Decompositions of some classes of regular graphs and digraphs into cycles of length $4 p$

S. Ganesamurthy
Department of Mathematics
Kalasalingam Academy of Research and Education
Krishnankoil-626126, India
ganesamurthy66@gmail.com

R.S. Manikandan

Department of Mathematics
Bharathidasan University Constituent College
Lalgudi-621601, India
manirs2004@yahoo.co.in
P. Paulraja

Department of Mathematics
Kalasalingam Academy of Research and Education
Krishnankoil-626126, India
ppraja56@gmail.com

Abstract

In this paper, we prove the existence of a $4 p$-cycle decomposition of the graph $K_{m} \times K_{n}$ and a directed $4 p$-cycle decomposition of the symmetric digraph $\left(K_{m} \circ \bar{K}_{n}\right)^{*}$, where \circ and \times denote the wreath product and tensor product of graphs, respectively, and p is an odd prime. It is proved that, for integers $m \geq 3$ and $n \geq 3$, the obvious necessary conditions for the existence of a $4 p$-cycle decomposition of $K_{m} \times K_{n}$ are sufficient, where p is an odd prime. Also, it is shown that the necessary conditions for the existence of a directed $4 p$-cycle decomposition of the symmetric digraph $\left(K_{m} \circ \bar{K}_{n}\right)^{*}$ are sufficient, where p is an odd prime. Recently, the same type of results are obtained for $2 p$; see [S. Ganesamurthy and P. Paulraja, Discrete Math. 341 (2018), 2197-2210].

1 Introduction

All graphs (respectively, digraphs) considered here are loopless and finite. Let C_{k} (respectively, \vec{C}_{k}) and P_{k} (respectively, \vec{P}_{k}) denote a cycle (respectively, directed cycle) and a path (respectively, directed path) on k vertices. For a graph $G, G(\lambda)$ denotes the multigraph obtained from G by replacing each edge of G by λ edges. The complete graph on n vertices is denoted by K_{n} and its complement is denoted by \bar{K}_{n}. For an integer $k \geq 2, k H$ denotes k vertex disjoint copies of H. For a graph G, G^{*} denotes the symmetric digraph of G and it is obtained from G by replacing every edge by a symmetric pair of arcs. If $H_{1}, H_{2}, \ldots, H_{\ell}$ are edge-disjoint subgraphs of a graph G such that $E(G)=E\left(H_{1}\right) \cup E\left(H_{2}\right) \cup \cdots \cup E\left(H_{\ell}\right)$, then we say that $H_{1}, H_{2}, \ldots, H_{\ell}$ decompose G and we write this as $G=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{\ell}$, where \oplus denotes the edge disjoint union of graphs. If each $H_{i} \simeq H, 1 \leq i \leq \ell$, then we say that H decomposes G and we denote this by $H \mid G$. Similarly, if $\vec{H}_{1}, \vec{H}_{2}, \ldots, \vec{H}_{\ell}$ are arc-disjoint subdigraphs of a digraph \vec{D} such that $A(\vec{D})=A\left(\vec{H}_{1}\right) \cup A\left(\vec{H}_{2}\right) \cup$ $\ldots \cup A\left(\vec{H}_{\ell}\right)$, then we say that $\vec{H}_{1}, \vec{H}_{2}, \ldots, \vec{H}_{\ell}$ decompose \vec{D} and we write this as $\vec{D}=\vec{H}_{1} \oplus \vec{H}_{2} \oplus \cdots \oplus \vec{H}_{\ell}$. If each $\vec{H}_{i} \simeq \vec{H}, 1 \leq i \leq \ell$, then we say that \vec{H} decomposes \vec{D} and we denote this by $\vec{H} \mid \vec{D}$. If $H_{i} \simeq C_{k}$ (respectively, $\vec{H}_{i} \simeq \vec{C}_{k}$), $1 \leq i \leq \ell$ and $k \geq 3$, then we write $C_{k} \mid G$ (respectively, $\vec{C}_{k} \mid \vec{D}$) and in this case we say that G (respectively, \vec{D}) has a C_{k}-decomposition (respectively, \vec{C}_{k}-decomposition) or akcycle decomposition (respectively, directed k-cycle decomposition). A C_{k}-factor of a graph G is a spanning subgraph H of G such that each component of H is a k-cycle. A partition of the edge set of G into C_{k}-factors is called a C_{k}-factorization of G, that is, a 2 -factorization in which each of its factors contains only cycles of length k as its components. A k-regular graph G is said to be Hamilton cycle decomposable if its edge set can be partitioned into Hamilton cycles or Hamilton cycles plus a perfect matching if k is even or odd, respectively.

For two graphs (respectively, digraphs) G and H, their tensor product, denoted by $G \times H$, is the graph with vertex set $V(G) \times V(H)$ in which $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)$ is an edge (respectively, arc) whenever $g_{1} g_{2}$ is an edge (respectively, arc) in G and $h_{1} h_{2}$ is an edge (respectively, arc) in H. Similarly, the wreath product of graphs (respectively, digraphs) G and H, denoted by $G \circ H$, is the graph with vertex set $V(G) \times V(H)$ in which $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)$ is an edge (respectively, arc) whenever $g_{1} g_{2}$ is an edge (respectively, arc) in G or, $g_{1}=g_{2}$ and $h_{1} h_{2}$ is an edge (respectively, arc) in H; see Figure 1. It can be easily seen that $K_{m} \circ \bar{K}_{n}$ is the complete m-partite graph in which each partite set has n vertices. Moreover, $K_{m} \circ \bar{K}_{n}-E\left(n K_{m}\right) \cong K_{m} \times K_{n}$. The complete multipartite graph with partite sets having sizes $m_{1}, m_{2}, \ldots, m_{k}$ is denoted by $K_{m_{1}, m_{2}, \ldots, m_{k}}$. It is well-known that the tensor product is commutative and distributive over edge-disjoint union of graphs, that is, if $G=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{k}$, then $G \times H=\left(H_{1} \times H\right) \oplus\left(H_{2} \times H\right) \oplus \cdots \oplus\left(H_{k} \times H\right)$. If G and H are two graphs with vertex sets $\left\{x_{0}, x_{1}, \ldots, x_{r}\right\}$ and $\left\{y_{0}, y_{1}, \ldots, y_{s}\right\}$, respectively, then $V(G \times H)=$ $V(G) \times V(H)=\left\{\left(x_{i}, y_{j}\right) \mid 0 \leq i \leq r\right.$ and $\left.0 \leq j \leq s\right\}$. For $x_{i} \in V(G)$ we define $X_{i}=x_{i} \times V(H)=\left\{\left(x_{i}, y_{0}\right),\left(x_{i}, y_{1}\right), \ldots,\left(x_{i}, y_{s}\right)\right\}$ and we call this set of vertices
the $i^{\text {th }}$ row of $G \times H$. Similarly, for $y_{j} \in V(H)$ we define $Y_{j}=V(G) \times y_{j}=$ $\left\{\left(x_{0}, y_{j}\right),\left(x_{1}, y_{j}\right), \ldots,\left(x_{r}, y_{j}\right)\right\}$ and we call this set of vertices the $j^{\text {th }}$ column of $G \times H$.

$$
X_{i}=\left\{x_{i}\right\} \times V(H) \text { and } Y_{j}=V(G) \times\left\{y_{j}\right\}
$$

Figure 1: The graphs $C_{4} \times K_{4}$ and $C_{4} \circ \bar{K}_{4}$.

Let G be a bipartite graph with bipartition (X, Y), where $X=\left\{x_{0}, x_{1}, \ldots, x_{r-1}\right\}$, $Y=\left\{y_{0}, y_{1}, \ldots, y_{r-1}\right\}$. For some $i, 1 \leq i \leq r-1$, if G contains the set of edges $F_{i}(X, Y)=\left\{x_{j} y_{i+j} \mid 0 \leq j \leq r-1\right\}$, where addition in the subscript is taken modulo r, then we say that G has the 1-factor of jump i from X to Y and each edge of $F_{i}(X, Y)$ is called an edge of jump i from X to Y. Note that $F_{i}(Y, X)=F_{r-i}(X, Y)$, $0 \leq i \leq r-1$. Clearly, if $G=K_{r, r}$, then $E(G)=\bigcup_{i=0}^{r-1} F_{i}(X, Y)$. Definitions which are not given here can be found in [6].

The problem of decomposing regular graphs into cycles is not new. The obvious necessary conditions for the existence of an m-cycle decomposition of K_{n} (respectively, $K_{n}-I$, where I is a perfect matching) when n is odd (respectively, even) are proved to be sufficient; see [2, 14, 28]. In 2003, Buratti [10] obtained a short proof for the existence of an odd cycle decomposition of K_{n}. Recently, Bryant et al. have proved that the complete graph K_{n} (respectively, $K_{n}-I$, where I is a perfect matching) can be decomposed into cycles of lengths $m_{1}, m_{2}, \ldots, m_{k}$, where $\sum_{i=1}^{k} m_{i}=\binom{n}{2}$ (respectively, $\sum_{i=1}^{k} m_{i}=\binom{n}{2}-\frac{n}{2}$) and n is odd (respectively, even); see [9].

Necessary and sufficient conditions for the existence of a k-cycle decomposition of $K_{m} \circ \bar{K}_{n}, k \in\left\{m n, p, 2 p, 3 p, p^{2}\right\}$, are given in [7, 17, 20, 21, 23, 29, 30, 31], where p is a prime. The existence of an even cycle decomposition of $\left(K_{m} \circ \bar{K}_{n}\right)(\lambda)$ has been proved by Muthusamy and Shanmuga Vadivu; see [26]. Very recently, regardless of the parity of k, the authors of [11] actually solved the existence problem for a C_{k}-decomposition of $\left(K_{m} \circ \bar{K}_{n}\right)(\lambda)$ whose cycle-set can be partitioned into 2-regular graphs containing all the vertices except those belonging to one part.

