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Abstract

We consider a combinatorial question about searching for an unknown
ideal μ within a known poset λ. Elements of λ may be queried for mem-
bership in μ, but at most k positive query results are permitted. The
goal is to find a search strategy which guarantees a solution in a minimal
total number qk(λ) of queries. We provide tight bounds for qk(λ), and
construct optimal search strategies for the case where k = 2 and λ is the
product poset of totally ordered finite sets, one of which has cardinality
not more than six.

1 Introduction

1.1 Quicksand puzzle

A surveyor stands in the northeast corner of a rectangular field λ of dimension m×n.
In the southwest corner of the field there may exist a rectangular quicksand pit μ
of unknown dimension m′ × n′. The surveyor has k stones available to toss into the
field in order to identify safe and unsafe regions of the field.

In order to gain information, the surveyor tosses a stone into some location x in
the field. If the stone does not sink, it follows that the region northeast of x is safe;
the surveyor can venture into the field to retrieve the stone and use it again. If the
stone does sink, the surveyor knows that the quicksand pit extends at least as far as
x, but they now have one less stone with which to work (see Figure 1). How can the
surveyor identify the location of the quicksand pit, and do so in a minimal number
of tosses?
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Starting position Stable stone, safe region Sunken stone, unsafe region

Figure 1: Surveying a 5× 7 field with hidden 4× 3 quicksand pit.

1.2 Quicksand ideals in posets

As we explain in Section 1.3, this puzzle is a special case of a more general problem.
Let λ be a finite poset and k ∈ N. We seek to identify a (possibly empty) ‘quicksand’
ideal μ contained in λ by sequentially querying elements of λ for membership in μ,
under the restriction that at most k positive query results are permitted. Letting
qk(λ) represent the minimum total number of queries needed to guarantee identifi-
cation of μ, our goal is to solve:

Problem 1.1. Find qk(λ), and identify a search strategy which realizes this value.

For all k ∈ N, the value qk(λ) has a recursive combinatorial description, as shown
in Proposition 2.2:

qk(λ) =

⎧⎪⎨
⎪⎩
0 if λ = ∅;

|λ| if k = 1;

min{max{qk(λ ��u), qk−1(λ�u)} | u ∈ λ}+ 1 if k > 1, λ �= ∅,

For any x ∈ Z≥0, let Tk(x) =
∑k

i=1

(
x
k

)
, and let τk(x) be the smallest integer such

that x ≤ Tk(τk(x)). Our first main result provides bounds for qk(λ):

Theorem A. For all k ∈ N and posets λ, we have τk(|λ|) ≤ qk(λ) ≤ |λ|.

This appears as Theorem 4.2 in the text. These bounds are tight, in that qk(λ) =
|λ| when λ has the trivial partial order, and qk(λ) = τk(|λ|) when λ is totally ordered.
In fact, when λ is totally ordered, Problem 1.1 is related to the ‘k-egg’ or ‘k-marble’
problem [9,12–14], which appears in numerous texts on dynamic programming and
optimization, and perhaps apocryphally, as an interview question for certain coding
positions in big tech.

More generally, this problem relates to a broad body of work in computer science
and optimization on efficient search within sets with partial order—see for instance
[2–5,7,10]—motivated by such applications as debugging, file synchronization, and
information retrieval. From this point of view, our Problem 1.1 is a consideration of
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this topic under an additional restriction on queries. One may view this restriction
from a cost-minimization perspective, in which the limit on positive queries in this
paper corresponds to the (k+1)st positive query having large cost. Searches in posets
with non-uniform costs were studied in [6] (where cost is tied to querying particular
nodes), and in [1] (where query cost is randomized).

1.3 Quicksand ideals in the product order, k = 2 case

After investigating general results described in Section 1.2, we devote our attention
to a special case of Problem 1. When κ, ν are totally ordered sets, we consider κ× ν
to be a poset under the product partial order; i.e.,

(x1, y1) � (x2, y2) ⇐⇒ x1 ≥ x2 and y1 ≥ y2,

for x1, x2 ∈ κ and y1, y2 ∈ ν. We consider the k = 2 case, where T2(x) is the
triangular number 1+2+ · · ·+x = x(x+1)/2, and τ2(x) = 	(√8x+ 1− 1)/2�. Our
second main result, which appears as Corollary 6.2 in the text, provides a partial
solution to Problem 1.1 in this setting:

Theorem B. Let κ, ν be finite totally ordered sets, with |κ| ≤ 6 or |ν| ≤ 6. Then

q2(κ× ν) =

{
9 if |κ| = |ν| = 6;

τ2(|κ||ν|) otherwise.

In Algorithm 6.2 we describe an explicit strategy, for any such κ, ν, which realizes
the value q2(κ × ν) above. In general, this strategy—and hence the proof of The-
orem B—is rather delicately connected to the congruence class of τ2(|κ||ν|) modulo
|κ| and |ν|, and relies heavily on some interesting number theoretic facts about tri-
angular numbers proved in Section 3.2. We close the paper with a conjectural upper
bound on q2(κ× ν) in general, see Section 6.1.

1.4 Solving the quicksand puzzle

Theorem B offers a solution to the puzzle in Section 1.1 for the case where k = 2
and one dimension of the field is not more than six. Indeed, we may consider the
field λ as the poset [1, m]× [1, n], depicted as a rectangular array of boxes in the first
quadrant of the Cartesian plane. The quicksand pit is then an unknown ideal in λ,
since any ideal μ ⊆ λ is either empty or equal to [1, m′] × [1, n′] for some m′ ≤ m,
n′ ≤ n.

Take the k = 2, λ = [1, 5] × [1, 7] example from Section 1.1 for instance. Algo-
rithm 6.2 returns an optimal strategy displayed in Figure 2. The surveyor tosses their
first stone into the locations marked 1©, 2©, 3©, . . . , in sequence. If this stone never
sinks, then μ = ∅. If the stone sinks on say, the ith toss, the remaining uncleared
area weakly northeast of this location (belonging to the same colored region as i©),
is checked sequentially with the remaining stone, beginning with northeastern-most
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nodes and working (weakly) to the southwest. When the second stone sinks it will
determine the northeast corner of μ, and if it never sinks, the northeast corner of μ
is at i©. This strategy identifies the quicksand pit μ in at most τ2(5 · 7) = 8 total
tosses.

1©

2©
3©4©

5©

6©
7©
8©

Figure 2: Strategy for the 5× 7 field.

2 Partially ordered sets

In this section we give a brief primer on partially ordered sets and provide some
preliminary definitions. See [8, 11] for a complete treatment of the subject. We
introduce the qk-function which is the central topic of this paper, and explain how
it relates to Problem 1.1.

2.1 Posets

A partially ordered set (or poset) is a set λ together with a binary relation �, which
satisfies the following conditions for all u, v, w ∈ λ:

(i) u � u (reflexivity);

(ii) u � v and v � u imply u = v (antisymmetricity);

(iii) u � v and v � w imply u � w (transitivity).

We use a � b to indicate a � b and a �= b. The order � is a total order if either
u � v or v � u for all u, v ∈ λ. An order-preserving map of posets λ, ν is a set
map f : λ → ν such that f(u) � f(v) whenever u � v. We say two posets λ, ν are
isomorphic and write λ ∼= ν if there exist mutually inverse order-preserving maps
λ � ν.

If κ, ν are posets, then κ× ν is a poset under the product partial order:

(x1, y1) � (x2, y2) ⇐⇒ x1 �κ x2 and y1 �ν y2,

for all x1, x2 ∈ κ and y1, y2 ∈ ν. Our main examples of posets in this paper are the
following:
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Example 2.1. The trivial partial order on a set λ has u � v if and only if u = v for
all u, v ∈ λ. Such a poset is also called an antichain.

Example 2.2. The natural numbers N = {1, 2, . . .} are totally ordered under the
usual ≥ relation, as is any interval [a, b] = {a, a + 1, . . . , b} ⊂ N. In fact, if λ is any
finite totally ordered set of cardinality m, then λ ∼= [1, m].

