Decompositions of some classes of regular graphs and digraphs into cycles of length 4p

S. GANESAMURTHY

Department of Mathematics Kalasalingam Academy of Research and Education Krishnankoil-626126, India ganesamurthy66@gmail.com

R.S. MANIKANDAN

Department of Mathematics Bharathidasan University Constituent College Lalgudi-621601, India manirs2004@yahoo.co.in

P. PAULRAJA

Department of Mathematics Kalasalingam Academy of Research and Education Krishnankoil-626126, India ppraja560gmail.com

Abstract

In this paper, we prove the existence of a 4*p*-cycle decomposition of the graph $K_m \times K_n$ and a directed 4*p*-cycle decomposition of the symmetric digraph $(K_m \circ \overline{K}_n)^*$, where \circ and \times denote the wreath product and tensor product of graphs, respectively, and *p* is an odd prime. It is proved that, for integers $m \geq 3$ and $n \geq 3$, the obvious necessary conditions for the existence of a 4*p*-cycle decomposition of $K_m \times K_n$ are sufficient, where *p* is an odd prime. Also, it is shown that the necessary conditions for the existence of a directed 4*p*-cycle decomposition of the symmetric digraph $(K_m \circ \overline{K}_n)^*$ are sufficient, where *p* is an odd prime. Also, it is shown that the necessary conditions for the existence of a directed 4*p*-cycle decomposition of the symmetric digraph $(K_m \circ \overline{K}_n)^*$ are sufficient, where *p* is an odd prime. Recently, the same type of results are obtained for 2*p*; see [S. Ganesamurthy and P. Paulraja, *Discrete Math.* 341 (2018), 2197–2210].

1 Introduction

All graphs (respectively, digraphs) considered here are loopless and finite. Let C_k (respectively, \dot{C}_k) and P_k (respectively, \dot{P}_k) denote a cycle (respectively, directed cycle) and a path (respectively, directed path) on k vertices. For a graph G, $G(\lambda)$ denotes the multigraph obtained from G by replacing each edge of G by λ edges. The complete graph on n vertices is denoted by K_n and its complement is denoted by K_n . For an integer $k \geq 2$, kH denotes k vertex disjoint copies of H. For a graph G, G^* denotes the symmetric digraph of G and it is obtained from G by replacing every edge by a symmetric pair of arcs. If H_1, H_2, \ldots, H_ℓ are edge-disjoint subgraphs of a graph G such that $E(G) = E(H_1) \cup E(H_2) \cup \cdots \cup E(H_\ell)$, then we say that H_1, H_2, \ldots, H_ℓ decompose G and we write this as $G = H_1 \oplus H_2 \oplus \cdots \oplus H_\ell$, where \oplus denotes the edge disjoint union of graphs. If each $H_i \simeq H$, $1 \leq i \leq \ell$, then we say that H decomposes G and we denote this by $H \mid G$. Similarly, if $\overline{H}_1, \overline{H}_2, \ldots, \overline{H}_\ell$ are arc-disjoint subdigraphs of a digraph \overrightarrow{D} such that $A(\overrightarrow{D}) = A(\overrightarrow{H}_1) \cup A(\overrightarrow{H}_2) \cup \cdots \cup A(\overrightarrow{H}_\ell)$, then we say that $\overrightarrow{H}_1, \overrightarrow{H}_2, \ldots, \overrightarrow{H}_\ell$ decompose \overrightarrow{D} and we write this as $\overrightarrow{D} = \overrightarrow{H}_1 \oplus \overrightarrow{H}_2 \oplus \cdots \oplus \overrightarrow{H}_\ell$. If each $\overrightarrow{H}_i \simeq \overrightarrow{H}$, $1 \le i \le \ell$, then we say that \overrightarrow{H} decomposes \overrightarrow{D} and we denote this by $\overrightarrow{H} \mid \overrightarrow{D}$. If $H_i \simeq C_k$ (respectively, $\overrightarrow{H}_i \simeq \overrightarrow{C}_k$), $1 \le i \le \ell$ and $k \geq 3$, then we write $C_k \mid G$ (respectively, $\vec{C}_k \mid \vec{D}$) and in this case we say that G (respectively, \vec{D}) has a C_k -decomposition (respectively, \vec{C}_k -decomposition) or a kcycle decomposition (respectively, directed k-cycle decomposition). A C_k -factor of a graph G is a spanning subgraph H of G such that each component of H is a k-cycle. A partition of the edge set of G into C_k -factors is called a C_k -factorization of G, that is, a 2-factorization in which each of its factors contains only cycles of length k as its components. A k-regular graph G is said to be Hamilton cycle decomposable if its edge set can be partitioned into Hamilton cycles or Hamilton cycles plus a perfect matching if k is even or odd, respectively.

For two graphs (respectively, digraphs) G and H, their *tensor product*, denoted by $G \times H$, is the graph with vertex set $V(G) \times V(H)$ in which $(g_1, h_1)(g_2, h_2)$ is an edge (respectively, arc) whenever g_1g_2 is an edge (respectively, arc) in G and h_1h_2 is an edge (respectively, arc) in H. Similarly, the wreath product of graphs (respectively, digraphs) G and H, denoted by $G \circ H$, is the graph with vertex set $V(G) \times V(H)$ in which $(g_1, h_1)(g_2, h_2)$ is an edge (respectively, arc) whenever g_1g_2 is an edge (respectively, arc) in G or, $g_1 = g_2$ and h_1h_2 is an edge (respectively, arc) in H; see Figure 1. It can be easily seen that $K_m \circ \overline{K}_n$ is the complete *m*-partite graph in which each partite set has n vertices. Moreover, $K_m \circ \overline{K}_n - E(nK_m) \cong K_m \times K_n$. The complete multipartite graph with partite sets having sizes m_1, m_2, \ldots, m_k is denoted by K_{m_1,m_2,\ldots,m_k} . It is well-known that the tensor product is commutative and distributive over edge-disjoint union of graphs, that is, if $G = H_1 \oplus H_2 \oplus \cdots \oplus H_k$, then $G \times H = (H_1 \times H) \oplus (H_2 \times H) \oplus \cdots \oplus (H_k \times H)$. If G and H are two graphs with vertex sets $\{x_0, x_1, \ldots, x_r\}$ and $\{y_0, y_1, \ldots, y_s\}$, respectively, then $V(G \times H) =$ $V(G) \times V(H) = \{(x_i, y_j) \mid 0 \le i \le r \text{ and } 0 \le j \le s\}.$ For $x_i \in V(G)$ we define $X_i = x_i \times V(H) = \{(x_i, y_0), (x_i, y_1), \dots, (x_i, y_s)\}$ and we call this set of vertices

the *i*th row of $G \times H$. Similarly, for $y_j \in V(H)$ we define $Y_j = V(G) \times y_j = \{(x_0, y_j), (x_1, y_j), \dots, (x_r, y_j)\}$ and we call this set of vertices the *j*th column of $G \times H$.

 $X_i = \{x_i\} \times V(H) \text{ and } Y_j = V(G) \times \{y_j\}$

Figure 1: The graphs $C_4 \times K_4$ and $C_4 \circ \overline{K}_4$.

Let G be a bipartite graph with bipartition (X, Y), where $X = \{x_0, x_1, \ldots, x_{r-1}\}$, $Y = \{y_0, y_1, \ldots, y_{r-1}\}$. For some $i, 1 \leq i \leq r-1$, if G contains the set of edges $F_i(X, Y) = \{x_j y_{i+j} \mid 0 \leq j \leq r-1\}$, where addition in the subscript is taken modulo r, then we say that G has the 1-factor of jump i from X to Y and each edge of $F_i(X, Y)$ is called an edge of jump i from X to Y. Note that $F_i(Y, X) = F_{r-i}(X, Y)$, $0 \leq i \leq r-1$. Clearly, if $G = K_{r,r}$, then $E(G) = \bigcup_{i=0}^{r-1} F_i(X, Y)$. Definitions which are not given here can be found in [6].

