Finding monarchs for excluded minor classes of matroids

S. R. Kingan
Department of Mathematics
Brooklyn College, City University of New York
Brooklyn, NY 11210
U.S.A.
skingan@brooklyn.cuny.edu

Abstract

We prove that the only 3 -connected binary non-regular matroids with no minor isomorphic to a rank 5, 9-element binary matroid known as P_{9}^{*} are the rank 3 and 4 binary projective geometries, a 16 -element rank 5 matroid, and two maximal 3-connected infinite families of matroids of rank $r \geq 5$ that we call monarchs: the well-known infinite family of binary spikes with $2 r+1$ elements and a new infinite family with $4 r-5$ elements. Both families are in matrix format. This is one of very few excluded-minor classes of matroids for which the members are so precisely determined. As a consquence, if M is a simple binary matroid of rank $r \geq 6$ with no P_{9}^{*} minor, then $|M| \leq \frac{r(r+1)}{2}$, with this bound being attained for $M \cong M\left(K_{r+1}\right)$, where K_{r+1} is the rank r complete graph.

1 Introduction

In [4] we gave a reproof of the structural characterization of binary matroids with no $M\left(W_{4}\right)$-minor. This was a 1987 result by Oxley that appeared in [9]. He proved this result using Seymour's Splitter Theorem [11]. The main component of Oxley's proof was a complete identification of the class of binary matroids with no minor isomorphic to P_{9} or P_{9}^{*}. Matrix representations for P_{9} and P_{9}^{*} are shown below.

Oxley showed that the excluded minor class for these two matroids contains one infinite family of 3-connected matroids known as the binary spikes Z_{r}. Matrix
representations for Z_{r} and Z_{r}^{*} are shown below, where we use the name of the matroid to also stand for the matrix representing it:

We call Z_{r} a rank r monarch. In general, let \mathcal{M} be a class of matroids closed under minors. A 3-connected rank r matroid in \mathcal{M} that has no further 3-connected extensions in \mathcal{M} is called a rank r monarch for \mathcal{M}.

Following the terminology in [10], let $E X(M)$ denote the class of matroids with no minors isomorphic to M. Ding and Wu characterized the binary matroids in $E X\left(P_{9}\right)$ in terms of 3 -sums in Theorem 1.2 of [2]. They proved that a binary 3 -connected non-regular matroid M has no P_{9}-minor if and only if M is one of the 16 internally 4-connected non-regular minors of R_{16}^{*}; or M is a binary spike $Z_{r}, Z_{r}^{*}, Z_{r} \backslash b_{r}$, or $Z_{r} \backslash c_{r}$, for some $r \geq 4$; or M is formed by taking t disjoint triangles $T_{1}, T_{2}, \ldots, T_{t}$ of $M^{*}\left(K_{3, p}\right), M^{*}\left(K_{3, p}^{\prime}\right), M^{*}\left(K_{3, p}^{\prime \prime}\right)$, or $M^{*}\left(K_{3, p}^{\prime \prime \prime}\right)$, where $p \geq 2$ and $1 \leq t \leq p$, and t copies of F_{7}^{*} and performing 3 -sum operations consecutively. The last infinite family is formed by 3 -summing copies of the Fano matroid to $M^{*}\left(K_{3, p}\right), M^{*}\left(K_{3, p}^{\prime}\right)$, $M^{*}\left(K_{3, p}^{\prime \prime}\right)$, or $M^{*}\left(K_{3, p}^{\prime \prime \prime}\right)$, where $p \geq 2$. This result extended Oxley's characterization of $E X\left(P_{9}, P_{9}^{*}\right)$ to $E X\left(P_{9}\right)$. Ding and Wu's result uses a chain theorem for internally 4 -connected binary matroids [1]. We use a different proof technique, using the Strong Splitter Theorem in [6] to obtain the monarchs of $E X\left(P_{9}^{*}\right)$.

The next result is the main result of this paper.
Theorem 1.1 A binary 3-connected non-regular matroid M has no P_{9}^{*}-minor if and only if M is isomorphic to $F_{7}, P G(3,2), R_{16}, Z_{r}$ for $r \geq 4, \Omega_{r}$ for $r \geq 5$, or one of their 3-connected deletion-minors.

In Theorem 1.1, F_{7} is the Fano plane, $P(3,2)$ is the rank 4 binary projective geometry, and Z_{r} is the binary spike, which can be represented by the matrix $\left[I_{r} \mid D\right]$, where D has $r+1$ columns. The first r columns of D have zeros on the diagonal and
ones elsewhere and the last column is a column of ones as shown above and in [9]. A matrix representation for R_{16} is given below. Note that $R_{16}=R_{17} \backslash 17$, where R_{17} is the largest rank 5 matroid with no minor isomorphism to the prism $M^{*}\left(K_{5} \backslash e\right)$ [5]. The matroid R_{17} is $A G(3,2) \times U_{1,1}$, which is the binary matroid obtained from the direct sum of $A G(3,2)$ and a coloop by completing the 3-point lines between every element in $A G(3,2)$ and the coloop. It was first described by Mayhew and Royle in [8].

$$
R_{16}=\left[\begin{array}{cccccccccccc}
1 \cdots 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
I_{5} & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
& 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
& 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
& 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

The new rank r monarch in this larger class of binary matroids with no P_{9}^{*}-minor is the rank r binary matroid Ω_{r} for which a matrix representation is given in Figure 1. It has $4 r-5$ elements, and an intricate pattern. The fact that a pattern exists is quite surprising.

Figure 1: The rank r matroid Ω_{r} with $4 r-5$ elements, for $r \geq 5$
Section 2 has the preliminaries and techniques used. The manner in which Ω_{r} is constructed is explained in Section 3, and the proof of Theorem 1.1 is in Section 4.

2 Preliminaries

The main technique used in the proof of Theorem 1.1 is the Strong Splitter Theorem [6]. How to use this result has been described in a fair amount of detail in [4], but the rank r monarch Ω_{r} has size $4 r-5$ and is much more complicated than the binary spikes Z_{r} of size $2 r+1$. So more details are provided, especially on how single-element extensions and coextensions are computed.

A triad is a 3-element cocircuit whose removal does not disconnect the matroid. The next result is the Strong Splitter Theorem.

Theorem 2.1 Suppose N is a 3-connected proper minor of a 3-connected matroid M such that, if N is a wheel or a whirl, then M has no larger minor isomorphic to a wheel or whirl, respectively. Let $j=r(M)-r(N)$. Then there is a sequence of 3 -connected matroids $M_{0}, M_{1}, \ldots, M_{t}$ such that $M_{0} \cong N, M_{t}=M$, and M_{i-1} is a minor of M_{i} such that:
(i) For $1 \leq i \leq j$, $r\left(M_{i}\right)-r\left(M_{i-1}\right)=1$ and $\left|E\left(M_{i}\right)-E\left(M_{i-1}\right)\right| \leq 3$; and
(ii) For $j<i \leq t, r\left(M_{i}\right)=r(M)$ and $\left|E\left(M_{i}\right)-E\left(M_{i-1}\right)\right|=1$.

Moreover, when $\left|E\left(M_{i}\right)-E\left(M_{i-1}\right)\right|=3$, for $1 \leq i \leq j, E\left(M_{i}\right)-E\left(M_{i-1}\right)$ is a triad of M_{i}.

Given a class \mathcal{M} of matroids closed under minors, we may focus on the 3connected members of \mathcal{M} since matroids that are not 3 -connected can be pieced together from 3-connected matroids using the operations of 1-sum and 2-sum [10](8.3.1). Let us denote a simple single-element extension of M by an element e as $M+e$ and a cosimple single-element coextension of M by an element f as $M \circ f$. Note that a simple extension of a 3-connected matroid is also 3-connected. Likewise for cosimple coextensions.