Example 2.3. Let m,n ∈ N. Then [1, m], [1, n] are totally ordered sets as in Exam-
ple 2.2. We write �m,n� as shorthand for the poset [1, m]× [1, n] under the product
partial order. If κ, ν are totally ordered sets of cardinality m,n respectively, then
κ× ν ∼= �m,n�.

We represent elements of �m,n� as boxes situated in the first quadrant of the
plane, arranged so that (a, b) is a box in the ath row from the bottom, and in the bth
column from the left. In this scheme, we have u � v for u, v ∈ �m,n� if and only if the
v box is weakly below and to the left (i.e. ‘southwest’) of the u box. For example, in
Figure 3 we show the poset �5, 7�, with the elements x = (4, 3), y = (2, 5), z = (2, 2).
Then we have x � z, y � z, with x, y incomparable.

x

yz

Figure 3: The poset �5, 7�, with elements x, y, z

2.2 Lower sets and ideals

Let U be a subset of a poset λ. Then U is itself a poset under the partial order
inherited from λ, and we always assume we take this partial order on U . We say U
is a lower set in λ provided that for all u ∈ U , v ∈ λ, u � v implies v ∈ U . We
say U is a directed set in λ provided that for all u, v ∈ U , there exists w ∈ U such
that w � u, v. We say U is an ideal in λ if it is a lower set and a directed set. In
particular, we allow ideals to be empty.

Let S, U ⊆ λ. We define subsets:

S�U = {v ∈ S | v � u for some u ∈ U}
S�U = {v ∈ S | v � u for some u ∈ U}
S�U = {v ∈ S | v � u for some u ∈ U}
S ��U = {v ∈ S | v �� u for all u ∈ U} = S\S�U .

When U = {u}, we will write S�u in place of S�{u}, and so on. For any ordered se-
quence u = (u1, . . . , ur) of elements of λ, we will also write S�u in place of S�{u1,...,ur},
and so on. We will often apply these definitions with S = λ.
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We will focus primarily on finite posets λ. In this setting every ideal is either
empty or principal; i.e. of the form λ�u for some u ∈ λ, and every lower set is equal
to λ�U for some U ⊆ λ.

2.3 The qk-function and Problem 1.1

In this section we define the qk-function and show that it provides a purely combi-
natorial rephrasing of Problem 1.1.

Definition 2.1. Let k ∈ N, and let λ be a finite poset. We define the value qk(λ) ∈
Z≥0 recursively by setting:

qk(λ) =

⎧⎪⎨
⎪⎩
0 if λ = ∅;

|λ| if k = 1;

min{max{qk(λ ��u), qk−1(λ�u)} | u ∈ λ}+ 1 if k > 1, λ �= ∅,

where we implicitly take the partial orders on λ ��u, λ�u to be those inherited from λ.

Example 2.4. It is easy to check from Definition 2.1 that qk(λ) = |λ| when |λ| ≤ 2.
Let A = {a, b, c}, and consider the posets λ0, λ1, λ2, λ3 with underlying set A, and
partial orders given in terms of Hasse diagrams in Figure 4. That is, we have y � x if

λ0 : a© b© c© λ1 :
a©
b©

c©
λ2 :

a©
b© c©

λ3 :

a©
b©
c©

Figure 4: Hasse diagrams for λ0, λ1, λ2, λ3.

and only if there is an upward path from x to y in the diagram in Figure 4. Note that
λ0 is the trivial poset on A and λ3 is a totally ordered set on A. We have q1(λi) = 3
for i = 0, 1, 2, 3 by definition, and it is straightforward to compute:

qk(λ0) = 3 qk(λ1) = 2 qk(λ2) = 3 qk(λ3) = 2

for all k ≥ 2.

We now explain how the qk-function provides a combinatorial rephrasing of Prob-
lem 1.1. Recall that in Problem 1.1, μ is an unknown ideal in λ we wish to identify,
and we may sequentially query elements of λ for membership in μ, with the restric-
tion that we must stop after the kth positive query. Note that since μ is an ideal in
a finite set, we have that μ = ∅ or μ = λ�x for some x ∈ λ. Let q′k(λ) represent the
minimum total number of queries needed to guarantee identification of μ.

Proposition 2.2. We have q′k(λ) = qk(λ).
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Proof. We first consider the λ = ∅ case. In this case we must have μ = ∅, so no
queries are needed to identify μ. Thus q′k(∅) = 0 = qk(∅).

We next consider the k = 1 case. With only one positive search query available,
the search strategy is very limited. Assume that u ∈ λ and we know v /∈ μ for all
v � u by previous queries. Then a positive query at u will identify μ to be the ideal
λ�u. On the other hand, if there exists a element v � u whose membership in μ is
unknown, a positive query result at u would result in failure, as μ could potentially
be λ�v or λ�u, and we would be left with no further queries to distinguish these
possibilities. We see then that the only permissible search strategy is to query all
of the elements of λ in some non-increasing sequence, where the first positive query
result will identify the generator of the ideal μ. If μ = ∅, the ideal will only be
identified after the final (negative) query, so we have q′k(λ) = |λ| = qk(λ).

Finally, we consider the general k > 1, |λ| > 0 case. By induction, assume that
q′�(ν) = q�(ν) for all � < k or |ν| < |λ|. Assume the first query is at some element
u ∈ λ. If the query is negative, this implies that μ ⊆ λ ��u, and we still have k positive
queries to work with. By induction, the minimal total number of queries necessary
to guarantee identification of μ in λ ��u is qk(λ ��u).

On the other hand, assume the query at u ∈ λ is positive. This implies that the
ideal generator x could be any element in λ�u, and we now have k−1 positive query
results remaining. Let μ′ be the ideal μ ∩ λ�u in λ�u. Then we have μ′ = ∅ if and
only if x = u, and μ′ is nonempty if and only if x ∈ λ�u and μ′ = (λ�u)�x. Therefore,
identifying μ is equivalent to identifying the ideal μ′ in λ�u. By induction, qk−1(λ�u)
is the minimal total number of queries necessary to guarantee success in this search.

Therefore if we begin by querying u, the minimal number of queries that will be
necessary to guarantee identification of μ in λ is qk(λ ��u)+1 if u /∈ μ, and qk−1(λ�u)+1
if u ∈ μ. Thus, by first querying u, the minimal number of queries necessary is

max{qk(λ ��u), qk−1(λ�u)}+ 1.

Therefore, taking the minimum over all possible choices of the initial query u, we
have that q′k(λ) = qk(λ), as desired.

3 Binomial sums and triangular numbers

Bounds for the qk-function will be shown to be directly related to binomial sums,
and, in the k = 2 case, triangular numbers. In preparation for establishing this
fact, we investigate some properties of binomial sums, and triangular numbers in
particular.

3.1 Binomial sums

Throughout this section, we fix k ∈ N.
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Definition 3.1. Define the function Tk : Z≥0 → Z≥0 via:

Tk(x) =

k∑
i=1

(
x

i

)
.

Notably, when k = 1 we have T1(x) = x, and when k = 2 we have

T2(x) =
x(x+ 1)

2
= 1 + 2 + · · ·+ x, (3.1)

the xth triangular number. The following lemma is clear.

Lemma 3.2. For any k ∈ N, x, y ∈ Z≥0, we have x < y if and only if Tk(x) < Tk(y).

The next function is key in describing lower bounds for the qk-function.

Definition 3.3. Define the function τk : Z≥0 → Z≥0 by setting τk(x) to be the unique
non-negative integer such that

Tk(τk(x)− 1) < x ≤ Tk(τk(x)).

The next two lemmas are clear from definitions.

Lemma 3.4. For any x ∈ Z≥0, we have τk(Tk(x)) = x.

Lemma 3.5. For any k ∈ N, x ≤ y, we have τk(x) ≤ τk(y).

We now prove some additional useful technical lemmas on Tk and τk.

Lemma 3.6. For all x > 0, we have Tk(x) = Tk(x− 1) + Tk−1(x− 1) + 1.

Proof. We have

1 + Tk(x− 1) + Tk−1(x− 1) =

(
x− 1

0

)
+

k∑
i=1

(
x− 1

i

)
+

k−1∑
i=1

(
x− 1

i

)

=

k∑
i=1

[(
x− 1

i

)
+

(
x− 1

i− 1

)]
=

k∑
i=1

(
x

i

)
= Tk(x),

where the third equality follows from the binomial recurrence relation.

