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Abstract

A Dyck path is non-decreasing if the y-coordinates of its valleys form
a non-decreasing sequence. A pyramid is asymmetric if the valleys de-
termining the maximal pyramid are at distinct levels. In this paper we
count non-decreasing Dyck paths having asymmetric pyramids of a fixed
height at a fixed level in the path. These paths are counted using gener-
ating functions (by the symbolic method) and recurrence relations. We
parameterize the results found here using Riordan arrays. We have found
some relations between the asymmetric pyramids with the p-ascent se-
quences, the asymmetric Delannoy paths, the q-Catalan numbers, and
the Fibonacci polynomials.
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1 Introduction

A Dyck path is a lattice path in the first quadrant of the xy-plane that starts at
the origin and ends on the x-axis, composed of North-East (X) and South-East (Y )
steps. We say that a Dyck path P has length 2n, if P has exactly n North-East steps.
A valley is a sub-path of the form Y X and a peak is a sub-path of the form XY .
The height of a valley is the y-coordinate of its lowest point. A Dyck path is called
non-decreasing if the heights of its valleys form a non-decreasing sequence when we
consider them from left to right. For example, in Figure 1 we show a non-decreasing
Dyck path of length 32, where the valleys are the points (5, 1), (7, 1), (11, 1), (14, 2),
(20, 4), and (24, 4).

Figure 1: A non-decreasing Dyck path of length 32.

Following the notation from [4, 5, 7, 10], we denote by D the set of all non-
decreasing Dyck paths, and by Dn the set of all non-decreasing Dyck paths of length
2n. This gives D = ∪· n≥1Dn (∪· means disjoint union). A pyramid of semilength
(height) h ≥ 1 is a sub-path of the form XhY h, and it is maximal if it cannot be
extended to a pyramid Xh+1Y h+1. We use Δ� to denote a maximal pyramid of the
form X�Y �. The weight of Δ� is defined as �. Note that for simplicity we use the term
weight instead of height of maximal pyramid. A maximal pyramid Δ� is symmetric if
Δ� is not preceded by an X and is not followed by a Y ; and it is asymmetric if Δ� is
either preceded by an X or is followed by a Y . In Figure 1, the asymmetric pyramids
are within the configurations represented with thick blue lines. Geometrically, Δ� is
symmetric if it is at a ground level or if two valleys bounding Δ� are at the same
height, and it is asymmetric otherwise (see [7, 8, 11]). For example, in Figure 1, the
second, the third, and the sixth pyramids are symmetric. The first, the fourth, the
fifth, and the seventh pyramids are asymmetric (see the shaded pyramids).

Let C be the set of all configurations of the form Y rΔ�Y and XrΔ�X
t, where

�, r, t ≥ 1 and Δ� is maximal. Thus, C is the set of configurations containing asym-
metric pyramids. These configurations are depicted in Figure 1. The feature of a
peak p is the pair (h, w) where h is the height of p and w is the weight of the max-
imal pyramid containing p (clearly h ≥ w > 0). For example, the peak in the fifth
pyramid in Figure 1 has feature (6, 2). If c ∈ C and p is a peak in c with feature
(h, w), then we use fn(c; h) to denote the number of paths in Dn containing p. For
instance, in Figure 2 we can see that f5(YΔ1Y ; 2) = 8. Note that the configuration
Y rΔ�X

t (symmetric pyramid) was not considered here. It gives rise to a different
problem that does not fit to the nature of this paper.
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In this paper we give recursive relations and closed formulas to evaluate fn(c; h).
These formulas are found using generating functions (by the symbolic method). We
have found that these formulas are related with the asymmetric Delannoy paths, the
q-Catalan numbers, and the Fibonacci polynomials. The numerical values resulting
from fn(c; h) are encoded using Riordan arrays.

Figure 2: The number of paths in D5, f5(YΔ1Y ; 2) = 8, containing (YΔ1Y ; 2).