The graph $K_{m} \times K_{n}$ is a proper spanning regular subgraph of $K_{m} \circ \bar{K}_{n}$ (in fact, $\left.K_{m} \times K_{n} \cong\left(K_{m} \circ \bar{K}_{n}\right)-E\left(n K_{m}\right)\right)$; the existence of a k-cycle decomposition of $K_{m} \times$ K_{n} is not a straightforward consequence of the existence of a k-cycle decomposition of $K_{m} \circ \bar{K}_{n}$. Assaf [4] proved that $C_{3} \mid\left(K_{m} \times K_{n}\right)(\lambda)$ whenever the necessary conditions are sufficient. Manikandan and Paulraja proved that the necessary conditions for the existence of a C_{p}-decomposition of $K_{m} \times K_{n}$ are also sufficient whenever $p \geq 5$ is prime; see [20, 21, 23]. Further, in [13], Ganesamurthy and Paulraja proved that the necessary conditions are sufficient for the existence of a C_{k}-decomposition of $K_{m} \times K_{n}$, where $k \in\left\{2^{\ell}, 2 p\right\}, \ell \geq 2$ and $p \geq 3$ is a prime. Recently, Manikandan et al. [24] proved the existence of a p^{2}-cycle decomposition of $K_{m} \times K_{n}$ whenever the necessary conditions are satisfied. Balakrishnan et al. [5] obtained a Hamilton cycle decomposition of $K_{m} \times K_{n}$.

Directed k-cycle decompositions of $\left(K_{n}(\lambda)\right)^{*}$ are studied in [3, 32]. Furthermore, directed p-cycle and $2 p$-cycle decompositions of $\left(K_{m} \circ \bar{K}_{n}\right)^{*}$ are obtained in [13, 22].

Besides other results, we prove the following theorems.
Theorem 1.1. If the integers m and n are at least 3 and $p \geq 3$ is prime, then $C_{4 p} \mid K_{m} \times K_{n}$ if and only if either m or n is odd, $4 p \leq m n$ and $\binom{m}{2}\binom{n}{2} \equiv 0(\bmod$ $2 p)$.

Theorem 1.2. If the integers m and n are at least 3 and $p \geq 3$ is prime, then $\vec{C}_{4 p} \mid\left(K_{m} \circ \bar{K}_{n}\right)^{*}$ if and only if $4 p \leq m n$ and $m(m-1) n^{2} \equiv 0(\bmod 4 p)$.

2 Some known theorems and lemmas

We quote the following theorems for our future reference.
Theorem 2.1. [2] For odd integers $3 \leq k \leq m, C_{k} \mid K_{m}$ if and only if $m(m-1) \equiv$ $0(\bmod 2 k)$.

Theorem 2.2. [34] For positive integers k, m and $\lambda, P_{k+1} \mid K_{m}(\lambda)$ if and only if $2 \leq k+1 \leq m$ and $\lambda m(m-1) \equiv 0(\bmod 2 k)$.
Theorem 2.3. [33] For positive integers m, n and $k, C_{k} \mid K_{m, n}$ if and only if m, n and k are all even with $\frac{k}{2} \leq m, \frac{k}{2} \leq n$ and $k \mid m n$.

Theorem 2.4. [19] Let $m \geq 3$ be an odd integer and let $k \geq 4$ be an even integer. Then $C_{k} \mid\left(K_{m, m}-I\right)$ if and only if $k \leq 2 m$ and $k \mid m(m-1)$, where I is a perfect matching of $K_{m, m}$.

Theorem 2.5. [25] If $n \mid m$, then $C_{k} \times K_{m}$ admits a $C_{k n}$-factorization except possibly when k is an odd integer and $m \equiv 2(\bmod 4)$.
Theorem 2.6. [5] For $m, n \geq 3$, the graph $K_{m} \times K_{n}$ is Hamilton cycle decomposable.
Theorem 2.7. [15] Let $m \geq 3$ be an odd integer and let $n \geq 3$ be an integer. Then $C_{m} \times C_{n}$ is Hamilton cycle decomposable.

Theorem 2.8. [16] For $k \geq 3$ and $n \geq 2$, the graph $C_{k} \circ \bar{K}_{n}$ is Hamilton cycle decomposable.

Theorem 2.9. [3] For positive integers k and n, with $2 \leq k \leq n, \vec{C}_{k} \mid K_{n}^{*}$ if and only if $n(n-1) \equiv 0(\bmod k)$ and $(k, n) \neq(3,6),(4,4),(6,6)$.

Theorem 2.10. [27] For positive integers $m \geq 2$ and n, $\left(K_{m} \circ \bar{K}_{n}\right)^{*}$ is directed Hamilton cycle decomposable except when $(m, n)=(4,1)$ or $(6,1)$.

Theorem 2.11. [12] Let λ, m, n be positive integers with $m, n \geq 3$, and $p \geq 2$ prime. Then $C_{4 p} \mid K_{m}(\lambda) \circ \bar{K}_{n}$ if and only if (1) $m n \geq 4 p$, (2) $\lambda(m-1) n$ is even, and (3) $4 p \left\lvert\, \lambda\binom{m}{2} n^{2}\right.$.
Lemma 2.12. [13] If $P_{k+1} \mid K_{n}$, then $C_{2 k} \mid K_{m} \times K_{n}$ when $k \geq 3$ and for all odd integers $m \geq 3$.

Lemma 2.13. [13] Let $k \geq 2, m \geq 5$ and $m \equiv 1(\bmod 4)$. If $P_{k+1} \mid K_{n}$, then $C_{4 k} \mid K_{m} \times K_{n}$.

Lemma 2.14. [13] If $k \geq 2$, then $C_{4 k} \mid P_{k+1} \times K_{4,4}$.

3 Building blocks

In this section we prove some lemmas which are used in the proof of the main Theorem 1.1.

Lemma 3.1. If $m \geq 2$ is an integer and $n, k \geq 3$ are odd integers with $n \equiv 1(\bmod$ $4 k$), then $C_{4 k} \mid K_{m} \times K_{n}$.

Proof. Clearly, $K_{m} \times K_{n}=\left(K_{2} \times K_{n}\right) \oplus \cdots \oplus\left(K_{2} \times K_{n}\right)$. The graph $K_{2} \times K_{n} \cong K_{n, n}-I$, where I is a perfect matching of $K_{n, n}$. Since $n \equiv 1(\bmod 4 k), 4 k \mid n(n-1)$ and hence $C_{4 k} \mid K_{n, n}-I$, by Theorem 2.4. Thus $C_{4 k} \mid K_{m} \times K_{n}$.

Lemma 3.2. If $k \geq 3$ is an odd integer, then $C_{4 k} \mid K_{5} \times C_{k}$.
Proof. Let $V\left(K_{5}\right)=\{v, w, x, y, z\}$ and $C_{k}=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. Then $V(G)=\left\{\left(v, a_{1}\right)\right.$, $\left.\left(v, a_{2}\right), \ldots,\left(v, a_{k}\right)\right\} \cup\left\{\left(w, a_{1}\right),\left(w, a_{2}\right), \ldots,\left(w, a_{k}\right)\right\} \cup\left\{\left(x, a_{1}\right),\left(x, a_{2}\right), \ldots,\left(x, a_{k}\right)\right\} \cup$ $\left\{\left(y, a_{1}\right),\left(y, a_{2}\right), \ldots,\left(y, a_{k}\right)\right\} \cup\left\{\left(z, a_{1}\right),\left(z, a_{2}\right), \ldots,\left(z, a_{k}\right)\right\}$. For our convenience, we denote $\left(v, a_{i}\right),\left(w, a_{i}\right),\left(x, a_{i}\right),\left(y, a_{i}\right)$ and $\left(z, a_{i}\right)$ by $v_{i}, w_{i}, x_{i}, y_{i}$ and z_{i}, respectively. Now we construct a base cycle C of length $4 k$ in $K_{5} \times C_{k}$ as follows; see Figure 2.
Let $C=\left(v_{1}, w_{2}, v_{3}, w_{4}, v_{5}, \ldots, w_{k-1}, v_{k}, x_{1}, z_{2}, x_{3}, \ldots, z_{k-1}, x_{k}, w_{1}, v_{2}, w_{3}, \ldots, v_{k-1}\right.$, $\left.w_{k}, z_{1}, x_{2}, z_{3}, \ldots, x_{k-1}, z_{k}\right)$.

Consider the permutation $\rho=Z_{1} Z_{2} \ldots Z_{k}$, where $Z_{i}=\left(v_{i} w_{i} x_{i} y_{i} z_{i}\right), 1 \leq i \leq k$, on the set $V\left(K_{5} \times C_{k}\right)$. Then $\left\{C, \rho(C), \rho^{2}(C), \rho^{3}(C), \rho^{4}(C)\right\}$ is a $C_{4 k}$-decomposition of $K_{5} \times C_{k}$. This completes the proof.

Figure 2: A base cycle C of $K_{5} \times C_{7}$ for a C_{28}-decomposition of $K_{5} \times C_{7}$ is shown above.
Lemma 3.3. Let k and m be odd integers with $3 \leq k \leq m$. If $C_{k} \mid K_{m}$, then $C_{4 k} \mid K_{4,4} \times K_{m}$.