Lemma 3.7. Let x, y ∈ Z≥0 be such that y < Tk−1(τk(x)− 2)+ 2. Then τk(x)− 1 ≤
τk(x− y).

Proof. We have by Lemma 3.6 that

Tk(τk(x)− 2) = Tk(τk(x)− 1)− Tk−1(τk(x)− 2)− 1 < Tk(τk(x)− 1)− y + 1.

By the definition of τk(x) we have Tk(τk(x)− 1) < x, so

Tk(τk(x)− 2) ≤ Tk(τk(x)− 1)− y < x− y.

Then by the definition of τk(x− y), we have τk(x− y) > τk(x)− 2. Thus τk(x− y) ≥
τk(x)− 1.
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Lemma 3.8. If x, y ∈ Z≥0 and n ∈ N are such that x ≡ 0 (mod n) and Tk(τk(x)) ≡
y (mod n) , where 0 ≤ y < n, then Tk(τk(x))− x ≥ y.

Proof. By definition, Tk(τk(x)) ≥ x. Then we have Tk(τk(x)) − x ≡ y (mod n) ,
and Tk(τk(x)) − x ≥ 0, so Tk(τk(x)) − x = y + nt for some t ∈ Z≥0, so the result
follows.

3.2 Triangular numbers

Now we prove some technical lemmas in the case k = 2, recalling that T2(x) is the
triangular number 1 + · · ·+ x. The next lemma is just a special case of Lemma 3.7.

Lemma 3.9. If x, y ∈ Z≥0, with y < τ2(x), then τ2(x)− 1 ≤ τ2(x− y).

Lemma 3.10. Let x, y ∈ Z≥0, � ∈ N, with 0 ≤ y ≤ x− �τ2(x) + T2(�− 1). Then we
have

τ2(y) ≤ τ2(x)− �.

Proof. By Definition 3.3, we have

y ≤ x− �τ2(x) + T2(�− 1) ≤ T2(τ2(x))− �τ2(x) + T2(�− 1)

= [1 + · · ·+ τ2(x)]− �τ2(x) + [1 + 2 + · · ·+ (�− 1)]

= [1 + 2 + · · ·+ τ2(x)]− [(τ2(x)− (�− 1)) + · · ·+ (τ2(x)− 1) + τ2(x)]

= 1 + 2 + · · ·+ (τ2(x)− �) = T2(τ2(x)− �).

Then, applying τ2 to both sides of the inequality, we have by Lemmas 3.4 and 3.5
that

τ2(y) ≤ τ2(T2(τ2(x)− �)) = τ2(x)− �,

as desired.

Lemma 3.11. Let y, r, n ∈ N, with y ≡ r (mod n) . Then:

T2(y) ≡
{
T2(r) +

n
2
(mod n) if n ≡ 0 (mod 2) , y−r

n
≡ 1 (mod 2) ;

T2(r) (mod n) otherwise.

Proof. We may assume without loss of generality that y ≥ r. Note that since y ≡
r (mod n) , we have y − r = n� for some � ∈ Z≥0. We prove the claim by induction
on �. Let � = 0. Then y = r and y−r

n
≡ 0 (mod 2) . Therefore, T2(y) = T2(r) ≡

T2(r) (mod n) so the base case holds.
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Now assume � > 0 and the claim holds for all �′ < �. Then

T2(y) = T2(r + n�)

= (r + n�) + (r + n�− 1) + · · ·+ (r + n�− (n− 1)) + T2(r + n(�− 1))

= nr + n2�− (0 + · · ·+ (n− 1)) + T2(r + n(�− 1))

= nr + n2�− T2(n− 1) + T2(r + n(�− 1))

= nr + n2�− (n− 1)n

2
+ T2(r + n(�− 1))

≡ −(n− 1)n

2
+ T2(r + n(�− 1)) (mod n) .

We consider three separate cases, based on the parity of n and �.

Case 1. Suppose n is odd. Then we have that T2(r + n(�− 1)) ≡ T2(r) (mod n)
by the induction assumption. Therefore,

T2(y) ≡ −(n− 1)n

2
+ T2(r + n(�− 1)) ≡ −n · (n− 1)

2
+ T2(r) ≡ T2(r) (mod n) .

Case 2. Suppose n is even and � is odd. Then � − 1 is even, so then we have
T2(r + n(�− 1)) ≡ T2(r) (mod n) by the induction assumption. Then

T2(y) ≡ −(n− 1)n

2
+ T2(r + n(�− 1)) ≡ −n

2
(n− 1) + T2(r) (mod n)

≡ −n

2
(−1) + T2(r) ≡ T2(r) +

n

2
(mod n) .

Case 3. Suppose n is even and � is even. Then � − 1 is odd, so then we have
T2(r + n(�− 1)) ≡ T2(r) +

n
2
(mod n) by the induction assumption. Then

T2(y) ≡ −(n− 1)n

2
+ T2(r + n(�− 1)) (mod n)

≡ −n

2
(n− 1) + T2(r) +

n

2
≡ n

(
1− n

2

)
+ T2(r) ≡ T2(r) (mod n) .

Thus in any case, the claim holds for �, completing the induction step and the
proof.

4 Bounds on the qk-function

Now we establish bounds on the qk-function. The following lemma is clear from
Definition 2.1.

Lemma 4.1. If λ ∼= ν, then qk(λ) = qk(ν).

Theorem 4.2. For all λ, k, we have τk(|λ|) ≤ qk(λ) ≤ |λ|.
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Proof. We first prove that qk(λ) ≤ |λ|. The claim holds for k = 1 and λ = ∅ by
Definition 2.1. Now let k > 1, |λ| > 0, and assume qk′(λ

′) ≤ |λ′| for all k′ < k,
|λ′| < |λ|. Let v be any maximal element in λ. Then we have λ�v = ∅ and
|λ ��v| = |λ| − 1, so:

qk(λ) = min{max{qk(λ ��u), qk−1(λ�u)} | u ∈ λ}+ 1

≤ max{qk(λ ��v), qk−1(λ�v)}+ 1 ≤ max{|λ ��v|, 0}+ 1 = (|λ| − 1) + 1 = |λ|,
as desired.

Now we prove that τk(|λ|) ≤ qk(λ). The claim holds for k = 1, as q1(λ) = |λ| =(|λ|
1

)
= T1(|λ|), and the claim holds for λ = ∅, as we have qk(∅) = 0 =

∑k
i=1

(
0
i

)
=

Tk(0). Now let k > 1, |λ| > 0, and assume τk′(|λ′|) ≤ qk′(λ
′) for all k′ < k or

|λ′| < |λ|. For some u ∈ λ, we have

qk(λ) = max{qk(λ ��u), qk−1(λ�u)}+ 1.

Then by the induction assumption we have

qk(λ) ≥ qk(λ ��u) + 1 ≥ τk(|λ ��u|) + 1 (4.1)

and

qk(λ) ≥ qk−1(λ�u) + 1 ≥ τk−1(|λ�u|) + 1. (4.2)

Assume by way of contradiction that qk(λ) < τk(|λ|). First we claim that |λ�u| <
Tk−1(τk(|λ|)− 2) + 1. Indeed, if |λ�u| ≥ Tk−1(τk(|λ|)− 2) + 1, then by Definition 3.3
we would have

Tk−1(τk(|λ|)− 2) < Tk−1(τk(|λ|)− 2) + 1 ≤ |λ�u| ≤ Tk−1(τk−1(|λ�u|)).
Then Lemma 3.2 implies that τk−1(|λ�u|) > τk(|λ|)− 2, so τk−1(|λ�u|) ≥ τk(|λ|)− 1.
But then

τk−1(|λ�u|) + 1 ≥ τk(|λ|) > qk(λ),

a contradiction of (4.2). Thus |λ�u| < Tk−1(τk(|λ|)− 2) + 1 as desired.

Note then that |λ�u|+ 1 < Tk−1(τk(|λ|)− 2) + 2, so by Lemma 3.7, we have

τk(|λ|)− 1 ≤ τk(|λ| − |λ�u| − 1).

