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Embeddings of unitals
such that each block is a subline
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Abstract

We consider unitals embedded in a pappian projective plane such that
every block is a subline. We show that every such unital is a hermitian
one, and that the embedding is standard.

The classical examples of unitals are the hermitian unitals, obtained as follows:
Use a non-degenerate hermitian form in three variables over a finite field to describe
a polarity of the projective plane over that field, take the set of absolute points of
the polarity, and endow that set with its intersections with secant lines as blocks.
Then the blocks are Baer sublines, and various results (see 3.2 below) have been
obtained about unitals embedded in projective planes such that (some) blocks are
Baer sublines.
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We take a more general point of view, and consider embeddings into a pappian
projective space (coordinatized by some, possibly infinite, but commutative field F )
where the blocks are sublines (coordinatized by an arbitrary subfield of F , not nec-
essarily the fixed field of an involution, as used for Baer sublines). Using Wilbrink’s
characterization [7] of hermitian unitals and a recent result [3] about embeddings
of hermitian unitals, we show that this condition alone suffices to characterize the
hermitian unitals with their standard embeddings. We make no restriction on the
order q of the unital apart from q > 1; in particular, we do not assume a priori that
q is a prime power.

1 Sublines

Let P = (P,L) be a pappian projective plane, coordinatized by a commutative
field F . A subline of P is a line of a subplane of P, i.e., the intersection S of a
subplane with a line of P joining two points of the subplane. The set of all cross
ratios of quadruplets of points in S is then of the form K ∪ {∞}, where K is a
subfield of F . If S is finite then this subfield is uniquely determined; it consists of
the zeros of the polynomial Xq −X, where q = |S| − 1. This implies that each finite
subline is determined uniquely by its size and three of its points.

If one introduces coordinates from F ∪ {∞} for the points of a line of P in such
a way that 0, 1 and ∞ are labels for points in S then the labels for arbitrary points
of S � {∞} form that subfield K. The subline S is called a Baer subline if F is a
quadratic extension of K; i.e., if dimK F = 2.

The line of P containing the subline S will be denoted by L(S).

1.1 Lemma. Let B,B′ be two sublines of the same finite size, and let p be a point
of P that lies neither on L(B) nor on L(B′). If the projection with center p from L(B)
onto L(B′) maps three points of B into B′ then it maps B onto B′.

Proof: Let π denote the projection, and let Q be a subplane such that B =
Q ∩ L(B). Applying a suitable elation with axis L(B), we may assume that p ∈ Q.
There is a homology α with center p and an axis through L(B) ∧ L(B′) mapping
L(B) to L(B′). This homology fixes each of the projecting lines, and α−1 ◦ π clearly
fixes each point in B. Now α maps B into the subline α(Q)∩L(B′), and the subline
α(B) = α ◦ (α−1 ◦ π)(B) = π(B) coincides with B′ because it shares three points
with it (and has the right size). �

2 Embeddings

A unital U = (U,B) of order q > 1 is a 2-(q3 + 1, q + 1, 1)-design. In other words,
U is an incidence structure such that any two points in U are joined by a unique
block in B, there are |U | = q3 + 1 points, and every block has exactly q + 1 points.
It follows that every point is on exactly q2 lines.
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2.1 Theorem. Let U = (U,B) be any unital of order q. Assume that U is embedded
into a projective space such that U forms a subset of the point set of that space,
and that every block B ∈ B is contained in a line L(B) of the space. Then U is
contained in a plane of the projective space. If U is not contained in a single line
then mapping B to L(B) is injective.

Proof: Pick any point x ∈ U and a block B ∈ B such that x /∈ B. Joining x
with points on B, we obtain q + 1 blocks. The union X of those blocks contains
(q + 1)q + 1 = q2 + q + 1 points.