The problem of decomposing regular graphs into cycles is not new. The obvious necessary conditions for the existence of an *m*-cycle decomposition of K_n (respectively, $K_n - I$, where I is a perfect matching) when n is odd (respectively, even) are proved to be sufficient; see [2, 14, 28]. In 2003, Buratti [10] obtained a short proof for the existence of an odd cycle decomposition of K_n . Recently, Bryant et al. have proved that the complete graph K_n (respectively, $K_n - I$, where I is a perfect matching) can be decomposed into cycles of lengths m_1, m_2, \ldots, m_k , where $\sum_{i=1}^k m_i = \binom{n}{2}$ (respectively, $\sum_{i=1}^k m_i = \binom{n}{2} - \frac{n}{2}$) and n is odd (respectively, even); see [9].

Necessary and sufficient conditions for the existence of a k-cycle decomposition of $K_m \circ \overline{K}_n$, $k \in \{mn, p, 2p, 3p, p^2\}$, are given in [7, 17, 20, 21, 23, 29, 30, 31], where p is a prime. The existence of an even cycle decomposition of $(K_m \circ \overline{K}_n)(\lambda)$ has been proved by Muthusamy and Shanmuga Vadivu; see [26]. Very recently, regardless of the parity of k, the authors of [11] actually solved the existence problem for a C_k -decomposition of $(K_m \circ \overline{K}_n)(\lambda)$ whose cycle-set can be partitioned into 2-regular graphs containing all the vertices except those belonging to one part. The graph $K_m \times K_n$ is a proper spanning regular subgraph of $K_m \circ \overline{K}_n$ (in fact, $K_m \times K_n \cong (K_m \circ \overline{K}_n) - E(nK_m)$); the existence of a k-cycle decomposition of $K_m \times K_n$ is not a straightforward consequence of the existence of a k-cycle decomposition of $K_m \circ \overline{K}_n$. Assaf [4] proved that $C_3 \mid (K_m \times K_n)(\lambda)$ whenever the necessary conditions are sufficient. Manikandan and Paulraja proved that the necessary conditions for the existence of a C_p -decomposition of $K_m \times K_n$ are also sufficient whenever $p \ge 5$ is prime; see [20, 21, 23]. Further, in [13], Ganesamurthy and Paulraja proved that the necessary conditions are sufficient for the existence of a C_k -decomposition of $K_m \times K_n$, where $k \in \{2^\ell, 2p\}, \ell \ge 2$ and $p \ge 3$ is a prime. Recently, Manikandan et al. [24] proved the existence of a p^2 -cycle decomposition of $K_m \times K_n$ whenever the necessary conditions are satisfied. Balakrishnan et al. [5] obtained a Hamilton cycle decomposition of $K_m \times K_n$.

Directed k-cycle decompositions of $(K_n(\lambda))^*$ are studied in [3, 32]. Furthermore, directed p-cycle and 2p-cycle decompositions of $(K_m \circ \overline{K}_n)^*$ are obtained in [13, 22].

Besides other results, we prove the following theorems.

Theorem 1.1. If the integers m and n are at least 3 and $p \ge 3$ is prime, then $C_{4p} | K_m \times K_n$ if and only if either m or n is odd, $4p \le mn$ and $\binom{m}{2}\binom{n}{2} \equiv 0 \pmod{2p}$.

Theorem 1.2. If the integers m and n are at least 3 and $p \ge 3$ is prime, then $\overrightarrow{C}_{4p} \mid (K_m \circ \overline{K}_n)^*$ if and only if $4p \le mn$ and $m(m-1)n^2 \equiv 0 \pmod{4p}$.

2 Some known theorems and lemmas

We quote the following theorems for our future reference.

Theorem 2.1. [2] For odd integers $3 \le k \le m$, $C_k \mid K_m$ if and only if $m(m-1) \equiv 0 \pmod{2k}$.

Theorem 2.2. [34] For positive integers k, m and λ , $P_{k+1} | K_m(\lambda)$ if and only if $2 \le k+1 \le m$ and $\lambda m(m-1) \equiv 0 \pmod{2k}$.

Theorem 2.3. [33] For positive integers m, n and k, $C_k | K_{m,n}$ if and only if m, n and k are all even with $\frac{k}{2} \leq m$, $\frac{k}{2} \leq n$ and k | mn.

Theorem 2.4. [19] Let $m \ge 3$ be an odd integer and let $k \ge 4$ be an even integer. Then $C_k \mid (K_{m,m} - I)$ if and only if $k \le 2m$ and $k \mid m(m-1)$, where I is a perfect matching of $K_{m,m}$.

Theorem 2.5. [25] If $n \mid m$, then $C_k \times K_m$ admits a C_{kn} -factorization except possibly when k is an odd integer and $m \equiv 2 \pmod{4}$.

Theorem 2.6. [5] For $m, n \ge 3$, the graph $K_m \times K_n$ is Hamilton cycle decomposable.

Theorem 2.7. [15] Let $m \ge 3$ be an odd integer and let $n \ge 3$ be an integer. Then $C_m \times C_n$ is Hamilton cycle decomposable.

Theorem 2.8. [16] For $k \geq 3$ and $n \geq 2$, the graph $C_k \circ \overline{K}_n$ is Hamilton cycle decomposable.

Theorem 2.9. [3] For positive integers k and n, with $2 \le k \le n$, $\overrightarrow{C}_k \mid K_n^*$ if and only if $n(n-1) \equiv 0 \pmod{k}$ and $(k,n) \ne (3,6), (4,4), (6,6)$.

Theorem 2.10. [27] For positive integers $m \ge 2$ and n, $(K_m \circ \overline{K}_n)^*$ is directed Hamilton cycle decomposable except when (m, n) = (4, 1) or (6, 1).

Theorem 2.11. [12] Let λ , m, n be positive integers with m, $n \geq 3$, and $p \geq 2$ prime. Then $C_{4p} \mid K_m(\lambda) \circ \overline{K_n}$ if and only if (1) $mn \geq 4p$, (2) $\lambda(m-1)n$ is even, and (3) $4p \mid \lambda {m \choose 2} n^2$.

Lemma 2.12. [13] If $P_{k+1} | K_n$, then $C_{2k} | K_m \times K_n$ when $k \ge 3$ and for all odd integers $m \ge 3$.

Lemma 2.13. [13] Let $k \ge 2$, $m \ge 5$ and $m \equiv 1 \pmod{4}$. If $P_{k+1} | K_n$, then $C_{4k} | K_m \times K_n$.

Lemma 2.14. [13] If $k \ge 2$, then $C_{4k} | P_{k+1} \times K_{4,4}$.

3 Building blocks

In this section we prove some lemmas which are used in the proof of the main Theorem 1.1.

Lemma 3.1. If $m \ge 2$ is an integer and $n, k \ge 3$ are odd integers with $n \equiv 1 \pmod{4k}$, then $C_{4k} \mid K_m \times K_n$.

Proof. Clearly, $K_m \times K_n = (K_2 \times K_n) \oplus \cdots \oplus (K_2 \times K_n)$. The graph $K_2 \times K_n \cong K_{n,n} - I$, where I is a perfect matching of $K_{n,n}$. Since $n \equiv 1 \pmod{4k}$, $4k \mid n(n-1)$ and hence $C_{4k} \mid K_{n,n} - I$, by Theorem 2.4. Thus $C_{4k} \mid K_m \times K_n$.

Lemma 3.2. If $k \geq 3$ is an odd integer, then $C_{4k} | K_5 \times C_k$.

Proof. Let $V(K_5) = \{v, w, x, y, z\}$ and $C_k = (a_1, a_2, \dots, a_k)$. Then $V(G) = \{(v, a_1), (v, a_2), \dots, (v, a_k)\} \cup \{(w, a_1), (w, a_2), \dots, (w, a_k)\} \cup \{(x, a_1), (x, a_2), \dots, (x, a_k)\} \cup \{(y, a_1), (y, a_2), \dots, (y, a_k)\} \cup \{(z, a_1), (z, a_2), \dots, (z, a_k)\}$. For our convenience, we denote $(v, a_i), (w, a_i), (x, a_i), (y, a_i)$ and (z, a_i) by v_i, w_i, x_i, y_i and z_i , respectively. Now we construct a base cycle C of length 4k in $K_5 \times C_k$ as follows; see Figure 2. Let $C = (v_1, w_2, v_3, w_4, v_5, \dots, w_{k-1}, v_k, x_1, z_2, x_3, \dots, z_{k-1}, x_k, w_1, v_2, w_3, \dots, v_{k-1}, w_k, z_1, x_2, z_3, \dots, x_{k-1}, z_k)$.

