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Abstract

In this paper, we prove the existence of a 4p-cycle decomposition of the
graph Km ×Kn and a directed 4p-cycle decomposition of the symmetric
digraph (Km◦Kn)

∗, where ◦ and × denote the wreath product and tensor
product of graphs, respectively, and p is an odd prime. It is proved that,
for integers m ≥ 3 and n ≥ 3, the obvious necessary conditions for the
existence of a 4p-cycle decomposition of Km ×Kn are sufficient, where p
is an odd prime. Also, it is shown that the necessary conditions for the
existence of a directed 4p-cycle decomposition of the symmetric digraph
(Km ◦Kn)

∗ are sufficient, where p is an odd prime. Recently, the same
type of results are obtained for 2p; see [S. Ganesamurthy and P. Paulraja,
Discrete Math. 341 (2018), 2197–2210].
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1 Introduction

All graphs (respectively, digraphs) considered here are loopless and finite. Let Ck

(respectively,
→
Ck) and Pk (respectively,

→
P k) denote a cycle (respectively, directed

cycle) and a path (respectively, directed path) on k vertices. For a graph G, G(λ)
denotes the multigraph obtained from G by replacing each edge of G by λ edges.
The complete graph on n vertices is denoted by Kn and its complement is denoted
by Kn. For an integer k ≥ 2, kH denotes k vertex disjoint copies of H . For a graph
G, G∗ denotes the symmetric digraph of G and it is obtained from G by replacing
every edge by a symmetric pair of arcs. If H1, H2, . . . , H� are edge-disjoint subgraphs
of a graph G such that E(G) = E(H1) ∪ E(H2) ∪ · · · ∪ E(H�), then we say that
H1, H2, . . . , H� decompose G and we write this as G = H1 ⊕ H2 ⊕ · · · ⊕ H�, where
⊕ denotes the edge disjoint union of graphs. If each Hi � H, 1 ≤ i ≤ �, then we

say that H decomposes G and we denote this by H |G. Similarly, if
−→
H 1,

−→
H 2, . . . ,

−→
H �

are arc-disjoint subdigraphs of a digraph
−→
D such that A(

−→
D) = A(

−→
H 1) ∪ A(

−→
H 2) ∪

· · · ∪ A(
−→
H �), then we say that

−→
H 1,

−→
H 2, . . . ,

−→
H � decompose

−→
D and we write this as−→

D =
−→
H 1⊕−→

H 2⊕· · ·⊕−→
H �. If each

−→
H i � −→

H, 1 ≤ i ≤ �, then we say that
−→
H decomposes−→

D and we denote this by
−→
H | −→D . If Hi � Ck (respectively,

−→
H i �

→
Ck), 1 ≤ i ≤ �

and k ≥ 3, then we write Ck |G (respectively,
→
Ck | −→D) and in this case we say that

G (respectively,
−→
D) has a Ck-decomposition (respectively,

→
Ck-decomposition) or a k-

cycle decomposition (respectively, directed k-cycle decomposition). A Ck-factor of a
graph G is a spanning subgraph H of G such that each component of H is a k-cycle.
A partition of the edge set of G into Ck-factors is called a Ck-factorization of G, that
is, a 2-factorization in which each of its factors contains only cycles of length k as its
components. A k-regular graph G is said to be Hamilton cycle decomposable if its
edge set can be partitioned into Hamilton cycles or Hamilton cycles plus a perfect
matching if k is even or odd, respectively.

For two graphs (respectively, digraphs) G and H , their tensor product , denoted
by G × H , is the graph with vertex set V (G) × V (H) in which (g1, h1)(g2, h2) is
an edge (respectively, arc) whenever g1g2 is an edge (respectively, arc) in G and
h1h2 is an edge (respectively, arc) in H . Similarly, the wreath product of graphs
(respectively, digraphs) G and H , denoted by G ◦ H , is the graph with vertex set
V (G)× V (H) in which (g1, h1)(g2, h2) is an edge (respectively, arc) whenever g1g2 is
an edge (respectively, arc) in G or, g1 = g2 and h1h2 is an edge (respectively, arc) in
H ; see Figure 1. It can be easily seen that Km ◦Kn is the complete m-partite graph
in which each partite set has n vertices. Moreover, Km ◦Kn− E(nKm) ∼= Km×Kn.
The complete multipartite graph with partite sets having sizes m1, m2, . . . , mk is
denoted by Km1,m2,...,mk

. It is well-known that the tensor product is commutative
and distributive over edge-disjoint union of graphs, that is, if G = H1⊕H2⊕· · ·⊕Hk,
then G×H = (H1 ×H)⊕ (H2 ×H)⊕ · · · ⊕ (Hk ×H). If G and H are two graphs
with vertex sets {x0, x1, . . . , xr} and {y0, y1, . . . , ys}, respectively, then V (G×H) =
V (G) × V (H) = {(xi, yj) | 0 ≤ i ≤ r and 0 ≤ j ≤ s}. For xi ∈ V (G) we define
Xi = xi × V (H) = {(xi, y0), (xi, y1), . . . , (xi, ys)} and we call this set of vertices
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the ith row of G × H . Similarly, for yj ∈ V (H) we define Yj = V (G) × yj =
{(x0, yj), (x1, yj), . . . , (xr, yj)} and we call this set of vertices the jth column of G×H .
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Figure 1: The graphs C4 ×K4 and C4 ◦K4.

Let G be a bipartite graph with bipartition (X, Y ), where X = {x0, x1, . . . , xr−1},
Y = {y0, y1, . . . , yr−1}. For some i, 1 ≤ i ≤ r − 1, if G contains the set of edges
Fi(X, Y ) = {xjyi+j | 0 ≤ j ≤ r− 1}, where addition in the subscript is taken modulo
r, then we say that G has the 1-factor of jump i from X to Y and each edge of
Fi(X, Y ) is called an edge of jump i from X to Y . Note that Fi(Y,X) = Fr−i(X, Y ),
0 ≤ i ≤ r − 1. Clearly, if G = Kr,r, then E(G) =

⋃r−1
i=0 Fi(X, Y ). Definitions which

are not given here can be found in [6].