Therefore, applying (4.1) we have

qk(λ) ≥ τk(|λ ��u|) + 1 = τk(|λ| − |λ�u| − 1) + 1 ≥ (τk(|λ|)− 1) + 1 = τk(|λ|) > qk(λ),

a contradiction. Therefore τk(|λ|) ≤ qk(λ), as desired. This completes the induction
step, and the proof.

With the following two lemmas, we prove that the bounds of Theorem 4.2 are
tight with respect to arbitrary posets.
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Lemma 4.3. Let λ be a poset with trivial partial order. Then qk(λ) = |λ|.

Proof. If λ = ∅ or k = 1, the claim follows by Definition 2.1. Now let k > 1, |λ| > 0,
and assume qk′(λ

′) = |λ′| for all k′ < k, and trivial posets λ′ with |λ′| < |λ|. Let
u ∈ λ. Then we have that λ�u = ∅, and λ ��u = λ\{u} is itself a trivial poset.
Therefore by the induction assumption we have

qk(λ) = min{max{qk(λ ��u), qk−1(λ�u)} | u ∈ λ}+ 1

= min{max{|λ| − 1, 0} | u ∈ λ}+ 1 = (|λ| − 1) + 1 = |λ|,
as desired.

Lemma 4.4. Let λ be a totally ordered set. Then qk(λ) = τk(|λ|).

Proof. As usual, we note that the claim holds for k = 1, λ = ∅ by Definition 2.1. We
now let k > 1 and |λ| > 0, and make the induction assumption that qk′(λ

′) = τk′(|λ′|)
for all k′ < k and totally ordered λ′ with |λ′| < |λ|.

We may assume λ = [1, n], as any totally ordered set of cardinality n is equivalent
to this interval. Note that we have 0 ≤ Tk(τk(n) − 1) < n by Definition 3.3, so
v := Tk(τk(n)− 1) + 1 ∈ [1, n]. Then, applying Lemma 3.4, we have

qk(λ ��v) = τk(|[1, v − 1]|) = τk(v − 1) = τk(Tk(τk(n)− 1)) = τk(n)− 1.

On the other hand, we have

qk−1(λ�v) = τk−1(|[v + 1, n]|) = τk−1(n− v) = τk−1(n− Tk(τk(n)− 1)− 1)).

Then we have

qk−1(λ�v) = τk−1(n− Tk(τk(n)− 1)− 1)) ≤ τk−1(Tk(τk(n))− Tk(τk(n)− 1)− 1))

= τk−1((Tk−1(τk(n)− 1) + 1)− 1) = τk−1(Tk−1(τk(n)− 1)) = τk(n)− 1,

using Lemma 3.5 and the fact that n ≤ Tk(τk(n)) by Definition 3.3 for the first
inequality, Lemma 3.6 for the second equality, and Lemma 3.4 for the last equality.

Thus we have

qk(λ) = min{max{qk(λ ��u), qk−1(λ�u)}+ 1 | u ∈ λ}
≤ max{qk(λ ��v), qk−1(λ�v)}+ 1 ≤ (τk(n)− 1) + 1 = τk(n) = τk(|λ|).

Since qk(λ) ≥ τk(|λ|) by Theorem 4.2, we have qk(λ) = τk(|λ|). This completes the
induction step, and the proof.

Remark 4.3. The proof of Lemma 4.4 contains a solution to the strategy question
from Problem 1.1 for totally ordered sets, defined recursively for any k ∈ N. Namely,
one should query the element v such that |λ≺v| = Tk(τk(|λ|) − 1). If the query is
negative, repeat the process with the totally ordered set λ≺v. If the query is positive
and k = 1, stop. Otherwise, repeat the process with the totally ordered set λ�v and
k := k − 1. The final positive query will identify the element which generates the
ideal μ.



A. IAMS ET AL. /AUSTRALAS. J. COMBIN. 79 (2) (2021), 256–283 268

Remark 4.4. In view of Theorem 4.2 and Lemmas 4.3 and 4.4, one may be led to
conjecture that qk(λ

′) ≤ qk(λ) when λ′ is a refinement of the poset λ. This does not
hold in general, however. For a counterexample, see Example 2.4, where the posets
λ0, λ1, λ2, λ3 are sequential refinements, but the corresponding sequence of qk values
is not monotonic when k ≥ 2.

5 Strategy in the k = 2 case

We will now narrow our focus to the k = 2 setting. We develop a combinatorial
language for describing query strategies in response to Problem 1.1. We fix some
nonempty finite poset λ throughout this section.

Definition 5.1. Let r ∈ N, and u = (u1, . . . , ur) be a sequence of elements of λ. For
each t = 1, . . . , r, define the subset:

λ(t)
u := λ�ut\λ�{u1,...,ut−1} = {v ∈ λ | v � ut, v �� ui for all i = 1, . . . , t− 1}.

If λ�u = λ and λ
(t)
u �= ∅ for all t = 1, . . . , r, we call u a λ-strategy.

By definition, the sets λ
(1)
u , . . . , λ

(r)
u are mutually disjoint, so if u is a λ-strategy,

we have:

λ = λ(1)
u � · · · � λ(r)

u . (5.1)

5.1 The Q2-function

Definition 5.2. For a sequence of elements u = (u1, . . . , ur) in λ, we define:

Q2(λ,u) := max{|λ(t)
u |+ t− 1 | t = 1, . . . , r}.

We will primarily be concerned with the value of Q2(λ,u) when u is a λ-strategy.

Example 5.2. Let λ = �5, 7�, and define the λ-strategy

u = ((2, 6), (5, 2), (1, 5), (3, 3), (2, 1), (1, 4), (1, 1)).

Then we may visually represent u in as in Figure 5. The elements u1, . . . , u7 are
marked with circled numbers. For each i ∈ {1, . . . , 7}, λ(i)

u is the set of boxes in
the same colored region as the box marked i©. The cardinalities of these sets are
8, 4, 6, 4, 9, 1, 3 respectively, so we have

Q2(λ,u) = max{8 + 0, 4 + 1, 6 + 2, 4 + 3, 9 + 4, 1 + 5, 3 + 6} = 13.

We consider now some special choices of λ-strategies.

Lemma 5.3. For any nonempty finite poset λ, let u = (u1, . . . , u|λ|) be a linear
extension of the partial order on λ, i.e., an arrangement of the elements of λ such
that i < j whenever ui � uj. Then u is a λ-strategy and Q2(λ,u) = |λ|.
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1©

2©

3©

4©
5©

6©7©

Figure 5: The poset λ = �5, 7� with λ-strategy u.

Proof. By the condition on u we have |λ(t)
u | = 1 for all t, so u is a λ-strategy and

Q2(λ,u) = max{|λ(t)
u |+ t− 1 | t

= 1, . . . , |λ|} = max{1 + t− 1 | t = 1, . . . , |λ|} = |λ|,

as desired.

Lemma 5.4. Let λ be a nonempty finite poset, and assume there exists a λ-strategy
u = (u1) of length one. Then we have Q2(λ,u) = |λ|.

Proof. By the definition of λ-strategies u, we must have λ = λ�u = λ�u1 = λ
(1)
u .

Thus we have Q2(λ,u) = |λ(1)
u | = |λ|, as desired.

Remark 5.3. Note that {Q2(λ,u) | u a λ-strategy} is by definition a nonempty
subset of Z≥0, and thus possesses a unique minimum value, which by the above
lemmas is less than or equal to |λ|.

For sequences of elements v = (v1, . . . , vs) and w = (w1, . . . , wr) in λ, we will
write vw for the concatenation (v1, . . . , vs, w1, . . . , wr), or just v1w if v = (v1). For
u ∈ λ with λ�u �= λ, note that uw is a λ-strategy if and only if w is a λ ��u-strategy.

Lemma 5.5. Let λ be a nonempty poset. Let v = (v1, . . . , vs) be a sequence of
elements of λ, and w = (w1, . . . , wr) be a sequence of elements of λ ��v. Then, setting
u = vw, we have

Q2(λ,u) = max{Q2(λ, v),Q2(λ ��v,w) + s}.