Consider the permutation $\rho = Z_1 Z_2 \dots Z_k$, where $Z_i = (v_i w_i x_i y_i z_i), 1 \le i \le k$, on the set $V(K_5 \times C_k)$. Then $\{C, \rho(C), \rho^2(C), \rho^3(C), \rho^4(C)\}$ is a C_{4k} -decomposition of $K_5 \times C_k$. This completes the proof.

Figure 2: A base cycle C of $K_5 \times C_7$ for a C_{28} -decomposition of $K_5 \times C_7$ is shown above.

Lemma 3.3. Let k and m be odd integers with $3 \le k \le m$. If $C_k | K_m$, then $C_{4k} | K_{4,4} \times K_m$.

Proof. As $C_k | K_m, K_{4,4} \times K_m = K_{4,4} \times C_k \oplus \cdots \oplus K_{4,4} \times C_k = C_4 \times C_k \oplus \cdots \oplus C_4 \times C_k$, since $C_4 | K_{4,4}$, by Theorem 2.3. The graph $C_4 \times C_k$ admits a C_{4k} -decomposition, by Theorem 2.7. Thus $C_{4k} | K_{4,4} \times K_m$.

Lemma 3.4. Let $k \ge 3$ be an odd integer, n be an integer with $k \le n$ and $k \mid \binom{n}{2}$. If $m \ge 5$ and $m \equiv 1 \pmod{4}$, then $C_{4k} \mid K_m \times K_n$.

Proof. Let $m = 4t + 1, t \ge 1$.

Case 1. n is odd.

Since *n* is odd and $k \mid \binom{n}{2}$, $K_n = C_k \oplus \cdots \oplus C_k$, by Theorem 2.1. If t = 1, $C_{4k} \mid K_5 \times K_n$, by Lemma 3.2, because $K_5 \times K_n = K_5 \times C_k \oplus \cdots \oplus K_5 \times C_k$. For all $t \ge 2$, the edges of K_{4t+1} can be decomposed into *t* copies of K_5 which each share a common vertex and $\binom{t}{2}$ -copies of $K_{4,4}$; see Figure 3.

Figure 3: $K_{4t+1} = K_5 \oplus K_5 \oplus \cdots \oplus K_5 \oplus K_{4,4} \oplus K_{4,4} \oplus \cdots \oplus K_{4,4}$. A copy of K_4 and ∞ induce a K_5 and the edges between any two K_4 's yield a $K_{4,4}$.

Thus, for all $t \geq 2$, we have

$$K_m \times K_n = (K_5 \oplus \dots \oplus K_5 \oplus K_{4,4} \oplus \dots \oplus K_{4,4}) \times K_n$$

= $(K_5 \times K_n \oplus \dots \oplus K_5 \times K_n) \oplus (K_{4,4} \times K_n \oplus \dots \oplus K_{4,4} \times K_n).$

The graphs $K_5 \times K_n$ and $K_{4,4} \times K_n$ admit C_{4k} -decompositions, by the above argument and Lemma 3.3, respectively. This completes the proof of this case.

Case 2. n is even.

Since $k \mid \binom{n}{2}$, $2k \mid n(n-1)$. As *n* is even and *k* is odd with k < n, it easily follows that $k+1 \leq n$. Thus $P_{k+1} \mid K_n$, by Theorem 2.2. Hence, by Lemma 2.13, $C_{4k} \mid K_m \times K_n$. This completes the proof of the lemma.

Lemma 3.5. If p is prime and $p \equiv 1 \pmod{4}$, then $C_{4p} \mid K_6 \times K_p$.

Proof. Let $G = K_6 \times K_p$ and let $\{x_0, x_1, \ldots, x_5\}$ and $\{0, 1, \ldots, p-1\}$ be the vertex sets of K_6 and K_p , respectively. Then $V(G) = V(K_6) \times V(K_p) = \bigcup_{i=0}^5 X_i$, where $X_i = x_i \times V(K_p) = \{(x_i, 0), (x_i, 1), \ldots, (x_i, p-1)\}$. For each $i, 1 \leq i \leq \frac{p-1}{4}$, we obtain three C_{4p} -cycles in the graph G as follows; see Figure 4.

Figure 4: Three base cycles C'_1 , C''_1 and C''_1 of $K_6 \times K_5$ for a C_{20} -decomposition of $K_6 \times K_5$ are shown above.

$$C'_{i} = F_{2i}(X_{0}, X_{1}) \oplus F_{2i-1}(X_{1}, X_{2}) \oplus F_{2i}(X_{2}, X_{4}) \oplus F_{2i-1}(X_{4}, X_{0}),$$

$$C''_{i} = F_{2i-1}(X_{0}, X_{4}) \oplus F_{2i}(X_{4}, X_{2}) \oplus F_{2i-1}(X_{2}, X_{1}) \oplus F_{2i}(X_{1}, X_{0}) \text{ and}$$

$$C'''_{i} = F_{2i}(X_{1}, X_{5}) \oplus F_{2i-1}(X_{5}, X_{3}) \oplus F_{2i}(X_{3}, X_{4}) \oplus F_{2i-1}(X_{4}, X_{1}),$$

where $F_{k}(X_{i}, X_{j})$ stands for the 1-factor of jump k from X_{i} to X_{j} .

The sum of jumps of the 1-factors between the partite sets, that appear in C'_i , of $K_6 \times K_p$, is 2i + (2i - 1) + 2i + (2i - 1) = 4i - 2. Clearly, gcd(4i - 2, p) = 1, since $i \leq \frac{p-1}{4}$ implies 4i - 2 < p. Hence, C'_i is a cycle of length 4p; similarly, C''_i and C''_i are cycles of length 4p. Consider the permutation $\rho = (X_0)(X_1 X_2 X_3 X_4 X_5)$ on the set $\{X_0, X_1, X_2, X_3, X_4, X_5\}$; then

$$\{C'_{i}, \rho(C'_{i}), \dots, \rho^{4}(C'_{i}), C''_{i}, \rho(C''_{i}), \dots, \rho^{4}(C''_{i}), C'''_{i}, \rho(C'''_{i}), \dots, \rho^{4}(C'''_{i})\}, \ 1 \le i \le \frac{p-1}{4}$$

is a C_{4p} -decomposition of G, where

$$\rho(C'_{i}) = F_{2i}(\rho(X_{0}), \rho(X_{1})) \oplus F_{2i-1}(\rho(X_{1}), \rho(X_{2})) \oplus F_{2i}(\rho(X_{2}), \rho(X_{4})) \oplus F_{2i-1}(\rho(X_{4}), \rho(X_{0})) \\
= F_{2i}(X_{0}, X_{2}) \oplus F_{2i-1}(X_{2}, X_{3}) \oplus F_{2i}(X_{3}, X_{5}) \oplus F_{2i-1}(X_{5}, X_{0}).$$

Similarly,

$$\rho^{j}(C_{i}') = F_{2i}(\rho^{j}(X_{0}), \rho^{j}(X_{1})) \oplus F_{2i-1}(\rho^{j}(X_{1}), \rho^{j}(X_{2})) \oplus F_{2i}(\rho^{j}(X_{2}), \rho^{j}(X_{4})) \oplus F_{2i-1}(\rho^{j}(X_{4}), \rho^{j}(X_{0})), \\
\rho^{j}(C_{i}'') = F_{2i-1}(\rho^{j}(X_{0}), \rho^{j}(X_{4})) \oplus F_{2i}(\rho^{j}(X_{4}), \rho^{j}(X_{2})) \oplus F_{2i-1}(\rho^{j}(X_{2}), \rho^{j}(X_{1})) \oplus F_{2i}(\rho^{j}(X_{1}), \rho^{j}(X_{0})) \text{ and } \\
\rho^{j}(C_{i}''') = F_{2i}(\rho^{j}(X_{1}), \rho^{j}(X_{5})) \oplus F_{2i-1}(\rho^{j}(X_{5}), \rho^{j}(X_{3})) \oplus F_{2i}(\rho^{j}(X_{3}), \rho^{j}(X_{4})) \oplus F_{2i-1}(\rho^{j}(X_{4}), \rho^{j}(X_{1})). \qquad \Box$$

Lemma 3.6. If $m \equiv 1 \pmod{4}$ and $m \geq 5$, then $C_{4m} \mid K_m \times K_7$.