The problem of decomposing regular graphs into cycles is not new. The obvious
necessary conditions for the existence of an m-cycle decomposition of Kn (respec-
tively, Kn − I, where I is a perfect matching) when n is odd (respectively, even) are
proved to be sufficient; see [2, 14, 28]. In 2003, Buratti [10] obtained a short proof
for the existence of an odd cycle decomposition of Kn. Recently, Bryant et al. have
proved that the complete graph Kn (respectively, Kn−I, where I is a perfect match-
ing) can be decomposed into cycles of lengths m1, m2, . . . , mk, where

∑k
i=1mi =

(
n
2

)

(respectively,
∑k

i=1mi =
(
n
2

)− n
2
) and n is odd (respectively, even); see [9].

Necessary and sufficient conditions for the existence of a k-cycle decomposition
of Km ◦Kn, k ∈ {mn, p, 2p, 3p, p2}, are given in [7, 17, 20, 21, 23, 29, 30, 31], where
p is a prime. The existence of an even cycle decomposition of (Km ◦Kn)(λ) has been
proved by Muthusamy and Shanmuga Vadivu; see [26]. Very recently, regardless
of the parity of k, the authors of [11] actually solved the existence problem for a
Ck-decomposition of (Km ◦Kn)(λ) whose cycle-set can be partitioned into 2-regular
graphs containing all the vertices except those belonging to one part.
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The graph Km ×Kn is a proper spanning regular subgraph of Km ◦Kn (in fact,
Km×Kn

∼= (Km ◦Kn)−E(nKm)); the existence of a k-cycle decomposition of Km×
Kn is not a straightforward consequence of the existence of a k-cycle decomposition of
Km ◦Kn. Assaf [4] proved that C3 | (Km×Kn)(λ) whenever the necessary conditions
are sufficient. Manikandan and Paulraja proved that the necessary conditions for
the existence of a Cp-decomposition of Km ×Kn are also sufficient whenever p ≥ 5
is prime; see [20, 21, 23]. Further, in [13], Ganesamurthy and Paulraja proved that
the necessary conditions are sufficient for the existence of a Ck-decomposition of
Km ×Kn, where k ∈ {2�, 2p}, � ≥ 2 and p ≥ 3 is a prime. Recently, Manikandan et
al. [24] proved the existence of a p2-cycle decomposition of Km ×Kn whenever the
necessary conditions are satisfied. Balakrishnan et al. [5] obtained a Hamilton cycle
decomposition of Km ×Kn.

Directed k-cycle decompositions of (Kn(λ))
∗ are studied in [3, 32]. Furthermore,

directed p-cycle and 2p-cycle decompositions of (Km ◦Kn)
∗ are obtained in [13, 22].

Besides other results, we prove the following theorems.

Theorem 1.1. If the integers m and n are at least 3 and p ≥ 3 is prime, then
C4p |Km ×Kn if and only if either m or n is odd, 4p ≤ mn and

(
m
2

)(
n
2

) ≡ 0 (mod
2p).

Theorem 1.2. If the integers m and n are at least 3 and p ≥ 3 is prime, then
→
C4p | (Km ◦Kn)

∗ if and only if 4p ≤ mn and m(m− 1)n2 ≡ 0 (mod 4p).

2 Some known theorems and lemmas

We quote the following theorems for our future reference.

Theorem 2.1. [2] For odd integers 3 ≤ k ≤ m, Ck |Km if and only if m(m− 1) ≡
0 (mod 2k).

Theorem 2.2. [34] For positive integers k, m and λ, Pk+1 |Km(λ) if and only if
2 ≤ k + 1 ≤ m and λm(m− 1) ≡ 0 (mod 2k).

Theorem 2.3. [33] For positive integers m, n and k, Ck |Km,n if and only if m, n
and k are all even with k

2
≤ m, k

2
≤ n and k |mn.

Theorem 2.4. [19] Let m ≥ 3 be an odd integer and let k ≥ 4 be an even integer.
Then Ck | (Km,m − I) if and only if k ≤ 2m and k |m(m − 1), where I is a perfect
matching of Km,m.

Theorem 2.5. [25] If n |m, then Ck×Km admits a Ckn-factorization except possibly
when k is an odd integer and m ≡ 2 (mod 4).

Theorem 2.6. [5] For m, n ≥ 3, the graph Km×Kn is Hamilton cycle decomposable.

Theorem 2.7. [15] Let m ≥ 3 be an odd integer and let n ≥ 3 be an integer. Then
Cm × Cn is Hamilton cycle decomposable.
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Theorem 2.8. [16] For k ≥ 3 and n ≥ 2, the graph Ck ◦ Kn is Hamilton cycle
decomposable.

Theorem 2.9. [3] For positive integers k and n, with 2 ≤ k ≤ n,
→
Ck |K∗

n if and
only if n(n− 1) ≡ 0 (mod k) and (k, n) �= (3, 6), (4, 4), (6, 6).

Theorem 2.10. [27] For positive integers m ≥ 2 and n, (Km ◦ Kn)
∗ is directed

Hamilton cycle decomposable except when (m,n) = (4, 1) or (6, 1).

Theorem 2.11. [12] Let λ, m, n be positive integers with m, n ≥ 3, and p ≥ 2
prime. Then C4p |Km(λ) ◦Kn if and only if (1) mn ≥ 4p, (2) λ(m − 1)n is even,
and (3) 4p | λ(m

2

)
n2.

Lemma 2.12. [13] If Pk+1 |Kn, then C2k |Km × Kn when k ≥ 3 and for all odd
integers m ≥ 3.

Lemma 2.13. [13] Let k ≥ 2, m ≥ 5 and m ≡ 1 (mod 4). If Pk+1 |Kn, then
C4k |Km ×Kn.

Lemma 2.14. [13] If k ≥ 2, then C4k |Pk+1 ×K4,4.

3 Building blocks

In this section we prove some lemmas which are used in the proof of the main
Theorem 1.1.

Lemma 3.1. If m ≥ 2 is an integer and n, k ≥ 3 are odd integers with n ≡ 1 (mod
4k), then C4k |Km ×Kn.

