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Abstract

A Z-flow in a graph G is an orientation �G together with an assignment
φ : E( �G) → Z such that at each vertex the sum of all incoming flow

values equals the sum of all outgoing ones. A map f : E( �G) → E( �H)
between the edge sets of two oriented graphs is called Z-flow-continuous
if φ ◦ f is a Z-flow in �G for every Z-flow φ in �H . The existence of Z-
flow-continuous maps naturally defines a quasi-order �Z on the class of
finite graphs. The purpose of this note is to study the quasi-order �Z,
give an operative description of such maps when restricted to cyclically
4-edge-connected cubic graphs and show that this quasi-order contains
an infinite antichain of snarks with circular flow number 5 containing the
Petersen graph P10.

1 Introduction

The graphs we consider are finite. They may contain multiple edges but no loops.
Let M be an abelian group. An M-flow in a graph G is an orientation �G of G
together with an assignment φ : E( �G) → M such that, at each vertex, the sum of
all incoming flow values equals the sum of all outgoing ones. The existence of an
M-flow in a graph does not depend on the fixed orientation �G, indeed if we reverse
e ∈ E( �G) then φ is still an M-flow by changing φ(e) with its inverse. If k, d are two
integers such that k ≥ 2d > 0, a circular nowhere-zero k

d
-flow (introduced in [4]) is

a Z-flow ψ such that |ψ(e)| ∈ {d, d + 1, . . . , k − d}, for every edge e. The circular
flow number of a bridgeless graph G is the least number Φc(G) such that G has a
nowhere-zero circular Φc(G)-flow. It is well-known that graphs with a bridge do not
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admit any nowhere-zero flow and, on the other hand, it was proved in [4] that, if G
is bridgeless, then Φc(G) is a minimum. The well-known Tutte’s 5-flow Conjecture
[14] claims that every bridgeless graph admits a nowhere-zero 5-flow.

A map f : E( �G) → E( �H) between the edge sets of two oriented graphs G and
H is called M-flow-continuous if every M-flow of H can be lifted to an M-flow of
G in the given orientations, i.e. for every M-flow ψ : E( �H) → M the composition
ψ ◦ f is still an M-flow. It is known that Z2-flow-continuous maps are exactly cycle-
continuous maps, i.e. maps having the property that the pre-image of every cycle is
a cycle, where by cycle we mean a graph having vertices of even degree. The interest
for these maps comes from an outstanding conjecture by Jaeger claiming that every
bridgeless graph has a cycle-continuous map to the Petersen graph P10 [8]. Indeed a
positive answer to this conjecture would imply many other very important ones like
the 5-cycle-double-cover, see [15], and Berge-Fulkerson conjectures [3].

As shown and studied in [1], M-flow-continuous maps naturally define quasi-
orders on the class of finite graphs. We say that G �M H if there is an M-flow-
continuous map between an orientation of G and an orientation of H (we remark
that our notation is slightly different from [1] since we only need to specify the group
on which the flow function takes values). Using this notation Jaeger’s Conjecture
can be stated as follows.

Conjecture 1.1 (Jaeger [8]). Every bridgeless graph G satisfies G �Z2 P10.

Jaeger’s Conjecture can be reduced to cubic graphs. In this context it is also
known as the Petersen Coloring Conjecture since it can be naturally stated in terms
of graph colorings. A map f : E(G) → E(H) between two cubic graphs G and H
is called an H-coloring of G if for every v ∈ V (G) there is vh ∈ V (H) such that
f(∂(v)) = ∂(vh), where ∂(v) denotes the set of edges incident to v. If G is cubic
then G �Z2 P10 if and only if G has a P10-coloring. Hence Jaeger’s Conjecture can
be stated equivalently as follows.

Conjecture 1.2 (Jaeger [8]). Every bridgeless cubic graph has a P10-coloring.