Proof. Let $V(K_m) = \{x_{\infty}, x_0, x_1, \dots, x_{m-2}\}$ and $V(K_7) = \{1, 2, \dots, 7\}$. Then $V(K_m \times K_7) = X_{\infty} \cup X_0 \cup X_1 \cup \dots \cup X_{m-2}$, where $X_{\infty} = x_{\infty} \times V(K_7) = \{(x_{\infty}, 1), (x_{\infty}, 2), \dots, (x_{\infty}, 7)\}$ and $X_i = x_i \times V(K_7) = \{(x_i, 1), (x_i, 2), \dots, (x_i, 7)\}$, for $0 \le i \le m-2$. For our convenience, we denote (x_{∞}, i) by x_{∞}^i and (x_i, j) by x_i^j .

Let m = 2t + 1, for an even integer $t \ge 2$. Since *m* is odd, by Walecki's Hamilton cycle decomposition (see [1]), $K_m = \bigoplus_{i=0}^{t-1} H_i$, where

$$H_i = (x_{\infty}, x_i, x_{i+1}, x_{i-1}, x_{i+2}, x_{i-2}, \dots, x_{i+t-2}, x_{i-t+2}, x_{i+t-1}, x_{i-t+1}, x_{i+t})$$

is the Hamilton cycle and addition in the subscripts is taken modulo m-1. Let $H = H_0 \oplus H_1$, where H_0 and H_1 are the Hamilton cycles of K_m obtained above. Let $\sigma = (x_{\infty})(x_0 x_2 x_4 \dots x_{m-3})(x_1 x_3 x_5 \dots x_{m-2})$ be a permutation on $V(K_m)$. Then $H, \sigma(H), \dots, \sigma^k(H), k = \frac{t}{2} - 1$, decompose K_m into isomorphic copies of H. Clearly, $K_m \times K_7 = H \times K_7 \oplus H \times K_7 \oplus \cdots \oplus H \times K_7$. Hence it is enough to obtain a C_{4m} -decomposition of $H \times K_7$.

Consider the permutation $\rho = (1234567)$ on $V(K_7)$. Then F, $\rho(F)$, $\rho^2(F)$, ..., $\rho^6(F)$ is a near 1-factorization of K_7 , where $F = \{12, 37, 46\}$ and $\rho^\ell(F) = \{\rho^\ell(1) \rho^\ell(2), \rho^\ell(3) \rho^\ell(7), \rho^\ell(4) \rho^\ell(6)\}$, so for example $\rho(F) = \{23, 41, 57\}$. Let A_0 (respectively, A_1) denote the path $H_0 \setminus \{x_t x_\infty\}$ (respectively, $H_1 \setminus \{x_{t+1} x_\infty\}$) obtained by deleting the edge $x_\infty x_t$ (respectively, $x_\infty x_{t+1}$) from H_0 (respectively, H_1), see Figure 5(a) (respectively, 5(c)). Observe that A_0 and A_1 are Hamilton paths of K_m . For each edge $ij \in E(K_7)$, $A_0 \times ij (\cong A_0 \times K_2)$ is a pair of disjoint paths $A_{0(1)}^{ij}$ and $A_{0(2)}^{ij}$, each of length m-1 with initial vertices x_∞^i and x_∞^j and terminal vertices x_t^i and x_t^j , respectively, see Figure 5(b); similarly $A_1 \times ij = A_{1(1)}^{ij} \oplus A_{1(2)}^{ij}$, where the end vertices of $A_{1(1)}^{ij}$ (respectively, $A_{1(2)}^{ij}$) are x_∞^i (respectively, x_∞^j) and x_{t+1}^i (respectively, x_{t+1}^{ij}), see Figure 5(d). Note that $V(K_m \times K_7) = V(H \times K_7)$. We construct three base cycles C', C'' and C''', each of length 4m, in $H \times K_7$ as follows; see Figure 6. Let $e_1 = 12$, $e_2 = 37$ and $e_3 = 46$ be the edges of F in K_7 and let

$$C' = \left\{ (H_0 \setminus \{x_t x_\infty\}) \times e_1 \right\} \oplus \left\{ (H_1 \setminus \{x_{t+1} x_\infty\}) \times e_2) \right\} \oplus x_\infty^1 x_{t+1}^7 \oplus x_\infty^2 x_{t+1}^3 \oplus x_\infty^3 x_t^1 \oplus x_\infty^7 x_t^2 = A_{0(1)}^{12} \oplus x_t^1 x_\infty^3 \oplus A_{1(1)}^{37} \oplus x_{t+1}^3 x_\infty^2 \oplus A_{0(2)}^{12} \oplus x_t^2 x_\infty^7 \oplus A_{1(2)}^{37} \oplus x_{t+1}^7 x_\infty^1$$

Figure 5: Broken edge in (a) (respectively, (c)) denotes the edge $x_{\infty}x_t$ (respectively, $x_{\infty}x_{t+1}$) which is removed from H_0 (respectively, H_1).

Figure 6: Base cycle C' of length 4m in $H \times K_7$ is constructed using the paths described in Figures 5(b) and 5(d). Similarly, the cycles C'' and C''' are shown using appropriate paths.

$$C'' = \left\{ (H_0 \setminus \{x_t x_\infty\}) \times e_2 \right\} \oplus \left\{ (H_1 \setminus \{x_{t+1} x_\infty\}) \times e_3) \right\} \oplus x_\infty^3 x_{t+1}^6 \oplus x_\infty^7 x_{t+1}^4 \oplus x_\infty^4 x_t^3 \oplus x_\infty^6 x_t^7 = A_{0(1)}^{37} \oplus x_t^3 x_\infty^4 \oplus A_{1(1)}^{46} \oplus x_{t+1}^4 x_\infty^7 \oplus A_{0(2)}^{37} \oplus x_t^7 x_\infty^6 \oplus A_{1(2)}^{46} \oplus x_{t+1}^6 x_\infty^3 \oplus x_\infty^3 x_0^8 \oplus x_{t+1}^{46} x_\infty^3 \oplus x_0^{46} \oplus x_{t+1}^6 x_\infty^3 \oplus x_0^{46} \oplus x_{t+1}^6 \oplus x_\infty^6 \oplus x_0^8 \oplus x_$$

$$C''' = \left\{ (H_0 \setminus \{x_t x_\infty\}) \times e_3 \right\} \oplus \left\{ (H_1 \setminus \{x_{t+1} x_\infty\}) \times e_1) \right\} \oplus x_\infty^4 x_{t+1}^2 \oplus x_\infty^6 x_{t+1}^1 \oplus x_\infty^1 x_t^4 \oplus x_\infty^2 x_t^6 = A_{0(1)}^{46} \oplus x_t^4 x_\infty^1 \oplus A_{1(1)}^{12} \oplus x_{t+1}^1 x_\infty^6 \oplus A_{0(2)}^{46} \oplus x_t^6 x_\infty^2 \oplus A_{1(2)}^{12} \oplus x_{t+1}^2 x_\infty^4 \dots x_\infty^6 x_\infty^4 \oplus A_{1(2)}^{46} \oplus x_t^6 x_\infty^2 \oplus A_{1(2)}^{12} \oplus x_{t+1}^2 x_\infty^4 \dots x_\infty^6 (C'), C'', \rho(C''), \dots, \rho^6(C''), C''', \rho(C''), \dots, \rho^6(C''') \right\}$$
is a C_{4m} -decomposition of $H \times K_7$, where $\rho(C') = A_{0(1)}^{\rho(1)\rho(2)} \oplus x_t^{\rho(3)} \oplus A_{1(1)}^{\rho(3)\rho(7)} \oplus x_{t+1}^{\rho(3)} x_\infty^{\rho(2)} \oplus A_{0(2)}^{\rho(1)\rho(2)} \oplus x_t^{\rho(2)} x_\infty^{\rho(7)} \oplus x_\infty^{\rho(2)} \oplus x_\infty^{\rho(2)}$

$$A_{1(2)}^{\rho(3)\rho(7)} \oplus x_{t+1}^{\rho(7)} x_{\infty}^{\rho(1)} = A_{0(1)}^{23} \oplus x_t^2 x_{\infty}^4 \oplus A_{1(1)}^{41} \oplus x_{t+1}^4 x_{\infty}^3 \oplus A_{0(2)}^{23} \oplus x_t^3 x_{\infty}^1 \oplus A_{1(2)}^{41} \oplus x_{t+1}^1 x_{\infty}^2. \quad \Box$$

Lemma 3.7. If $n \ge 3$ and $n \equiv 2$ or $3 \pmod{4}$, $m \equiv 1 \pmod{4}$ and $m \equiv 0 \pmod{p}$, then $C_{4p} \mid K_m \times K_n$, where $p \ge 3$ is prime.