Proof. Note that for t = 1, . . . , s, we have λ
(t)
u = λ

(t)
v , and for t = s+1, . . . , s+ r, we

have

λ(t)
u = λ�ut\λ�{u1,...,ut−1} = (λ ��{u1,...,us})�ut\(λ ��{u1,...,us})�{us+1,...,ut−1}

= (λ ��{v1,...,vs})�wt−s\(λ�{v1,...,vs})�{w1,...,wt−s−1} = (λ ��v)
(t−s)
w .
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Thus we have

Q2(λ,u) = max{|λ(t)
u |+ t− 1 | t = 1, . . . , s+ r}

= max{max{|λ(t)
u |+ t− 1 | t = 1, . . . , s},

max{|λ(t)
u |+ t− 1 | u = s+ 1, . . . , s+ r}}

= max{max{|λ(t)
v |+ t− 1 | t = 1, . . . , r},

max{|(λ ��v)
(t−s)
w |+ t− 1 | u = s + 1, . . . , s+ r}}

= max{Q2(λ, v),max{|(λ ��v)
(t)
w |+ t+ s− 1 | t = 1, . . . , r}}

= max{Q2(λ, v),max{|(λ ��v)
(t)
w |+ t− 1 | t = 1, . . . , r}+ s}

= max{Q2(λ, v),Q2(λ ��v,w) + s},

as desired.

5.2 Connecting Q2 and q2

Theorem 5.6. Let λ be a nonempty poset. We have

q2(λ) = min{Q2(λ,u) | u a λ-strategy}. (5.4)

Proof. We go by induction on |λ|. The base case |λ| = 1 follows immediately from
Lemma 5.4. Now assume |λ| > 1 and the claim holds for all |λ′| < |λ|. Note that
by Lemmas 5.3 and 5.4, it suffices to take the minimum on the right of (5.4) over
λ-strategies of length greater than one. Thus we have

min{Q2(λ,u) | u a λ-strategy}
= min{Q2(λ,u) | u a λ-strategy of length greater than one}
= min{Q2(λ, uw) | u ∈ λ, uw a λ-strategy}
= min{Q2(λ, uw) | u ∈ λ,w a λ ��u-strategy}
= min{max{Q2(λ, (u)),Q2(λ ��u,w) + 1} | u ∈ λ,w a λ ��u-strategy}
= min{max{|λ�u|,Q2(λ ��u,w) + 1} | u ∈ λ,w a λ ��u-strategy}
= min{max{|λ�u|+ 1,Q2(λ ��u,w) + 1} | u ∈ λ,w a λ ��u-strategy}
= min{max{q1(λ�u) + 1,Q2(λ ��u,w) + 1} | u ∈ λ,w a λ ��u-strategy}
= min{min{max{q1(λ�u) + 1,Q2(λ ��u,w) + 1} | w a λ ��u-strategy} | u ∈ λ}
= min{max{q1(λ�u) + 1,min{Q2(λ ��u,w) | w a λ ��u-strategy}+ 1} | u ∈ λ}
= min{max{q1(λ�u) + 1, q2(λ ��u) + 1} | u ∈ λ}
= min{max{q2(λ ��u), q1(λ�u)} | u ∈ λ}+ 1

= q2(λ).

The fourth equality above follows from Lemma 5.5, and the tenth equality follows
from the induction assumption. This completes the induction step, and the proof.
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5.3 Some examples

Combining Theorems 4.2 and 5.6 can be a useful method of computing q2(λ), as
shown in the examples below.

Example 5.5. Let λ = �5, 7�, and consider the λ-strategy:

u = ((4, 4), (2, 5), (1, 4), (1, 3), (4, 1), (1, 2), (2, 1), (1, 1)).

Then, as in Example 5.2, we visually represent u in Figure 6. This gives

1©

2©
3©4©

5©

6©
7©
8©

Figure 6: The poset λ = �5, 7� with λ-strategy u.

Q2(λ,u) = max{8 + 0, 6 + 1, 6 + 2, 5 + 3, 4 + 4, 3 + 5, 2 + 6, 1 + 7} = 8.

Thus by Theorem 5.6 we have q2(λ) ≤ 8. But by Theorem 4.2 we also have

q2(λ) ≥ τ2(|λ|) = τ2(35) = 8,

so q2(λ) = 8.

Example 5.6. Let λ = �6, 6�. As |λ| = 36, any λ-strategy u = (u1, . . . , ur) which

satisfies Q2(λ,u) = τ2(|λ|) = 8 must have r = 8 and |λ(t)
u | = 9− t for all t = 1, . . . , 8.

It is straightforward to check that no such λ-strategy exists, so by Theorems 4.2
and 5.6, we have q2(λ,u) > 8. Now consider the λ-strategy :

v = ((5, 3), (4, 2), (2, 4), (3, 1), (1, 4), (2, 1), (1, 2), (1, 1)).

We visually represent v in Figure 7. This gives Q2(λ, v) = 9, so it follows from
Theorem 5.6 that q2(λ) = 9.

5.4 Strategies for Problem 1.1 in the k = 2 case

We now relate these definitions and results back to Problem 1.1, in the case where
only two positive query results are permitted. Recall as in Section 2.3 that we have
the unknown ideal μ = ∅ or μ = λ�x for some x ∈ λ. The λ-strategy u = (u1, . . . , ur)
defines a search strategy for μ as follows.

We query the elements u1, u2, . . . in sequence, until we have a positive query. If all
the queries are negative, then, since λ�u = λ, we have that μ = ∅, and we are done
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1©
2©

3©
4©

5©
6©

7©8©

Figure 7: The poset λ = �6, 6� with λ-strategy v.

after r ≤ |λ(r)
u |+ r− 1 queries. Assume the query of ut is positive. Then the element

x is known to belong to λ�ut , and known to not belong to λ�{u1,...,ut−1}. Thus x may

be any of the elements in λ
(t)
u . With one positive query remaining, the elements in

λ
(t)
u \{ut} must be sequentially queried in any non-increasing order, as in the proof of

Proposition 2.2. Thus, when the ut query is positive, |λ(t)
u | + t− 1 total queries are

necessary to guarantee identification of μ.

Therefore, by Definition 5.2, the value Q2(λ,u) represents the maximum number
of queries necessary to identify μ via the search strategy defined by u. Thus, in view
of Theorem 5.6, we may reframe the k = 2 case of Problem 1.1 in this combinatorial
language:

Problem 1, k = 2. Find the value q2(λ), and identify a λ-strategy u such that
Q2(λ,u) = q2(λ).

6 Product posets of finite totally ordered sets

If u = (a, b) ∈ N
2, we define the transpose element uT := (b, a). We extend this

definition to sequences of elements u = (u1, . . . , ur) in N
2 and subsets S ⊂ N

2 by
setting:

uT := (uT
1 , . . . , u

T
r ), ST := {sT | s ∈ S}

The transpose map induces an isomorphism of posets �m,n� ∼= �n,m�, for all m,n ∈
N.

In this section it will be convenient to make use of a horizontally compressed
visual shorthand for sequences of elements v = (v1, . . . , vr) in λ = �m,n�. Using the
‘box array’ representation of �m,n�, we will label the element vi with i© as usual,

and then label every row in λ
(i)
v with the number of elements in that row. This visual

information is sufficient to describe exactly all elements vi in v, and the related sets
λ
(i)
u .

Example 6.1. Let λ = �3, 17�. If v = ((3, 9), (2, 13), (2, 6), (1, 15), (3, 2), (1, 4)),
then in Figure 8 we have the explicit visual representation of v (on the left) and the
compressed shorthand representation of v (on the right).
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1©
2©

4©
3©

5©

6©
↔

1©
2©

4©
3©

5©

6©

9

3

5

3

11

7

4

2

Figure 8: Compressed visual representation of the λ-strategy v.

Now we prove the second main theorem of this paper.

Theorem 6.1. Let λ = �m,n�, with m ≤ 6 or n ≤ 6. Then we have:

q2(λ) =

{
9 if m = n = 6;

τ2(mn) otherwise.

Moreover, Algorithm 6.2 below produces an explicit λ-strategy u such that Q2(λ,u) =
q2(λ).

Algorithm 6.2. We assume λ = �m,n�, with one of m,n less than or equal to 6.
This algorithm produces a λ-strategy u such that Q2(λ,u) = q2(λ).

(Step 0) Let u = () be the empty sequence. Go to (Step 1).