Proof. As $C_{k} \mid K_{m}, K_{4,4} \times K_{m}=K_{4,4} \times C_{k} \oplus \cdots \oplus K_{4,4} \times C_{k}=C_{4} \times C_{k} \oplus \cdots \oplus C_{4} \times C_{k}$, since $C_{4} \mid K_{4,4}$, by Theorem 2.3. The graph $C_{4} \times C_{k}$ admits a $C_{4 k}$-decomposition, by Theorem 2.7. Thus $C_{4 k} \mid K_{4,4} \times K_{m}$.
Lemma 3.4. Let $k \geq 3$ be an odd integer, n be an integer with $k \leq n$ and $k \left\lvert\,\binom{ n}{2}\right.$. If $m \geq 5$ and $m \equiv 1(\bmod 4)$, then $C_{4 k} \mid K_{m} \times K_{n}$.

Proof. Let $m=4 t+1, t \geq 1$.
Case 1. n is odd.
Since n is odd and $k \left\lvert\,\binom{ n}{2}\right., K_{n}=C_{k} \oplus \cdots \oplus C_{k}$, by Theorem 2.1. If $t=1, C_{4 k} \mid K_{5} \times K_{n}$, by Lemma 3.2, because $K_{5} \times K_{n}=K_{5} \times C_{k} \oplus \cdots \oplus K_{5} \times C_{k}$. For all $t \geq 2$, the edges of $K_{4 t+1}$ can be decomposed into t copies of K_{5} which each share a common vertex and $\binom{t}{2}$-copies of $K_{4,4}$; see Figure 3.

Figure 3: $K_{4 t+1}=K_{5} \oplus K_{5} \oplus \cdots \oplus K_{5} \oplus K_{4,4} \oplus K_{4,4} \oplus \cdots \oplus K_{4,4}$. A copy of K_{4} and ∞ induce a K_{5} and the edges between any two K_{4} 's yield a $K_{4,4}$.

Thus, for all $t \geq 2$, we have

$$
\begin{aligned}
K_{m} \times K_{n} & =\left(K_{5} \oplus \cdots \oplus K_{5} \oplus K_{4,4} \oplus \cdots \oplus K_{4,4}\right) \times K_{n} \\
& =\left(K_{5} \times K_{n} \oplus \cdots \oplus K_{5} \times K_{n}\right) \oplus\left(K_{4,4} \times K_{n} \oplus \cdots \oplus K_{4,4} \times K_{n}\right) .
\end{aligned}
$$

The graphs $K_{5} \times K_{n}$ and $K_{4,4} \times K_{n}$ admit $C_{4 k}$-decompositions, by the above argument and Lemma 3.3, respectively. This completes the proof of this case.
Case 2. n is even.
Since $k\left|\binom{n}{2}, 2 k\right| n(n-1)$. As n is even and k is odd with $k<n$, it easily follows that $k+1 \leq n$. Thus $P_{k+1} \mid K_{n}$, by Theorem 2.2. Hence, by Lemma 2.13, $C_{4 k} \mid K_{m} \times K_{n}$. This completes the proof of the lemma.
Lemma 3.5. If p is prime and $p \equiv 1(\bmod 4)$, then $C_{4 p} \mid K_{6} \times K_{p}$.
Proof. Let $G=K_{6} \times K_{p}$ and let $\left\{x_{0}, x_{1}, \ldots, x_{5}\right\}$ and $\{0,1, \ldots, p-1\}$ be the vertex sets of K_{6} and K_{p}, respectively. Then $V(G)=V\left(K_{6}\right) \times V\left(K_{p}\right)=\bigcup_{i=0}^{5} X_{i}$, where $X_{i}=x_{i} \times V\left(K_{p}\right)=\left\{\left(x_{i}, 0\right),\left(x_{i}, 1\right), \ldots,\left(x_{i}, p-1\right)\right\}$. For each $i, 1 \leq i \leq \frac{p-1}{4}$, we obtain three $C_{4 p}$-cycles in the graph G as follows; see Figure 4.

Figure 4: Three base cycles $C_{1}^{\prime}, C_{1}^{\prime \prime}$ and $C_{1}^{\prime \prime \prime}$ of $K_{6} \times K_{5}$ for a C_{20}-decomposition of $K_{6} \times K_{5}$ are shown above.
$C_{i}^{\prime}=F_{2 i}\left(X_{0}, X_{1}\right) \oplus F_{2 i-1}\left(X_{1}, X_{2}\right) \oplus F_{2 i}\left(X_{2}, X_{4}\right) \oplus F_{2 i-1}\left(X_{4}, X_{0}\right)$,
$C_{i}^{\prime \prime}=F_{2 i-1}\left(X_{0}, X_{4}\right) \oplus F_{2 i}\left(X_{4}, X_{2}\right) \oplus F_{2 i-1}\left(X_{2}, X_{1}\right) \oplus F_{2 i}\left(X_{1}, X_{0}\right)$ and
$C_{i}^{\prime \prime \prime}=F_{2 i}\left(X_{1}, X_{5}\right) \oplus F_{2 i-1}\left(X_{5}, X_{3}\right) \oplus F_{2 i}\left(X_{3}, X_{4}\right) \oplus F_{2 i-1}\left(X_{4}, X_{1}\right)$,
where $F_{k}\left(X_{i}, X_{j}\right)$ stands for the 1-factor of jump k from X_{i} to X_{j}.
The sum of jumps of the 1-factors between the partite sets, that appear in C_{i}^{\prime}, of $K_{6} \times K_{p}$, is $2 i+(2 i-1)+2 i+(2 i-1)=4 i-2$. Clearly, $\operatorname{gcd}(4 i-2, p)=1$, since $i \leq \frac{p-1}{4}$ implies $4 i-2<p$. Hence, C_{i}^{\prime} is a cycle of length $4 p$; similarly, $C_{i}^{\prime \prime}$ and $C_{i}^{\prime \prime \prime}$ are cycles of length $4 p$. Consider the permutation $\rho=\left(X_{0}\right)\left(X_{1} X_{2} X_{3} X_{4} X_{5}\right)$ on the set $\left\{X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right\}$; then

$$
\left\{C_{i}^{\prime}, \rho\left(C_{i}^{\prime}\right), \ldots, \rho^{4}\left(C_{i}^{\prime}\right), C_{i}^{\prime \prime}, \rho\left(C_{i}^{\prime \prime}\right), \ldots, \rho^{4}\left(C_{i}^{\prime \prime}\right), C_{i}^{\prime \prime \prime}, \rho\left(C_{i}^{\prime \prime \prime}\right), \ldots, \rho^{4}\left(C_{i}^{\prime \prime \prime}\right)\right\}, 1 \leq i \leq \frac{p-1}{4}
$$

is a $C_{4 p}$-decomposition of G, where

$$
\begin{aligned}
\rho\left(C_{i}^{\prime}\right)= & F_{2 i}\left(\rho\left(X_{0}\right), \rho\left(X_{1}\right)\right) \oplus F_{2 i-1}\left(\rho\left(X_{1}\right), \rho\left(X_{2}\right)\right) \oplus F_{2 i}\left(\rho\left(X_{2}\right), \rho\left(X_{4}\right)\right) \oplus \\
& F_{2 i-1}\left(\rho\left(X_{4}\right), \rho\left(X_{0}\right)\right) \\
= & F_{2 i}\left(X_{0}, X_{2}\right) \oplus F_{2 i-1}\left(X_{2}, X_{3}\right) \oplus F_{2 i}\left(X_{3}, X_{5}\right) \oplus F_{2 i-1}\left(X_{5}, X_{0}\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \rho^{j}\left(C_{i}^{\prime}\right)=F_{2 i}\left(\rho^{j}\left(X_{0}\right), \rho^{j}\left(X_{1}\right)\right) \oplus F_{2 i-1}\left(\rho^{j}\left(X_{1}\right), \rho^{j}\left(X_{2}\right)\right) \oplus F_{2 i}\left(\rho^{j}\left(X_{2}\right), \rho^{j}\left(X_{4}\right)\right) \oplus \\
& \quad F_{2 i-1}\left(\rho^{j}\left(X_{4}\right), \rho^{j}\left(X_{0}\right)\right), \\
& \rho^{j}\left(C_{i}^{\prime \prime \prime}\right)=F_{2 i-1}\left(\rho^{j}\left(X_{0}\right), \rho^{j}\left(X_{4}\right)\right) \oplus F_{2 i}\left(\rho^{j}\left(X_{4}\right), \rho^{j}\left(X_{2}\right)\right) \oplus F_{2 i-1}\left(\rho^{j}\left(X_{2}\right), \rho^{j}\left(X_{1}\right)\right) \oplus \\
& \quad F_{2 i}\left(\rho^{j}\left(X_{1}\right), \rho^{j}\left(X_{0}\right)\right) \text { and } \\
& \rho^{j}\left(C_{i}^{\prime \prime \prime}\right)=F_{2 i}\left(\rho^{j}\left(X_{1}\right), \rho^{j}\left(X_{5}\right)\right) \oplus F_{2 i-1}\left(\rho^{j}\left(X_{5}\right), \rho^{j}\left(X_{3}\right)\right) \oplus F_{2 i}\left(\rho^{j}\left(X_{3}\right), \rho^{j}\left(X_{4}\right)\right) \oplus \\
& \quad F_{2 i-1}\left(\rho^{j}\left(X_{4}\right), \rho^{j}\left(X_{1}\right)\right) .
\end{aligned}
$$

Lemma 3.6. If $m \equiv 1(\bmod 4)$ and $m \geq 5$, then $C_{4 m} \mid K_{m} \times K_{7}$.
Proof. Let $V\left(K_{m}\right)=\left\{x_{\infty}, x_{0}, x_{1}, \ldots, x_{m-2}\right\}$ and $V\left(K_{7}\right)=\{1,2, \ldots, 7\}$. Then $V\left(K_{m} \times K_{7}\right)=X_{\infty} \cup X_{0} \cup X_{1} \cup \cdots \cup X_{m-2}$, where $X_{\infty}=x_{\infty} \times V\left(K_{7}\right)=\left\{\left(x_{\infty}, 1\right)\right.$, $\left.\left(x_{\infty}, 2\right), \ldots,\left(x_{\infty}, 7\right)\right\}$ and $X_{i}=x_{i} \times V\left(K_{7}\right)=\left\{\left(x_{i}, 1\right),\left(x_{i}, 2\right), \ldots,\left(x_{i}, 7\right)\right\}$, for $0 \leq i \leq m-2$. For our convenience, we denote $\left(x_{\infty}, i\right)$ by x_{∞}^{i} and $\left(x_{i}, j\right)$ by x_{i}^{j}.

