈ D(n, p). Let S ′ (the ‘contraction’ of S) be the set obtained from S
by identifying wi with its corresponding vi. For convenience, we enumerate S ′ as
{1, 2, . . . , k}. Now, suppose that X counts the number of arcs (excluding loops and
multiple arcs) in the subdigraph induced by S ′. Then X =

∑
1≤i �=j≤k Xij , where Xij

counts the number of arcs (zero or one) from i to j in the subdigraph induced by S ′

(note that the sum is over ordered pairs). We have

E(Xij) = P (Xij = 1) = 1− P (Xij = 0) = 1− (1− p)4,

so that

E(X) =
∑

1≤i �=j≤k

E(Xij) = 2

(
k

2

)[
1− (1− p)4

]
.

Using Corollary 2.2 with ε = 1/ logn, we have:

P
[
X ≥ 2

(
k

2

)(
1− (1− p)4

)
(1 + 1/ logn) or X ≤ 2

(
k

2

)(
1− (1−p)4

)
(1− 1/ logn)

]

≤ 2 exp

(
− 1

3 log2 n
2

(
k

2

)[
1−(1−p)4

])

≤ 2 exp

(
− 1

3 log2 n
2

(
k

2

)
p

)
(7)

≤ 2 exp

(
− 1

3 log2 n
k2n−1/9 log2 n

)

= 2 exp

(
−k

2n−1/9

3

)
,

where the estimate (7) follows from the fact that 1− (1− p)4 ≥ p for 0 < p < 1.

Now, suppose that Yk counts all the sets with exactly k disjoint pairs of vertices of
D whose contractions induce subdigraphs with at least 2

(
k
2

)
[1−(1−p)4](1+1/ log n) or

at most 2
(
k
2

)
[1−(1−p)4](1−1/ log n) arcs (excluding loops and multiple arcs). Then

Y =
∑n

k=k1
Yk counts all the sets with at least k1 disjoint pairs whose contractions

U induce subdigraphs with at least 2
(|U |

2

)
[1 − (1 − p)4](1 + 1/ logn) or at most

2
(|U |

2

)
[1− (1− p)4](1− 1/ logn) arcs. Arguing similarly to our estimates in part (d),

we now have:

E(Y ) =

n∑
k=k1

E(Yk)

≤
n∑

k=k1

2

(
n2

k

)
exp

(
−k

2n−1/9

3

)

<

n∑
k=k1

2
(n2e

k

)k

exp

(
−k

2n−1/9

3

)
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=

n∑
k=k1

2 exp

(
−k log k + 2k logn + k − k2n−1/9

3

)

=

n∑
k=k1

2 exp
(
k
(

2 logn + 1− log k − kn−1/9

3

))

< 2

n∑
k=k1

e−k < 2

∞∑
k=k1

e−k =
2e−k1

1− e−1
= o(1). (8)

Using the bound (8) in Markov’s inequality, we find that

P (Y = 0) = 1− P (Y ≥ 1) ≥ 1−E(Y )→ 1 as n→∞.

So a.a.s. the contraction of each set S of k ≥ n1/9 log2 n disjoint pairs of vertices of D
induces a subdigraph with 2

(
k
2

)
[1− (1− p)4](1± 1/ logn) arcs (excluding loops and

multiple arcs). It follows that in each set of k disjoint pairs of vertices {{vi, wi}},
for i ∈ {1, 2, . . . , k} with k ≥ n1/9 log2 n, there are 2(1− (1− p)4)

(
k
2

)
(1± o(1)) pairs

(i, j) such that at least one of vivj, viwj, wivj , wiwj is an arc of D.

3 A.a.s. all digraphs are cores

An acyclic homomorphism of a digraph D to a digraph C, first defined in [2], is a
function ρ : V (D)→ V (C) such that:

(i) for every arc uv ∈ A(D), either ρ(u) = ρ(v), or ρ(u)ρ(v) is an arc of C; and

(ii) for every vertex v ∈ V (C), the subdigraph of D induced by ρ−1(v) is acyclic.

For a more thorough treatment of graph and digraph homomorphisms, the reader is
encouraged to consult [5]. We are now ready to state and prove the main result of
this paper.

Theorem 3.1. If n−1/9 log2 n < p < 1−n−1/9 log2 n, and D,C ∈ D(n, p), then a.a.s.
every acyclic homomorphism f : V (D)→ V (C) is injective.

Proof. The bounds on p imply that D and C a.a.s. satisfy properties (a)–(e) in
Lemma 2.3. Suppose for a contradiction that there exists an acyclic homomorphism
f : V (D) → V (C) that is not injective. Then f(x) = f(y) = z ∈ V (C) for some
distinct vertices x, y ∈ V (D). Thus the set A of vertices adjacent to either x or y in
D must be mapped by f to the set B containing z and vertices adjacent to z. That
is, if A = ND(x)∪ND(y) and B = NC [z], then f(A) ⊆ B (our notational convention
being N [z] = {z} ∪N(z)). Using (a) and (b) in Lemma 2.3, a.a.s. we have

|A| ≥ 2n(2p− p2)(1− o(1))− np2(2− p)2(1 + o(1))

	 (
2np(2− p)− np2(2− p)2

)
(1− o(1))
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= np(2− p)
(
2− p(2− p)

)
(1− o(1)),

and

|f(A)| ≤ |B| ≤ n(2p− p2)(1 + o(1)).

Thus a.a.s.

|A| − |f(A)| ≥ [
np

(
2− p

)(
p2 − 2p + 2

)]
(1− o(1))− np(2− p)(1 + o(1))

	
[
np

(
2− p

)(
p2 − 2p + 1

)]
(1 + o(1))

= np
(
2− p

)(
1− p

)2
(1 + o(1))

>
1

2
np(1− p)2(1 + o(1))

≥ 1

2
n2/3 log6 n(1 + o(1)) (9)

≥ 1

2
n2/3 log2 n(1 + o(1)),

where the bound (9) follows from the fact that p > n−1/9 log2 n and 1 − p >
n−1/9 log2 n. Because f is an acyclic homomorphism, for any vertex v ∈ V (C),
the set f−1(v) is an acyclic set in D so |f−1(v)| < n1/9 (part (c) of Lemma 2.3).
Using the fact that |A|− |f(A)| ≥ n2/3 log2 n/2 and |f−1(v)| < n1/9 shows that a.a.s.
there are

k >
|A| − |f(A)|

n1/9
>

1

2
n5/9 log2 n >

1

2
n1/3 log2 n > n1/9 log2 n

vertices v1, v2, . . . , vk ∈ f(A) such that |f−1(vi)| ≥ 2. Using property (e) of Lem-
ma 2.3, we see that a.a.s. there are

2
(
1− (1− p)4

(
k

2

))
(1± o(1))

arcs among the vertices in
⋃k

i=1 f
−1(vi) ⊆ A and consequently among the vertices

v1, v2, . . . , vk. But part (d) implies that there are at most 2p
(
k
2

)
(1 + o(1)) such

arcs. This gives our desired contradiction because 2
(
1 − (1 − p)4

(
k
2

))
(1 ± o(1)) >

2p
(
k
2

)
(1 + o(1)).

Corollary 3.2. If n−1/9 log2 n < p < 1− n−1/9 log2 n, then a.a.s. a random digraph
D ∈ D(n, p) is a core.
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