Now assume that some point z ∈ U is not contained in the subspace (a plane or a
line) generated by X. Joining points of X with z (in the projective space) then gives
an injective map into the line pencil of z, and thus into the set Bz of blocks (of the
unital) through z. This contradicts the fact that Bz contains only q2 blocks. �

2.2 Lemma. In a unital of order q, there is no embedded projective plane of order q.

Proof: Aiming at a contradiction, assume that a projective plane of order q is
contained in a unital of order q. Pick a point z of the unital outside the plane, and
join each point of the plane to z. As every block with two points in the plane is
entirely contained in the plane, this joining map is injective, and gives q2 + q + 1
blocks through z — contradicting the fact that there are only q2 blocks through z. �

2.3 Definition. Let F be a commutative field, and let P2(F ) be the projective plane
over F . An embedding (as in 2.1) of a unital U = (U,B) of order q into P2(F ) is
called standard if F has a subfield C of order q2 such that— in coordinates with
respect to a suitable quadrangle in P2(F )— the point set U is identified with

{
F (x1, x2, x3)

∣∣ (x1, x2, x3) ∈ C3
� {(0, 0, 0)}, xq+1

1 + xq+1
2 + xq+1

3 = 0
}
.

In particular, the blocks of the unital are Baer sublines in the subplane P2(C) of
P2(F ).

3 Blocks that are sublines

Obviously, the hermitian unital (of order q, say) is embedded in a pappian projective
plane such that every block is a subline; we may take the standard embedding (in the
sense of Definition 2.3) into the plane over Fq2, and then make further embeddings
into planes over commutative fields that contain Fq2 . We are going to prove that,
conversely, an embedding of a unital such that blocks are sublines is always a standard
embedding of a hermitian unital.

Let U = (U,B) be a unital of order q, and consider a point x. Blocks B,B′ ∈ B
not through x are called x-parallel if every block through x meeting B also meets B′.
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Figure 1: Constructing parallels (blocks are indicated by double strokes)

3.1 Theorem. Assume that U = (U,B) is a unital of order q, embedded in a pappian
projective plane P in such a way that every block is a subline of P, and such that U
is not contained in any line. Then U is the hermitian unital of order q, and the
embedding is standard.

Proof: By our assumption, no two blocks of U are contained in the same line of P;
see 2.1. Thus any two intersecting blocks of U generate a projective subplane of P.

To show that U is hermitian, we verify Wilbrink’s three conditions ([7], see also [4]).
We start with condition (II), which reads: if W ∈ B, w ∈ U �W , and z ∈ U � {w}
is on a block joining w to a point of W , then there exists a block Bz through z which
is w-parallel to W .

The union of all blocks obtained by joining w to a point on W forms a set D of size
(q + 1)q + 1 = q2 + q + 1. Joining the q2 points of D � (w ∨ z) to z we obtain at
most |Bz � {w ∨ z}| = q2 − 1 many blocks through z. Therefore, there exists a block
Bz through z that contains at least three points of D. From 1.1 we know that the
projection with center w from L(W ) onto L(Bz) maps W onto Bz. Thus a block
through w meets Bz if, and only if, it meets W . In other words: The block Bz is
w-parallel to W , and we have proved that Wilbrink’s Condition (II) is satisfied.

We claim that the point c := L(Bz) ∧ L(W ) is not in U . Otherwise, we project the
block w ∨ z from c onto the block w ∨ x, for each x ∈ W . Then every point of the
projective subplane generated by the sublines w ∨ z and w ∨ c belongs to the unital.
This is impossible by 2.2.

Wilbrink’s Condition (I) requires that there are no O’Nan configurations in U; recall
that such a configuration consists of four blocks B0, B1, B3, B4 and six points xjk,
where {j, k} is any two-element subset of {0, 1, 2, 3}, and xjk lies on Bn precisely if
n ∈ {j, k}. Aiming at a contradiction, we consider an O’Nan configuration in U.
Let w be one of the points, let W be one of the blocks not through w, and let z be
one of the points not in W ∪ {w}. Then Bz will be a block of the configuration, and
c = Bz ∧ W belongs to the configuration. This contradicts the observation of the
previous paragraph that c is not in U .

As there are no O’Nan configurations, the w-parallel Bz to W through z is determined
uniquely by (w,W ) and z. We denote it by ‖w,W (z).
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Figure 2: Desargues’ theorem in U

Let a := W ∧ (w ∨ z). For any b ∈ W , the projection with center c from L(w ∨ z)
onto L(w ∨ b) maps {w, z, a} into the block w ∨ b. By 1.1, this projection maps the
block w ∨ z onto the block w ∨ b. For each z′ ∈ w ∨ z, we thus find c ∈ L(‖w,W (z′)).
The point c therefore depends only on (w,W ), we denote it by cw,W . See Figure 1.