In [13] an infinite antichain of cubic graphs in the Z2-flow-continuous quasi-order
was presented, and the problem of finding an infinite antichain (in the same quasi-
order) of cyclically 4-edge-connected cubic graphs was left for further research. Since
Z-flow-continuous maps are also cycle-continuous [1], the problem of finding such an
infinite antichain in the Z-flow-continuous quasi-order would be a weaker version of
the previous one. The purpose of this note is to study the quasi-order �Z. More
precisely, we first give an operative description of Z-flow-continuous maps f : E( �G) →
E( �H), when H is a cyclically 4-edge-connected cubic graph, see Proposition 2.2.
Then we show that there is an infinite antichain of snarks containing P10, where we
recall that a snark is a cyclically 4-edge-connected cubic graph with girth at least 5
and not admitting a 3-edge-coloring.
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2 Oriented Colorings

Given a positive integer k, a multipole consists of a set of vertices V and a set
of edges E, which may contain also dangling edges, i.e. edges adjacent just to one
vertex and having a dangling side. We call k-pole a multipole containing k dangling
edges. A graph is a multipole having no dangling edge.

Let C be a connected 2-regular graph and let �C be an orientation of C. E( �C)
can be partitioned into two disjoint subsets A and B of edges oriented respectively
clockwise and counterclockwise. We say that two edges of A (or B) have the same
direction, but an edge of A and an edge of B have opposite direction. If one between
A and B is empty we say that �C is a directed cycle.

Let G be a multipole and �G an orientation of G. Moreover let x ∈ V (G) be a
vertex incident to the edges e1, e2 ∈ ∂(x). We say that x reverses the orientation of

the path e1xe2 in �G if e1 and e2 are both incoming or outgoing at x in �G. Otherwise
we say that x preserves the orientation of the path e1xe2 in �G.

Definition 2.1. Let G and H be two multipoles on which we have fixed the orien-
tations �G and �H respectively. A map f : E( �G) → E( �H) is an H-oriented-coloring
of G if

• for every vertex v ∈ V (G) there is a vertex vh ∈ V (H) such that f(∂(v)) =
∂(vh);

• for every v ∈ V (G) the mutual orientation of pairs of edges e1, e2 ∈ ∂(v) is
the same with respect to f(e1), f(e2) ∈ ∂(vh); in other words if v preserves

(resp. reverses) the orientation of the path e1ve2 in �G then vh preserves (resp.

reverses) the orientation of the path f(e1)vhf(e2) in �H.

An H-oriented-coloring is first of all an H-coloring. Furthermore if, for an ori-
entation �H of H , there is an orientation �G of G and a map f : E( �G) → E( �H) that
is an H-oriented-coloring then, for every orientation of H , there is an orientation of
G and a map that is an H-oriented-coloring of G. Indeed, given such a map f , just
notice that if we reverse the orientation of e ∈ E( �H) then it suffices to reverse the
orientation of the set of edges f−1(e) and f remains an H-oriented-coloring of G.

The previous property holds also for Z-flow-continuous maps f : E( �G) → E( �H)
from an orientation ofG and an orientation ofH . Indeed, if we reverse the orientation
of an edge e ∈ E( �H), then f is still a Z-flow-continuous map provided that we reverse
the orientation of every edge of f−1(e).

Note also that an oriented coloring is Z-flow-continuous and therefore, if there
exists such a map f : E( �G) → E( �H) between two graphs G and H , the following
necessary condition holds: Φc(G) ≤ Φc(H). Indeed, if ψ is a circular nowhere-zero
Φc(H)-flow in H , ψ ◦ f is a circular nowhere-zero Φc(H)-flow in G.
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2.1 Oriented colorings of cubic multipoles

From now on we will focus on the study of oriented colorings of cubic multipoles.
In [1] the authors prove that a map f : E(G) → E(P10), where G is a cubic graph,
is a P10-coloring if and only if it is cycle-continuous. A central role is played by
the fact that P10 has only trivial 3-edge-cuts. Indeed this property still holds for
cycle-continuous maps G→ H of cubic graphs, whenever H has only trivial 3-edge-
cuts. Our interest to oriented colorings of cubic graphs is motivated by the following
proposition. Recall that a graph is cyclically k-edge-connected, if it does not
have an edge-cut of cardinality less than k that separates two circuits of the graph.