Proof. Let m = p s; then $s \ge 1$ is odd as m is odd. *Case 1*: $n \equiv 2 \pmod{4}$. Let $n = 4t + 2, t \ge 1$. First we complete the proof for the case s = 1. If t

First we complete the proof for the case s = 1. If t = 1, the result follows by Lemma 3.5. For all $t \ge 2$, the graph

$$K_{p} \times K_{n} = K_{p} \times K_{4t+2}$$

$$= K_{p} \times (K_{6} \oplus \underbrace{(K_{6} - e) \oplus \cdots \oplus (K_{6} - e)}_{(t-1) \ times} \oplus (K_{t} \circ \overline{K}_{4}))$$

$$= K_{p} \times K_{6} \oplus \underbrace{K_{p} \times (K_{4} \oplus C_{4} \oplus C_{4}) \oplus \cdots \oplus K_{p} \times (K_{4} \oplus C_{4} \oplus C_{4})}_{(t-1) \ times}$$

$$\oplus K_{p} \times \underbrace{(K_{4,4} \oplus \cdots \oplus K_{4,4})}_{\binom{t}{2} \ copies}$$

$$= (K_{p} \times K_{6}) \oplus ((K_{p} \times K_{4}) \oplus (K_{p} \times C_{4}) \oplus (K_{p} \times C_{4})) \oplus \cdots \oplus (K_{p} \times K_{4,4})$$

$$((K_{p} \times K_{4}) \oplus (K_{p} \times C_{4}) \oplus (K_{p} \times C_{4})) \oplus ((K_{p} \times K_{4,4}) \oplus \cdots \oplus (K_{p} \times K_{4,4}))$$

The graphs $K_p \times K_6$ and $K_p \times K_4$ are C_{4p} -decomposable, by Lemma 3.5 and Theorem 2.6, respectively. Since $C_p | K_p$, $C_{4p} | K_p \times K_{4,4}$, by Lemma 3.3. Further, $K_p \times C_4 = C_p \times C_4 \oplus \cdots \oplus C_p \times C_4$ and $C_p \times C_4$ admits a C_{4p} -decomposition, by Theorem 2.7.

Next we consider the case $s \geq 3$.

Clearly, $K_m \times K_n = K_m \times K_2 \oplus \cdots \oplus K_m \times K_2$. Since $s \ge 3$, 2m > 4p; also $4p \mid m(m-1)$ and hence the graph $K_m \times K_2 \cong K_{m,m} - I$, where I denotes a perfect matching, admits a C_{4p} -decomposition, by Theorem 2.4.

Case 2: $n \equiv 3 \pmod{4}$.

Recall that s is odd. If $s \ge 3$, then m > 2p + 1; also $2p \mid \binom{m}{2}$ and hence $P_{2p+1} \mid K_m$, by Theorem 2.2. So $C_{4p} \mid K_m \times K_n$, by Lemma 2.12. Next we assume that s = 1. Let n = 4t + 3, $t \ge 1$. If t = 1, $C_{4p} \mid K_p \times K_7$, by Lemma 3.6. For $t \ge 2$, $K_p \times K_{4t+3} = K_p \times (K_7 \oplus K_5 \oplus \cdots \oplus K_5 \oplus K_{6,4,4,\dots,4})$; see Figure 7

$$=\underbrace{(K_p \times K_7) \oplus ((K_p \times K_5) \oplus \dots \oplus (K_p \times K_5)) \oplus}_{(K_p \times K_{6,4} \oplus \dots \oplus K_p \times K_{6,4})} \oplus \underbrace{(K_p \times K_{4,4} \oplus \dots \oplus K_p \times K_{4,4})}_{(t-1) \ times}$$

The graphs $K_p \times K_7$ and $K_p \times K_5$ admit C_{4p} -decompositions, by Lemmas 3.6 and 3.4, respectively. Since $C_p | K_p, C_{4p} | K_p \times K_{4,4}$, by Lemma 3.3. By Theorem 2.3, $C_4 | K_{6,4}$ and hence $K_p \times K_{6,4} = C_p \times C_4 \oplus \cdots \oplus C_p \times C_4$. Now $C_{4p} | C_p \times C_4$, by Theorem 2.7. This completes the proof of the lemma.

Lemma 3.8. If $k \equiv 3 \pmod{4}$, then $C_{4k} | K_{k+1} \times K_7$.

Proof. Let $V(K_7) = \{1, 2, 3, 4, 5, 6, 7\}$ and $V(K_{k+1}) = \{x_0, x_1, \dots, x_k\}$. Label the vertices of $K_{k+1} \times K_7$ as in Lemma 3.6. First we complete the proof for the case

)).

Figure 7: $K_{4t+3} = K_7 \oplus K_5 \oplus \cdots \oplus K_5 \oplus K_{6,4,4,\ldots,4}$. A copy of K_6 (respectively, K_4) together with ∞ induce a K_7 (respectively, K_5).

k = 3. Since $K_3 | K_7$, by Theorem 2.1, $K_4 \times K_7 = K_4 \times K_3 \oplus \cdots \oplus K_4 \times K_3$. The graph $K_4 \times K_3$ admits a C_{12} -decomposition, by Theorem 2.6. Thus, $C_{12} | K_4 \times K_7$.

Now we complete the proof for the case $k \ge 7$.

Let k + 1 = 2t, for some even $t \ge 4$. A Hamilton path decomposition of K_{k+1} is $P_i = [x_i, x_{i+1}, x_{i-1}, x_{i+2}, x_{i-2}, \dots, x_{i+t-2}, x_{i-t+2}, x_{i+t-1}, x_{i-t+1}, x_{i+t}], 0 \le i \le t-1$, where the addition in the subscripts is taken modulo k + 1. Let $H_j = P_{2j} \oplus P_{2j+1}$, $0 \le j \le \frac{t}{2} - 1$, where P_{2j} and P_{2j+1} are two consecutive Hamilton paths of the above decomposition of K_{k+1} . As $K_{k+1} = H_0 \oplus H_1 \oplus \dots \oplus H_{\frac{t}{2}-1}, K_{k+1} \times K_7 = H_0 \times K_7 \oplus \dots \oplus H_{\frac{t}{2}-1} \times K_7$. Since $H_j \cong \rho^j(H_0), 1 \le j \le \frac{t}{2} - 1$, where $\rho = (x_0 x_2 \dots x_{k-1})(x_1 x_3 \dots x_k)$ is the permutation on the set $V(K_{k+1})$, to complete the proof of this lemma, it is enough to obtain a C_{4k} -decomposition of $H_0 \times K_7$.

First we describe three base cycles C'_0 , C''_0 and C''_0 , each of length 4k, in $H_0 \times K_7$ as follows:

Note that P_0 and P_1 have the same vertex set, but for our convenience we will view P_0 and P_1 to be on disjoint sets of vertices except for one particular vertex, x_{t-1} . Figure 8 shows this for k = 11, where P_0 and P_1 are Hamilton paths in K_{12} . In particular, Figure 8(c) shows the way in which we will view $H_0 = P_0 \oplus P_1$, so that each vertex of H_0 , except the one vertex x_{t-1} , appears exactly twice. Each vertex x_i of H_0 gives rise to $X_i = x_i \times K_7 = \{(x_i, 1), (x_i, 2), \dots, (x_i, 7)\}$ having seven vertices of $H_0 \times K_7$. This X_i also appears in both $P_0 \times K_7$ and $P_1 \times K_7$, except for X_{t-1} (see Figure 9). If we superimpose X_i of $P_0 \times K_7$ with X_i of $P_1 \times K_7$, $i \neq t-1$, we get $H_0 \times K_7$. If x_i and x_j are adjacent in H_0 , then $\langle X_i \cup X_j \rangle$ is isomorphic to $K_{7,7} - F_0(X_i, X_j)$ and hence this subgraph $\langle X_i \cup X_j \rangle$ of $H_0 \times K_7$ has six 1-factors $F_1(X_i, X_j), F_2(X_i, X_j), \ldots, F_6(X_i, X_j)$. We construct three base cycles C'_0, C''_0 and $C_0^{\prime\prime\prime}$ of $H_0 \times K_7$, each of them having some of their sections in the graphs $P_0 \times K_7$ and $P_1 \times K_7$, in such a way that if C'_0 (or C''_0 or C''_0) has a vertex of X_i in $P_0 \times K_7$, then the cycle does not have the vertex of X_i in $P_1 \times K_7$ (see Figure 9). So, when we superimpose X_i of $P_0 \times K_7$ with X_i of $P_1 \times K_7$, vertices of C'_0 (or C''_0 or C''_0) are all distinct in $H_0 \times K_7$. The base cycles of $H_0 \times K_7$ are given below; see Figure 9.