Suppose N is a 3 -connected proper minor of a 3 -connected matroid M such that, if N is a wheel or a whirl, then M has no larger minor isomorphic to a wheel or whirl, respectively. The Splitter Theorem states that there is a sequence of 3 -connected matroids $M_{0}, M_{1}, \ldots, M_{t}$ such that $M_{0}=N, M_{t} \cong M$, and for $1 \leq i \leq t$ either $M_{i}=M_{i-1}+e$ or $M_{i}=M_{i-1} \circ f$. See [10](12.2.1). Thus to reach a matroid isomorphic to M, one may start with N and perform simple single-element extensions and cosimple single-element coextensions. The Splitter Theorem imposes no conditions to restrict how N can grow to (a matroid isomorphic to) M. Theorem 1.2 optimizes the Splitter Theorem by proving that after two simple single-element extensions a cosimple single-element coextension must be performed, and it puts additional restrictions on how the coextensions are obtained.

A minor-closed class \mathcal{M} may have several rank r monarchs of varying sizes. For example the class in this paper has two rank r monarchs: Z_{r} for $r \geq 4$ and Ω_{r} for $r \geq 5$. Since Z_{r} is the rank r monarch for the class of binary matroids with no minors isomorphic to P_{9} nor P_{9}^{*} (see the original proof in [9] and the new proof in [4]), we can use that result to begin with P_{9} and exclude P_{9}^{*}. This new subclass has just one rank r monarch Ω_{r}. Our strategy is to take a large excluded minor class and break it down into smaller excluded-minor classes, repeatedly applying Theorem 1.2 to find rank r monarchs.

Theorem 1.2 implies that every 3 -connected rank r monarch in \mathcal{M} is a simple extension of a 3-connected rank r matroid M_{r}, where M_{r} is obtained from a 3connected rank $r-1$ matroid M_{r-1} in the following ways:
(1) $M_{r}=M_{r-1} \circ f$;
(2) $M_{r}=M_{r-1}+e \circ f$, where f is added in series to an element in M_{r-1}; or
(3) $M_{r}=M_{r-1}+\left\{e_{1}, e_{2}\right\} \circ f$, where $\left\{e_{1}, e_{2}, f\right\}$ is a triad.

There is no reason to asssume a priori that M_{r} is unique for a specific excluded minor class. However, if M_{r} happens to be unique, we get a recursive way of defining it, and consequently a recursive way of defining the corresponding rank r monarch.

The focus then shifts to identifying the matroid M_{r} in the above description. We will call M_{r} the rank r seed corresponding to the rank r monarch and denote it by α_{r}. Thus Theorem 1.2 implies that every rank r monarch in \mathcal{M} is the extension of a rank r seed α_{r} such that:

1. α_{r} is a cosimple single-element coextension of the rank $(r-1)$ matroid α_{r-1}; or
2. α_{r} is a cosimple single-element coextension of the simple single-element extensions of α_{r-1} formed by adding elements in series to existing elements; or
3. α_{r} is a cosimple single-element coextension of the simple double-element extensions of α_{r-1} formed by adding a triad made up of the two extensions elements and the coextension element.

It is possible for $\alpha_{r}=\Omega_{r}$, which would make the proof easier. However, if they are distinct, then finding the rank r seed α_{r} is more important than than finding the rank r monarch Ω_{r}, because within α_{r} lies the pattern of the infinite family. In [4] the monarch has just two more elements than the seed, so the distinction between seed and monarch was not really needed. In this paper the rank r monarch Ω_{r} is much larger than than the rank r seed α_{r}. Identifying rank r seeds and rank $4 r$ monarchs when they differ by many elements requires the Strong Splitter Theorem.

In summary, the Strong Splitter Theorem implies that every 3 -connected rank r monarch Ω_{r} in \mathcal{M} is a simple extension of a 3-connected rank r seed α_{r}, where α_{r} is obtained from a 3 -connected rank $r-1$ seed α_{r-1} in very specific ways because $\left|E\left(\alpha_{r}\right)-E\left(\alpha_{r-1}\right)\right|=3$. As described earlier, α_{r} is a cosimple single-element coextension of α_{r-1}, or a cosimple single-element coextension of a simple extension of α_{r-1} or a cosimple single-element coextension of a double element simple extension of α_{r-1}. There are additional restrictions in the second and third case.

Next, we have to describe our method for computing single-element extensions and coextensions. Let N be a $G F(q)$-representable n-element rank r matroid represented by the matrix $A=\left[I_{r} \mid D\right]$ over $G F(q)$. For $q=2,3,4$ a 3 -connected matroid over $G F(q)$ is uniquely representable, but for $q \geq 5$, there are inequivalent representations, so the method described below has to be modified considerably using the ideas in [3]. For this paper $q=2$ and we do not need to consider inequivalent representations and the difficulties they create.

The columns of A may be viewed as a subset of the columns of the matrix that represents the projective geometry $P G(r-1, q)$. Let M be a simple single-element
extension of N over $G F(q)$. Then $N=M \backslash e$ and M may be represented by $\left[I_{r} \mid D^{\prime}\right]$, where D^{\prime} is the same as D, but with one additional column corresponding to the element e. The new column is distinct from the existing columns and has at least two non-zero elements. If the existing columns are labeled $\{1, \ldots, r, \ldots, n\}$, then the new column is labeled $(n+1)$. We can systematically construct all the nonisomorphic single-element extensions of N by adding the columns of $P G(r-1, q)$ that are missing in A one by one and keeping only the non-isomorphic single-element extensions. This procedure is similar to adding an edge to a rank r graph in all possible ways and keeping a list of the non-isomorphic edge-additions. Just like a rank r graph is a restriction of the complete graph K_{r+1}, a rank r (simple) binary matrix A is a restriction of the matrix representing $P G(r-1, q)$, so this method works even though binary matroids are exponentially larger objects than graphs.

Suppose M is a cosimple single-element coextension of N over $G F(q)$. Then $N=M / f$ and M may be represented by the matrix $\left[I_{r+1} \mid D^{\prime \prime}\right]$, where $D^{\prime \prime}$ is the same as D, but with one additional row. The new row is distinct from the existing rows and has at least two non-zero elements. The columns of $\left[I_{r+1} \mid D^{\prime \prime}\right]$ are labeled $\{1, \ldots, r+1, r+2, \ldots, n, n+1\}$. The coextension element f corresponds to column $r+1$. The coextension row is selected from $\operatorname{PG}(n-r-1, q)$. We can visualize the new element f as appearing in the new dimension and lifting several points into the higher dimension. Observe that f forms a cocircuit with the elements corresponding to the non-zero entries in the new row. Note that in $\left[I_{r+1} \mid D^{\prime \prime}\right]$ the labels of columns beyond r are increased by 1 to accomodate the new column $r+1$. This method is similar to computing all possible non-isomorphic rank $(r+1)$ graphs obtained by splitting a vertex in a rank r graph. Again, vertex splits are easy to compute (and visualize), whereas doing a similar computation for a rank r binary matroid is much more complicated.

We refer to the simple single-element extensions of N as Type (i) matroids and the cosimple single-element coextensions of N as Type (ii) matroids. The structure of Type (i) and Type (ii) matroids are shown in Figure 2.

Figure 2: Structure of Type (i) and Type (ii) matroids
Once the simple single-element extensions (Type (i) matroids) and cosimple single-element coextensions (Type (ii) matroids) are determined, the number of permissable rows and columns give a bound on the choices for the cosimple singleelement coextensions of the Type (i) matroids and the simple single-element exten-
sions of the Type (ii) matroids, respectively. The structure of the cosimple singleelement coextensions of a Type (i) matroid and the simple single-element extensions of a Type (ii) matroid are shown in Figure 3.