Proposition 2.2. Let G and H be two bridgeless cubic graphs and let H be cyclically
4-edge-connected. Suppose that they are endowed with the orientations �G and �H
respectively. Then f : E( �G) → E( �H) is an H-oriented-coloring of G if and only if f
is a Z-flow-continuous map.

Proof. An oriented coloring is Z-flow-continuous by definition.

On the other hand, let f : E( �G) → E( �H) be a Z-flow-continuous map. Since f is
cycle-continuous and H is cyclically 4-edge-connected we get that f is an H-coloring
of G. For all u ∈ V (G), let uh be the vertex of H such that ∂(uh) = f(∂(u)).

Since H is bridgeless, it admits a strongly connected orientation �H ′ [12]. Reorient

suitable edges of �H in such a way that �H ′ is fixed. By previous observations we
can reorient the corresponding edges of �G (those whose image under f has been

reoriented when passing from �H to �H ′) and keep f Z-flow-continuous; call �G′ this
new orientation of G. If we prove that f : E( �G′) → E( �H ′) is an H-oriented-coloring
the thesis follows because, similarly to the case of Z-flow-continuous maps, we can
pass from orientations �H ′ and �G′ to �H and �G by keeping f an H-oriented-coloring.
We have to show that for every u ∈ V (G), the mutual orientation of pairs of edges in
∂(u) is equal to the mutual orientation of their images under f in ∂(uh). Suppose by
contradiction that this is not the case, meaning that there is a vertex v of G that does
not satisfy the required property. Since �H ′ is strongly connected, edges in ∂(vh) are
not all incoming or all outgoing at vh. Without loss of generality we can suppose that
vh has one incoming edge a and two outgoing edges b, c, otherwise we can reverse the
orientation of every edge of �H ′ and �G′. The set ∂(v) is mapped onto the set {a, b, c}
by f , let us call ei the edge of ∂(v) such that f(ei) = i ∈ ∂(vh). By our contradictory
hypothesis the orientation of at least one path between eaveb and eavec is reversed
by v in �G′, assume that this holds for eaveb. Since �H ′ is strongly connected, there
is a directed cycle C in �H ′ containing the edges a and b. Let ψ : E( �H ′) → Z be the
Z-flow such that ψ(e) = 1 for every e ∈ C and ψ = 0 everywhere else. Then ψ ◦ f is
not a Z-flow in G, a contradiction.

In [1] the authors prove that a graph G has circular flow number at most 4 if
and only if G �Z K4. When considering cubic graphs, this fact can be also stated as
follows using oriented colorings. We will show in the Appendix an alternative proof
of this result.
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Theorem 2.3 ([1]). Let G be a bridgeless cubic graph. Then Φc(G) ≤ 4 if and only
if there is a K4-oriented-coloring of G.

For the case of bipartite cubic graphs another characterization is proved in [1]:
a cubic graph G is bipartite if and only if G �Z K

3
2 , where K

3
2 is the cubic loopless

multigraph on 2 vertices and 3 edges. The following generalization, stated using
oriented colorings, holds.

Theorem 2.4 ([1]). Let G be a bridgeless cubic multipole. Then G is bipartite if
and only if there is a K3

2 -oriented-coloring of G.

Let G be a multipole. The multipole induced by X ⊆ V (G) in G is the multipole
whose vertex set is X and edge set consists of all edges adjacent to at least one vertex
of X. In the following part, if f : E( �G) → E( �H) is an oriented coloring of a cubic

multipole G, consider the subgraph K of �H induced by f(E( �G)). With a slight
abuse of terminology, we will denote by f(G) the undirected multipole induced by
the vertices of degree 3 of K.