The graph $H_0 = P_0 \oplus P_1$. The path P_0 (resp. P_1) is shown in bold (resp. normal) edges. (b) (c)

Figure 8: $H_0 = P_0 \oplus P_1$ is shown in (b), where P_0 and P_1 are the Hamilton paths of K_{12} as described in the text. In (b) P_0 and P_1 have the common vertex set whereas in (c) except for one vertex all other vertices are shown to be distinct.

$$\begin{split} C_0' &= (x_0^3, x_1^6, x_k^7, x_2^6, x_{k-1}^7, \dots, x_{t-2}^6, x_{t+2}^7, x_{t-1}^4, x_{t+1}^7, x_t^3, x_{t+1}^6, x_{t-1}^2, x_{t+3}^1, x_t^2, x_{t+2}^1, x_{t+2}^1, x_{t+2}^1, x_{t+2}^1, x_{t+2}^1, x_{t+3}^1, x_{t+2}^2, x_{t+2}^1, x_{t+2}^2, x_{t+2}^2, x_{t+3}^2, x_{t-3}^2, \dots, x_k^6, x_1^7), \\ C_0'' &= (x_0^2, x_1^1, x_k^3, x_2^1, x_{k-1}^3, \dots, x_{t-2}^1, x_{t+2}^3, x_{t+2}^4, x_{t-1}^3, x_{t+1}^3, x_t^2, x_{t+1}^1, x_{t-1}^7, x_{t+3}^5, x_t^7, x_{t+2}^5, x_{t+2}^2, x_{t+1}^6, x_{t+2}^7, x_{t+3}^5, x_{t-1}^7, x_{t+3}^5, x_t^7, x_{t+2}^5, x_{t+2}^2, x_{t+3}^6, x_{t-2}^3, \dots, x_k^3, x_0^7, x_2^5, x_0^6, x_2^7, x_0^5, x_3^7, \dots, x_{t-2}^7, x_{t+4}^5, x_{t-1}^6, x_{t+2}^1, x_{t-1}^2, x_{t+2}^2, x_{t+1}^4, x_{t-1}^3) \text{ and} \\ C_0''' &= (x_0^7, x_1^5, x_k^2, x_2^5, x_{k-1}^2, \dots, x_{t-2}^5, x_{t+2}^2, x_{t-1}^4, x_{t+1}^2, x_{t-1}^7, x_{t+1}^5, x_{t-3}^7, x_{t+3}^6, x_t^3, x_{t+2}^6, x_{t+2}^3, x_{t+4}^4, x_{t-1}^1, x_{t+2}^3, x_{t-2}^6, x_{t+3}^3, x_{t-2}^6, \dots, x_k^6, x_0^3, x_0^2, x_1^1, x_2^3, x_0^6, x_3^3, \dots, x_{t+2}^3, x_{t-2}^7, x_{t+4}^5, x_{t-1}^7, x_{t+4}^5, x_{t-2}^7, x_{t+3}^5, x_{t-2}^7, \dots, x_k^5, x_1^2), \\ & \text{where the subscripts are taken modulo $k + 1$. \end{split}$$

Figure 9: Three base cycles C'_0 , C''_0 and C'''_0 of $H_0 \times K_7$ are given for a C_{44} -decomposition of $H_0 \times K_7$, where $H_0 = P_0 \oplus P_1$ and P_0 and P_1 are two Hamilton paths of K_{12} as obtained in the text. If we superimpose the X_i , except X_{t-1} , of $P_0 \times K_7$ with X_i of $P_1 \times K_7$, on the respective vertices, for all *i* we get three base cycles C'_0 , C''_0 and C''_0 of $H_0 \times K_7$. Y'_i 's represent the columns of $H_0 \times K_7$. Note that X'_i s are not consecutive in the figure, but it appears as in the order of vertices of the Hamilton path of K_{12} .

If $\rho = (1234567)$ is the permutation acting on the superscripts of the vertices of $V(H_0 \times K_7)$, then $\{C'_0, \rho(C'_0), \ldots, \rho^6(C'_0), C''_0, \rho(C''_0), \ldots, \rho^6(C''_0), C'''_0, \rho(C'''_0), \ldots, \rho^6(C'''_0)\}$ is a C_{4k} -decomposition of $H_0 \times K_7$.

Lemma 3.9. If $p \ge 3$ is prime, $m \equiv 3 \pmod{4}$, $n \equiv 1 \pmod{p}$ and $n \equiv 0 \pmod{4}$, then $C_{4p} \mid K_m \times K_n$.

Proof. As $n \equiv 0 \pmod{4}$ and $n \equiv 1 \pmod{p}$, n = ps + 1, $s \ge 1$ is odd.

First we deal with the case for $s \ge 3$ is odd.

By hypothesis, $2p \mid \binom{n}{2}$; also n > 2p + 1; then $P_{2p+1} \mid K_n$, by Theorem 2.2 and so $C_{4p} \mid K_m \times K_n$, by Lemma 2.12.

Now we consider the case for s = 1.

Clearly, n = p + 1 and m = 4t + 3 for some $t \ge 1$. If t = 1, then $C_{4p} | K_7 \times K_{p+1}$, by Lemma 3.8. So we assume that $t \ge 2$,

 $K_{4t+3} \times K_{p+1} = (K_7 \oplus K_5 \oplus \cdots \oplus K_5 \oplus K_{6,4,4,\dots,4}) \times K_{p+1}$ = $(K_7 \times K_{p+1}) \oplus (K_5 \times K_{p+1} \oplus \cdots \oplus K_5 \times K_{p+1}) \oplus$ $(K_{6,4} \times K_{p+1} \oplus \cdots \oplus K_{6,4} \times K_{p+1}) \oplus (K_{4,4} \times K_{p+1} \oplus \cdots \oplus K_{4,4} \times K_{p+1}).$

 $C_{4p} | K_7 \times K_{p+1}$, by Lemma 3.8. Since $P_{p+1} | K_{p+1}$, the graphs $K_5 \times K_{p+1}$ and $K_{4,4} \times K_{p+1}$ are C_{4p} -decomposable, by Lemmas 2.13 and 2.14, respectively. Clearly, $K_{6,4} \times K_{p+1} = C_4 \times K_{p+1} \oplus \cdots \oplus C_4 \times K_{p+1}$. A C_{4p} -decomposition of $C_4 \times K_{p+1}$ (isomorphic to $K_{p+1} \times C_4$) is described below:

Let $V(K_{p+1}) = \{x_0, x_1, \dots, x_p\}$ and $C_4 = (1, 2, 3, 4)$. Then $V(K_{p+1} \times C_4) = \bigcup_{i=0}^p X_i$, where $X_i = x_i \times V(C_4) = \{(x_i, 1), (x_i, 2), (x_i, 3), (x_i, 4)\}$. The symmetric digraph K_{p+1}^* admits a \overrightarrow{C}_p -decomposition, by Theorem 2.9, say \mathcal{C} , where \overrightarrow{C}_p denotes the directed cycle of length p. Based on each of the directed cycles in \mathcal{C} , we construct a cycle of length 4p in $K_{p+1} \times C_4$ as follows. Let \overrightarrow{C}_p be in \mathcal{C} ; corresponding to this \overrightarrow{C}_p we consider in $K_{p+1} \times C_4$ the cycle $C'_p = \bigcup_{\overrightarrow{x_i x_j} \in A(\overrightarrow{C}_p)} F_1(X_i, X_j)$, where $F_1(X_i, X_j)$ is the 1-factor of jump 1 from X_i to X_j in $K_{p+1} \times C_4$ and $A(\overrightarrow{C}_p)$ denotes the arc set of \overrightarrow{C}_p . Clearly, C'_p is a cycle of length 4p, in $K_{p+1} \times C_4$, as the sum of the jumps of the 1-factors occurring in $\bigcup_{\overrightarrow{x_i x_j} \in A(\overrightarrow{C}_p)} F_1(X_i, X_j)$ is p, which is relatively prime to 4. Thus to each $\overrightarrow{C}_p \in \mathcal{C}$ we obtain a C_{4p} in $K_{p+1} \times C_4$; as \mathcal{C} is a directed p-cycle decomposition

of K_{p+1}^* , we obtain a 4p-cycle decomposition of $K_{p+1} \times C_4$. This completes the proof of the lemma.