Cosimple coextension of an extension

Simple extension of a coextension

Figure 3: Structure of M, where $|E(M)-E(N)|=2$
When computing the cosimple single-element coextension of a Type (i) matroid, there are three types of rows that may be inserted into the last row.
(I) Rows that can be added to the original matroid N to obtain a coextension, augmented by a 0 or 1 as the last entry;
(II) The identity rows augmented by a 1 in the last position; and
(III) Rows "in-series" to the right-hand side of the matrix with the last entry reversed.

When computing the simple single-element extensions of a Type (ii) matroid, there are three types of columns that may be inserted into the last column.
(I) Columns that can be added to the original matroid N to obtain an extension augmented by a 0 or 1 as the last entry;
(II) The identity columns augmented by a 1 in the last position; and
(III) Columns "in-parallel" to the right-hand side of matrix with the last entry reversed.

Note that this method can be applied to $G F(q)$-representable 3-connected matroids, for $q=2,3,4$, but this paper is only on binary matroids, so we will talk only of zeros and ones.

Suppose N^{\prime} is a simple double-element extension of N formed by adding columns e_{1} and e_{2} and M is a cosimple single-element coextension of N^{\prime} by element f. By Theorem 1.2 $M \backslash e_{1}$ or $M \backslash e_{2}$ is 3-connected except when $\left\{e_{1}, e_{2}, f\right\}$ is a triad. Thus the only 3 -connected coextension of N^{\prime} we must check is the one formed by adding row [$00 \ldots 011$] to D. Moreover, no further calculations are necessary.

3 The rankr monarch Ω_{r}

Our goal in this paper is to find the binary matroids in $E X\left(P_{9}^{*}\right)$. The rank r seed matroid α_{r} is unique and it has $3 r-5$ elements. A matrix representation is shown in Figure 4. The vertical and horizontal lines in the representation of α_{r} in Figure 4 shows how it is recursively constructed from α_{5} shown below, which is the starting matroid for this family:

$$
\begin{aligned}
& \alpha_{5}=\left[\begin{array}{c}
b_{1} \cdots b_{5} \\
I_{5} \\
{\left[\begin{array}{llllll}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] .}
\end{array}\right.
\end{aligned}
$$

Figure 4: The rank r seed α_{r} with $3 r-5$-elements, for $r \geq 5$
The rank 6 seed matroid α_{6} shown below is obtained from α_{5} by adding two columns $c_{5}=[11000]^{T}$ and $d_{5}=[00110]^{T}$ and lifting by row [0000011]:

$$
\alpha_{6}=\left[\begin{array}{c}
b_{1} \cdots b_{6} \\
I_{6}
\end{array} \left\lvert\, \begin{array}{ccccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & c_{5} & d_{5} \\
& 1 & 1 & 1 & 1 & 1 & 1 \\
0 \\
& 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
& 1 & 1 & 1 & 1 & 0 & 0 \\
1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right.\right] .
$$

In other words add c_{5} and d_{5} to form triangles with $\left\{b_{1}, b_{2}, c_{5}\right\}$ and $\left\{b_{3}, b_{4}, d_{5}\right\}$, respectively; then lift elements c_{5} and d_{5} into the next dimension to form a triad $\left\{c_{5}, d_{5}, b_{6}\right\}$ with the new lift element b_{6}. medskip In general, α_{r} is formed as follows: add parallel elements $\left\{c_{5}, c_{6}, \ldots, c_{r-1}\right\}$ so that each forms a triangle with basis points b_{1} and b_{2}; add parallel elements $\left\{d_{5}, d_{6}, \ldots, d_{r-1}\right\}$ so that each forms a triangle with
basis points b_{3} and b_{4}; do a sequence of lifts by adding new basis elements $\left\{b_{6}, \ldots, b_{r}\right\}$ to form triads $\left\{b_{i}, c_{i-1}, d_{i-1}\right\}$ for $i=6, \ldots, r$. Observe that

$$
\alpha_{r} / b_{r} \backslash\left\{c_{r-1}, d_{r-1}\right\}=\alpha_{r-1} .
$$

Once the construction of the rank r seed is understood, the construction of the rank r monarch follows by adding more columns. To obtain Ω_{5} add the following five columns to α_{5} :

$$
\begin{aligned}
c_{5} & =[11000]^{T}, \\
d_{5} & =[00110]^{T}, \\
e_{5} & =[11100]^{T}, \\
f_{5} & =[00111]^{T}, \\
g_{5,1} & =[111100]^{T}
\end{aligned}
$$

to get:

To obtain Ω_{6} add the following six columns to α_{6} :

$$
\begin{aligned}
c_{6} & =[110000]^{T}, \\
d_{6} & =[001100]^{T}, \\
e_{6} & =[111000]^{T}, \\
f_{6} & =[001110]^{T}, \\
g_{6,1} & =[111100]^{T}, \\
g_{6,2} & =[111101]^{T}
\end{aligned}
$$

to get:

$$
\Omega_{6}=\left[\begin{array}{c|ccccccccccccc}
b_{1} \cdots b_{6} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & c_{5} & d_{5} & c_{6} & d_{6} & e_{6} & f_{6} & g_{6,1} & g_{6,2} \\
I_{6} & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
& 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
& 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
& 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
& 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

In general, to obtain Ω_{r} from α_{r} add the following r columns:

$$
\begin{aligned}
c_{r} & =[110000, \ldots, 00]^{T}, \\
d_{r} & =[001100, \ldots, 00]^{T}, \\
e_{r} & =[111000, \ldots, 00]^{T}, \\
f_{r} & =[001110 \ldots 00]^{T}, \\
g_{r, 1} & =[11110000, \ldots, 000]^{T}, \\
g_{2,2} & =[11110100, \ldots, 000]^{T}, \\
g_{2,3} & =[11110010, \ldots, 000]^{T}, \ldots, \\
g_{2, r-5} & =[1111000, \ldots, 010]^{T}, \\
g_{r, r-4} & =[1111000, \ldots, 001]^{T} .
\end{aligned}
$$

Column $g_{r, 1}$ has ones in the first four positions and zeros elsewhere. The rest of the columns $g_{r, t}$, where $2 \leq t \leq r-4$, have five ones (See Figure 1). Observe that

$$
\Omega_{r} / b_{r} \backslash\left\{c_{r}, d_{r}, g_{r, r-4}\right\}=\Omega_{r-1}
$$

Proposition 3.1 The matroid α_{r} has no P_{9}^{*}-minor.
Proof: Observe that P_{9}^{*} has odd size circuits and α_{5} has no odd size circuits. If P_{9}^{*} were a deletion-minor of α_{5}, then the odd size circuits in P_{9}^{*} would remain in α_{5}. Since α_{r} is obtained from α_{5} by adding only triangles and triads, P_{9}^{*} is not a minor of α_{5}.

Proposition 3.2 The matroid Ω_{r} has no P_{9}^{*}-minor.
Proof: The proof is by induction on $r \geq 6$. Since $\Omega_{r} / b_{r} \backslash\left\{c_{r}, d_{r}, g_{r, r-4}\right\}=\Omega_{r-1}$, and by induction Ω_{r-1} has no P_{9}^{*}-minor, any possible P_{9}^{*}-minor in Ω_{r} must have columns $c_{r}, d_{r}, g_{r, r-4}$ and row b_{r}. Therefore,

$$
\Omega_{r} /\left\{b_{7}, \ldots b_{r-1}\right\} \backslash\left\{c_{7}, d_{7}, \ldots, c_{r-1}, d_{r-1}, e_{r}, f_{r}, g_{r, 1}, \ldots, g_{r, r-5}\right\}
$$

gives the following matrix:

$$
\left[\begin{array}{l}
I_{6}
\end{array} \left\lvert\, \begin{array}{llllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0
\end{array}\right.\right]
$$

will have a P_{9}^{*}-minor, which is not true.
The matroid α_{r} has two 3-connected non-isomorphic binary single-element extensions in $E X\left(P_{9}^{*}\right)$:

1. $\alpha_{r, 1}$ formed by adding columns c_{r}, d_{r} or $g_{r, 1}$; and
2. $\alpha_{r, 2}$ formed by adding any one of the remaining columns $e_{r}, f_{r}, g_{r, 2}, \ldots g_{r, r-4}$.