The non-decreasing Dyck paths can now be considered as a classic topic of re-
search, some classic papers are [1, 6, 19]. However, recently the authors have found
that this concept still has many new questions to investigate (see [4, 5, 10]). The
authors have also found some new relations with other areas of combinatorics. For
instance, questions studied in others type of lattice paths have been extended to
non-decreasing paths, and sequences that have been used to count other combinato-
rial objects are also used to count aspects in non-decreacreasing lattice paths (some
of them are in bijective relation, for example families of polyominoes, and elena
trees). In this paper we give some connections between non-decreasing Dyck paths,
q-Catalan numbers, p-ascent sequences, asymmetric Delannoy paths, and Fibonacci
polynomials. Whoever is interested in Fibonacci numbers or Riordan arrays may
find it interesting that most of the sequences from non-decreasing lattice paths can
be expressed using Fibonacci numbers and/or Riordan arrays.

The non-decreasing concept has been extended to other types of lattice paths.
For example, non-decreasing Motzkin paths [13] and t-Dyck Paths [12].

2 Counting asymmetric pyramids in a configuration of the

form Y rΔ�Y

In this section we count the number of paths having a maximal pyramid Δ� at a
fixed height and lying in a configuration Y rΔ�Y , where � and r are fixed positive
integers. We give a closed formula for fn(Y

rΔ�Y ; s + �), where s is the height at
which the pyramid Δ� is located. Note that by the nature of non-decreasing Dyck
paths the configuration Y rΔ�Y always contains the last valley of the path. Finally
we give a relation between these counts and the p-ascent sequences, the asymmetric
Delannoy paths, the q-Catalan numbers, and the Fibonacci polynomials.

In [10] the authors prove that the generating function that counts Dyck paths
having only valleys of height zero is given by V (x) = (1−x)/(1−2x). We now define
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the generating function

T
(1)
s,�,r(x) :=

∑
n≥r+�+s

fn(Y
rΔ�Y ; s+ �)xn,

where r, � ≥ 1, and s ≥ 0.

Theorem 2.1. The generating function T
(1)
s,�,r(x) is given by

T
(1)
s,�,r(x) =

xs+�+r

1− x

(
1− x

1− 2x

)s+1

.

Proof. First of all, we note that the configuration Y rΔ�Y , where its associated peak
has feature (s + �, �), contains the last valley of the path. Therefore, any non-
decreasing Dyck path in Dn with the above configuration may be decomposed as

s︷ ︸︸ ︷
TXTX · · ·TX TΔ≥rΔ�Y

s, (1)

where T ∈ D contains only valleys of height zero, Δ� is a maximal pyramid and Δ≥r

is a pyramid of weight at least r, see Figure 3.

s

≥ r �

Figure 3: Factoring the path in (1).

From the symbolic method (see [9]) we obtain the equation

T
(1)
s,�,r(x) =

s︷ ︸︸ ︷
(V (x)x) (V (x)x) · · · (V (x)x) V (x)

xr

1 − x
x�

=

(
x

(
1− x

1− 2x

))s(
1− x

1− 2x

)
xr

1− x
x�

=
xs+�+r

1− x

(
1− x

1− 2x

)s+1

.

This completes the proof.

The set Dn can be partitioned into two disjoint sets An and Bn, where An contains
the paths that have at least one valley of height 0, and Bn = Dn \ An. Thus, a path
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Q in D has one of these two forms: Q = XPY or Q = XkY kP , where k ≥ 1 and
P ∈ D is non-empty. Note that

Dn = An ∪· Bn, and An =

n−1⋃
·

i=1

Cn,i, (2)

where Cn,i is formed by paths whose first valley point is at (2i, 0) (∪· means disjoint
union). The set Cn,i can be mapped bijectively into Dn−i by removing the first
pyramid Δi from all paths in Cn,i. Thus,

if En−i = {P \Δi | P ∈ Cn,i and Δi is the first pyramid in P}, then En−i = Dn−i.
(3)

The set Bn can be mapped bijectively into Dn−1 by removing the first up-step and
last down-step from all paths in Bn.

Theorem 2.2. Let �, s, r ≥ 1 and n ≥ � + s + r. If c1 = Y rΔ�Y , then fn(c1; s + �)
satisfies the recurrence relation

fn(c1; s+ �) = 2fn−1(c1; s+ �) + fn−1(c1; s− 1 + �)− fn−2(c1; s− 1 + �),

where f�+r(c1; �) = 1 and fn(c1; s+ �) = 0 if n < r + �.