4 C_{4p} -decomposition of $K_m \times K_n$

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We assume that $C_{4p} | K_m \times K_n$. As the cycle length cannot exceed the number of vertices of $K_m \times K_n$, $4p \leq mn$. As $C_{4p} | K_m \times K_n$, $K_m \times K_n$ is an even regular graph, that is, (m-1)(n-1) is even and hence either m or n is odd. Further, $C_{4p} | K_m \times K_n$ implies 4p divides the number of edges of $K_m \times K_n$, that is, $4p | \binom{m}{2}n(n-1)$.

Next we prove the sufficiency. Since the tensor product is commutative, we assume that m is odd.

Case 1: $p \mid \binom{n}{2}$.

Subcase 1.1: $2 \mid \binom{m}{2}$.

Since m is odd and $2 \mid \binom{m}{2}$, $m \equiv 1 \pmod{4}$; as $p \mid \binom{n}{2}$ and p is prime, $p \leq n$, we invoke Lemma 3.4 to complete the proof.

Subcase 1.2: $2 \not\mid \binom{m}{2}$.

In this case, $m \equiv 3 \pmod{4}$. Clearly, from the hypothesis of the theorem $2 \lfloor \binom{n}{2}$ and also from the hypothesis of the case $2p \mid \binom{n}{2}$. Now there are two possibilities, according to the parity of n.

(1) If n is even, then either $n \equiv 0 \pmod{4p}$ or, $n \equiv 0 \pmod{4}$ and $n \equiv 1 \pmod{p}$. If $n \equiv 0 \pmod{4p}$, then $P_{2p+1} \mid K_n$, by Theorem 2.2; now apply Lemma 2.12. If $n \equiv 1 \pmod{p}$ with $4 \mid n$, then the proof follows by Lemma 3.9.

(2) If n is odd, then either $n \equiv 1 \pmod{4p}$ or, $n \equiv 1 \pmod{4}$ and $n \equiv 0 \pmod{p}$. If $n \equiv 1 \pmod{4p}$, then the proof follows by Lemma 3.1; if $n \equiv 1 \pmod{4}$ and $p \mid n$, then the proof follows by Lemma 3.7.

Case 2: $p \not| \binom{n}{2}$.

Subcase 2.1: $2 \mid \binom{n}{2}$. As $p \mid \binom{m}{2}$, $C_p \mid K_m$, by Theorem 2.1 and hence $K_m \times K_n = C_p \times K_n \oplus \cdots \oplus C_p \times K_n$. Since $2 \mid \binom{n}{2}$, either $n \equiv 0 \pmod{4}$ or $n \equiv 1 \pmod{4}$. If $n \equiv 0 \pmod{4}$, then $C_{4p} \mid C_p \times K_n$, by Theorem 2.5; if $n \equiv 1 \pmod{4}$, then $C_{4p} \mid K_m \times K_n$, by Lemma 3.4. Subcase 2.2: $2 \not| \binom{n}{2}$.

From the necessary conditions, $2p \mid \binom{m}{2}$; then either $m \equiv 0 \pmod{p}$ and $m \equiv$ $1 \pmod{4}$ or, $m \equiv 1 \pmod{4p}$; recall that m is odd by assumption. If $m \equiv 1 \pmod{4p}$ 4p), then the proof follows by Lemma 3.1. Since $2 \not| \binom{n}{2}$, $n \equiv 2 \text{ or } 3 \pmod{4}$, and also $m \equiv 1 \pmod{4}$ with $p \mid m$. The proof of this subcase now follows by Lemma 3.7. \Box

\overrightarrow{C}_{4p} -decomposition of $(K_m \circ \overline{K}_n)^*$ $\mathbf{5}$

We quote the following two theorems which are used in the proof of Theorem 1.2.

Theorem 5.1. [13] Let \overrightarrow{G} be a directed closed trail of length m with maximum out degree Δ^+ and $\chi(\vec{G}) = s$. Then for all $n \geq \Delta^+$, $\vec{C}_m \mid \vec{G} \circ \overline{K}_n$ whenever at least (s-2) mutually orthogonal latin squares of order n exist, where $\chi(\vec{G})$ denotes the chromatic number of \vec{G} .

Theorem 5.2. [22] $\overrightarrow{C}_k \mid \overrightarrow{C}_k \circ \overline{K}_n$ for all $k \ge 3$ and $n \ge 1$. Corollary 5.3. If $\overrightarrow{C}_k | (K_m \circ \overline{K}_n)^*$, then $\overrightarrow{C}_k | (K_m \circ \overline{K}_{nt})^*$.

Proof. Since $(K_m \circ \overline{K}_{nt})^* = (K_m \circ \overline{K}_n)^* \circ \overline{K}_t = \overrightarrow{C}_k \circ \overline{K}_t \oplus \overrightarrow{C}_k \circ \overline{K}_t \oplus \cdots \oplus \overrightarrow{C}_k \circ \overline{K}_t$, the proof is immediate from Theorem 5.2.

Proof of Theorem 1.2. If $K_m \circ \overline{K}_n$ is an even regular graph, then the result is immediate by Theorem 2.11. So we assume that $K_m \circ \overline{K}_n$ is an odd regular graph and hence m is even and n is odd.

Case 1: $p \mid n^2$. Clearly, $n \equiv 0 \pmod{p}$. Since m is even and n is odd, from the divisibility condition, m = 4t, for some $t \ge 1$. By Corollary 5.3, it is enough to prove the case for n = p. Clearly,

$$(K_m \circ \overline{K}_p)^* = ((tK_4 \oplus (K_t \circ \overline{K}_4)) \circ \overline{K}_p)^* = t(K_4 \circ \overline{K}_p)^* \oplus (K_{4,4} \circ \overline{K}_p \oplus \dots \oplus K_{4,4} \circ \overline{K}_p)^*.$$

Note that $\vec{C}_{4p} | (K_4 \circ \overline{K}_p)^*$, by Theorem 2.10. Also, $C_4 | K_{4,4}$, by Theorem 2.3, and $C_{4p} | C_4 \circ \overline{K}_p$, by Theorem 2.8; hence $\vec{C}_{4p} | (K_{4,4} \circ \overline{K}_p)^*$. This completes the proof of this case.

Case 2: $p \not| n^2$. From the necessary conditions, either $m \equiv 0 \pmod{4p}$ or $m \equiv 0 \pmod{4}$ and $m \equiv 1 \pmod{p}$.

Subcase 2.1: $m \equiv 0 \pmod{4p}$. Let $m = 4pt, t \ge 1$. Then

$$(K_m \circ \overline{K}_n)^* = (K_{4pt} \circ \overline{K}_n)^* = nK_{4pt}^* \oplus (K_{4pt} \times K_n)^*,$$

where the *n* copies of K_{4pt}^* are precisely the subdigraphs induced by the vertices of the *n* columns of $(K_{4pt} \circ \overline{K}_n)^*$ and the remaining subdigraph of $(K_{4pt} \circ \overline{K}_n)^*$ is isomorphic to $(K_{4pt} \times K_n)^*$. Since *n* is odd, $(K_{4pt} \times K_n)$ is an even regular graph. By Theorem 1.1, $C_{4p} | (K_{4pt} \times K_n)$ and hence $\overrightarrow{C}_{4p} | (K_{4pt} \times K_n)^*$. By Theorem 2.9, $\overrightarrow{C}_{4p} | K_{4pt}^*$. This completes the proof of this subcase.