This will follow from the induction argument in the proof of Theorem 1.1 (as we will see later) using the automorphism in Ω_{r} that takes

$$
\left(b_{i}, b_{j}, c_{i-1}, d_{j-1}, g_{7, i-4}, g_{7, j-4}\right)
$$

to

$$
\left(b_{j}, b_{i}, d_{j-1}, c_{i-1}, g_{7, j-4}, g_{7, i-4}\right)
$$

for $b_{j}>b_{i} \geq 6$, and leaves the remaining columns unchanged. To obtain the pattern in Ω_{r} shown in Figure 1, $\alpha_{r, 1}$ is formed by adding column c_{r} and $\alpha_{r, 2}$ is formed by adding column e_{r}. The matroid $\alpha_{r, 1}$ has two non-isomorphic single-element extensions $\alpha_{r-1,1,1}$ formed by adding d_{r} and $\alpha_{r-1,1,2}$ formed by adding e_{r}. The matroid $\alpha_{r, 2}$ has two non-isomorphic single-element extensions $\alpha_{r-1,1,1}$ and $\alpha_{r-1,2,2}$. Note that $\alpha_{r-1,2,2}$ is formed by adding f_{r} to $\alpha_{r, 2}$. The notable matroid that gives rise to the rank $(r+1)$ seed matroid is $\alpha_{r, 1,1}$.

4 Proof of Theorem 1.1.

The proof of Theorem 1.1 is by induction on $r \geq 5$. The base case is somewhat longer than in a typical induction proof. But it is quite straightforward in the sense that only careful computation of small rank matroids is required and that is also greatly reduced by repeated application of Theorem 1.2.

Proof: Let M be a 3-connected binary non-regular matroid. If M has no P_{9} or P_{9}^{*} minor, then M is isomorphic to F_{7} or a deletion-minor of Z_{r}, for $r \geq 4$ [9]. Therefore assume that M has a P_{9}-minor, but no P_{9}^{*}-minor. The proof is by induction on the rank. The base case $r \leq 6$ is in the Appendix.
Assume a binary non-regular 3-connected matroid with rank at most $(r-1)$ is in $E X\left(P_{9}^{*}\right)$ if and only if it is a member of the known classes of matroids. In other words, the rank $(r-2)$ seed α_{r-2} has no cosimple coextensions in $E X\left(P_{9}^{*}\right)$; its simple single-element extensions $\alpha_{r-2,1}$ and $\alpha_{r-2,2}$ have no cosimple coextensions; their simple single-element extensions $\alpha_{r-2,1,1}, \alpha_{r-2,1,2}$, and $\alpha_{r-2,2,2}$ have as their only cosimple single-element coextension the rank $(r-1)$ seed α_{r-1}; and finally these matroids extend to the rank $(r-1)$ monarch Ω_{r-1}. (See Figure 5 and note that the position of the monarchs are not drawn to scale since they are too large.)
We must prove that the rank $(r-1)$ seed α_{r-1} has no cosimple coextensions in $E X\left(P_{9}^{*}\right)$; its simple single-element extensions $\alpha_{r-1,1}$ and $\alpha_{r-1,2}$ have no cosimple coextensions; their simple single-element extensions $\alpha_{r-1,1,1}, \alpha_{r-1,1,2}$, and $\alpha_{r-1,2,2}$ have as their only cosimple single-element coextension the rank r seed α_{r}; and finally these matroids extend to the rank r monarch Ω_{r}.

Figure 5: Growth pattern of the seed and monarch

We summarize this in short by saying we will show that the rank $(r-1)$ seed α_{r-1} gives rise to the rank r seed α_{r}, and α_{r} extends to the rank r monarch Ω_{r} and prove the assertions in the form of two claims, both using the induction hypothesis.
Claim A. The rank $(r-1)$ seed α_{r-1} gives rise to the rank r seed α_{r}.
Proof. By the Strong Splitter Theorem M must be a cosimple single-element coextension of:
(i) α_{r-1};
(ii) $\alpha_{r-1,1}$ or $\alpha_{r-1,2}$ by adding rows in series; or
(iii) $\alpha_{r-1,1,1}, \alpha_{r-1,1,2}$, or $\alpha_{r-1,2,2}$ by adding row [00 $\left.\ldots 011\right]$);
where

$$
\begin{aligned}
\alpha_{r-1,1} & =\alpha_{r-1}+c_{r-1}, \\
\alpha_{r-1,2} & =\alpha_{r-1}+e_{r-1}, \\
\alpha_{r-1,1,1} & =\alpha_{r-1}+\left\{c_{r-1}, d_{r-1}\right\}, \\
\alpha_{r-1,1,2} & =\alpha_{r-1}+\left\{c_{r-1}, e_{r-1}\right\}, \\
\alpha_{r-1,2,2} & =\alpha_{r-1}+\left\{e_{r-1}, f_{r-1}\right\} .
\end{aligned}
$$

If row [$00 \ldots 011$] is added to $\alpha_{r-1,1,1}$, we get α_{r}, which is the rank r seed matroid. We will show that the other matroids do not have cosimple single-element coextensions in $E X\left(P_{9}^{*}\right)$.
Case i. By the induction hypothesis α_{r-1} is formed by adding row [00 ...011] to $\alpha_{r-2,1,1}$, and therefore has no further single-element coextension in $E X\left(P_{9}^{*}\right)$.
Case ii(a). Suppose, if possible, M is a cosimple single-element coextension of $\alpha_{r-1,1}=\alpha_{r-1}+c_{r-1}$. Only Type II and Type III rows may be added to $\alpha_{r-1,1}$. Type II rows are the identity rows with a one in the last entry and Type III rows are the rows of $\alpha_{r-1,1}$ (shown in Figure 6) with the last entry switched (i.e. put 0 if the last entry is 1 and 1 if it is 0). The superscripts indicate if the last entry is a 1 or a 0 .

Figure 6: $\alpha_{r-1,1}=\alpha_{r-1}+c_{r-1}$ and $\alpha_{r-1,2}=\alpha_{r-1}+e_{r-1}$

Type II rows are:

$$
\begin{aligned}
a_{1}^{1} & =[100 \ldots 00001], \\
a_{2}^{1} & =[010 \ldots 00001], \ldots, \\
c_{r-2}^{1} & =[000 \ldots 00101], \\
d_{r-2}^{1} & =[000 \ldots 00011] .
\end{aligned}
$$

Type III rows are:

$$
\begin{aligned}
b_{1}^{0} & =[0111110 \ldots 10100], \\
b_{2}^{0} & =[1011110 \ldots 10100], \\
b_{3}^{1} & =[1101001 \ldots 01011], \\
b_{4}^{1} & =[1111001 \ldots 01011], \\
b_{5}^{1} & =[0001100 \ldots 00001], \\
b_{6}^{1} & =[0000011 \ldots 00001], \ldots, \\
b_{r-2}^{1} & =[0000000 \ldots 11001], \\
b_{r-1}^{1} & =[0000000 \ldots 00111] .
\end{aligned}
$$