Let $m=2 t+1$, for an even integer $t \geq 2$. Since m is odd, by Walecki's Hamilton cycle decomposition (see [1]), $K_{m}=\bigoplus_{i=0}^{t-1} H_{i}$, where

$$
H_{i}=\left(x_{\infty}, x_{i}, x_{i+1}, x_{i-1}, x_{i+2}, x_{i-2}, \ldots, x_{i+t-2}, x_{i-t+2}, x_{i+t-1}, x_{i-t+1}, x_{i+t}\right)
$$

is the Hamilton cycle and addition in the subscripts is taken modulo $m-1$. Let $H=H_{0} \oplus H_{1}$, where H_{0} and H_{1} are the Hamilton cycles of K_{m} obtained above. Let $\sigma=\left(x_{\infty}\right)\left(x_{0} x_{2} x_{4} \ldots x_{m-3}\right)\left(x_{1} x_{3} x_{5} \ldots x_{m-2}\right)$ be a permutation on $V\left(K_{m}\right)$. Then $H, \sigma(H), \ldots, \sigma^{k}(H), k=\frac{t}{2}-1$, decompose K_{m} into isomorphic copies of H. Clearly, $K_{m} \times K_{7}=H \times K_{7} \oplus H \times K_{7} \oplus \cdots \oplus H \times K_{7}$. Hence it is enough to obtain a $C_{4 m}$-decomposition of $H \times K_{7}$.

Consider the permutation $\rho=(1234567)$ on $V\left(K_{7}\right)$. Then $F, \rho(F), \rho^{2}(F)$, $\ldots, \rho^{6}(F)$ is a near 1-factorization of K_{7}, where $F=\{12,37,46\}$ and $\rho^{\ell}(F)=$ $\left\{\rho^{\ell}(1) \rho^{\ell}(2), \rho^{\ell}(3) \rho^{\ell}(7), \rho^{\ell}(4) \rho^{\ell}(6)\right\}$, so for example $\rho(F)=\{23,41,57\}$. Let A_{0} (respectively, A_{1}) denote the path $H_{0} \backslash\left\{x_{t} x_{\infty}\right\}$ (respectively, $H_{1} \backslash\left\{x_{t+1} x_{\infty}\right\}$) obtained by deleting the edge $x_{\infty} x_{t}$ (respectively, $x_{\infty} x_{t+1}$) from H_{0} (respectively, H_{1}), see Figure $5(\mathrm{a})$ (respectively, $5(\mathrm{c})$). Observe that A_{0} and A_{1} are Hamilton paths of K_{m}. For each edge $i j \in E\left(K_{7}\right), A_{0} \times i j\left(\cong A_{0} \times K_{2}\right)$ is a pair of disjoint paths $A_{0(1)}^{i j}$ and $A_{0(2)}^{i j}$, each of length $m-1$ with initial vertices x_{∞}^{i} and x_{∞}^{j} and terminal vertices x_{t}^{i} and x_{t}^{j}, respectively, see Figure $5(\mathrm{~b})$; similarly $A_{1} \times i j=A_{1(1)}^{i j} \oplus A_{1(2)}^{i j}$, where the end vertices of $A_{1(1)}^{i j}$ (respectively, $\left.A_{1(2)}^{i j}\right)$ are x_{∞}^{i} (respectively, x_{∞}^{j}) and x_{t+1}^{i} (respectively, $\left.x_{t+1}^{j}\right)$, see Figure $5(\mathrm{~d})$. Note that $V\left(K_{m} \times K_{7}\right)=V\left(H \times K_{7}\right)$. We construct three base cycles $C^{\prime}, C^{\prime \prime}$ and $C^{\prime \prime \prime}$, each of length $4 m$, in $H \times K_{7}$ as follows; see Figure 6.
Let $e_{1}=12, e_{2}=37$ and $e_{3}=46$ be the edges of F in K_{7} and let

$$
\begin{aligned}
C^{\prime}=\{ & \left.\left.\left(H_{0} \backslash\left\{x_{t} x_{\infty}\right\}\right) \times e_{1}\right\} \oplus\left\{\left(H_{1} \backslash\left\{x_{t+1} x_{\infty}\right\}\right) \times e_{2}\right)\right\} \oplus x_{\infty}^{1} x_{t+1}^{7} \oplus x_{\infty}^{2} x_{t+1}^{3} \oplus \\
& x_{\infty}^{3} x_{t}^{1} \oplus x_{\infty}^{7} x_{t}^{2}=A_{0(1)}^{12} \oplus x_{t}^{1} x_{\infty}^{3} \oplus A_{1(1)}^{37} \oplus x_{t+1}^{3} x_{\infty}^{2} \oplus A_{0(2)}^{12} \oplus x_{t}^{2} x_{\infty}^{7} \oplus A_{1(2)}^{37} \oplus x_{t+1}^{7} x_{\infty}^{1}
\end{aligned}
$$

Figure 5: Broken edge in (a) (respectively, (c)) denotes the edge $x_{\infty} x_{t}$ (respectively, $x_{\infty} x_{t+1}$) which is removed from H_{0} (respectively, H_{1}).

Base cycle C^{\prime}

Base cycle $C^{\prime \prime}$

Base cycle $C^{\prime \prime \prime}$

Figure 6: Base cycle C^{\prime} of length $4 m$ in $H \times K_{7}$ is constructed using the paths described in Figures 5(b) and 5(d). Similarly, the cycles $C^{\prime \prime}$ and $C^{\prime \prime \prime}$ are shown using appropriate paths.

$$
\begin{aligned}
C^{\prime \prime}= & \left.\left\{\left(H_{0} \backslash\left\{x_{t} x_{\infty}\right\}\right) \times e_{2}\right\} \oplus\left\{\left(H_{1} \backslash\left\{x_{t+1} x_{\infty}\right\}\right) \times e_{3}\right)\right\} \oplus x_{\infty}^{3} x_{t+1}^{6} \oplus x_{\infty}^{7} x_{t+1}^{4} \oplus \\
& x_{\infty}^{4} x_{t}^{3} \oplus x_{\infty}^{6} x_{t}^{7}=A_{0(1)}^{37} \oplus x_{t}^{3} x_{\infty}^{4} \oplus A_{1(1)}^{46} \oplus x_{t+1}^{4} x_{\infty}^{7} \oplus A_{0(2)}^{37} \oplus x_{t}^{7} x_{\infty}^{6} \oplus A_{1(2)}^{46} \oplus x_{t+1}^{6} x_{\infty}^{3}
\end{aligned}
$$

and

$$
\begin{aligned}
C^{\prime \prime \prime}= & \left.\left\{\left(H_{0} \backslash\left\{x_{t} x_{\infty}\right\}\right) \times e_{3}\right\} \oplus\left\{\left(H_{1} \backslash\left\{x_{t+1} x_{\infty}\right\}\right) \times e_{1}\right)\right\} \oplus x_{\infty}^{4} x_{t+1}^{2} \oplus x_{\infty}^{6} x_{t+1}^{1} \oplus \\
& x_{\infty}^{1} x_{t}^{4} \oplus x_{\infty}^{2} x_{t}^{6}=A_{0(1)}^{46} \oplus x_{t}^{4} x_{\infty}^{1} \oplus A_{1(1)}^{12} \oplus x_{t+1}^{1} x_{\infty}^{6} \oplus A_{0(2)}^{46} \oplus x_{t}^{6} x_{\infty}^{2} \oplus A_{1(2)}^{12} \oplus x_{t+1}^{2} x_{\infty}^{4}
\end{aligned}
$$

If $\rho=(1234567)$ acts on the superscripts of the vertices of $H \times K_{7}$, then $\left\{C^{\prime}, \rho\left(C^{\prime}\right)\right.$, $\left.\ldots, \rho^{6}\left(C^{\prime}\right), C^{\prime \prime}, \rho\left(C^{\prime \prime}\right), \ldots, \rho^{6}\left(C^{\prime \prime}\right), C^{\prime \prime \prime}, \rho\left(C^{\prime \prime \prime}\right), \ldots, \rho^{6}\left(C^{\prime \prime \prime}\right)\right\}$ is a $C_{4 m}$-decomposition of $H \times K_{7}$, where $\rho\left(C^{\prime}\right)=A_{0(1)}^{\rho(1) \rho(2)} \oplus x_{t}^{\rho(1)} x_{\infty}^{\rho(3)} \oplus A_{1(1)}^{\rho(3) \rho(7)} \oplus x_{t+1}^{\rho(3)} x_{\infty}^{\rho(2)} \oplus A_{0(2)}^{\rho(1) \rho(2)} \oplus x_{t}^{\rho(2)} x_{\infty}^{\rho(7)} \oplus$ $A_{1(2)}^{\rho(3) \rho(7)} \oplus x_{t+1}^{\rho(7)} x_{\infty}^{\rho(1)}=A_{0(1)}^{23} \oplus x_{t}^{2} x_{\infty}^{4} \oplus A_{1(1)}^{41} \oplus x_{t+1}^{4} x_{\infty}^{3} \oplus A_{0(2)}^{23} \oplus x_{t}^{3} x_{\infty}^{1} \oplus A_{1(2)}^{41} \oplus x_{t+1}^{1} x_{\infty}^{2}$.