Subcase 2.2: $m \equiv 0 \pmod{4}$ and $m \equiv 1 \pmod{p}$.

Let $m = pt + 1, t \ge 1$ and odd.

First we consider the case t = 1. Clearly, $(K_{p+1} \circ \overline{K}_n)^* = K_{p+1}^* \circ \overline{K}_n$. Let $V(K_{p+1}) = \{a_1, a_2, \ldots, a_{p+1}\}$. For $1 \leq i \leq (\frac{p+1}{2})$, we define the Hamilton path $P_i = [a_i, a_{i+1}, a_{i-1}, \ldots, a_{i+(\frac{p+1}{2})-1}, a_{i+(\frac{p+1}{2})+1}, a_{i+(\frac{p+1}{2})}]$ in K_{p+1} , where the subscripts are taken modulo p + 1 with residues $1, 2, \ldots, p + 1$. Let $H_i = P_{2i-1} \oplus P_{2i}, 1 \leq i \leq (\frac{p+1}{4})$; H_i has 2p edges and $\Delta(H_i) \leq 4$; note that $H_i = K_4$ when p = 3. As $\Delta(H_i) \leq 4$, $\chi(H_i) \leq 4$; see [8]. Since $H_i | K_{p+1}, H_i^* | K_{p+1}^*$; each H_i^* is a directed closed trail of length 4p, $\Delta^+(H_i^*) \leq 4$ and $\chi(H_i^*) \leq 4$. Since n is odd and from the necessary conditions, $n \geq 5$. Consequently, at least two mutually orthogonal latin squares of order n exist (see [18]); then $\overrightarrow{C}_{4p} | H_i^* \circ \overline{K}_n$, by Theorem 5.1.

Next we assume that $t \ge 3$. Since $pt + 1 \equiv 0 \pmod{4}$, $2p \mid \binom{pt+1}{2}$. Then $P_{2p+1}^* \mid K_{pt+1}^*$ as $P_{2p+1} \mid K_{pt+1}$ by Theorem 2.2. Clearly, each P_{2p+1}^* is a directed closed trail of length 4p with $\Delta^+(P_{2p+1}^*) = 2$ and $\chi(P_{2p+1}^*) = 2$ and hence $\overrightarrow{C}_{4p} \mid P_{2p+1}^* \circ \overline{K}_n$, by Theorem 5.1. This completes the proof.

Acknowledgements

The first author would like to thank the Kalasalingam Academy of Research and Education, Tamil Nadu, India, for financial support through a University Research Fellowship. We are grateful to the reviewers for their careful reading and suggestions which improved the presentation of the paper.

References

- B. Alspach, J. C. Bermond and D. Sotteau, Decomposition into cycles I: Hamilton decompositions, in *Cycles and Rays*, G. Hahn et al. (Eds.), Kluwer Academic Publishers, the Netherlands, 1990, pp. 9–18.
- [2] B. Alspach and H. Gavlas, Cycle decompositions of K_n and $K_n I$, J. Combin. Theory Ser. B 81 (2001), 77–99.
- [3] B. Alspach, H. Gavlas, M. Šajna and H. Verrall, Cycle decompositions IV: complete directed graphs and fixed length directed cycles, *J. Combin. Theory Ser. A* 103 (2003), 165–208.
- [4] A. Assaf, Modified group divisible designs, Ars Combin. 29 (1990), 13–20.
- [5] R. Balakrishnan, J.-C. Bermond, P. Paulraja and M.-L. Yu, On Hamilton cycle decompositions of the tensor product of complete graphs, *Discrete Math.* 268 (2003), 49–58.
- [6] R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory, 2nd ed., Springer, New York, 2012.
- [7] E. J. Billington, D. G. Hoffman and B. M. Maenhaut, Group divisible pentagon systems, Utilitas Math. 55 (1999), 211–219.
- [8] R. L. Brooks, On coloring the nodes of a network, Proc. Cambridge. Philos. Soc. 60 (1946), 355–451.
- [9] D. Bryant, D. Horsley and W. Pettersson, Cycle decompositions V: Complete graphs into cycles of arbitrary lengths, Proc. Lond. Math. Soc. 108 (2014), 1153– 1192.
- [10] M. Buratti, Rotational k-cycle systems of order v < 3k; another proof of the existence of odd cycle systems, J. Combin. Des. 11 (2003), 433–441.
- [11] M. Buratti, H. Cao, D. Dai and T. Traetta, A complete solution to the existence of (k, λ) -cycle frames of type g^u , J. Combin. Des. 25 (2017), 197–230.
- [12] V. Chitra, A. Shanmuga Vadivu and A. Muthusamy, C_{4p} -frame of complete multipartite multigraphs, *Aequationes Math.* 85 (2013), 563–579.

- [13] S. Ganesamurthy and P. Paulraja, 2p-cycle decompositions of some regular graphs and digraphs, *Discrete Math.* 341 (2018), 2197–2210.
- [14] D. G. Hoffman, C. C. Linder and C. A. Rodger, On the construction of odd cycle systems, J. Graph Theory 13 (1989), 417–426.
- [15] P. K. Jha, Hamiltonian decompositions of products of cycles, Indian J. Pure Appl. Math. 23 (1992), 723–729.
- [16] R. Laskar, Decomposition of some composite graphs into Hamilton cycles, Proc. Conf. of Keszthely, 1976, Colloquia Mathematica Societatis János Bolyai, North-Holland, Amsterdam, New York, 1978.
- [17] R. Laskar and B. Auerbach, On the decompositions of r-partite graphs into edge-disjoint Hamilton circuits, *Discrete Math.* 14 (1976), 146–155.
- [18] C. C. Lindner and C. A. Rodger, Design theory, 2nd ed., CRC Press, Boca Raton, 2009.
- [19] J. Ma, L. Pu and H. Shen, Cycle decompositions of $K_{n,n} I$, SIAM J. Discrete Math. 20 (2006), 603–609.
- [20] R. S. Manikandan and P. Paulraja, C_p-decompositions of some regular graphs, Discrete Math. 306 (2006), 429–451.
- [21] R. S. Manikandan and P. Paulraja, C₅-decompositions of the tensor product of complete graphs, Australas. J. Combin. 37 (2007), 285–294.
- [22] R. S. Manikandan, P. Paulraja and S. Sivasankar, Directed cycle decomposition of some regular digraphs, *Ramanujan Math. Soc. Lec. Notes Ser.* No.7 (2008), 175–181.
- [23] R. S. Manikandan and P. Paulraja, C₇-decompositions of the tensor product of complete graphs, *Discuss. Math. Graph Theory* 37 (2017), 523–535.
- [24] R. S. Manikandan, P. Paulraja and T. Sivakaran, p²-Cycle decompositions of the tensor product of complete graphs, Australas. J. Combin. 73 (2019), 107–131.
- [25] A. Muthusamy and P. Paulraja, Factorizations of product graphs into cycles of uniform length, i *Graphs Combin.* 11 (1995), 69–90.
- [26] A. Muthusamy and A. Shanmuga Vadivu, Cycle frames of complete multipartite multigraphs-III, J. Combin. Des. 22 (2014), 473–487.
- [27] L. Ng, Hamiltonian decomposition of complete regular multipartite digraphs, Discrete Math. 177 (1997), 279–285.
- [28] M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Des. 10 (2002), 27–78.

- [29] B. R. Smith, Decomposing complete equipartite graphs into cycles of length 2p, J. Combin. Des. 16 (2008), 244–252.
- [30] B. R. Smith, Complete equipartite 3p-cycle systems, Australas. J. Combin. 45 (2009), 125–138.
- [31] B. R. Smith, Decomposing complete equipartite graphs into odd square-length cycles: number of parts odd, J. Combin. Des. 18 (2010), 401–414.
- [32] B. R. Smith, Cycle decompositions of complete multigraphs, J. Combin. Des. 18 (2010), 85–93.
- [33] D. Sotteau, Decomposition of $K_{m,n}(K_{m,n}^*)$ into cycles (circuits) of length 2k, J. Combin. Theory Ser. B 30 (1981), 75–81.
- [34] M. Tarsi, Decomposition of a complete multigraph into simple paths: nonbalanced handcuffed designs, J. Combin. Theory Ser. A 34 (1983), 60–70.

(Received 22 June 2019; revised 3 July 2020, 7 Dec 2020)