Corollary 2.5. Let G be a non-bipartite cubic multipole, H a cubic graph and
f : E( �G) → E( �H) an oriented coloring. Then f(G) is a non-bipartite multipole.

Proof. Suppose by contradiction that F = f(G) is bipartite and let �F be the ori-

entation that F inherits from �H. Then, by Theorem 2.4, there is a K3
2 -oriented-

coloring g : E(�F ′) → E( �K3
2 ). We can reorient suitable edges of �G in such a way that

f : E( �G) → E(�F ′) remains an oriented coloring. Then the composition g ◦ f is a
K3

2 -oriented-coloring of G. This is impossible by Theorem 2.4.

The following remark holds.

Remark 2.6. In the hypothesis of previous corollary, if G is the cubic multipole
consisting of a k-cycle and k dangling edges, for an odd number k, then the girth of
H is at most k. In particular, if it is exactly k, then f(G) is isomorphic to G and
its dangling edges are mapped to dangling edges of its image.

Proof of the Remark. By Corollary 2.5, f(G) must be a cubic multipole containing
a cycle on t vertices for a suitable odd number 3 ≤ t ≤ k. Moreover, let v1, v2 be two
adjacent vertices of G. Let v1,h and v2,h be the vertices of H such that, for i ∈ {1, 2},
f(∂(vi)) = ∂(vi,h). We have that either v1,h = v2,h or they are adjacent vertices in H .
Thus, if the girth of H is k it follows that f(G) consists of a k-cycle and k dangling
edges that are image of dangling edges of G.

2.2 An infinite antichain of snarks in the quasi-order �Z

In this final part of the section we construct an infinite family of snarks that are
pairwise incomparable in the quasi-order �Z. We are interested in studying the cubic
4-pole P obtained from the Petersen graph P10 by removing two adjacent vertices.
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Figure 1: The multipole P .

The 4-pole P has 4 dangling edges and is depicted in Figure 1. In particular, we are
interested in understanding what its image under an oriented coloring looks like.

We say that two (dangling) edges of a multipole are at distance k if the shortest
path connecting two of their endvertices has length k, where the length of a path is
the number of its edges.

Lemma 2.7. Suppose that f is an H-oriented-coloring of P where H is a cyclically
4-edge-connected cubic graph of girth at least 5. Then f(P ) is isomorphic to a copy
of P . Moreover dangling edges are mapped to dangling edges of the multipole f(P )
in such a way that both pairs f(lu), f(ld) and f(ru), f(rd) are at distance 3 in f(P )
(see Figure 1 as reference for the considered edges).

Proof. Consider two 5-cycles C1, C2 in P such that C2 = e1e2e3e4e5, see Figure 1,
and C1 intersects C2 just in e1. Let Mi be the multipole induced by V (Ci). By
Corollary 2.5, f(M1) and f(M2) are both isomorphic to M1 (and also to M2), and
dangling edges of M1 are mapped to dangling edges of f(M1). Notice that E(C2) ∩
E(M1) = {e1, e2, e5}, and so f(e2) and f(e5) are dangling edges of f(M1). Therefore
e3 and e4 are mapped to a couple of adjacent edges which are both adjacent to f(a)
and such that they are also adjacent to f(e2) and f(e5) respectively. Finally, the
unique possibility is that the remaining two dangling edges lu and ru are mapped to
dangling edges adjacent respectively to f(e2), f(e3) and f(e4), f(e5).

The following corollary follows immediately from the main result of [10] by
Mkrtchyan, claiming that if P10 has a G-coloring, for a connected bridgeless cubic
graph G, then P10 is isomorphic to G.

Corollary 2.8. Suppose that f is an H-oriented-coloring of P10, where H is a bridge-
less cubic graph. Then f(P10) is isomorphic to P10.

Proof. Follows from the fact that f is an H-coloring of P10.

Other than P , we want to focus on the 5-pole P ′ shown in Figure 2.

Lemma 2.9. There is no P10-oriented-coloring f : E( �P ′) → E( �P10) of P
′.