Lemma 3.7. If $n \geq 3$ and $n \equiv 2$ or $3(\bmod 4), m \equiv 1(\bmod 4)$ and $m \equiv 0(\bmod p)$, then $C_{4 p} \mid K_{m} \times K_{n}$, where $p \geq 3$ is prime.

Proof. Let $m=p s$; then $s \geq 1$ is odd as m is odd.
Case 1: $n \equiv 2(\bmod 4)$.
Let $n=4 t+2, t \geq 1$.
First we complete the proof for the case $s=1$. If $t=1$, the result follows by Lemma 3.5. For all $t \geq 2$, the graph

$$
\begin{aligned}
K_{p} \times K_{n}= & K_{p} \times K_{4 t+2} \\
= & K_{p} \times(K_{6} \oplus \underbrace{\left(K_{6}-e\right) \oplus \cdots \oplus\left(K_{6}-e\right)}_{(t-1) \text { times }} \oplus\left(K_{t} \circ \bar{K}_{4}\right)) \\
= & K_{p} \times K_{6} \oplus \underbrace{K_{p} \times\left(K_{4} \oplus C_{4} \oplus C_{4}\right) \oplus \cdots \oplus K_{p} \times\left(K_{4} \oplus C_{4} \oplus C_{4}\right)}_{(t-1) \text { times }} \\
& \oplus K_{p} \times \underbrace{\left(K_{4,4} \oplus \cdots \oplus K_{4,4}\right)}_{\binom{t}{2} \text { copies }} \\
= & \left(K_{p} \times K_{6}\right) \oplus\left(\left(K_{p} \times K_{4}\right) \oplus\left(K_{p} \times C_{4}\right) \oplus\left(K_{p} \times C_{4}\right)\right) \oplus \cdots \oplus \\
& \left(\left(K_{p} \times K_{4}\right) \oplus\left(K_{p} \times C_{4}\right) \oplus\left(K_{p} \times C_{4}\right)\right) \oplus\left(\left(K_{p} \times K_{4,4}\right) \oplus \cdots \oplus\left(K_{p} \times K_{4,4}\right)\right) .
\end{aligned}
$$

The graphs $K_{p} \times K_{6}$ and $K_{p} \times K_{4}$ are $C_{4 p}$-decomposable, by Lemma 3.5 and Theorem 2.6, respectively. Since $C_{p}\left|K_{p}, C_{4 p}\right| K_{p} \times K_{4,4}$, by Lemma 3.3. Further, $K_{p} \times C_{4}=C_{p} \times C_{4} \oplus \cdots \oplus C_{p} \times C_{4}$ and $C_{p} \times C_{4}$ admits a $C_{4 p}$-decomposition, by Theorem 2.7.
Next we consider the case $s \geq 3$.
Clearly, $K_{m} \times K_{n}=K_{m} \times K_{2} \oplus \cdots \oplus K_{m} \times K_{2}$. Since $s \geq 3,2 m>4 p$; also $4 p \mid m(m-1)$ and hence the graph $K_{m} \times K_{2} \cong K_{m, m}-I$, where I denotes a perfect matching, admits a $C_{4 p}$-decomposition, by Theorem 2.4.
Case 2: $n \equiv 3(\bmod 4)$.
Recall that s is odd. If $s \geq 3$, then $m>2 p+1$; also $2 p \left\lvert\,\binom{ m}{2}\right.$ and hence $P_{2 p+1} \mid K_{m}$, by Theorem 2.2. So $C_{4 p} \mid K_{m} \times K_{n}$, by Lemma 2.12. Next we assume that $s=1$. Let $n=4 t+3, t \geq 1$. If $t=1, C_{4 p} \mid K_{p} \times K_{7}$, by Lemma 3.6. For $t \geq 2$,
$K_{p} \times K_{4 t+3}=K_{p} \times(K_{7} \oplus \underbrace{K_{5} \oplus \cdots \oplus K_{5}}_{(t-1) \text { times }} \oplus K_{6,4,4, \ldots, 4})$; see Figure 7

$$
\begin{aligned}
= & \left(K_{p} \times K_{7}\right) \oplus\left(\left(K_{p} \times K_{5}\right) \oplus \cdots \oplus\left(K_{p} \times K_{5}\right)\right) \oplus \\
& (\underbrace{K_{p} \times K_{6,4} \oplus \cdots \oplus K_{p} \times K_{6,4}}_{(t-1) \text { times }}) \oplus(\underbrace{K_{p} \times K_{4,4} \oplus \cdots \oplus K_{p} \times K_{4,4}}_{\binom{t-1}{2} \text { times }})
\end{aligned}
$$

The graphs $K_{p} \times K_{7}$ and $K_{p} \times K_{5}$ admit $C_{4 p}$-decompositions, by Lemmas 3.6 and 3.4, respectively. Since $C_{p}\left|K_{p}, C_{4 p}\right| K_{p} \times K_{4,4}$, by Lemma 3.3. By Theorem 2.3, $C_{4} \mid K_{6,4}$ and hence $K_{p} \times K_{6,4}=C_{p} \times C_{4} \oplus \cdots \oplus C_{p} \times C_{4}$. Now $C_{4 p} \mid C_{p} \times C_{4}$, by Theorem 2.7. This completes the proof of the lemma.

Lemma 3.8. If $k \equiv 3(\bmod 4)$, then $C_{4 k} \mid K_{k+1} \times K_{7}$.
Proof. Let $V\left(K_{7}\right)=\{1,2,3,4,5,6,7\}$ and $V\left(K_{k+1}\right)=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$. Label the vertices of $K_{k+1} \times K_{7}$ as in Lemma 3.6. First we complete the proof for the case

Figure 7: $K_{4 t+3}=K_{7} \oplus K_{5} \oplus \cdots \oplus K_{5} \oplus K_{6,4,4, \ldots, 4}$. A copy of K_{6} (respectively, K_{4}) together with ∞ induce a K_{7} (respectively, K_{5}).
$k=3$. Since $K_{3} \mid K_{7}$, by Theorem 2.1, $K_{4} \times K_{7}=K_{4} \times K_{3} \oplus \cdots \oplus K_{4} \times K_{3}$. The graph $K_{4} \times K_{3}$ admits a C_{12}-decomposition, by Theorem 2.6. Thus, $C_{12} \mid K_{4} \times K_{7}$.
Now we complete the proof for the case $k \geq 7$.
Let $k+1=2 t$, for some even $t \geq 4$. A Hamilton path decomposition of K_{k+1} is $P_{i}=\left[x_{i}, x_{i+1}, x_{i-1}, x_{i+2}, x_{i-2}, \ldots, x_{i+t-2}, x_{i-t+2}, x_{i+t-1}, x_{i-t+1}, x_{i+t}\right], 0 \leq i \leq t-1$, where the addition in the subscripts is taken modulo $k+1$. Let $H_{j}=P_{2 j} \oplus P_{2 j+1}$, $0 \leq j \leq \frac{t}{2}-1$, where $P_{2 j}$ and $P_{2 j+1}$ are two consecutive Hamilton paths of the above decomposition of K_{k+1}. As $K_{k+1}=H_{0} \oplus H_{1} \oplus \cdots \oplus H_{\frac{t}{2}-1}, K_{k+1} \times K_{7}=$ $H_{0} \times K_{7} \oplus \cdots \oplus H_{\frac{t}{2}-1} \times K_{7}$. Since $H_{j} \cong \rho^{j}\left(H_{0}\right), 1 \leq j \leq \frac{t}{2}-1$, where $\rho=$ $\left(x_{0} x_{2} \ldots x_{k-1}\right)\left(x_{1} x_{3} \ldots x_{k}\right)$ is the permutation on the set $V\left(K_{k+1}\right)$, to complete the proof of this lemma, it is enough to obtain a $C_{4 k}$-decomposition of $H_{0} \times K_{7}$.

First we describe three base cycles $C_{0}^{\prime}, C_{0}^{\prime \prime}$ and $C_{0}^{\prime \prime \prime}$, each of length $4 k$, in $H_{0} \times K_{7}$ as follows:

Note that P_{0} and P_{1} have the same vertex set, but for our convenience we will view P_{0} and P_{1} to be on disjoint sets of vertices except for one particular vertex, x_{t-1}. Figure 8 shows this for $k=11$, where P_{0} and P_{1} are Hamilton paths in K_{12}. In particular, Figure 8(c) shows the way in which we will view $H_{0}=P_{0} \oplus P_{1}$, so that each vertex of H_{0}, except the one vertex x_{t-1}, appears exactly twice. Each vertex x_{i} of H_{0} gives rise to $X_{i}=x_{i} \times K_{7}=\left\{\left(x_{i}, 1\right),\left(x_{i}, 2\right), \ldots,\left(x_{i}, 7\right)\right\}$ having seven vertices of $H_{0} \times K_{7}$. This X_{i} also appears in both $P_{0} \times K_{7}$ and $P_{1} \times K_{7}$, except for X_{t-1} (see Figure 9). If we superimpose X_{i} of $P_{0} \times K_{7}$ with X_{i} of $P_{1} \times K_{7}, i \neq t-1$, we get $H_{0} \times K_{7}$. If x_{i} and x_{j} are adjacent in H_{0}, then $\left\langle X_{i} \cup X_{j}\right\rangle$ is isomorphic to $K_{7,7}-F_{0}\left(X_{i}, X_{j}\right)$ and hence this subgraph $\left\langle X_{i} \cup X_{j}\right\rangle$ of $H_{0} \times K_{7}$ has six 1-factors $F_{1}\left(X_{i}, X_{j}\right), F_{2}\left(X_{i}, X_{j}\right), \ldots, F_{6}\left(X_{i}, X_{j}\right)$. We construct three base cycles $C_{0}^{\prime}, C_{0}^{\prime \prime}$ and $C_{0}^{\prime \prime \prime}$ of $H_{0} \times K_{7}$, each of them having some of their sections in the graphs $P_{0} \times K_{7}$ and $P_{1} \times K_{7}$, in such a way that if C_{0}^{\prime} (or $C_{0}^{\prime \prime}$ or $C_{0}^{\prime \prime \prime}$) has a vertex of X_{i} in $P_{0} \times K_{7}$, then the cycle does not have the vertex of X_{i} in $P_{1} \times K_{7}$ (see Figure 9). So, when we superimpose X_{i} of $P_{0} \times K_{7}$ with X_{i} of $P_{1} \times K_{7}$, vertices of C_{0}^{\prime} (or $C_{0}^{\prime \prime \prime}$ or $C_{0}^{\prime \prime \prime}$) are all distinct in $H_{0} \times K_{7}$. The base cycles of $H_{0} \times K_{7}$ are given below; see Figure 9 .