(Step 1) If the number of columns of λ is greater than the number of rows, then
redefine λ := λT , and set flip = 1. Otherwise set flip = 0. Redefine m,n if
necessary such that λ = �m,n�. Go to (Step m+ 1).

(Step 2, λ = �1, n�). Define t := τ2(n). Define v to be the one-element sequence in
λ depicted below. Go to (Step 8).

1©λ ��v t

(Step 3, λ = �2, n�). Define t := τ2(2n). Define v to be the element sequence in λ
depicted below which corresponds to the appropriate condition on t. Go to (Step 8).

1©λ ��v 1
2
t

1
2
t 1©

2©3©λ ��v
t

t− 1

1
2
(t− 3)
1
2
(t− 1)

t ≡ 0 (mod 2) t ≡ 1 (mod 2)

(Step 4, λ = �3, n�). Define t := τ2(3n). Define v to be the element sequence in λ
depicted below which corresponds to the appropriate condition on t. Go to (Step 8).

1©
λ ��v

n

1©
λ ��v

�1
3
t�

�1
3
t�

�1
3
t�

1©
2©

λ ��v

1
2
t

1
2
t

1
6
(t− 2)

1
6
(t− 2)

1
3
(2t− 1)

t = 5 t ≡ 0, 1 (mod 3) t ≡ 2 (mod 6)
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1©
2©

4©
3©

5©
λ ��v

t

t− 3

t− 1

1
2
(t− 3)

1
3
(2t− 1)

1
2
(t− 1)

1
6
(t− 11)

1
6
(t− 11)

11 ≤ t ≡ 5 (mod 6)

(Step 5, λ = �4, n�). Define t := τ2(4n). Define v to be the element sequence in λ
depicted below which corresponds to the appropriate condition on t. Go to (Step 8).

1©

λ ��v

n 1©
3©
5©

2©
4©

6©7©8©
λ ��v

114

5 10

65

87

4

t = 6, 7 t = 11

1©
λ ��v

�1
4
t�

�1
4
t�

�1
4
t�

�1
4
t� 1©

2©
3©

4©5©
λ ��v

1
4
(t− 10)
1
4
(t− 6)
1
4
(t− 2)
1
4
(t+ 2)

t

t− 1

t− 3

t− 2

t ≡ 0, 1 (mod 4) 10 ≤ t ≡ 2 (mod 4)

1©

4©
7©

6© 2©
3©

5©8©
λ ��v

t1
3
(t− 6)
1
3
(t− 3)

1
3
t

1
2
(t− 5)

1
2
(t− 5) t− 1

t− 4

t− 2
1
3
(2t− 6)

1
3
(t− 12)

1
3
(t− 3)

1
3
(t− 3)

1
6
(t− 15)

1
6
(t− 15)

t ≡ 3 (mod 12)

1©

5©
7©

6© 2©
3©

4©8© 1
3
(2t− 8)

λ ��v

t1
3
(t− 7)
1
3
(t− 4)
1
3
(t− 1)

1
2
(t− 5)

1
2
(t− 5) t− 1

t− 3

t− 21
3
(t− 10)

1
6
(t− 13)

1
6
(t− 13)

1
3
(t− 4)

1
3
(t− 4)

19 ≤ t ≡ 7 (mod 12)

1©
3©

5©
2©

4©
6©7©

λ ��v

t1
2
(t− 3)
1
2
(t− 1)

1
6
(t− 11)

1
6
(t− 11)

1
3
(2t− 1)

t− 1

t− 5

t− 3

1
12
(t− 23)

1
12
(t− 23)

1
12
(t− 23)

1
4
(3t− 1)

23 ≤ t ≡ 11 (mod 12)
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(Step 6, λ = �5, n�). Define t := τ2(5n). Define v to be the element sequence in λ
depicted below which corresponds to the appropriate condition on t. Go to (Step 8).

1©

λ ��v

n

5©

1©
2©

4©
3©

λ ��v

2

2

9

5

6

2

2

2

1

1

1

1

7

7

6

6 1©

λ ��v

�1
5
t�

�1
5
t�

�1
5
t�

�1
5
t�

�1
5
t�

t = 9 t = 14 t ≡ 0, 1, 2 (mod 5)

3©

1©

2©
λ ��v

1
10
(t− 3)

1
10
(t− 3)

1
10
(t− 3)

1
10
(t− 3)

1
5
(3t− 4)

1
2
(t− 1)

1
2
(t− 1)

1
2
(t− 1)

1
2
(t− 1)

3©

1©

2©
λ ��v

1
10
(t− 8)

1
10
(t− 8)
1
10
(t+ 2)

1
10
(t+ 2)

1
5
(3t− 4)

1
2
t

1
2
t

1
2
(t− 2)

1
2
(t− 2)

t ≡ 3 (mod 10) t ≡ 8 (mod 10)

1©

7©
6©

4©

2©
3©

5©8©9©

λ ��v

t1
2
(t− 6)
1
2
(t− 4)

1
6
(t− 10)

1
6
(t− 10)

1
3
(2t− 8)

1
15
(2t− 38)

1
15
(2t− 38)

1
15
(2t− 38)

1
10
(3t− 2)

1
10
(3t− 2)

t− 1

t− 4

1
2
(t− 8)
1
2
(t− 6)

t− 3

t− 2

34 ≤ t ≡ 4 (mod 30)

1©

6©
5©

7©

2©
3©

4©8©9©

λ ��v

t1
2
(t− 5)
1
2
(t− 3)

1
6
(t− 9)

1
6
(t− 9)

1
3
(2t− 6)

1
15
(2t− 48)

1
15
(2t− 48)

1
15
(2t− 48)
1
10
(3t+ 3)
1
10
(3t+ 13)

t− 1

1
2
(t− 3)

t− 6

t− 7

1
2
(t− 3)

t− 2

39 ≤ t ≡ 9 (mod 30)

1©

5©
4©

6©

2©
3©

7©8©9©

λ ��v

t1
2
(t− 4)
1
2
(t− 2)

1
6
(t− 8)

1
6
(t− 8)

1
3
(2t− 4)

1
15
(2t− 58)

1
15
(2t− 58)

1
15
(2t− 58)

1
10
(3t+ 18)

1
10
(3t+ 18)

t− 1

t− 6

1
2
(t− 8)
1
2
(t− 6)

t− 5

t− 2

44 ≤ t ≡ 14 (mod 30)
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1©

8©

5©

4©

2©
3©

6©7©9©

λ ��v

t1
2
(t− 5)
1
2
(t− 3)

1
6
(t− 19)

1
6
(t− 19)

1
3
(t− 1)

1
3
(t− 1)

1
15
(2t− 23)

1
15
(2t− 23)

1
15
(2t− 23)

1
15
(2t− 23)

1
15
(7t− 28)

t− 1

t− 5

1
3
(t− 10)
1
3
(t− 7)

1
3
(t− 1)

t− 3

t− 2

t ≡ 19 (mod 30)

1©

7© 4©
5©

2©
3©

6©8©9©

λ ��v

t1
3
(t− 6)
1
3
(t− 3)

1
3
t

1
3
(t− 6)

1
3
(t− 6)
1
3
(t−6)

1
15
(2t− 48)

1
15
(2t− 48)

1
15
(2t− 48)

1
10
(3t+ 8)

1
10
(3t+ 8)

t− 1

t− 5

1
2
(t− 8)
1
2
(t− 6)

t− 4

t− 2

t ≡ 24 (mod 30)

1©

7©
5©

4©

2©
3©

6©8©9©

λ ��v

t1
2
(t− 5)
1
2
(t− 3)

1
6
(t− 11)

1
6
(t− 11)

1
3
(2t− 7)

1
15
(2t− 43)

1
15
(2t− 43)

1
15
(2t− 43)

1
10
(3t+ 3)

1
10
(3t+ 3)

t− 1

t− 5

1
2
(t− 9)
1
2
(t− 5)

t− 3

t− 2

t ≡ 29 (mod 30)

(Step 7, λ = �6, n�). Define t := τ2(6n). Define v to be the element sequence in λ
depicted below which corresponds to the appropriate conditions on n and t. Go to
(Step 8).