Proof. Clearly, Km×Kn = (K2×Kn)⊕· · ·⊕(K2×Kn). The graphK2×Kn
∼= Kn, n−I,

where I is a perfect matching of Kn,n. Since n ≡ 1 (mod 4k), 4k |n(n−1) and hence
C4k |Kn,n − I, by Theorem 2.4. Thus C4k |Km ×Kn.

Lemma 3.2. If k ≥ 3 is an odd integer, then C4k |K5 × Ck.

Proof. Let V (K5) = {v, w, x, y, z} and Ck = (a1, a2, . . . , ak). Then V (G) = {(v, a1),
(v, a2), . . . , (v, ak)} ∪ {(w, a1), (w, a2), . . . , (w, ak)} ∪ {(x, a1), (x, a2), . . . , (x, ak)} ∪
{(y, a1), (y, a2), . . . , (y, ak)} ∪ {(z, a1), (z, a2), . . . , (z, ak)}. For our convenience, we
denote (v, ai), (w, ai), (x, ai), (y, ai) and (z, ai) by vi, wi, xi, yi and zi, respectively.
Now we construct a base cycle C of length 4k in K5 × Ck as follows; see Figure 2.
Let C = (v1, w2, v3, w4, v5, . . . , wk−1, vk, x1, z2, x3, . . . , zk−1, xk, w1, v2, w3, . . . , vk−1,
wk, z1, x2, z3, . . . , xk−1, zk).

Consider the permutation ρ = Z1 Z2 . . . Zk, where Zi = (vi wi xi yi zi), 1 ≤ i ≤ k,
on the set V (K5 × Ck). Then {C, ρ(C), ρ2(C), ρ3(C), ρ4(C)} is a C4k-decomposition
of K5 × Ck. This completes the proof.
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Figure 2: A base cycle C of K5 × C7 for a C28-decomposition of K5 × C7 is shown above.

Lemma 3.3. Let k and m be odd integers with 3 ≤ k ≤ m. If Ck |Km, then
C4k |K4, 4 ×Km.

Proof. As Ck |Km, K4,4×Km = K4,4×Ck⊕· · ·⊕K4,4×Ck = C4×Ck⊕· · ·⊕C4×Ck,
since C4 |K4,4, by Theorem 2.3. The graph C4 ×Ck admits a C4k-decomposition, by
Theorem 2.7. Thus C4k |K4,4 ×Km.

Lemma 3.4. Let k ≥ 3 be an odd integer, n be an integer with k ≤ n and k | (n
2

)
. If

m ≥ 5 and m ≡ 1 (mod 4), then C4k |Km ×Kn.

Proof. Let m = 4t+ 1, t ≥ 1.

Case 1. n is odd.
Since n is odd and k | (n

2

)
, Kn = Ck⊕· · ·⊕Ck, by Theorem 2.1. If t = 1, C4k |K5×Kn,

by Lemma 3.2, because K5×Kn = K5×Ck ⊕· · ·⊕K5×Ck. For all t ≥ 2, the edges
of K4t+1 can be decomposed into t copies of K5 which each share a common vertex
and

(
t
2

)
-copies of K4,4; see Figure 3.
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Figure 3: K4t+1 = K5 ⊕K5 ⊕ · · · ⊕K5 ⊕K4, 4 ⊕K4, 4 ⊕ · · · ⊕K4, 4. A copy of K4 and ∞ induce
a K5 and the edges between any two K4’s yield a K4,4.

Thus, for all t ≥ 2, we have

Km ×Kn = (K5 ⊕ · · · ⊕K5 ⊕K4,4 ⊕ · · · ⊕K4,4)×Kn

= (K5 ×Kn ⊕ · · · ⊕K5 ×Kn)⊕ (K4,4 ×Kn ⊕ · · · ⊕K4,4 ×Kn).
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The graphs K5 × Kn and K4,4 × Kn admit C4k-decompositions, by the above
argument and Lemma 3.3, respectively. This completes the proof of this case.

Case 2. n is even.
Since k | (n

2

)
, 2k |n(n−1). As n is even and k is odd with k < n, it easily follows that

k + 1 ≤ n. Thus Pk+1 |Kn, by Theorem 2.2. Hence, by Lemma 2.13, C4k |Km ×Kn.
This completes the proof of the lemma.

Lemma 3.5. If p is prime and p ≡ 1 (mod 4), then C4p |K6 ×Kp.

Proof. Let G = K6 ×Kp and let {x0, x1, . . . , x5} and {0, 1, . . . , p− 1} be the vertex
sets of K6 and Kp, respectively. Then V (G) = V (K6) × V (Kp) =

⋃5
i=0Xi, where

Xi = xi × V (Kp) = {(xi, 0), (xi, 1), . . . , (xi, p − 1)}. For each i, 1 ≤ i ≤ p−1
4
, we

obtain three C4p-cycles in the graph G as follows; see Figure 4.
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Figure 4: Three base cycles C′
1, C

′′
1 and C′′′

1 of K6 ×K5 for a C20-decomposition of K6 ×K5 are

shown above.

C ′
i = F2i(X0, X1)⊕ F2i−1(X1, X2)⊕ F2i(X2, X4)⊕ F2i−1(X4, X0),

C ′′
i = F2i−1(X0, X4)⊕ F2i(X4, X2)⊕ F2i−1(X2, X1)⊕ F2i(X1, X0) and

C ′′′
i = F2i(X1, X5)⊕ F2i−1(X5, X3)⊕ F2i(X3, X4)⊕ F2i−1(X4, X1),

where Fk(Xi, Xj) stands for the 1-factor of jump k from Xi to Xj .