(a)

The graph $H_{0}=P_{0} \oplus P_{1}$. The path P_{0} (resp. P_{1}) is shown in bold (resp. normal) edges.
(b)
(c)

Figure 8: $H_{0}=P_{0} \oplus P_{1}$ is shown in (b), where P_{0} and P_{1} are the Hamilton paths of K_{12} as described in the text. In (b) P_{0} and P_{1} have the common vertex set whereas in (c) except for one vertex all other vertices are shown to be distinct.
$C_{0}^{\prime}=\left(x_{0}^{3}, x_{1}^{6}, x_{k}^{7}, x_{2}^{6}, x_{k-1}^{7}, \ldots, x_{t-2}^{6}, x_{t+2}^{7}, x_{t-1}^{4}, x_{t+1}^{7}, x_{t}^{3}, x_{t+1}^{6}, x_{t-1}^{2}, x_{t+3}^{1}, x_{t}^{2}\right.$, $x_{t+2}^{1}, x_{t+1}^{5}, x_{t+2}^{2}, x_{t}^{1}, x_{t+3}^{2}, x_{t-1}^{1}, x_{t+4}^{2}, x_{t-2}^{1}, \ldots, x_{3}^{1}, x_{0}^{2}, x_{2}^{1}, x_{1}^{5}, x_{2}^{2}, x_{0}^{1}, x_{3}^{2}, \ldots$, $\left.x_{t-2}^{2}, x_{t+4}^{1}, x_{t-1}^{5}, x_{t+2}^{6}, x_{t-2}^{7}, x_{t+3}^{6}, x_{t-3}^{7}, \ldots, x_{k}^{6}, x_{1}^{7}\right)$,
$C_{0}^{\prime \prime}=\left(x_{0}^{2}, x_{1}^{1}, x_{k}^{3}, x_{2}^{1}, x_{k-1}^{3}, \ldots, x_{t-2}^{1}, x_{t+2}^{3}, x_{t-1}^{4}, x_{t+1}^{3}, x_{t}^{2}, x_{t+1}^{1}, x_{t-1}^{7}, x_{t+3}^{5}, x_{t}^{7}\right.$, $x_{t+2}^{5}, x_{t+1}^{6}, x_{t+2}^{7}, x_{t}^{5}, x_{t+3}^{7}, x_{t-1}^{5}, x_{t+4}^{7}, x_{t-2}^{5}, \ldots, x_{3}^{5}, x_{0}^{7}, x_{2}^{5}, x_{1}^{6}, x_{2}^{7}, x_{0}^{5}, x_{3}^{7}, \ldots$, $\left.x_{t-2}^{7}, x_{t+4}^{5}, x_{t-1}^{6}, x_{t+2}^{1}, x_{t-2}^{3}, x_{t+3}^{1}, x_{t-3}^{3}, \ldots, x_{k}^{1}, x_{1}^{3}\right)$ and
$C_{0}^{\prime \prime \prime}=\left(x_{0}^{7}, x_{1}^{5}, x_{k}^{2}, x_{2}^{5}, x_{k-1}^{2}, \ldots, x_{t-2}^{5}, x_{t+2}^{2}, x_{t-1}^{4}, x_{t+1}^{2}, x_{t}^{7}, x_{t+1}^{5}, x_{t-1}^{3}, x_{t+3}^{6}, x_{t}^{3}\right.$, $x_{t+2}^{6}, x_{t+1}^{1}, x_{t+2}^{3}, x_{t}^{6}, x_{t+3}^{3}, x_{t-1}^{6}, x_{t+4}^{3}, x_{t-2}^{6}, \ldots, x_{3}^{6}, x_{0}^{3}, x_{2}^{6}, x_{1}^{1}, x_{2}^{3}, x_{0}^{6}, x_{3}^{3}, \ldots$, $\left.x_{t-2}^{3}, x_{t+4}^{6}, x_{t-1}^{1}, x_{t+2}^{5}, x_{t-2}^{2}, x_{t+3}^{5}, x_{t-3}^{2}, \ldots, x_{k}^{5}, x_{1}^{2}\right)$,
where the subscripts are taken modulo $k+1$.

Figure 9: Three base cycles $C_{0}^{\prime}, C_{0}^{\prime \prime}$ and $C_{0}^{\prime \prime \prime}$ of $H_{0} \times K_{7}$ are given for a C_{44}-decomposition of $H_{0} \times K_{7}$, where $H_{0}=P_{0} \oplus P_{1}$ and P_{0} and P_{1} are two Hamilton paths of K_{12} as obtained in the text. If we superimpose the X_{i}, except X_{t-1}, of $P_{0} \times K_{7}$ with X_{i} of $P_{1} \times K_{7}$, on the respective vertices, for all i we get three base cycles $C_{0}^{\prime}, C_{0}^{\prime \prime}$ and $C_{0}^{\prime \prime \prime}$ of $H_{0} \times K_{7} . Y_{i}^{\prime} s$ represent the columns of $H_{0} \times K_{7}$. Note that $X_{i}^{\prime} s$ are not consecutive in the figure, but it appears as in the order of vertices of the Hamilton path of K_{12}.

If $\rho=(1234567)$ is the permutation acting on the superscripts of the vertices of $V\left(H_{0} \times K_{7}\right)$, then $\left\{C_{0}^{\prime}, \rho\left(C_{0}^{\prime}\right), \ldots, \rho^{6}\left(C_{0}^{\prime}\right), C_{0}^{\prime \prime}, \rho\left(C_{0}^{\prime \prime}\right), \ldots, \rho^{6}\left(C_{0}^{\prime \prime}\right), C_{0}^{\prime \prime \prime}, \rho\left(C_{0}^{\prime \prime \prime}\right), \ldots\right.$, $\left.\rho^{6}\left(C_{0}^{\prime \prime \prime}\right)\right\}$ is a $C_{4 k}$-decomposition of $H_{0} \times K_{7}$.

Lemma 3.9. If $p \geq 3$ is prime, $m \equiv 3(\bmod 4), n \equiv 1(\bmod p)$ and $n \equiv 0(\bmod 4)$, then $C_{4 p} \mid K_{m} \times K_{n}$.

Proof. As $n \equiv 0(\bmod 4)$ and $n \equiv 1(\bmod p), n=p s+1, s \geq 1$ is odd.

First we deal with the case for $s \geq 3$ is odd.
By hypothesis, $\left.2 p \left\lvert\, \begin{array}{c}n \\ 2\end{array}\right.\right)$; also $n>2 p+1$; then $P_{2 p+1} \mid K_{n}$, by Theorem 2.2 and so $C_{4 p} \mid K_{m} \times K_{n}$, by Lemma 2.12.
Now we consider the case for $s=1$.
Clearly, $n=p+1$ and $m=4 t+3$ for some $t \geq 1$. If $t=1$, then $C_{4 p} \mid K_{7} \times K_{p+1}$, by Lemma 3.8. So we assume that $t \geq 2$,
$K_{4 t+3} \times K_{p+1}=\left(K_{7} \oplus K_{5} \oplus \cdots \oplus K_{5} \oplus K_{6,4,4, \ldots, 4}\right) \times K_{p+1}$
$=\left(K_{7} \times K_{p+1}\right) \oplus\left(K_{5} \times K_{p+1} \oplus \cdots \oplus K_{5} \times K_{p+1}\right) \oplus$
$\left(K_{6,4} \times K_{p+1} \oplus \cdots \oplus K_{6,4} \times K_{p+1}\right) \oplus\left(K_{4,4} \times K_{p+1} \oplus \cdots \oplus K_{4,4} \times K_{p+1}\right)$.
$C_{4 p} \mid K_{7} \times K_{p+1}$, by Lemma 3.8. Since $P_{p+1} \mid K_{p+1}$, the graphs $K_{5} \times K_{p+1}$ and $K_{4,4} \times$ K_{p+1} are $C_{4 p}$-decomposable, by Lemmas 2.13 and 2.14, respectively. Clearly, $K_{6,4} \times$ $K_{p+1}=C_{4} \times K_{p+1} \oplus \cdots \oplus C_{4} \times K_{p+1}$. A $C_{4 p}$-decomposition of $C_{4} \times K_{p+1}$ (isomorphic to $\left.K_{p+1} \times C_{4}\right)$ is described below:

Let $V\left(K_{p+1}\right)=\left\{x_{0}, x_{1}, \ldots, x_{p}\right\}$ and $C_{4}=(1,2,3,4)$. Then $V\left(K_{p+1} \times C_{4}\right)=$ $\bigcup_{i=0}^{p} X_{i}$, where $X_{i}=x_{i} \times V\left(C_{4}\right)=\left\{\left(x_{i}, 1\right),\left(x_{i}, 2\right),\left(x_{i}, 3\right),\left(x_{i}, 4\right)\right\}$. The symmetric digraph K_{p+1}^{*} admits a \vec{C}_{p}-decomposition, by Theorem 2.9 , say \mathcal{C}, where \vec{C}_{p} denotes the directed cycle of length p. Based on each of the directed cycles in \mathcal{C}, we construct a cycle of length $4 p$ in $K_{p+1} \times C_{4}$ as follows. Let \vec{C}_{p} be in \mathcal{C}; corresponding to this \vec{C}_{p} we consider in $K_{p+1} \times C_{4}$ the cycle $C_{p}^{\prime}=\bigcup_{\overrightarrow{x_{i} \vec{x}_{j} \in A\left(\vec{C}_{p}\right)}} F_{1}\left(X_{i}, X_{j}\right)$, where $F_{1}\left(X_{i}, X_{j}\right)$ is the 1-factor of jump 1 from X_{i} to X_{j} in $K_{p+1} \times C_{4}$ and $A\left(\vec{C}_{p}\right)$ denotes the arc set of \vec{C}_{p}. Clearly, C_{p}^{\prime} is a cycle of length $4 p$, in $K_{p+1} \times C_{4}$, as the sum of the jumps of the 1factors occurring in $\bigcup_{\overrightarrow{x_{i} \overrightarrow{x_{j}} \in A\left(\vec{C}_{p}\right)}} F_{1}\left(X_{i}, X_{j}\right)$ is p, which is relatively prime to 4 . Thus to each $\vec{C}_{p} \in \mathcal{C}$ we obtain a $C_{4 p}$ in $K_{p+1} \times C_{4}$; as \mathcal{C} is a directed p-cycle decomposition of K_{p+1}^{*}, we obtain a $4 p$-cycle decomposition of $K_{p+1} \times C_{4}$. This completes the proof of the lemma.

$4 \quad C_{4 p}$-decomposition of $K_{m} \times K_{n}$

Now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. We assume that $C_{4 p} \mid K_{m} \times K_{n}$. As the cycle length cannot exceed the number of vertices of $K_{m} \times K_{n}, 4 p \leq m n$. As $C_{4 p} \mid K_{m} \times K_{n}$, $K_{m} \times K_{n}$ is an even regular graph, that is, $(m-1)(n-1)$ is even and hence either m or n is odd. Further, $C_{4 p} \mid K_{m} \times K_{n}$ implies $4 p$ divides the number of edges of $K_{m} \times K_{n}$, that is, $\left.4 p \left\lvert\, \begin{array}{c}m \\ 2\end{array}\right.\right) n(n-1)$.

Next we prove the sufficiency. Since the tensor product is commutative, we assume that m is odd.

Case 1: $p \left\lvert\,\binom{ n}{2}\right.$.
Subcase 1.1: $2 \left\lvert\,\binom{ m}{2}\right.$.
Since m is odd and $2 \left\lvert\,\binom{ m}{2}\right., m \equiv 1(\bmod 4)$; as $p \left\lvert\,\binom{ n}{2}\right.$ and p is prime, $p \leq n$, we invoke Lemma 3.4 to complete the proof.

Subcase 1.2: $2 \times\binom{ m}{2}$.
In this case, $m \equiv 3(\bmod 4)$. Clearly, from the hypothesis of the theorem $2 \left\lvert\,\binom{ n}{2}\right.$ and also from the hypothesis of the case $2 p \left\lvert\,\binom{ n}{2}\right.$. Now there are two possibilities, according to the parity of n.
(1) If n is even, then either $n \equiv 0(\bmod 4 p)$ or, $n \equiv 0(\bmod 4)$ and $n \equiv 1(\bmod p)$. If $n \equiv 0(\bmod 4 p)$, then $P_{2 p+1} \mid K_{n}$, by Theorem 2.2; now apply Lemma 2.12.
If $n \equiv 1(\bmod p)$ with $4 \mid n$, then the proof follows by Lemma 3.9.
(2) If n is odd, then either $n \equiv 1(\bmod 4 p)$ or, $n \equiv 1(\bmod 4)$ and $n \equiv 0(\bmod p)$.

If $n \equiv 1(\bmod 4 p)$, then the proof follows by Lemma 3.1 ; if $n \equiv 1(\bmod 4)$ and $p \mid n$, then the proof follows by Lemma 3.7.

Case 2: $p \nmid\binom{n}{2}$.
Subcase 2.1: $2 \left\lvert\,\binom{ n}{2}\right.$.
As $p\left|\binom{m}{2}, C_{p}\right| K_{m}$, by Theorem 2.1 and hence $K_{m} \times K_{n}=C_{p} \times K_{n} \oplus \cdots \oplus C_{p} \times K_{n}$. Since 2| $\binom{n}{2}$, either $n \equiv 0(\bmod 4)$ or $n \equiv 1(\bmod 4)$. If $n \equiv 0(\bmod 4)$, then $C_{4 p} \mid C_{p} \times K_{n}$, by Theorem 2.5; if $n \equiv 1(\bmod 4)$, then $C_{4 p} \mid K_{m} \times K_{n}$, by Lemma 3.4.
Subcase 2.2: $2 \times\binom{ n}{2}$.
From the necessary conditions, $2 p \left\lvert\,\binom{ m}{2}\right.$; then either $m \equiv 0(\bmod p)$ and $m \equiv$ $1(\bmod 4)$ or, $m \equiv 1(\bmod 4 p)$; recall that m is odd by assumption. If $m \equiv 1(\bmod$ $4 p)$, then the proof follows by Lemma 3.1. Since $2 \times\binom{ n}{2}, n \equiv 2$ or $3(\bmod 4)$, and also $m \equiv 1(\bmod 4)$ with $p \mid m$. The proof of this subcase now follows by Lemma 3.7.

$5 \quad \vec{C}_{4 p}$-decomposition of $\left(K_{m} \circ \bar{K}_{n}\right)^{*}$

We quote the following two theorems which are used in the proof of Theorem 1.2.
Theorem 5.1. [13] Let \vec{G} be a directed closed trail of length m with maximum out degree Δ^{+}and $\chi(\vec{G})=s$. Then for all $n \geq \Delta^{+}, \quad \vec{C}_{m} \mid \vec{G} \circ \bar{K}_{n}$ whenever at least $(s-2)$ mutually orthogonal latin squares of order n exist, where $\chi(\vec{G})$ denotes the chromatic number of \vec{G}.
Theorem 5.2. [22] $\vec{C}_{k} \mid \vec{C}_{k} \circ \vec{K}_{n}$ for all $k \geq 3$ and $n \geq 1$.
Corollary 5.3. If $\vec{C}_{k} \mid\left(K_{m} \circ \bar{K}_{n}\right)^{*}$, then $\vec{C}_{k} \mid\left(K_{m} \circ \bar{K}_{n t}\right)^{*}$.
Proof. Since $\left(K_{m} \circ \bar{K}_{n t}\right)^{*}=\left(K_{m} \circ \bar{K}_{n}\right)^{*} \circ \bar{K}_{t}=\vec{C}_{k} \circ \bar{K}_{t} \oplus \vec{C}_{k} \circ \bar{K}_{t} \oplus \cdots \oplus \vec{C}_{k} \circ \bar{K}_{t}$, the proof is immediate from Theorem 5.2.

Proof of Theorem 1.2. If $K_{m} \circ \bar{K}_{n}$ is an even regular graph, then the result is immediate by Theorem 2.11. So we assume that $K_{m} \circ \bar{K}_{n}$ is an odd regular graph and hence m is even and n is odd.

Case 1: $p \mid n^{2}$.
Clearly, $n \equiv 0(\bmod p)$. Since m is even and n is odd, from the divisibility condition,
$m=4 t$, for some $t \geq 1$. By Corollary 5.3, it is enough to prove the case for $n=p$. Clearly,

$$
\begin{aligned}
\left(K_{m} \circ \bar{K}_{p}\right)^{*} & =\left(\left(t K_{4} \oplus\left(K_{t} \circ \bar{K}_{4}\right)\right) \circ \bar{K}_{p}\right)^{*} \\
& =t\left(K_{4} \circ \bar{K}_{p}\right)^{*} \oplus\left(K_{4,4} \circ \bar{K}_{p} \oplus \cdots \oplus K_{4,4} \circ \bar{K}_{p}\right)^{*} .
\end{aligned}
$$

Note that $\vec{C}_{4 p} \mid\left(K_{4} \circ \bar{K}_{p}\right)^{*}$, by Theorem 2.10. Also, $C_{4} \mid K_{4,4}$, by Theorem 2.3, and $C_{4 p} \mid C_{4} \circ \bar{K}_{p}$, by Theorem 2.8; hence $\vec{C}_{4 p} \mid\left(K_{4,4} \circ \bar{K}_{p}\right)^{*}$. This completes the proof of this case.