1©
2©

3©
4©

5©
6©

7©8©

1©

λ ��v

n

1©

λ ��v

�1
6
t�

�1
6
t�

�1
6
t�

�1
6
t�

�1
6
t�

�1
6
t�

1©

2©

λ ��v

1
3
(t−1)

1
3
(t− 1)

1
3
(t− 1)

1
3
(t−1)

1
3
(t− 1)

1
3
(t− 1)

n = 6 7 ≤ n ≤ 11 n∈{16,17,18,19,23,24}, 16 ≤ t ≡ 4 (mod 6)
or t ≡ 0, 1 (mod 6)
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1©
2©

3©
4©

5©

6©

7©

8©
9©

10©

11©
12©

13©14©15©
n = 20

1©
2©

3©
4©

5©
6©7©

λ ��v

1
3
t

1
3
t

1
3
t

1
2
(t− 1)

1
2
(t− 1)

1
6
(t− 3)

1
6
(t− 3)

1
3
(2t− 3)

t− 3

t− 4

t− 5

1
6
(t− 15)

1
6
(t− 15)

1
6
(t− 15)

1
6
(t− 3)
1
6
(t+ 3)
1
6
(t+ 9)

21 ≤ t ≡ 3 (mod 6)

1©
2©

3©
4©

6©
7©

5©

8©

λ ��v

t

t− 1

t− 2

t− 3

t− 5

t− 6

1
4
(t− 10)
1
4
(t− 6)
1
4
(t− 2)
1
4
(t+ 2)

1
12
(t− 26)

1
12
(t− 26)

1
12
(t− 26)

1
12
(t− 26)

1
3
(t+ 1)
1
3
(t+ 4)

26 ≤ t ≡ 2 (mod 12)

1©
2©

3©

4©
5©6©

7©

8©

λ ��v

t

t− 1

t− 2
1
2
(t− 3)

1
2
(t− 3)

1
6
(t− 5)

1
6
(t− 5)

1
3
(2t− 7)

1
3
(t− 5)

1
3
(t− 5)
1
3
(t−5)

1
4
(t− 13)
1
4
(t− 9)
1
4
(t− 5)
1
4
(t+ 3)

1
12
(t− 17)

1
12
(t− 17)

1
12
(t− 17)

1
12
(t− 17)

1
3
(t− 2)

1
3
(t− 2)

17 ≤ t ≡ 5 (mod 12) , n ≥ 25

1©
2©

3©
4©

5©
6©

7©

8©

λ ��v

t

t− 1

t− 2

t− 3

t− 4

t− 5

1
4
(t− 12)
1
4
(t− 8)
1
4
(t− 4)

1
4
t

1
12
(t− 20)

1
12
(t− 20)

1
12
(t− 20)

1
12
(t− 20)

1
3
(t− 2)
1
3
(t+ 1)

20 ≤ t ≡ 8 (mod 12)
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1©
2©

3©
4©

5©
7©

6©

8©

λ ��v

t

t− 1

t− 2

t− 3

t− 4

t− 6

1
4
(t− 11)
1
4
(t− 7)
1
4
(t− 3)
1
4
(t+ 1)

1
12
(t− 23)

1
12
(t− 23)

1
12
(t− 23)

1
12
(t− 23)

1
3
(t− 2)
1
3
(t+ 4)

23 ≤ t ≡ 11 (mod 12)

(Step 8) Set λ′ = λ ��v. If flip = 1, set v := vT and λ′ := (λ′)T . Redefine u to be
the concatenation uv. Go to (Step 9).

(Step 9) If λ′ = ∅, END and return u. Otherwise, redefine λ := λ′ and go to
(Step 1).

Proof. First, one must check that the algorithm is well-defined; this entails verifying
that the diagrams depicted in (Steps 2–7) describe a valid element sequence v (in
particular, that the row labels are non-negative integers), and rests on the modular
conditions for t below each diagram. This is a straightforward exercise, and is left
to the reader.

To begin, we consider the case λ = �6, 6�. As discussed in Example 5.6, an
exhaustive check shows that Q2(λ,w) > 8 for all λ-strategies w, so q2(λ) > 8. The
λ-strategy defined in (Step 7) of the algorithm yields 8 < q2(λ) ≤ Q2(λ,u) = 9, so
we have q2(λ) = Q2(λ,u) = 9, as desired.

With that special case out of the way, we now prove, for all other diagrams
under consideration, that Algorithm 6.2 produces a λ-strategy u such that q2(λ) =
Q2(λ,u) = τ2(|λ|). We go by induction on |λ|. The base case λ = �1, 1� is clear, as
the algorithm produces u = ((1, 1)), and so Q2(λ,u) = q2(λ) = 1.

Now let λ = �m,n�, where m ≤ 6 or n ≤ 6, and m,n are not both 6. Make the
induction assumption that, if ν satisfies these conditions as well, with |ν| < |λ|, then
Algorithm 6.2 produces a ν-strategy w such that q2(ν) = Q2(ν,w) = τ2(|ν|).

Via the transpose operations in (Steps 1,8), it is enough to consider only the
‘horizontally-oriented’ situation m ≤ n, so we make that additional assumption now.
We insert λ = �m,n� into Algorithm 6.2, letting t = τ2(|λ|) = τ2(mn), and letting
the element sequence v = (v1, . . . , vs) be as it stands at the end of (Step 8) in the
first loop of the algorithm. We begin by arguing that λ, v satisfy the following three
conditions:

(C1) Q2(λ, v) ≤ t.

(C2) |λ�v|+ T2(t)− |λ| ≥ st− T2(s− 1)

(C3) λ ��v �= �6, 6�.
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First we check that (C1) is satisfied by considering every diagram in (Steps 2–7),
save for the �6, 6� diagram. The homogeneously-colored component of the diagram

marked with the element i© in the southwest corner is exactly the set λ
(i)
v . By adding

up the elements in each row of λ
(i)
v , it is straightforward to check that in all cases,

we have |λ(i)
v | ≤ t− i+ 1. Then we have:

Q2(λ, v) = max{|λ(i)
v |+ i− 1 | i = 1, . . . , s}

≤ max{(t− i+ 1) + i− 1 | i = 1, . . . , s} = t.

Now we check that λ, v satisfy (C2) by considering every diagram in (Steps 2–7),
save for the �6, 6� diagram. We do so in the separate Cases 1–7 below.

(Case 1) Consider the small cases of the form:

• m = 3, n ∈ {4, 5} (and so t = 5)

• m = 4, n ∈ {4, . . . , 7} (and so t ∈ {6, 7})
• m = 5, n ∈ {6, 7} (and so t = 8)

• m = 6, n ∈ {7, . . . , 11} (and so t ∈ {9, . . . , 11})

In all these cases, we have s = 1, and |λ�v| = n. It is easily checked on a case-by-case
basis that T2(t)− |λ| = T2(t)−mn ≥ t− n, so we have

|λ�v|+ T2(t)− |λ| ≥ n+ (t− n) = t = t− T2(0),

satisfying (C2).

(Case 2) Consider the small cases of the form:

• m = 6, n ∈ {16, 17, 18, 19, 23, 24} (and so t ∈ {14, 15, 17})

In all these cases, we have s = 1, and |λ≥v| = 6 · � t
6
� = 12. It is easily checked on a

case-by-case basis that 12 + T2(t)− 6n ≥ t, so we have

|λ�v|+ T2(t)− |λ| = 12 + T2(t)− 6n ≥ t = t− T2(0),

satisfying (C2).

(Case 3) Consider the case λ = �m,n�, where 3 ≤ m ≤ 6, and t ≡ 1 (mod m) ,
as in (Steps 4,5,6,7). Then s = 1, and T2(t) �≡ 0 (mod m) by Lemma 3.11. We also
have |λ| ≡ 0 (mod m) , so T2(t)− |λ| ≥ 1 follows by Lemma 3.8. Therefore

|λ�v|+ T2(t)− |λ| ≥ |λ�v|+ 1 = m

⌊
t

m

⌋
+ 1 = m · t− 1

m
+ 1 = t = t− T2(0),

satisfying (C2).
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(Case 4) Consider the case λ = �5, n� and t ≡ 2 (mod 5) , as in (Step 6). Then s =
1, and T2(t) ≡ T2(2) ≡ 3 (mod 5) by Lemma 3.11. We also have |λ| ≡ 0 (mod 5) ,
so T2(t)− |λ| ≥ 3 follows by Lemma 3.8. Therefore

|λ�v|+ T2(t)− |λ| ≥ |λ�v|+ 3 = 5

⌊
t

5

⌋
+ 3 = 5 · t− 2

5
+ 3 = t+ 1 > t = t− T2(0),

satisfying (C2).