The sum of jumps of the 1-factors between the partite sets, that appear in C ′
i, of

K6 ×Kp, is 2i + (2i− 1) + 2i + (2i− 1) = 4i− 2. Clearly, gcd(4i− 2, p) = 1, since
i ≤ p−1

4
implies 4i − 2 < p. Hence, C ′

i is a cycle of length 4p; similarly, C ′′
i and C ′′′

i

are cycles of length 4p. Consider the permutation ρ = (X0)(X1X2X3X4X5) on the
set {X0, X1, X2, X3, X4, X5}; then
{C ′

i, ρ(C
′
i), . . . , ρ

4(C ′
i), C

′′
i , ρ(C

′′
i ), . . . , ρ

4(C ′′
i ), C

′′′
i , ρ(C

′′′
i ), . . . , ρ

4(C ′′′
i )}, 1 ≤ i ≤ p−1

4

is a C4p-decomposition of G, where

ρ(C ′
i) = F2i(ρ(X0), ρ(X1))⊕ F2i−1(ρ(X1), ρ(X2))⊕ F2i(ρ(X2), ρ(X4))⊕

F2i−1(ρ(X4), ρ(X0))

= F2i(X0, X2)⊕ F2i−1(X2, X3)⊕ F2i(X3, X5)⊕ F2i−1(X5, X0).
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Similarly,

ρj(C ′
i) = F2i(ρ

j(X0), ρ
j(X1)) ⊕ F2i−1(ρ

j(X1), ρ
j(X2)) ⊕ F2i(ρ

j(X2), ρ
j(X4)) ⊕

F2i−1(ρ
j(X4), ρ

j(X0)),

ρj(C ′′
i ) = F2i−1(ρ

j(X0), ρ
j(X4))⊕ F2i(ρ

j(X4), ρ
j(X2))⊕ F2i−1(ρ

j(X2), ρ
j(X1))⊕

F2i(ρ
j(X1), ρ

j(X0)) and

ρj(C ′′′
i ) = F2i(ρ

j(X1), ρ
j(X5))⊕ F2i−1(ρ

j(X5), ρ
j(X3))⊕ F2i(ρ

j(X3), ρ
j(X4))⊕

F2i−1(ρ
j(X4), ρ

j(X1)).

Lemma 3.6. If m ≡ 1 (mod 4) and m ≥ 5, then C4m |Km ×K7.

Proof. Let V (Km) = {x∞, x0, x1, . . . , xm−2} and V (K7) = {1, 2, . . . , 7}. Then
V (Km ×K7) = X∞ ∪X0 ∪X1 ∪ · · · ∪Xm−2, where X∞ = x∞ × V (K7) = {(x∞, 1),
(x∞, 2), . . . , (x∞, 7)} and Xi = xi × V (K7) = {(xi, 1), (xi, 2), . . . , (xi, 7)}, for
0 ≤ i ≤ m− 2. For our convenience, we denote (x∞, i) by xi

∞ and (xi, j) by xj
i .

Let m = 2t+1, for an even integer t ≥ 2. Since m is odd, by Walecki’s Hamilton
cycle decomposition (see [1]), Km =

⊕t−1
i=0 Hi, where

Hi = (x∞, xi, xi+1, xi−1, xi+2, xi−2, . . . , xi+t−2, xi−t+2, xi+t−1, xi−t+1, xi+t)

is the Hamilton cycle and addition in the subscripts is taken modulo m − 1. Let
H = H0⊕H1, where H0 and H1 are the Hamilton cycles of Km obtained above. Let
σ = (x∞)(x0 x2 x4 . . . xm−3)(x1 x3 x5 . . . xm−2) be a permutation on V (Km). Then
H, σ(H), . . . , σk(H), k = t

2
− 1, decompose Km into isomorphic copies of H . Clearly,

Km × K7 = H × K7 ⊕ H × K7 ⊕ · · · ⊕ H × K7. Hence it is enough to obtain a
C4m-decomposition of H ×K7.

Consider the permutation ρ = (1 2 3 4 5 6 7) on V (K7). Then F, ρ(F ), ρ2(F ),
. . . , ρ6(F ) is a near 1-factorization of K7, where F = {12, 37, 46} and ρ�(F ) =
{ρ�(1) ρ�(2), ρ�(3) ρ�(7), ρ�(4) ρ�(6)}, so for example ρ(F ) = {23, 41, 57}. Let A0 (re-
spectively, A1) denote the path H0 \ {xtx∞} (respectively, H1 \ {xt+1x∞}) obtained
by deleting the edge x∞xt (respectively, x∞xt+1) from H0 (respectively, H1), see Fig-
ure 5(a) (respectively, 5(c)). Observe that A0 and A1 are Hamilton paths of Km.
For each edge ij ∈ E(K7), A0 × ij (∼= A0 ×K2) is a pair of disjoint paths Aij

0(1) and

Aij
0(2), each of length m− 1 with initial vertices xi

∞ and xj
∞ and terminal vertices xi

t

and xj
t , respectively, see Figure 5(b); similarly A1× ij = Aij

1(1)⊕Aij
1(2), where the end

vertices of Aij
1(1) (respectively, A

ij
1(2)) are x

i
∞ (respectively, xj

∞) and xi
t+1 (respectively,

xj
t+1), see Figure 5(d). Note that V (Km × K7) = V (H × K7). We construct three

base cycles C ′, C ′′ and C ′′′, each of length 4m, in H ×K7 as follows; see Figure 6.

Let e1 = 12, e2 = 37 and e3 = 46 be the edges of F in K7 and let

C ′ =
{
(H0 \ {xtx∞})× e1

} ⊕ {
(H1 \ {xt+1x∞})× e2)

} ⊕ x1
∞ x7

t+1 ⊕ x2
∞ x3

t+1 ⊕
x3
∞ x1

t ⊕ x7
∞ x2

t = A12
0(1)⊕x1

tx
3
∞⊕A37

1(1)⊕x3
t+1x

2
∞⊕A12

0(2)⊕x2
tx

7
∞⊕A37

1(2)⊕x7
t+1x

1
∞
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x7
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x7
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t

x3
∞

x3
1

x3
2

x3
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x3
t+2

x3
t

H0 \ {x∞xt}. H1 \ {x∞xt+1}(H0 \ {x∞xt})× e1. (H1 \ {x∞xt+1})× e2.