D. MATTIOLO/AUSTRALAS. J. COMBIN. 79 (3) (2021), 327–339 333

v

e

lu

ld

ru

rd L d
Rd

Ru

w w
1 2

Figure 2: The multipole P ′.

Proof. Suppose by contradiction that there is a P10-oriented-coloring f of P ′. There
are two distinct copies P1 and P2 of P inside P ′, which have a common dangling
edge ru and an other one adjacent to a new vertex v, see Figure 2 as reference for
the considered edges. Without loss of generality we say that P1 is the left copy of
P and P2 is the right one with respect to Figure 2. By previous lemma P1 is sent
to a copy isomorphic to P where lu, ld and ru, rd are mapped to pairwise adjacent
edges. Let z ∈ E(P10) \ f(P1), i.e. z is adjacent to f(lu), f(ld), f(ru) and f(rd). In
an analogous way P2 is mapped to a copy isomorphic to P . Hence f(Ld) must be
adjacent to f(ru) and to f(rd) and therefore f(Ld) = z and f(e) = f(ru). Thus P2

is sent to P10 − f(rd).

By definition of oriented coloring we have that the mutual orientation of every
possible couple of edges of �C = {ru, rd, lu, ld} ⊆ E( �P ′) must be the same with

respect to its image in f( �C). The contradiction arises from the fact that, due to
the presence of the vertex v, the mutual orientation of ru and Ld is different to the
mutual orientation of f(ru) and f(Ld).

All previous results lead us to the following

Theorem 2.10. Let G be a bridgeless cubic graph obtained by joining dangling edges
of a 5-pole C with dangling edges of P ′. Then G �Z P10.

Construction methods described in [2], [5] and [9] show that there are many
snarks with circular flow number 5 that have the structure described by the previous
theorem. Those snarks are examples of cubic graphs that are incomparable with
P10 in the Z-flow-continuous quasi-order as they contain the multipole P ′ and by
Corollary 2.8. Every such snark S is also incomparable with K4, indeed S �Z K4

since Φc(S) > Φc(K4) and K4 �Z S since the girth of S is greater than the girth
of K4. In the following part we will show that some of these snarks with circular
flow number 5 together with the Petersen graph form an infinite antichain in the
Z-flow-continuous quasi-order.

Definition 2.11. Consider n ≥ 3 copies P1, P2, . . . , Pn of the multipole P . For
i = 1 . . . , n, let us denote by lu,i, ld,i, ru,i and rd,i the dangling edges of Pi with
reference to Figure 1. Consider an n-cycle c1c2 . . . cn. Call Wn the graph obtained
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Figure 3: The graph Wn.

by identifying ru,i with lu,i+1 and by making the vertex ci and both dangling edges
rd,i, ld,i+1 be adjacent to a new vertex vi, where we compute the sum of indices modulo
n. We will refer to the copy Pi insideWn as P n

i . In Figure 3 the graphWn is depicted.

We remark that, when n ≥ 5 is odd,Wn is a snark with circular flow number 5, see
[2]. In order to make use of Lemma 2.7 and the equivalence given by Proposition 2.2,
we will focus on graphs Wn with n ≥ 5 and, in particular, we will be interested in
graphs Wn,Wm such that n and m are coprime.

Proposition 2.12. Consider two positive integers n,m ≥ 5. There is a Wm-
oriented-coloring of Wn if and only if m divides n.

Proof. Let f be the Wm-oriented-coloring of Wn.

Claim 1. Let Ri be the multipole isomorphic to P ′ induced by V (P n
i ∪ P n

i+1) ∪ {vi}
in Wn. Then f(Ri) is isomorphic to Ri.

Proof of Claim 1. We take Figure 2 as a reference when considering edges and ver-
tices, in particular we consider P n

i to be the left copy of P and P n
i+1 the other one.

Since Wm is cyclically 4-edge-connected with girth at least 5, Lemma 2.7 implies
that f(P n

i ) is isomorphic to P . Suppose that P n
i+1 is sent to the same copy of P .