Proof. Let p be a peak within the configuration c1 and with feature (s+ �, �). From
(2) we know that An = ∪· n−1

i=1 Cn,i. From (3) we know that Cn,i maps bijectively into
Dn−i = En−i. This and the definition of fn(c; h) imply that the number of paths in
An containing p is given by FAn :=

∑n−1
i=�+r fi(c1; s+ �).

We now find the number of paths in Bn containing p. Since Bn maps bijectively
into Dn−1, this number is counted by the number of paths in Dn−1 having c1 which is
given by fn−1(c1; s− 1+ �) (recall that c1 holds only in the end of the path). Adding
this last result with FAn we have

fn(c1; s+ �) = fn−1(c1; s− 1 + �) +

n−1∑
i=m

fi(c1; s+ �),

where f�+r(c1; �) = 1 and fn(c1; s+ �) = 0 for n < r + l. It is easy to see that

fn+1(c1; s+ �)− fn(c1; s+ �) = fn(c1; s+ �) + fn(c1; s− 1 + �)− fn−1(c1; s− 1 + �),

which gives the expected result

fn(c1; s+ �) = 2fn−1(c1; s+ �) + fn−1(c1; s− 1 + �)− fn−2(c1; s− 1 + �).

2.1 A relation with the Riordan arrays

We now give some background of Riordan arrays [21]. The same background was
given in [5, 10, 13]. An infinite lower triangular matrix is called a Riordan array if



R. FLÓREZ ET AL. /AUSTRALAS. J. COMBIN. 79 (1) (2021), 123–140 128

its kth column satisfies the generating function g(x) (f(x))k for k ≥ 0, where g(x)
and f(x) are formal power series with g(0) �= 0, f(0) = 0 and f ′(0) �= 0 (where f ′(x)
is the formal derivative of f(x)). The matrix corresponding to the pair f(x), g(x)
is denoted by (g(x), f(x)). If we multiply (g, f) by a column vector (c0, c1, . . . )

T

associated to the generating function h(x), then the resulting column vector has
generating function g(x)h(f(x)). This property is known as the fundamental theorem
of Riordan arrays or summation property.

The product of two Riordan arrays (g(x), f(x)) and (h(x), l(x)) is defined by

(g(x), f(x)) ∗ (h(x), l(x)) = (g(x)h (f(x)) , l (f(x))) .

We recall that the set of all Riordan arrays is a group under the operator “ ∗ ”
[21]. The identity element is I = (1, x), and the inverse of (g(x), f(x)) is

(g(x), f(x))−1 =
(
1/
(
g ◦ f) (x), f(x)) , (4)

where f(x) is the compositional inverse of f(x).

Let A1 = [a1(n, k)]n,k≥0 be a Riordan array defined by

A1 =

(
1

1− x
,
x(1− x)

1− 2x

)
.

We now show the first few rows of A1. So,

A1 = [a1(n, k)]n,k≥0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
1 4 3 1 0 0 0 0
1 8 8 4 1 0 0 0
1 16 20 13 5 1 0 0
1 32 48 38 19 6 1 0
1 64 112 104 63 26 7 1
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From the generating function given in Theorem 2.1 and the definition of Riordan
array A1 we obtain the following theorem, and in Theorem 2.4 we give a combina-
torial formula for the entries of the matrix A1.

Theorem 2.3. If n, s ≥ 0, r, � ≥ 1, and a1(n, k) is the (n, k)-th entry of the Riordan
array A1, then fn(Y

rΔ�Y ; s+ �) = a1(n− �− r + 1, s+ 1).

Theorem 2.4. If n, k ≥ 0 and a1(n, k) is the (n, k)-th entry of the Riordan array
A1, then

a1(n, k) =
n∑

j=0

(
k − 1

j

)(
n− j − 1

k − 1

)
(−1)j2n−j−k.
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Proof. From the definition of the Riordan array A1 we have

a1(n, k) = [xn]
1

1− x

(
x(1 − x)

1− 2x

)k

=
[
xn−k

] (1− x)k−1

(1− 2x)k

=
[
xn−k

]∑
n≥0

n∑
�=0

(
k − 1

�

)(
k + (n− �)− 1

n− �

)
(−1)�2n−�xn.

Therefore, comparing coefficients we obtain the desired result.