�

�

�

�

�

�

x∞

x1

x2

xt+1

xt+2

xt

A12
0(1) A12

0(2) A37
1(2)A37

1(1)

e1 e2

(a) (b) (c) (d)

Figure 5: Broken edge in (a) (respectively, (c)) denotes the edge x∞xt (respectively, x∞xt+1)
which is removed from H0 (respectively, H1).

Base cycle C ′

A37
1(1)

A37
1(2)

A12
0(1) A12

0(2)

x7
t+1x3

t+1x2
t

x7
∞x3

∞x2
∞x1

∞

�

�

�

�

x1
t

�

�

�

�

A46
1(1)

A46
1(2)

A37
0(1) A37

0(2)

x6
t+1x4

t+1x7
t

x6
∞x4

∞x7
∞x3

∞

�

�

�

�

x3
t

�

�

�

�

A12
1(1)

A12
1(2)

A46
0(1) A46

0(2)

x2
t+1x1

t+1x6
t

x2
∞x1

∞x6
∞x4

∞

�

�

�

�

x4
t

�

�

�

�

Base cycle C ′′ Base cycle C ′′′

Figure 6: Base cycle C′ of length 4m in H × K7 is constructed using the paths described in
Figures 5(b) and 5(d). Similarly, the cycles C′′ and C′′′ are shown using appropriate paths.

C ′′ =
{
(H0 \ {xtx∞})× e2

} ⊕ {
(H1 \ {xt+1 x∞})× e3)

} ⊕ x3
∞x6

t+1 ⊕ x7
∞x4

t+1 ⊕
x4
∞ x3

t ⊕ x6
∞ x7

t = A37
0(1)⊕x3

tx
4
∞⊕A46

1(1)⊕x4
t+1x

7
∞⊕A37

0(2)⊕x7
tx

6
∞⊕A46

1(2)⊕x6
t+1x

3
∞

and

C ′′′ =
{
(H0 \ {xtx∞})× e3

} ⊕ {
(H1 \ {xt+1x∞})× e1)

} ⊕ x4
∞ x2

t+1 ⊕ x6
∞ x1

t+1 ⊕
x1
∞ x4

t ⊕x2
∞ x6

t = A46
0(1)⊕x4

tx
1
∞⊕A12

1(1)⊕x1
t+1x

6
∞⊕A46

0(2)⊕x6
tx

2
∞⊕A12

1(2)⊕x2
t+1x

4
∞.

If ρ = (1 2 3 4 5 6 7) acts on the superscripts of the vertices of H×K7, then {C ′, ρ(C ′),
. . . , ρ6(C ′), C ′′, ρ(C ′′), . . . , ρ6(C ′′), C ′′′, ρ(C ′′′), . . . , ρ6(C ′′′)} is a C4m-decomposition of

H×K7, where ρ(C
′) = A

ρ(1)ρ(2)
0(1) ⊕x

ρ(1)
t x

ρ(3)
∞ ⊕A

ρ(3)ρ(7)
1(1) ⊕x

ρ(3)
t+1 x

ρ(2)
∞ ⊕A

ρ(1)ρ(2)
0(2) ⊕x

ρ(2)
t x

ρ(7)
∞ ⊕

A
ρ(3)ρ(7)
1(2) ⊕x

ρ(7)
t+1x

ρ(1)
∞ = A23

0(1)⊕x2
tx

4
∞⊕A41

1(1)⊕x4
t+1x

3
∞⊕A23

0(2)⊕x3
tx

1
∞⊕A41

1(2)⊕x1
t+1x

2
∞.
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Lemma 3.7. If n ≥ 3 and n ≡ 2 or 3 (mod 4), m ≡ 1 (mod 4) and m ≡ 0 (mod p),
then C4p |Km ×Kn, where p ≥ 3 is prime.

Proof. Let m = p s; then s ≥ 1 is odd as m is odd.
Case 1: n ≡ 2 (mod 4).
Let n = 4t+ 2, t ≥ 1.
First we complete the proof for the case s = 1. If t = 1, the result follows by
Lemma 3.5. For all t ≥ 2, the graph

Kp ×Kn = Kp ×K4t+2

= Kp × (K6 ⊕ (K6 − e)⊕ · · · ⊕ (K6 − e)︸ ︷︷ ︸
(t−1) times

⊕(Kt ◦K4))

= Kp ×K6 ⊕Kp × (K4 ⊕ C4 ⊕ C4)⊕ · · · ⊕Kp × (K4 ⊕ C4 ⊕ C4)︸ ︷︷ ︸
(t−1) times

⊕Kp × (K4,4 ⊕ · · · ⊕K4,4)︸ ︷︷ ︸
(t2) copies

= (Kp ×K6)⊕ ((Kp ×K4)⊕ (Kp × C4)⊕ (Kp × C4))⊕ · · · ⊕
((Kp×K4)⊕(Kp×C4)⊕(Kp×C4))⊕((Kp×K4,4)⊕· · ·⊕(Kp×K4,4)).

The graphs Kp ×K6 and Kp ×K4 are C4p-decomposable, by Lemma 3.5 and The-
orem 2.6, respectively. Since Cp |Kp, C4p |Kp × K4,4, by Lemma 3.3. Further,
Kp × C4 = Cp × C4 ⊕ · · · ⊕ Cp × C4 and Cp × C4 admits a C4p-decomposition,
by Theorem 2.7.
Next we consider the case s ≥ 3.
Clearly, Km × Kn = Km × K2 ⊕ · · · ⊕ Km × K2. Since s ≥ 3, 2m > 4p; also
4p |m(m− 1) and hence the graph Km ×K2

∼= Km,m − I, where I denotes a perfect
matching, admits a C4p-decomposition, by Theorem 2.4.