Then f(Ld) = f(rd) and we get a contradiction because adjacent edges cannot have
the same image. Notice that, if f(∂(w2)) = f(∂(w1)) then f(P n

i ) = f(P n
i+1), and

we get the same contradiction. Hence we conclude that f(∂(w2)) is different from
f(∂(w1)). Notice that, because of the structure of Wm, f(∂(w2)) does not contain
f(rd). Therefore P n

i and P n
i+1 are sent to different copies of P having just f(ru) in

common, and the unique possibility for the oriented coloring to be defined is that
f(Ld) and f(rd) are adjacent to the unique vertex vj in Wm which is adjacent to a
dangling edge of both f(P n

i ) and f(P
n
i+1).
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Figure 4: Oriented coloring of 6-poles of Goldberg snarks.

Claim 2. Let Qi be the multipole induced by V (P n
i ∪P n

i+1 ∪P n
i+2)∪{vi, vi+1} in Wn.

Then f(Qi) is isomorphic to Qi.

Proof of Claim 2. Consider the multipole Q′ isomorphic to P ′ induced by V (P n
i ∪

P n
i+1) ∪ {vi} inside Wn. Then, by Claim 1, f(Q′) is isomorphic to P ′ and so P n

i and
P n
i+1 must be sent to two adjacent copies Pm

j , Pm
j+1. Without loss of generality we

can suppose that they are sent to Pm
i and Pm

i+1, and in particular that f(P n
k ) = Pm

k ,
for k = i, i+1. Using the same argument we notice that P n

i+1 and P
n
i+2 must be sent

to adjacent copies of P . In particular f(P n
i+2) = Pm

i+2 for otherwise, if f(P n
i+2) = Pm

i

we would get that dangling edges ld and rd (as well as lu and ru) of P
n
i+1 would be

mapped to the same edge a contradiction with Lemma 2.7.

By previous claims we notice that f(P n
1 ), . . . , f(P

n
n ) must be pairwise consecutive

copies of P in Wm such that f(P n
i ) is different from both f(P n

i+1) and f(P n
i+2), for

every i. Therefore a necessary condition for f to be defined is that n is a multiple
of m.

On the other hand, a Wm-oriented-coloring of Wkm can be constructed in the
natural way by identifying via identity map the multipolesMkm

h+i induced by V (P km
h+i∪

P km
h+i+1) + ch+i + ch+i+1 + vh+i + vh+i+1 in Wkm with the multipoles Mm

i induced by
V (Pm

i ∪Pm
i+1) + ci + ci+1 + vi + vi+1 in Wm, where h ∈ {0, m, 2m, . . . , (k− 1)m} and

i ∈ {1, 2, . . . , m}. The orientation is naturally defined on every Mkm
h+i (just set the

very same orientation of Mm
i ) by the chosen orientation on Wm.

Theorem 2.13. Let {pj}j∈N be the sequence of prime numbers greater than 3. The
family F = {P10,Wp1,Wp2, . . . } is an antichain in the Z-flow-continuous quasi-order
�Z.

Proof. By Proposition 2.12 for every couple of different prime numbers ps and pt we
have that Wps and Wpt are incomparable. Moreover P10 is incomparable with every
other graph of F by Theorem 2.10.
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3 Further examples on oriented colorings

In this last section we show examples of construction of oriented colorings on classes
of snarks. Consider the family of Goldberg snarks, introduced in [6]; they form an
increasing chain in the Z-flow-continuous quasi-order. The Goldberg snark G2k+1

can be constructed the following way. Consider a cycle v1v2 . . . v2k+1 of length 2k+1.
Remove each vertex vi and substitute it with a copy Pi of the 6-pole obtained from
the Petersen graph after the removal of two vertices at distance 2 (see Figure 4, right
hand side). Finally for each couple of adjacent vertices vivj of the initial cycle glue
together Pi and Pj as shown in Figure 4, left hand side.