However, observe that $\alpha_{r-1,1} / b_{r-1} \backslash c_{r-2} \cong \alpha_{r-2,1,1}$. Note the isomorphism instead of equality. This happens because in $\alpha_{r-1,1} \backslash c_{r-2} / b_{r-1}$ the last two columns d_{r-2} and c_{r-1} are switched. Otherwise it would be exactly equal to $\alpha_{r-2,1,1}$. By the induction hypothesis, $\alpha_{r-2,1,1}$ has exactly one cosimple single-element coextension in the class (the one formed by row $x=[000 \ldots 011]$). The isomorphism instead of equality is of no consequence since the last two entries are both ones.
Thus we have Type I rows with a zero or one in the third last entry (the position of the deleted column c_{r-2}), Type II rows which are the identity rows with a one in the third last entry, and Type III rows with the third last entry switched. Specifically, Type I rows are:

$$
\begin{aligned}
x^{0} & =[000 \ldots 0011], \\
x^{1} & =[000 \ldots 0111] .
\end{aligned}
$$

Type II rows are:

$$
\begin{aligned}
a_{1}^{1} & =[100 \ldots 00100], \\
a_{2}^{1} & =[010 \ldots 00100], \ldots, \\
c_{r-3}^{1} & =[000 \ldots 01100], \\
d_{r-3}^{1} & =[000 \ldots 00110], \\
d_{r-2}^{1} & =[000 \ldots 00101] .
\end{aligned}
$$

Type III rows are:

$$
\begin{aligned}
b_{1}^{0} & =[0111111 \ldots 10001], \\
b_{2}^{0} & =[1011111 \ldots 10001], \\
b_{3}^{1} & =[1101000 \ldots 01110], \\
b_{4}^{1} & =[1111000 \ldots 01110], \\
b_{5}^{1} & =[0001100 \ldots 00100], \\
b_{6}^{1} & =[0000011 \ldots 00100], \\
b_{r-2}^{1} & =[0000000 \ldots 11100] .
\end{aligned}
$$

The only common rows are $[000 \ldots 00011],[000 \ldots 00111]$ and $[000 \ldots 0101]$. Therefore the only matrices that must be checked explicitly for a P_{9}^{*} minor are the ones shown below formed with these three rows. They have the following three rank 7 minors, respectively, obtained by contracting $\left\{b_{6}, \ldots, b_{r-2}\right\}$ and deleting

$$
\left\{c_{5}, d_{5}, c_{6}, d_{6}, \ldots, c_{r-3}, d_{r-3}\right\}
$$

$$
\begin{gathered}
M_{1}=\left[\begin{array}{llllllll}
I_{7}\left(\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1
\end{array} 0\right. & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right], M_{2}=\left[\begin{array}{llllllll}
& \left\lvert\, \begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
7 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0
\end{array} 1\right. & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right], \\
M_{3}=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

Each of M_{1}, M_{2}, and M_{3} has a P_{9}^{*}-minor. Thus M cannot be a cosimple singleelement coextension of $\alpha_{r-1,1}$.

Case ii(b). Suppose, if possible, M is a cosimple single-element coextension of $\alpha_{r-1,2}=\alpha_{r-1}+e_{r-1}$ (shown in Figure 6). The argument is similar to that of Case ii(a). Only Type II and Type III rows may be added to α_{r-1}. Type II rows are:

$$
\begin{aligned}
a_{1}^{1} & =[100 \ldots 00001], \\
a_{2}^{1} & =[010 \ldots 00001], \ldots, \\
c_{r-2}^{1} & =[000 \ldots 00101], \\
d_{r-2}^{1} & =[000 \ldots 00011] .
\end{aligned}
$$

Type III rows are:

$$
\begin{aligned}
b_{1}^{0} & =[0111110 \ldots 10100], \\
b_{2}^{0} & =[1011110 \ldots 10100], \\
b_{3}^{0} & =[1101001 \ldots 01010], \\
b_{4}^{1} & =[1111001 \ldots 01011], \\
b_{5}^{1} & =[0001100 \ldots 00001], \\
b_{6}^{1} & =[0000011 \ldots 00001], \ldots, \\
b_{r-2}^{1} & =[0000000 \ldots 11001], \\
b_{r-1}^{1} & =[0000000 \ldots 00111] .
\end{aligned}
$$

However, observe that $\alpha_{r-1,2} / b_{r-1} \backslash d_{r-2}=\alpha_{r-2,1,2}$. There are no Type I rows to be added to $\alpha_{r-1,1}$ by the induction hypothesis. Type II rows that may be added to α_{r-1} are:

$$
\begin{aligned}
a_{1}^{1} & =[100 \ldots 00010], \\
a_{2}^{1} & =[010 \ldots 00010], \\
c_{r-2}^{1} & =[000 \ldots 00110], \\
e_{r-1}^{1} & =[000 \ldots 000011] .
\end{aligned}
$$

Type III rows are:

$$
\begin{aligned}
b_{1}^{0} & =[0111110 \ldots 10111], \\
b_{2}^{0} & =[1011110 \ldots 10111], \\
b_{3}^{1} & =[1101001 \ldots 01000], \\
b_{4}^{1} & =[1111001 \ldots 01000], \\
b_{5}^{1} & =[0001100 \ldots 00010], \\
b_{6}^{1} & =[0000011 \ldots 00010], \ldots, \\
b_{r-2}^{1} & =[0000000 \ldots 110010] .
\end{aligned}
$$

The only common row is [000 $\ldots 00011]$. Therefore the only matrix that must be checked explicitly for a P_{9}^{*} minor is the matrix with row [000 . . 00011]. This matrix
has the following rank 7 minor M_{4} obtained by contracting $\left\{b_{6}, \ldots, b_{r-2}\right\}$ and deleting $\left\{c_{5}, d_{5}, \ldots, c_{r-3}, d_{r-3}\right\}$:

$$
M_{4}=\left[\begin{array}{l|llllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
I_{7} & \left\lvert\, \begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
1 & 0 \\
0 & 0 & 0
\end{array} 0\right. & 0 & 0 & 1 & 1
\end{array}\right]
$$

Since M_{4} has a P_{9}^{*}-minor, M cannot be a cosimple single-element coextension of $\alpha_{r-1,2}$.
Case iii. Suppose, if possible, M is a cosimple single-element coextension of $\alpha_{r-1,1,2}$ or $\alpha_{r-1,2,2}$. Then M is formed by adding row [000 $\ldots 011$] to $\alpha_{r-1,1,2}=\alpha_{r-1}+$ $\left\{c_{r-1}, e_{r-1}\right\}$ or $\alpha_{r-1,2,2}=\alpha_{r-1}+\left\{e_{r-1}, f_{r-1}\right\}$. The matrices formed in this manner have as minors M_{5} and M_{6} shown below obtained by contracting $\left\{b_{6}, \ldots, b_{r-2}\right\}$ and deleting $\left\{c_{5}, d_{5}, \ldots c_{r-3}, d_{r-3}\right\}$:

$$
\begin{aligned}
& M_{5}=\left[\begin{array}{lllllllll}
I_{7} & \left\lvert\, \begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0
\end{array} 0\right. \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right], \\
& M_{6}=\left[\begin{array}{lllllllll}
I_{7} & \begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0
\end{array} 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