Case 2: $p \nmid n^{2}$.
From the necessary conditions, either $m \equiv 0(\bmod 4 p)$ or $m \equiv 0(\bmod 4)$ and $m \equiv 1(\bmod p)$.
Subcase 2.1: $m \equiv 0(\bmod 4 p)$.
Let $m=4 p t, t \geq 1$. Then

$$
\begin{aligned}
\left(K_{m} \circ \bar{K}_{n}\right)^{*} & =\left(K_{4 p t} \circ \bar{K}_{n}\right)^{*} \\
& =n K_{4 p t}^{*} \oplus\left(K_{4 p t} \times K_{n}\right)^{*}
\end{aligned}
$$

where the n copies of $K_{4 p t}^{*}$ are precisely the subdigraphs induced by the vertices of the n columns of $\left(K_{4 p t} \circ \bar{K}_{n}\right)^{*}$ and the remaining subdigraph of $\left(K_{4 p t} \circ \bar{K}_{n}\right)^{*}$ is isomorphic to $\left(K_{4 p t} \times K_{n}\right)^{*}$. Since n is odd, $\left(K_{4 p t} \times K_{n}\right)$ is an even regular graph. By Theorem 1.1, $C_{4 p} \mid\left(K_{4 p t} \times K_{n}\right)$ and hence $\vec{C}_{4 p} \mid\left(K_{4 p t} \times K_{n}\right)^{*}$. By Theorem 2.9, $\vec{C}_{4 p} \mid K_{4 p t}^{*}$. This completes the proof of this subcase.
Subcase 2.2: $m \equiv 0(\bmod 4)$ and $m \equiv 1(\bmod p)$.
Let $m=p t+1, t \geq 1$ and odd.
First we consider the case $t=1$. Clearly, $\left(K_{p+1} \circ \bar{K}_{n}\right)^{*}=K_{p+1}^{*} \circ \bar{K}_{n}$. Let $V\left(K_{p+1}\right)=\left\{a_{1}, a_{2}, \ldots, a_{p+1}\right\}$. For $1 \leq i \leq\left(\frac{p+1}{2}\right)$, we define the Hamilton path $P_{i}=\left[a_{i}, a_{i+1}, a_{i-1}, \ldots, a_{i+\left(\frac{p+1}{2}\right)-1}, a_{i+\left(\frac{p+1}{2}\right)+1}, a_{i+\left(\frac{p+1}{2}\right)}\right]$ in K_{p+1}, where the subscripts are taken modulo $p+1$ with residues $1,2, \ldots, p+1$. Let $H_{i}=P_{2 i-1} \oplus P_{2 i}, 1 \leq$ $i \leq\left(\frac{p+1}{4}\right) ; H_{i}$ has $2 p$ edges and $\Delta\left(H_{i}\right) \leq 4 ;$ note that $H_{i}=K_{4}$ when $p=3$. As $\Delta\left(H_{i}\right) \leq 4, \chi\left(H_{i}\right) \leq 4$; see [8]. Since $H_{i}\left|K_{p+1}, H_{i}^{*}\right| K_{p+1}^{*}$; each H_{i}^{*} is a directed closed trail of length $4 p, \Delta^{+}\left(H_{i}^{*}\right) \leq 4$ and $\chi\left(H_{i}^{*}\right) \leq 4$. Since n is odd and from the necessary conditions, $n \geq 5$. Consequently, at least two mutually orthogonal latin squares of order n exist (see [18]); then $\vec{C}_{4 p} \mid H_{i}^{*} \circ \bar{K}_{n}$, by Theorem 5.1.
Next we assume that $t \geq 3$. Since $\left.p t+1 \equiv 0(\bmod 4), 2 p \left\lvert\, \begin{array}{c}p t+1 \\ 2\end{array}\right.\right)$. Then $P_{2 p+1}^{*} \mid K_{p t+1}^{*}$ as $P_{2 p+1} \mid K_{p t+1}$ by Theorem 2.2. Clearly, each $P_{2 p+1}^{*}$ is a directed closed trail of length $4 p$ with $\Delta^{+}\left(P_{2 p+1}^{*}\right)=2$ and $\chi\left(P_{2 p+1}^{*}\right)=2$ and hence $\vec{C}_{4 p} \mid P_{2 p+1}^{*} \circ \bar{K}_{n}$, by Theorem 5.1. This completes the proof.

Acknowledgements

The first author would like to thank the Kalasalingam Academy of Research and Education, Tamil Nadu, India, for financial support through a University Research Fellowship. We are grateful to the reviewers for their careful reading and suggestions which improved the presentation of the paper.

References

[1] B. Alspach, J. C. Bermond and D. Sotteau, Decomposition into cycles I: Hamilton decompositions, in Cycles and Rays, G. Hahn et al. (Eds.), Kluwer Academic Publishers, the Netherlands, 1990, pp. 9-18.
[2] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory Ser. 881 (2001), 77-99.
[3] B. Alspach, H. Gavlas, M. Šajna and H. Verrall, Cycle decompositions IV: complete directed graphs and fixed length directed cycles, J. Combin. Theory Ser. A 103 (2003), 165-208.
[4] A. Assaf, Modified group divisible designs, Ars Combin. 29 (1990), 13-20.
[5] R. Balakrishnan, J.-C. Bermond, P. Paulraja and M.-L. Yu, On Hamilton cycle decompositions of the tensor product of complete graphs, Discrete Math. 268 (2003), 49-58.
[6] R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory, $2^{\text {nd }}$ ed., Springer, New York, 2012.
[7] E. J. Billington, D. G. Hoffman and B. M. Maenhaut, Group divisible pentagon systems, Utilitas Math. 55 (1999), 211-219.
[8] R. L. Brooks, On coloring the nodes of a network, Proc. Cambridge. Philos. Soc. 60 (1946), 355-451.
[9] D. Bryant, D. Horsley and W. Pettersson, Cycle decompositions V: Complete graphs into cycles of arbitrary lengths, Proc. Lond. Math. Soc. 108 (2014), 11531192.
[10] M. Buratti, Rotational k-cycle systems of order $v<3 k$; another proof of the existence of odd cycle systems, J. Combin. Des. 11 (2003), 433-441.
[11] M. Buratti, H. Cao, D. Dai and T. Traetta, A complete solution to the existence of (k, λ)-cycle frames of type g^{u}, J. Combin. Des. 25 (2017), 197-230.
[12] V. Chitra, A. Shanmuga Vadivu and A. Muthusamy, $C_{4 p}$-frame of complete multipartite multigraphs, Aequationes Math. 85 (2013), 563-579.
[13] S. Ganesamurthy and P. Paulraja, 2p-cycle decompositions of some regular graphs and digraphs, Discrete Math. 341 (2018), 2197-2210.
[14] D. G. Hoffman, C. C. Linder and C. A. Rodger, On the construction of odd cycle systems, J. Graph Theory 13 (1989), 417-426.
[15] P. K. Jha, Hamiltonian decompositions of products of cycles, Indian J. Pure Appl. Math. 23 (1992), 723-729.
[16] R. Laskar, Decomposition of some composite graphs into Hamilton cycles, Proc. Conf. of Keszthely, 1976, Colloquia Mathematica Societatis János Bolyai, NorthHolland, Amsterdam, New York, 1978.
[17] R. Laskar and B. Auerbach, On the decompositions of r-partite graphs into edge-disjoint Hamilton circuits, Discrete Math. 14 (1976), 146-155.
[18] C. C. Lindner and C. A. Rodger, Design theory, $2^{\text {nd }}$ ed., CRC Press, Boca Raton, 2009.
[19] J. Ma, L. Pu and H. Shen, Cycle decompositions of $K_{n, n}-I$, SIAM J. Discrete Math. 20 (2006), 603-609.
[20] R. S. Manikandan and P. Paulraja, C_{p}-decompositions of some regular graphs, Discrete Math. 306 (2006), 429-451.
[21] R. S. Manikandan and P. Paulraja, C_{5}-decompositions of the tensor product of complete graphs, Australas. J. Combin. 37 (2007), 285-294.
[22] R. S. Manikandan, P. Paulraja and S. Sivasankar, Directed cycle decomposition of some regular digraphs, Ramanujan Math. Soc. Lec. Notes Ser. No. 7 (2008), 175-181.
[23] R. S. Manikandan and P. Paulraja, C_{7}-decompositions of the tensor product of complete graphs, Discuss. Math. Graph Theory 37 (2017), 523-535.
[24] R. S. Manikandan, P. Paulraja and T. Sivakaran, p^{2}-Cycle decompositions of the tensor product of complete graphs, Australas. J. Combin. 73 (2019), 107-131.
[25] A. Muthusamy and P. Paulraja, Factorizations of product graphs into cycles of uniform length, i Graphs Combin. 11 (1995), 69-90.
[26] A. Muthusamy and A. Shanmuga Vadivu, Cycle frames of complete multipartite multigraphs-III, J. Combin. Des. 22 (2014), 473-487.
[27] L. Ng, Hamiltonian decomposition of complete regular multipartite digraphs, Discrete Math. 177 (1997), 279-285.
[28] M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Des. 10 (2002), 27-78.
[29] B. R. Smith, Decomposing complete equipartite graphs into cycles of length $2 p$, J. Combin. Des. 16 (2008), 244-252.
[30] B. R. Smith, Complete equipartite 3p-cycle systems, Australas. J. Combin. 45 (2009), 125-138.
[31] B. R. Smith, Decomposing complete equipartite graphs into odd square-length cycles: number of parts odd, J. Combin. Des. 18 (2010), 401-414.
[32] B. R. Smith, Cycle decompositions of complete multigraphs, J. Combin. Des. 18 (2010), 85-93.
[33] D. Sotteau, Decomposition of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k, J$. Combin. Theory Ser. B 30 (1981), 75-81.
[34] M. Tarsi, Decomposition of a complete multigraph into simple paths: nonbalanced handcuffed designs, J. Combin. Theory Ser. A 34 (1983), 60-70.
(Received 22 June 2019; revised 3 July 2020, 7 Dec 2020)