We show that G2k+3 �Z G2k+1, for every positive integer k. Call P1, . . . , P2k+3

and Q1, . . . , Q2k+1 the consecutive 6-poles of G2k+3 and G2k+1 respectively. First
we map the subgraph induced by P1, P2 and P3 to Q1 as shown in Figure 4, as
well as fix on them the shown orientation. Then fix on the isomorphic subgraphs
induced respectively by P4, . . . , P2k+3 and Q2, . . . , Q2k+1 the same orientation and
map edges of the multipole Pi+2 identically on the edges of Qi, in the natural way.
The defined map is a G2k+1-oriented-coloring of G2k+3 and so a Z-flow-continuous
map as well. Hence we conclude that the family of Goldberg snarks {G2k+1}k∈N
forms an increasing chain in �Z.

By following the very same method one can show that the family of Flower snarks,
introduced in [7], also forms an increasing chain J3 ≺Z J5 ≺Z J7 ≺Z . . . .

Appendix

In this appendix we show an alternative proof of Theorem 2.3 that makes use of
oriented colorings.

Suppose that �C = (A,B) is an oriented 2-regular graph and let x, y, z ∈ V (C) be
different vertices. Similarly to previous definitions, if xy, yz ∈ A (or xy, yz ∈ B), we
say that y preserves the orientation, vice versa if xy ∈ A and yz ∈ B (or xy ∈ B
and yz ∈ A) then we say that y reverses the orientation.

Proof of Theorem 2.3. If there is such an oriented coloring we obtain

Φc(G) ≤ Φc(K4) = 4.

On the other hand let Φc(G) ≤ 4. It is a well-known fact that, for cubic graphs,
this is equivalent to having a 3-edge-coloring; see for example [11] and [14]. So G is
3-edge-colorable and has three pairwise disjoint perfect matchings M1,M2 and M3

that partition its edge set. We are going to define an orientation �G on G and a map
φ : E( �G) → E( �K4) with the required properties. Fix on K4 the orientation shown in
Figure 5.

Let Mij = Mi ∪ Mj for every i, j ∈ {1, 2, 3}. Consider the two 2-factors M12

and M13. Orient the edges of M12 in such a way that it becomes union of disjoint
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Figure 5: Orientation of K4.
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Figure 6: Possible assignments for sequences of d-edges (left hand side) and a-edges
(right hand side).

directed cycles. Then orient the remaining edges in such a way that the edges with
color 3 of each component of M13 have the same direction. Thus, for every directed
component �C of M13, its edge set E( �C) = A ∪ B, with A ∩ B = ∅, and all edges of
�C colored by 3 are contained in A. For every connected component of M13 set{

φ(e) = a, for every e ∈ A ∩M1,

φ(e) = d, for every e ∈ B ∩M1.

Every connected component C of the 2-factor M23 is an oriented even cycle, hence
C must contain an even number of vertices that reverse the orientation. Therefore it
contains also an even number of vertices that preserve the orientation. Furthermore
notice that vertices that reverse the orientation are incident to edges that are assigned
a, call them a-edges. So the number of a-edges pointing towards C equals the number
of a-edges pointing outwards C. The same property holds for d-edges incident to C
since they are incident to vertices that preserve the orientation and since d-edges
have the same orientation of 2-colored edges in M12.

Now we prescribe an assignment also for edges of color 2 and 3. Notice that we
can suppose without loss of generality that there are no even sequences of a-edges
or d-edges since they can be labeled as in Figures 6. Hence the problem translates
to the task of finding a proper assignment for the edges of an even cycle C ′ where
there are no adjacent a-edges nor adjacent d-edges. By construction these edges have
pairwise the same orientation, just notice that this holds for every edge e of color 3 of
C ′, since they are adjacent to an a-edge (oriented coherently with respect to e) and
a d-edge (having reversed orientation with respect to e). Then define the assignment
as in Figure 7.
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Figure 7: Extention of the map φ to the 2-factor M23.
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