(Case 5) Consider the case λ = �5, n� and t ≡ 3 (mod 5) . Then we have t ≡
3 (mod 10) or t ≡ 8 (mod 10) as in (Step 6). Then in either case s = 3, and
T2(t) ≡ T2(3) ≡ 1 (mod 5) by Lemma 3.11. We also have |λ| ≡ 0 (mod 5) , so
T2(t)− |λ| ≥ 1 follows by Lemma 3.8. Therefore

|λ�v|+ T2(t)− |λ| ≥ |λ�v|+ 1 = (3t− 4) + 1 = 3t− 3 = 3t− T2(2),

satisfying (C2).

(Case 6) Consider the case λ = �6, n� and 16 ≤ t ≡ 4 (mod 6) , as in (Step 7).
Then s = 2, and T2(t) �≡ 0 (mod 6) by Lemma 3.11. We also have |λ| ≡ 0 (mod 6) ,
so T2(t)− |λ| ≥ 1 follows by Lemma 3.8. Therefore

|λ�v|+ T2(t)− |λ| ≥ |λ�v|+ 1 = (2t− 2) + 1 = 2t− 1 = 2t− T2(1),

satisfying (C2).

(Case 7) Now we may consider the remaining cases in one fell swoop. In all

remaining cases, it may be checked that v is defined such that |λ(i)
v | = t− i + 1 for

t = 1, . . . , s, and thus |λ�v| = st− T2(s− 1). Therefore we have

|λ�v|+ T2(t)− |λ| ≥ |λ�v| = st− T2(s− 1),

satisfying (C2).

Now we check that λ, v satisfy (C3). The case λ = �m,n� for m < 6 is obvious.
Thus we may assume that λ = �6, n�. As with the last claim, we check (C3) in the
separate Cases 1–10 below.

(Case 1) If 7 ≤ n ≤ 11, then λ ��v is a 5-row diagram, so is not equal to �6, 6�.

(Case 2) If 12 ≤ n ≤ 15, then t ∈ {12, 13}, so t ≡ 0, 1 (mod 6) . Then � t
6
� = 2,

and we have |λ ��v| = |λ| − 6 · ⌊ t
6

⌋ ≥ 12 · 6− 12 = 60, so λ ��v �= �6, 6�.

(Case 3) If n ∈ {16, 17, 18, 19, 23, 24}, then t ∈ {14, 15, 17}, so � t
6
� = 2, and we

have |λ ��v| = |λ| − 6 · ⌊ t
6

⌋ ≥ 16 · 6− 12 = 84, so λ ��v �= �6, 6�.

(Case 4) If n = 20, then λ ��v = ∅ �= �6, 6�.

(Case 5) If n ∈ {21, 22}, then t = 16. Then |λ ��v| = |λ|− (2t−2) ≥ (21 ·6)−30 =
96, so λ ��v �= �6, 6�.

(Case 6) If n = 25, then t = 17. Then |λ ��v| = |λ| − (8t− 28) = (25 · 6)− (8 · 17−
28) = 42, so λ ��v �= �6, 6�.

In the remaining cases, we assume that n ≥ 26. Then we have t ≥ 18. Note that
by the definition of t = τ2(|λ|), we have |λ| > T2(t− 1).
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(Case 7) If t ≡ 0, 1 (mod 6) , then

|λ ��v| = |λ| − 6

⌊
t

6

⌋
> T2(t− 1)− t = T2(t− 1)− (t− 1)− 1

= T2(t− 2)− 1 ≥ T2(16)− 1 = 135,

so λ ��v �= �6, 6�.

(Case 8) Say t ≡ 4 (mod 6) . Then

|λ ��v| = |λ| − (2t− 2) > T2(t− 1)− (2t− 2)

= T2(t− 1)− (t− 1)− (t− 2)− 1 = T2(t− 3)− 1 ≥ T2(15)− 1 = 119,

so λ ��v �= �6, 6�.

(Case 9) Say t ≡ 3 (mod 6) . Then

|λ ��v| = |λ| − (7t− 21) > T2(t− 1)− (t− 1)− · · · − (t− 7)− 7

= T2(t− 8)− 7 ≥ T2(10)− 7 = 48,

so λ ��v �= �6, 6�.

(Case 10) Say t ≡ 2, 5 (mod 6) . Then

|λ ��v| = |λ| − (8t− 28) > T2(t− 1)− (t− 1)− · · · − (t− 8)− 8

= T2(t− 9)− 8 ≥ T2(9)− 8 = 37,

so λ ��v �= �6, 6�.

Thus, in every case we have λ ��v �= �6, 6�, and so (C3) holds.

Therefore (C1), (C2), (C3) hold for λ, v. By (C2), we have

|λ ��v| = |λ| − |λ�v| ≤ T2(τ2(|λ|))− sτ2(|λ|) + T2(s− 1),

so by Lemmas 3.5 and 3.10 we have

τ2(|λ ��v|) ≤ τ2(T2(τ2(|λ|))− sτ2(|λ|) + T2(s− 1)) ≤ τ2(|λ|)− s. (6.3)

By (C3), the induction assumption holds for λ ��v, so inserting λ ��v into the algorithm
yields a λ ��v-strategy w such that Q2(λ ��v,w) = q2(λ ��v) = τ2(|λ ��v|). By the in-
ductive nature of the algorithm, inserting λ into the algorithm yields the λ-strategy
u = vw. Then we have

Q2(λ,u) = max{Q2(λ, v),Q2(λ ��v,w) + s} by Lemma 5.5

≤ max{τ2(|λ|),Q2(λ ��v,w) + s} by (C1)

= max{τ2(|λ|), τ2(|λ ��v|) + s} by induction assumption

≤ max{τ2(|λ|), (τ2(|λ|)− s) + s} by (6.3)

= τ2(|λ|).
Then, by Theorems 4.2 and 5.6, we have

τ2(|λ|) ≤ q2(λ) ≤ Q2(λ,u) ≤ τ2(|λ|),
so we have q2(λ) = Q2(λ,u) = τ2(|λ|) as desired, completing the proof.
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As κ × ν ∼= �m,n� when κ, ν are totally ordered sets of cardinality m,n respec-
tively, we have the immediate corollary thanks to Lemma 4.1:

Corollary 6.2. Let κ, ν be finite totally ordered sets, with |κ| ≤ 6 or |ν| ≤ 6. Then

q2(κ× ν) =

{
9 if |κ| = |ν| = 6;

τ2(|κ||ν|) otherwise.

6.1 A conjecture

We end with a conjectural bound for product posets of totally ordered sets.

Conjecture 6.3. Let m,n ∈ N. Then q2(�m,n�) ≤ τ2(mn) + 1.

This suggests q2(�m,n�) ∈ {τ2(mn), τ2(mn) + 1} for all m,n ∈ N. By Theo-
rem 6.1, the posets �m,n� obey this claim when m ≤ 6 or n ≤ 6. In fact, all but
�6, 6� have the minimal possible value q2(�m,n�) = τ2(mn) allowed by Theorem 4.2.
Moving beyond these results, computations show that exceptional cases like �6, 6�,
where no λ-strategy u can be found that realizes Q2(λ,u) = τ2(|λ|), seem to occur
fairly rarely (the poset �15, 20� is another). But allowing for a λ-strategy that real-
izes Q2(λ,u) = τ2(|λ|) + 1 instead seems to afford so much flexibility that we expect
such a λ-strategy can always be found, even in these exceptional cases. For instance,
while there are no �6, 6�-strategies that realize Q2(�6, 6�,u) = 8, there are 53,688
distinct �6, 6�-strategies which realize Q2(�6, 6�,u) = 9. This is the authors’ line of
reasoning behind positing Conjecture 6.3.
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