Observe that M_{5} and M_{6} have a P_{9}^{*}-minor.
Claim B. The rank r seed α_{r} extends to the rank r monarch Ω_{r}
Proof. We will prove that the only columns that can be added to α_{r} are

$$
c_{r}, d_{r}, e_{r}, f_{r}, g_{r, 1}, \ldots, g_{r, r-4}
$$

Adding all these columns give Ω_{r}. To begin with we will show that α_{r} has two single-element extensions $\alpha_{r, 1}$ and $\alpha_{r, 2}$. Observe that

$$
\alpha_{r} / b_{r} \backslash\left\{c_{r}, d_{r}\right\}=\alpha_{r-1}
$$

By the induction hypothesis the only columns that can be added to α_{r-1} are

$$
e_{r-1}, f_{r-1}, g_{r, 1}, \ldots, g_{r, r-5}
$$

Thus there are three types of columns that can be added to α_{r}. Type I columns are those that can be added to α_{r-1}, namely, $e_{r-1}, f_{r-1}, g_{r, 1}, \ldots, g_{r, r-5}$, with a zero or one in the last entry. Type II and III columns are the columns of α_{r-1} with the last entry switched. Specifically, Type I columns are:

$$
\begin{aligned}
e_{r-1}^{0} & =\left[\begin{array}{lll}
1110000 \ldots 000
\end{array}\right]^{T}, \\
e_{r-1}^{1} & =\left[\begin{array}{lll}
1110000 \ldots 101
\end{array}\right]^{T}, \\
f_{r-1}^{0} & =\left[\begin{array}{lll}
0011100 \ldots 000
\end{array}\right]^{T}, \\
f_{r-1}^{1} & =\left[\begin{array}{lll}
0011100 \ldots 001
\end{array}\right]^{T}, \\
g_{r-1,1}^{0} & =\left[\begin{array}{lll}
1111000 \ldots 00
\end{array}\right]^{T}, \\
g_{r-1,1}^{1} & =\left[\begin{array}{lll}
1111000 \ldots 001
\end{array}\right]^{T}, \\
g_{r-1,2}^{0} & =\left[\begin{array}{lll}
1111010 \ldots 000
\end{array}\right]^{T}, \\
g_{r-1,2}^{1} & =\left[\begin{array}{lll}
1111010 \ldots 001
\end{array}\right]^{T}, \ldots, \\
g_{r-1, r-5}^{0} & =[1111000 \ldots 010]^{T}, \\
g_{r-1, r-5}^{1} & =\left[\begin{array}{lll}
1111000 \ldots 011
\end{array}\right]^{T},
\end{aligned}
$$

Type II columns are:

$$
\begin{aligned}
b_{1}^{1} & =[100 \ldots 001]^{T}, \\
b_{2}^{1} & =[010 \ldots 001]^{T}, \ldots, \\
b_{r-1}^{1} & =[000 \ldots 011]^{T}
\end{aligned}
$$

and Type III columns are:

$$
\begin{aligned}
a_{1}^{0} & =[0111000 \ldots 001]^{T}, \\
a_{2}^{0} & =[1011000 \ldots 001]^{T}, \\
a_{3}^{1} & =[1101000 \ldots 001]^{T}, \\
a_{4}^{1} & =[1111100 \ldots 001]^{T}, \\
a_{5}^{1} & =[1100100 \ldots 001]^{T}, \\
c_{5}^{1} & =[1100010 \ldots 001]^{T}, \\
d_{5}^{1} & =[0011010 \ldots 001]^{T}, \\
c_{6}^{1} & =[1100001 \ldots 001]^{T}, \\
d_{6}^{1} & =[0011001 \ldots 001]^{T}, \ldots, \\
c_{r-2}^{1} & =[1100000 \ldots 011]^{T}, \\
d_{r-2}^{1} & =[0011000 \ldots 011]^{T}, \\
c_{r-1}^{0} & =[1100000 \ldots 000]^{T}, \\
d_{r-1}^{0} & =[0011000 \ldots 000]^{T},
\end{aligned}
$$

Observe that, $c_{r-1}^{0}=c_{r}, d_{r-1}^{0}=d_{r} e_{r-1}^{0}=e_{r}, f_{r-1}^{0}=f_{r}, g_{r-1,1}^{0}=g_{r, 1}, g_{r-1,2}^{0}=$ $g_{r, 2}, g_{r-1, r-5}^{0}=g_{r, r-5}$, and $g_{r-1,1}^{1}=g_{r, r-4}$. We will show that the matrices obtained by adding the other columns have a P_{9}^{*}-minor.
Consider Type I columns e_{r-1}^{1} and f_{r-1}^{1}. Writing out the matrices it is easy to see that

$$
\left(\alpha_{r}+e_{r-1}^{1}\right) /\left\{b_{6}, \ldots b_{r-1}\right\} \backslash\left\{c_{5}, d_{5}, \ldots c_{r-2}, d_{r-2}\right\}=\alpha_{6}+e_{6}^{1}
$$

and

$$
\left(\alpha_{r}+f_{r-1}^{1}\right) /\left\{b_{6}, \ldots b_{r-1}\right\} \backslash\left\{c_{5}, d_{5}, \ldots c_{r-2}, d_{r-2}\right\}=\alpha_{6}+f_{6}^{1}
$$

which are shown below:

$$
\begin{aligned}
& \alpha_{6}+e_{6}^{1}=\left[\begin{array}{lllllllll}
& \left.I_{6} \left\lvert\, \begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right.\right], \\
\alpha_{6}+f_{6}^{1}=\left[\begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right] .
\end{array} . . \begin{array}{lll}
0 &
\end{array}\right]
\end{aligned}
$$

Both the above matroids have a P_{9}^{*}-minor.
Consider the Type I columns $g_{r-1,2}^{1}, g_{r-1,3}^{1}, \ldots g_{r-1, r-5}^{1}$. For $2 \leq k \leq r-5$, the matrix $\alpha_{r}+g_{r-1, k}^{1}$ has as minor $\alpha_{7}+g_{6,1}^{1}$ obtained by contracting b_{6}, \ldots, b_{r-1} except b_{k+4} and deleting $c_{5}, d_{5}, \ldots, c_{r-2}, d_{r-2}$ except c_{k+3} and d_{k+3}. The matrix $\alpha_{7}+g_{6,1}^{1}$ is shown below and it has a P_{9}^{*}-minor:

$$
\alpha_{7}+g_{6,1}^{1}=\left[\begin{array}{llllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Consider the Type II columns $b_{1}^{1}, \ldots b_{r-1}^{1}$. Writing out the matrices we see that for $1 \leq k \leq 5$

$$
\left(\alpha_{r}+b_{k}^{1}\right) /\left\{b_{6}, b_{7}, \ldots b_{r-1}\right\} \backslash\left\{c_{5}, d_{5}, \ldots c_{r-2}, d_{r-2}\right\}=\alpha_{6}+b_{k}^{1} .
$$

These matrices are shown below:

$$
\begin{aligned}
& \alpha_{6}+b_{1}^{1}=\left[\begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right], \alpha_{6}+b_{2}^{1}=\left[I_{6} \left\lvert\, \begin{array}{cccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right.\right], \\
& \alpha_{6}+b_{3}^{1}=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right], \alpha_{6}+b_{4}^{1}=\left[I_{6} \left\lvert\, \begin{array}{cccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right.\right], \\
& \alpha_{6}+b_{5}^{1}=\left[I_{6} \left\lvert\, \begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right.\right],
\end{aligned}
$$

They have a P_{9}^{*}-minor. For $6 \leq k \leq r-1$, the matroid $\alpha_{r}+b_{k}$ has minor $\alpha_{7}+b_{6}^{1}$ obtained by contracting all columns $\left\{b_{6}, \ldots, b_{r-1}\right\}$ except b_{k} and deleting all columns $\left\{c_{5}, d_{5}, \ldots, c_{r-2}, d_{r-2}\right\}$ except c_{r-2} and d_{r-2}. The matrix $\alpha_{7}+b_{6}^{1}$ is shown below and it has a P_{9}^{*}-minor:

$$
\alpha_{7}+b_{6}^{1}=\left[I_{7} \left\lvert\, \begin{array}{cccccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right.\right]
$$