Case 2: n ≡ 3 (mod 4).
Recall that s is odd. If s ≥ 3, then m > 2p + 1; also 2p | (m

2

)
and hence P2p+1 |Km,

by Theorem 2.2. So C4p |Km × Kn, by Lemma 2.12. Next we assume that s = 1.
Let n = 4t+ 3, t ≥ 1. If t = 1, C4p |Kp ×K7, by Lemma 3.6. For t ≥ 2,
Kp ×K4t+3 = Kp × (K7 ⊕K5 ⊕ · · · ⊕K5︸ ︷︷ ︸

(t−1)times

⊕K6,4,4,...,4); see Figure 7

= (Kp ×K7)⊕ ((Kp ×K5)⊕ · · · ⊕ (Kp ×K5))⊕
(Kp ×K6,4 ⊕ · · · ⊕Kp ×K6,4︸ ︷︷ ︸

(t−1) times

)⊕ (Kp ×K4,4 ⊕ · · · ⊕Kp ×K4,4︸ ︷︷ ︸
(t−1

2 ) times

)

The graphs Kp×K7 and Kp×K5 admit C4p-decompositions, by Lemmas 3.6 and 3.4,
respectively. Since Cp |Kp, C4p |Kp×K4,4, by Lemma 3.3. By Theorem 2.3, C4 |K6,4

and hence Kp×K6,4 = Cp×C4⊕ · · ·⊕Cp ×C4. Now C4p |Cp×C4, by Theorem 2.7.
This completes the proof of the lemma.

Lemma 3.8. If k ≡ 3 (mod 4), then C4k |Kk+1 ×K7.

Proof. Let V (K7) = {1, 2, 3, 4, 5, 6, 7} and V (Kk+1) = {x0, x1, . . . , xk}. Label the
vertices of Kk+1 × K7 as in Lemma 3.6. First we complete the proof for the case
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�
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K43

Figure 7: K4t+3 = K7 ⊕ K5 ⊕ · · · ⊕ K5 ⊕ K6,4,4,...,4. A copy of K6 (respectively, K4) together

with ∞ induce a K7 (respectively, K5).

k = 3. Since K3 |K7, by Theorem 2.1, K4 ×K7 = K4 ×K3 ⊕ · · · ⊕K4 ×K3. The
graph K4 ×K3 admits a C12-decomposition, by Theorem 2.6. Thus, C12 |K4 ×K7.

Now we complete the proof for the case k ≥ 7.
Let k + 1 = 2t, for some even t ≥ 4. A Hamilton path decomposition of Kk+1 is
Pi = [xi, xi+1, xi−1, xi+2, xi−2, . . . , xi+t−2, xi−t+2, xi+t−1, xi−t+1, xi+t], 0 ≤ i ≤ t − 1,
where the addition in the subscripts is taken modulo k + 1. Let Hj = P2j ⊕ P2j+1,
0 ≤ j ≤ t

2
− 1, where P2j and P2j+1 are two consecutive Hamilton paths of the

above decomposition of Kk+1. As Kk+1 = H0 ⊕ H1 ⊕ · · · ⊕ H t
2
−1, Kk+1 × K7 =

H0 × K7 ⊕ · · · ⊕ H t
2
−1 × K7. Since Hj

∼= ρj(H0), 1 ≤ j ≤ t
2
− 1, where ρ =

(x0 x2 . . . xk−1)(x1 x3 . . . xk) is the permutation on the set V (Kk+1), to complete the
proof of this lemma, it is enough to obtain a C4k-decomposition of H0 ×K7.

First we describe three base cycles C ′
0, C

′′
0 and C ′′′

0 , each of length 4k, in H0 ×K7 as
follows:

Note that P0 and P1 have the same vertex set, but for our convenience we will
view P0 and P1 to be on disjoint sets of vertices except for one particular vertex,
xt−1. Figure 8 shows this for k = 11, where P0 and P1 are Hamilton paths in K12.
In particular, Figure 8(c) shows the way in which we will view H0 = P0⊕P1, so that
each vertex of H0, except the one vertex xt−1, appears exactly twice. Each vertex xi

of H0 gives rise to Xi = xi ×K7 = {(xi, 1), (xi, 2), . . . , (xi, 7)} having seven vertices
of H0 × K7. This Xi also appears in both P0 × K7 and P1 × K7, except for Xt−1

(see Figure 9). If we superimpose Xi of P0 × K7 with Xi of P1 × K7, i �= t − 1,
we get H0 × K7. If xi and xj are adjacent in H0, then 〈Xi ∪ Xj〉 is isomorphic to
K7,7 − F0(Xi, Xj) and hence this subgraph 〈Xi ∪ Xj〉 of H0 × K7 has six 1-factors
F1(Xi, Xj), F2(Xi, Xj), . . . , F6(Xi, Xj). We construct three base cycles C ′

0, C
′′
0 and

C ′′′
0 of H0 ×K7, each of them having some of their sections in the graphs P0 × K7

and P1 ×K7, in such a way that if C ′
0 (or C ′′

0 or C ′′′
0 ) has a vertex of Xi in P0 ×K7,

then the cycle does not have the vertex of Xi in P1 ×K7 (see Figure 9). So, when
we superimpose Xi of P0 ×K7 with Xi of P1 ×K7, vertices of C

′
0 (or C ′′

0 or C ′′′
0 ) are

all distinct in H0 ×K7. The base cycles of H0 ×K7 are given below; see Figure 9.



S. GANESAMURTHY ET AL. /AUSTRALAS. J. COMBIN. 79 (2) (2021), 215–233 226

�

�

�

�

�

�

�

�

�

�

�

�

x0

x1

x11

x2

x10

x3

x9

x4

x8

x5

x7

x6

x0

x1

x11

x2

x10

x3

x9

x4

If we superimpose the vertices of (c)

with the same label, we get the graph

We view the graph H0 like this.
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Bold edges represent P0

Normal edges represent P1

(a)

x0 x1 x11 x2 x10 x3 x9 x4 x8 x5 x7 x6

x1 x2 x0 x3 x11 x4 x10 x9 x6 x8 x7x5

P0

P1
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=

=

The graph H0 = P0 ⊕ P1. The path P0 (resp. P1) is shown in bold (resp. normal) edges.

H0, as shown in (b).