For b ∈ W � {a}, consider the block Y joining a with x := (w ∨ b) ∧ ‖w,W (z). We
obtain w-parallels ‖w,Y (y) for each y ∈ w∨ z, and the lines L(‖w,Y (y)) all go through
some point cw,Y . The composition of the projections with centers cw,W and cw,Y from
L(w ∨ z) onto L(w ∨ b) and then back to L(w ∨ z) is a projectivity of L(w ∨ z). It
maps the block w ∨ z onto w ∨ b and then back onto w ∨ z. It fixes w, and no other
point in the subline w ∨ z is fixed. We introduce coordinates from a field F for the
line L(w∨ z) in such a way that 0 labels w and 1,∞ are labels of points in W . Then
the block w ∨ z is the subline coordinatized by the subfield K of order q in F , and
said projectivity is given as x 
→ kx+t with k, t ∈ F . As the subline w∨z is invariant
under the projectivity, we obtain K = kK + t. This implies k, t ∈ K. For k �= 1
the projectivity would fix (1 − k)−1t ∈ K. So k = 1, the projectivity fixes no point
of L(w ∨ z) apart from w, and we obtain that cw,W and cw,Y are collinear with w.

We thus observe that each w-parallel class is obtained by joining the points different
from w on a block through w with a point (namely, cw,Y , also different from w) on
the line containing w and all points cw,Y .

Wilbrink’s Condition (III) is a version of Desargues’ little affine theorem for unitals,
as follows (see Figure 2). On three blocks M0,M1,M2 through a common point w,
let xj , yj be points different from w such that xj , yj ∈ Mj . Let Aj+2 be the block
joining xj with xj+1, and let Bj+2 be the block joining yj with yj+1, for j ∈ Z/(3Z).
If Aj and Bj are w-parallel for j ∈ {0, 1} then A2 and B2 are w-parallel, as well. We
abbreviate cj := cw,Aj

, for the sake of readability.

For our embedded unital, the validity of Condition (III) follows from Desargues’
Theorem, applied to the triangles (x0, x1, x2) and (y0, y1, y2) in P that lie in central
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position with respect to w, and in axial position with respect to the line containing
{w, c0, c1, c2}. So Wilbrink’s three conditions are satisfied, and the unital U is the
hermitian one according to [7]. Each embedding of a hermitian unital of order q > 2
in a pappian projective plane is standard, see [3, Thm. 5.1].

For q = 2, the unital is isomorphic to the affine plane A2(F3) of order 3.
The embeddings of A2(F3) into any pappian plane are known explicitly, see [6, 3.7]:
such an embedding exists precisely if the coordinatizing field F contains a root of the
polynomial X2 +X + 1, and then any two embeddings are equivalent. The subline
assumption implies that F has characteristic 2. Hence F has a subfield of size 4, and
the embedding is standard. �

3.2 Remarks. A special case of our present result 3.1 (namely, the case where F is
finite of square order |F | = q2, and the blocks are Baer sublines) has been proved by
Lefèvre-Percsy [5] and Faina and Korchmáros [2]. In fact, it suffices to assume only
that a certain subset of the blocks consists of Baer sublines. See De Bruyn [1] for an
overview of pertinent results, and a further generalization.

3.3 Remark. In 3.1, we require explicitly that U is not contained in a line. In fact,
it is possible to “embed” the hermitian unital of order q into the projective line over
Fq4 in such a way that every block is a subline.

In order to see this, start with the standard embedding of the unital into the
projective plane over Fq2 ; the blocks are sublines. Take any proper extension field E
of Fq2, and embed the plane P over Fq2 into the plane P

′ over E. Pick a tangent t
to the unital, and choose a point z on t in P

′ but not in P. Then no line through z
meets the unital in more than one point. Projecting from z into a line of P′ gives an
injective map, preserving the fact that blocks are sublines.

3.4 Remark. The definition of embedding between incidence structures in [3, p. 939]
must be amended: one has to require that the (injective) mapping between the point
sets is accompanied by an injective mapping between the line sets.
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