Consider the Type III columns $a_{1}^{1}, a_{2}^{1}, a_{3}^{1}, a_{4}^{1}, a_{5}^{1}, c_{5}^{1}, d_{5}^{1}, c_{6}^{1}, d_{6}^{1}, \ldots, c_{r-1}^{0}, d_{r-1}^{0}$. Writing out the matrices we see that for $1 \leq k \leq 5$:

$$
\alpha_{r}+a_{k}^{1} /\left\{b_{6}, b_{7}, \ldots, b_{r-1}\right\} \backslash\left\{c_{5}, d_{5}, \ldots c_{r-2}, d_{r-2}\right\}=\alpha_{6}+a_{k}^{1}
$$

These matrices are shown below and each has a P_{9}^{*}-minor:
$\alpha_{6}+a_{1}^{1}=\left[\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1\end{array}\right], \alpha_{6}+a_{2}^{1}=\left[I_{6} \left\lvert\, \begin{array}{cccccccc}0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1\end{array}\right.\right]$,
$\alpha_{6}+a_{3}^{1}=\left[\begin{array}{llllllll}0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1\end{array}\right], \alpha_{6}+a_{4}^{1}=\left[I_{6} \left\lvert\, \begin{array}{llllllll}0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1\end{array}\right.\right]$.
For $6 \leq k \leq r-2$. the matrix $\alpha_{r}+c_{k}^{1}$ has as minor $\alpha_{7}+c_{5}^{1}$ obtained by contacting columns $\left\{b_{6}, \ldots, b_{r-1}\right\}$ except b_{k+1} and deleting columns $\left\{c_{5}, d_{5}, \ldots, c_{r-2}, d_{r-2}\right\}$ except c_{k} and d_{k}. Similarly, $\alpha_{r}+d_{k}^{1}$ has as minor $\alpha_{7}+d_{5}^{1}$. The matrices $\alpha_{7}+c_{5}^{1}$ and $\alpha_{7}+d_{5}^{1}$ are shown below and each has a P_{9}^{*}-minor:

$$
\begin{aligned}
& \alpha_{7}+c_{5}^{1}=\left[\begin{array}{lllllllllll}
& I_{7} \left\lvert\, \begin{array}{lllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array} 0\right. \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right] \\
& \alpha_{7}+d_{5}^{1}=\left[I_{7} \left\lvert\, \begin{array}{llllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right.\right]
\end{aligned}
$$

Therefore, α_{r} extends to Ω_{r}.
To finish the proof it is easy to see using the above induction argument that α_{r} has two non-isomorphic single-element extensions $\alpha_{r, 1}$ formed by adding columns c_{r}, d_{r} or $g_{r, 1}$, and the remaining columns give $\alpha_{r, 2}$. Since the pattern in columns $g_{r, t}$, where $2 \leq t \leq r-4$ begins with α_{7} we only need to check that:

$$
\alpha_{7}+g_{7,2} \cong \alpha_{7}+g_{7,3}
$$

This is true due to the mapping from $\alpha_{7}+g_{7,2}$ to $\alpha_{7}+g_{7,3}$ that takes:

$$
\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, \mathbf{b}_{\mathbf{6}}, \mathbf{b}_{\mathbf{7}}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \mathbf{c}_{\mathbf{5}}, \mathbf{d}_{\mathbf{5}}, \mathbf{c}_{\mathbf{6}}, \mathbf{d}_{\mathbf{6}}, \mathbf{g}_{\mathbf{7}, \mathbf{2}}\right)
$$

to

$$
\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, \mathbf{b}_{\mathbf{7}}, \mathbf{b}_{\mathbf{6}}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \mathbf{c}_{\mathbf{6}}, \mathbf{d}_{\mathbf{6}}, \mathbf{c}_{\mathbf{5}}, \mathbf{d}_{\mathbf{5}}, \mathbf{g}_{\mathbf{7}, \mathbf{3}}\right)
$$

Similarly, $\alpha_{r, 1}$ has two non-isomorphic single-element extensions, the notable one that gives rise to the rank- $(\mathrm{r}+1)$ seed matroid is $\alpha_{r, 1,1}$ formed by adding c_{r} and d_{r} to α_{r}, and $\alpha_{r, 2}$ also has two non-isomorphic single-element extensions.

The next result follows immediately since the size of the rank r non-regular infinite families Z_{r} and Ω_{r} are, respectively, $2 r+1$ and $4 r-5$ and the complete graph K_{r+1} is the largest rank r regular member with no minor isomorphic to P_{9}^{*}.

Corollary 4.1 Let M be a simple binary matroid of rank $r \geq 6$ with no P_{9}^{*} minor. Then $|M| \leq \frac{r(r+1)}{2}$, with this bound being attained for $M \cong M\left(K_{r+1}\right)$.

The above result may be added to a short list of similar results. See for example Table 1 in [7] that has a list of size functions for some classes of binary matroids.

Appendix

In many instances we have to check matrices for a P_{9}^{*}-minor. The presence or absence of the minor has been determined by the matroid software programs Oid and Macek. While Macek only gives a yes/no answer, Oid gives the columns that must be deleted and contracted, making it easy to verify by hand.

Suppose M has rank $r \leq 6$. Since P_{9}^{*} is a rank 5 matroid, $E X\left(P_{9}^{*}\right)$ contains $P G(3,2)$. The matroid P_{9} has three non-isomorphic simple single-element extensions, D_{1}, D_{2}, and D_{3}, and eight non-isomorphic cosimple single-element coextensions, of which just one matroid E_{7} has no P_{9}^{*}-minor. See Appendix Tables 1 and 2 of [5]. The matroid E_{7} is shown below. It is α_{5}, the rank 5 seed matroid. Most importantly, note that since α_{5} is formed by adding to P_{9} just one row [00011], α_{5} has no further cosimple coextensions in $E X\left(P_{9}^{*}\right)$.

$$
E_{7}=\alpha_{5}=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

We need to show that:
(i) α_{5} is the rank 5 seed matroid and it extends to the rank 5 monarch Ω_{5};
(ii) α_{5} gives rise to the rank 6 seed α_{6}; and
(iii) There is an additional rank 5, 16-element matroid R_{16} that results in no larger rank matroids in $E X\left(P_{9}^{*}\right)$.

By the Strong Splitter Theorem M must be a cosimple single-element coextension of P_{9}, or of its single-element extensions D_{1}, D_{2}, or D_{3} formed with a row in series to an existing row, or of its double-element extensions X_{1}, X_{2}, X_{3} formed with row [0000011]. The matroids D_{1}, D_{2}, and D_{3} and X_{1}, X_{2}, X_{3} are shown below:

$$
D_{1}=\left[I_{4} \left\lvert\, \begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0
\end{array}\right.\right], D_{2}=\left[I_{4} \left\lvert\, \begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1
\end{array}\right.\right],
$$

$$
\begin{aligned}
& D_{3}=\left[I_{4} \left\lvert\, \begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1
\end{array}\right.\right], \\
& X_{1}=\left[I_{4} \left\lvert\, \begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 0
\end{array}\right.\right], X_{2}=\left[I_{4} \left\lvert\, \begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right.\right], \\
& X_{3}=\left[I_{4} \left\lvert\, \begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 1
\end{array}\right.\right] \text {. }
\end{aligned}
$$

In every instance the resulting matroid has an α_{5}-minor or P_{9}^{*}-minor. Observe from Table 1 shown below that α_{5} has three simple single-element extensions with no P_{9}^{*}-minor (extensions 2, 3, and 5).