Figure 8: H0 = P0 ⊕ P1 is shown in (b), where P0 and P1 are the Hamilton paths of K12 as
described in the text. In (b) P0 and P1 have the common vertex set whereas in (c) except for one
vertex all other vertices are shown to be distinct.
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7
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where the subscripts are taken modulo k + 1.
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Figure 9: Three base cycles C′
0, C

′′
0 and C′′′

0 of H0 × K7 are given for a C44-decomposition of

H0 ×K7, where H0 = P0 ⊕ P1 and P0 and P1 are two Hamilton paths of K12 as obtained in the

text. If we superimpose the Xi, except Xt−1, of P0 × K7 with Xi of P1 × K7, on the respective

vertices, for all i we get three base cycles C′
0, C

′′
0 and C′′′

0 of H0×K7. Y
′
i s represent the columns of

H0 ×K7. Note that X ′
is are not consecutive in the figure, but it appears as in the order of vertices

of the Hamilton path of K12.

If ρ = (1 2 3 4 5 6 7) is the permutation acting on the superscripts of the vertices
of V (H0 × K7), then {C ′

0, ρ(C
′
0), . . . , ρ

6(C ′
0), C

′′
0 , ρ(C

′′
0 ), . . . , ρ

6(C ′′
0 ), C

′′′
0 , ρ(C

′′′
0 ), . . . ,

ρ6(C ′′′
0 )} is a C4k-decomposition of H0 ×K7.

Lemma 3.9. If p ≥ 3 is prime, m ≡ 3 (mod 4), n ≡ 1 (mod p) and n ≡ 0 (mod 4),
then C4p |Km ×Kn.

Proof. As n ≡ 0 (mod 4) and n ≡ 1 (mod p), n = ps+ 1, s ≥ 1 is odd.
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First we deal with the case for s ≥ 3 is odd.
By hypothesis, 2p | (n

2

)
; also n > 2p + 1; then P2p+1 |Kn, by Theorem 2.2 and so

C4p |Km ×Kn, by Lemma 2.12.

Now we consider the case for s = 1.
Clearly, n = p+ 1 and m = 4t+ 3 for some t ≥ 1. If t = 1, then C4p |K7 ×Kp+1, by
Lemma 3.8. So we assume that t ≥ 2,
K4t+3 ×Kp+1 = (K7 ⊕K5 ⊕ · · · ⊕K5 ⊕K6, 4, 4,...,4)×Kp+1

= (K7 ×Kp+1)⊕ (K5 ×Kp+1 ⊕ · · · ⊕K5 ×Kp+1)⊕
(K6,4×Kp+1⊕· · ·⊕K6,4×Kp+1)⊕ (K4,4×Kp+1⊕· · ·⊕K4,4×Kp+1).

C4p |K7×Kp+1, by Lemma 3.8. Since Pp+1 |Kp+1, the graphs K5×Kp+1 and K4,4×
Kp+1 are C4p-decomposable, by Lemmas 2.13 and 2.14, respectively. Clearly, K6,4 ×
Kp+1 = C4×Kp+1⊕· · ·⊕C4×Kp+1. A C4p-decomposition of C4×Kp+1 (isomorphic
to Kp+1 × C4) is described below:

Let V (Kp+1) = {x0, x1, . . . , xp} and C4 = (1, 2, 3, 4). Then V (Kp+1 × C4) =⋃p
i=0Xi, where Xi = xi × V (C4) = {(xi, 1), (xi, 2), (xi, 3), (xi, 4)}. The symmetric

digraph K∗
p+1 admits a

→
Cp-decomposition, by Theorem 2.9, say C, where →

Cp denotes
the directed cycle of length p. Based on each of the directed cycles in C, we construct
a cycle of length 4p in Kp+1×C4 as follows. Let

→
Cp be in C; corresponding to this

→
Cp

we consider in Kp+1×C4 the cycle C
′
p =

⋃
−−−→xi xj∈A(

→
Cp)

F1(Xi, Xj), where F1(Xi, Xj) is

the 1-factor of jump 1 from Xi to Xj in Kp+1 ×C4 and A(
→
Cp) denotes the arc set of→

Cp. Clearly, C
′
p is a cycle of length 4p, in Kp+1×C4, as the sum of the jumps of the 1-

factors occurring in
⋃

−−−→xi xj∈A(
→
Cp)

F1(Xi, Xj) is p, which is relatively prime to 4. Thus

to each
→
Cp∈ C we obtain a C4p in Kp+1×C4; as C is a directed p-cycle decomposition

of K∗
p+1, we obtain a 4p-cycle decomposition of Kp+1×C4. This completes the proof

of the lemma.

4 C4p-decomposition of Km ×Kn

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We assume that C4p |Km × Kn. As the cycle length
cannot exceed the number of vertices of Km × Kn, 4p ≤ mn. As C4p |Km × Kn,
Km ×Kn is an even regular graph, that is, (m− 1)(n− 1) is even and hence either
m or n is odd. Further, C4p |Km × Kn implies 4p divides the number of edges of
Km ×Kn, that is, 4p |

(
m
2

)
n(n− 1).

Next we prove the sufficiency. Since the tensor product is commutative, we
assume that m is odd.

Case 1: p | (n
2

)
.

Subcase 1.1: 2 | (m
2

)
.

Since m is odd and 2 | (m
2

)
, m ≡ 1 (mod 4); as p | (n

2

)
and p is prime, p ≤ n, we invoke

Lemma 3.4 to complete the proof.
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Subcase 1.2: 2 � | (m
2

)
.

In this case, m ≡ 3 (mod 4). Clearly, from the hypothesis of the theorem 2 | (n
2

)

and also from the hypothesis of the case 2p | (n
2

)
. Now there are two possibilities,

according to the parity of n.

(1) If n is even, then either n ≡ 0 (mod 4p) or, n ≡ 0 (mod 4) and n ≡ 1 (mod p).
If n ≡ 0 (mod 4p), then P2p+1 |Kn, by Theorem 2.2; now apply Lemma 2.12.
If n ≡ 1 (mod p) with 4 |n, then the proof follows by Lemma 3.9.

(2) If n is odd, then either n ≡ 1 (mod 4p) or, n ≡ 1 (mod 4) and n ≡ 0 (mod p).
If n ≡ 1 (mod 4p), then the proof follows by Lemma 3.1; if n ≡ 1 (mod 4) and p |n,
then the proof follows by Lemma 3.7.