Extension Columns	Name	P_{9}^{*}-minor
$[00011][00101][11101]$	Ext 1	Yes
$[00110][11000][11110]$	Ext 2 $\left(\alpha_{5, \mathbf{1}}\right)$	No
$[00111][11100]$	Ext 3 $\left(\alpha_{5,2}\right)$	No
$[01001][01010][01100][01111][10001][10010]$	Ext 4	Yes
$[10100][10111]$		
$[01011][01101][10011][10101]$	Ext 5 $\left(\alpha_{5,3}\right)$	No
$[11011]$	Ext 6	Yes

Table 1: Simple single-element extensions of α_{5}
Let $\alpha_{5,1}=\left(\alpha_{5}\right.$, ext 2$), \alpha_{5,2}=\left(\alpha_{5}\right.$, ext 3$)$ and $\alpha_{5,3}=\left(\alpha_{5}\right.$, ext 5$)$. Matrix representations for $\alpha_{5,1}, \alpha_{5,2}$, and $\alpha_{5,3}$ are shown below:

$$
\begin{aligned}
& \alpha_{5,1}=\left[I_{5} \left\lvert\, \begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right.\right], \alpha_{5,2}=\left[I_{5} \left\lvert\, \begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right.\right], \\
& \alpha_{5,3}=\left[I_{5} \left\lvert\, \begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right.\right] .
\end{aligned}
$$

Further, observe that $\alpha_{5,1}$ is obtained by adding columns $a=[00110]^{T}$, $b=$ $[11000]^{T}$, and $c=[11110]^{T} ; \alpha_{5,2}$ is obtained by adding column $d=[00111]^{T}$ and
$e=[11100]^{T} ;$ and $\alpha_{5,3}$ is obtained by adding column $f=[01011]^{T}, g=[01101]^{T}$, $h=[10011]^{T}$, and $i=[10101]^{T}$.

We can check that $\alpha_{5,3}$ (formed by adding column f to α_{5}) has only one simple single-element extension in $E X\left(P_{9}^{*}\right)$ and it is obtained by adding any one of columns g, h, i, d, or e. Up to isomorphism all five columns give the same single-element extension. Let us call this matroid $\alpha_{5,3,1}$ obtained by adding, say, column g :

$$
\alpha_{5,3,1}=\left[I_{5} \left\lvert\, \begin{array}{ccccccc}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right.\right]
$$

Similarly, adding to $\alpha_{5,3,1}$ any one of columns h, i, d, e, say h, gives $\alpha_{5,3,1,1}$, and so on; we get $\alpha_{5,3,1,1}$ by adding i; $\alpha_{5,3,1,1,1}$ by adding d; and finally $\alpha_{5,3,1,1,1,1}=R_{16}$ by adding e. This gives all the rank 5 members in $E X\left(P_{9}^{*}\right)$ with an $\alpha_{5,3}$-minor.

It remains to show that there are no higher rank matroids with an $\alpha_{5,3}$ minor. Suppose M is a rank 6 cosimple single-element matroid in $E X\left(P_{9}^{*}\right)$ with an $\alpha_{5,3^{-}}$ minor. By the Strong Splitter Theorem, M is a cosimple single-element coextension of $\alpha_{5,3}$ by Type II and III rows or $\alpha_{5,3,1}$ with row [0000011]. In every instance M has a P_{9}^{*}-minor.

Thus we may assume M has an $\alpha_{5,1}$-minor or $\alpha_{5,2}$-minor. Renaming columns to fit the pattern in Ω_{5}, Table 1 shows that $\alpha_{5,1}$ is formed by adding columns $c_{5}=[11000]^{T}$, $d_{5}=[00110]^{T}$, or $g_{5,1}=[11110]^{T}$ and $\alpha_{5,2}$ is formed by adding columns $e_{5}=[11100]^{T}$ or $f_{5}=[00111]^{T}$. Adding all these columns to α_{5} gives Ω_{5}. Using the same method explained above for $\alpha_{5,3}$ we can show that every cosimple single-element coextension of $\alpha_{5,1}$ and $\alpha_{5,2}$ also has a P_{9}^{*}-minor.

Lastly, $\alpha_{5,1}$ (with c_{5}) has two simple single-element extensions in $E X\left(P_{9}^{*}\right)$, namely, $\alpha_{5,1,1}$, formed by adding d_{5} or $g_{5,1}$, and $\alpha_{5,1,2}$ formed by adding e_{5} or f_{5}. The matroid $\alpha_{5,2}$ (with e_{5}) also has two single-element extensions, $\alpha_{5,2,1}$ formed by adding c_{5}, d_{5} or $g_{5,1}$ and $\alpha_{5,2,2}$ formed by adding f_{5} :

$$
\begin{aligned}
& \alpha_{5,1,1}=\left[I_{5} \left\lvert\, \begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}\right.\right], \alpha_{5,1,2}=\left[I_{5} \left\lvert\, \begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}\right.\right], \\
& \alpha_{5,2,2}=\left[I_{5} \left\lvert\, \begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right.\right] \text {. }
\end{aligned}
$$

Further, note that $\alpha_{5,2,1}=\alpha_{5,1,2}$.
By the Strong Splitter Theorem we must only check one single-element coextension of $\alpha_{5,1,1}, \alpha_{5,1,2}$, and $\alpha_{5,2,2}$, namely the one formed by adding row [0000011].

Observe that $\alpha_{5,1,1}$ with row [0000011] is precisely α_{6}, whereas each of $\alpha_{5,1,2}$ and $\alpha_{5,2,2}$ with row [0000011] has a P_{9}^{*}-minor. This completes the base case for the induction argument.

The base case is summarized in Figure 7, where the numbers below the figure represent the size of the matroids. The rank 5 seed α_{5} has size 10 and the monarch Ω_{5} has size 15. The rank 6 seed α_{6} has size 13 and the monarch Ω_{6} has size 19. The figure also shows how R_{16} manifests as an extension of α_{5} via its third single-element extension $\alpha_{5,3}$, which has no coextensions in $E X\left(P_{9}^{*}\right)$.

Figure 7: Base case of the induction argument

Acknowledgements

The author thanks the unknown referees and the editors for their suggestions that improved the terminology and proofs.

References

[1] C. Chun, D. Mayhew and J. G. Oxley, A chain theorem for internally 4connected binary matroids, J. Combin. Theory Ser. B 101(3) (2011), 141-189.
[2] G. Ding and H. Wu, Characterizing binary matroids with no P_{9}-minor, $A d v$. Appl. Math. 70 (2015), 70-91.
[3] S. R. Kingan, Unlabeled Inequivalence in representable matroids, Proc. SIAM Meeting on Analytic Algorithmics and Combinatorics (2013).
[4] S. R. Kingan, A short proof of binary matroids with no 4-wheel minor, Australas. J. Combin. 72 (2) (2018), 201-205.
[5] S. R. Kingan and M. Lemos, Decomposition of binary matroids with no prism minor, Graphs Combin. 30 (2014), 1479-1497.
[6] S. R. Kingan and M. Lemos, Strong Splitter Theorem, Ann. Comb. 18 (2014), 111-116.
[7] J.P.S. Kung, D. Mayhew, I. Pivotto and G.F. Royle, Maximum size binary matroids with no AG(3, 2)-Minor are graphic, SIAM J. Discrete Math. 28 (3) (2014), 1559-1577.
[8] D. Mayhew and G.F. Royle, The internally 4-connected binary matroids with no $M\left(K_{5} \backslash e\right)$-minor, SIAM J. Discrete Math. 26 (2) (2012), 755-767.
[9] J. G. Oxley, The binary matroids with no 4 -wheel minor, Trans. Amer. Math. Soc. 154 (1987), 63-75.
[10] J. G. Oxley, Matroid Theory, Second Edition, Oxford University Press, New York (2011).
[11] P.D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980), 305-359.
(Received 21 May 2019; revised 20 Aug 2020, 18 Dec 2020)