Case 2: p � | (n
2

)
.

Subcase 2.1: 2 | (n
2

)
.

As p | (m
2

)
, Cp |Km, by Theorem 2.1 and hence Km×Kn = Cp×Kn⊕· · ·⊕Cp×Kn.

Since 2 | (n
2

)
, either n ≡ 0 (mod 4) or n ≡ 1 (mod 4). If n ≡ 0 (mod 4), then

C4p |Cp×Kn, by Theorem 2.5; if n ≡ 1 (mod 4), then C4p |Km×Kn, by Lemma 3.4.

Subcase 2.2: 2 � | (n
2

)
.

From the necessary conditions, 2p | (m
2

)
; then either m ≡ 0 (mod p) and m ≡

1 (mod 4) or, m ≡ 1 (mod 4p); recall that m is odd by assumption. If m ≡ 1 (mod
4p), then the proof follows by Lemma 3.1. Since 2 � | (n

2

)
, n ≡ 2 or 3 (mod 4), and also

m ≡ 1 (mod 4) with p |m. The proof of this subcase now follows by Lemma 3.7.

5
→
C4p-decomposition of (Km ◦Kn)

∗

We quote the following two theorems which are used in the proof of Theorem 1.2.

Theorem 5.1. [13] Let
→
G be a directed closed trail of length m with maximum out

degree Δ+ and χ(
→
G) = s. Then for all n ≥ Δ+,

→
Cm | →

G ◦Kn whenever at least

(s − 2) mutually orthogonal latin squares of order n exist, where χ(
→
G) denotes the

chromatic number of
→
G.

Theorem 5.2. [22]
→
Ck |

→
Ck ◦Kn for all k ≥ 3 and n ≥ 1.

Corollary 5.3. If
→
Ck | (Km ◦Kn)

∗, then
→
Ck | (Km ◦Knt)

∗.

Proof. Since (Km ◦ Knt)
∗ = (Km ◦ Kn)

∗ ◦ Kt =
→
Ck ◦Kt⊕

→
Ck ◦Kt ⊕ · · ·⊕ →

Ck ◦Kt,
the proof is immediate from Theorem 5.2.

Proof of Theorem 1.2. If Km ◦Kn is an even regular graph, then the result is
immediate by Theorem 2.11. So we assume that Km ◦ Kn is an odd regular graph
and hence m is even and n is odd.

Case 1: p |n2.
Clearly, n ≡ 0 (mod p). Since m is even and n is odd, from the divisibility condition,
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m = 4t, for some t ≥ 1. By Corollary 5.3, it is enough to prove the case for n = p.
Clearly,

(Km ◦Kp)
∗ = ((tK4 ⊕ (Kt ◦K4)) ◦Kp)

∗

= t(K4 ◦Kp)
∗ ⊕ (K4,4 ◦Kp ⊕ · · · ⊕K4,4 ◦Kp)

∗.

Note that
→
C4p | (K4 ◦Kp)

∗, by Theorem 2.10. Also, C4 |K4,4, by Theorem 2.3, and

C4p |C4 ◦Kp, by Theorem 2.8; hence
→
C4p | (K4,4 ◦Kp)

∗. This completes the proof of
this case.

Case 2: p � |n2.
From the necessary conditions, either m ≡ 0 (mod 4p) or m ≡ 0 (mod 4) and
m ≡ 1 (mod p).

Subcase 2.1: m ≡ 0 (mod 4p).
Let m = 4pt, t ≥ 1. Then

(Km ◦Kn)
∗ = (K4pt ◦Kn)

∗

= nK∗
4pt ⊕ (K4pt ×Kn)

∗,

where the n copies of K∗
4pt are precisely the subdigraphs induced by the vertices

of the n columns of (K4pt ◦ Kn)
∗ and the remaining subdigraph of (K4pt ◦ Kn)

∗ is
isomorphic to (K4pt × Kn)

∗. Since n is odd, (K4pt ×Kn) is an even regular graph.

By Theorem 1.1, C4p | (K4pt ×Kn) and hence
→
C4p | (K4pt ×Kn)

∗. By Theorem 2.9,
→
C4p |K∗

4pt. This completes the proof of this subcase.

Subcase 2.2: m ≡ 0 (mod 4) and m ≡ 1 (mod p).
Let m = pt+ 1, t ≥ 1 and odd.
First we consider the case t = 1. Clearly, (Kp+1 ◦ Kn)

∗ = K∗
p+1 ◦ Kn. Let

V (Kp+1) = {a1, a2, . . . , ap+1}. For 1 ≤ i ≤ (p+1
2
), we define the Hamilton path

Pi = [ai, ai+1, ai−1, . . . , ai+(p+1
2

)−1, ai+(p+1
2

)+1, ai+(p+1
2

)] in Kp+1, where the subscripts

are taken modulo p + 1 with residues 1, 2, . . . , p + 1. Let Hi = P2i−1 ⊕ P2i, 1 ≤
i ≤ (p+1

4
); Hi has 2p edges and Δ(Hi) ≤ 4; note that Hi = K4 when p = 3. As

Δ(Hi) ≤ 4, χ(Hi) ≤ 4; see [8]. Since Hi |Kp+1, H
∗
i |K∗

p+1; each H∗
i is a directed

closed trail of length 4p, Δ+(H∗
i ) ≤ 4 and χ(H∗

i ) ≤ 4. Since n is odd and from the
necessary conditions, n ≥ 5. Consequently, at least two mutually orthogonal latin

squares of order n exist (see [18]); then
→
C4p |H∗

i ◦Kn, by Theorem 5.1.

Next we assume that t ≥ 3. Since pt+1 ≡ 0 (mod 4), 2p | (pt+1
2

)
. Then P ∗

2p+1 |K∗
pt+1

as P2p+1 |Kpt+1 by Theorem 2.2. Clearly, each P ∗
2p+1 is a directed closed trail of

length 4p with Δ+(P ∗
2p+1) = 2 and χ(P ∗

2p+1) = 2 and hence
→
C4p |P ∗

2p+1 ◦ Kn, by
Theorem 5.1. This completes the proof.
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