Let the Pascal matrix be P =
[(

n
k

)]
n,k≥0

and let P(�) =
[
p
(�)
n,k

]
n,k≥0

be the matrix

obtained from the partial row sums of P(�−1) =
[
p
(�−1)
n,k

]
n,k≥0

, with the initial value

P
(0) = P. Note that p

(0)
n,k =

(
n
k

)
and p

(�)
n,k =

∑n
j=k p

(�−1)
n,j , for � ≥ 1. For example,

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 2 1 0 0 0 0
1 3 3 1 0 0 0
1 4 6 4 1 0 0
1 5 10 10 5 1 0
1 6 15 20 15 6 1
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P
(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
2 1 0 0 0 0 0
4 3 1 0 0 0 0
8 7 4 1 0 0 0
16 15 11 5 1 0 0
32 31 26 16 6 1 0
64 63 57 42 22 7 1
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P
(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
3 1 0 0 0 0 0
8 4 1 0 0 0 0
20 12 5 1 0 0 0
48 32 17 6 1 0 0
112 80 49 23 7 1 0
256 192 129 72 30 8 1
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We define the matrix U = [u(n, k)]n,k≥0, where

u(n, k) :=

{
1, n ≥ k;

0, otherwise.

Note that U is the Riordan array given by U = (1/(1− x), x). Therefore, the matrix
P
(�) is the Riordan array

P
(�) = P ∗ U � =

(
1

1− x
,

x

1− x

)
∗
(

1

(1− x)�
, x

)
=

(
1

1− x

(
1− x

1− 2x

)�

,
x

1− x

)
.
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So, the first column of the matrix P
(�) coincides with the �-th column of the Riordan

array A1 (� ≥ 0). So, we obtain the following theorem.

Theorem 2.5. If n ≥ 0, k ≥ 1 and a1(n, k) is the (n, k)-th entry of the Riordan
array A1, then a1(n, 0) = 1 and

a1(n, k) =

n−k∑
�k=0

�k∑
�k−1=0

· · ·
�2∑

�1=0

(
n− k

�1

)
.

From this theorem it is easy to verify that a1(n + 1, 1) = 2n. In [16] Hirschhorn
proved that

∑n
k=0

∑k
j=0

(
n
k

)
= (n + 2)2n−1. So, a1(n+ 2, 2) = (n+ 2)2n−1.

Theorem 2.6. If n, k ≥ 0 and a1(n, k) is the (n, k)-th entry of the Riordan array
A1, then

a1(n+ k, k) =
n∑

�=0

(
n

�

)(
k + �− 1

�

)
.

Proof. Since the �-th column of the Riordan array A1 is equal to the first column of
the Riordan array P

(�), we have

A1(x) :=
∑
n≥0

a1(n+ k, k)xn =
1

1− x

(
1− x

1− 2x

)k

=
1

1− x
f

(
1

1− x

)
, (5)

where f(x) = 1/(1− x)�. Since

1

(1− x)k
=
∑
n≥0

(
k + n− 1

n

)
xn,

by the Cauchy product we have

A1(x) =
∑
n≥0

(
n∑

�=0

(
n

�

)(
k + �− 1

�

))
xn.

Comparing the n-th coefficient of this last equation with the n-th coefficient of (5)
we obtain the desired result.

If n, s ≥ 0 and r, � ≥ 1, then from Theorem 2.3 we have this combinatorial
formula

fn(Y
rΔ�Y ; s+ �) =

n−�−r−s∑
k=0

(
n− �− r − s

k

)(
s+ k

k

)
. (6)



R. FLÓREZ ET AL. /AUSTRALAS. J. COMBIN. 79 (1) (2021), 123–140 131

We now find an hypergeometric expression for the sequences {fn(Y rΔ�Y ; s +
�)}n. First we give some needed background. The rising factorial (also known as
Pochhammer symbol) is defined by

(x)n =

{
x(x+ 1)(x+ 2) · · · (x+ n− 1), if n ≥ 1;

1, if n = 0.
(7)

Clearly (1)n = n!. The hypergeometric function (or hypergeometric series) is defined
by

pF q

(
a1, a2, . . . , ap
b1, b2, . . . , bq

∣∣∣∣ t
)

=

∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

tk

k!
.

Theorem 2.7. If n, s ≥ 0 and r, � ≥ 1 are integers, then

fn(Y
rΔ�Y ; s+ �) = 2F 1

(
�+ r + s− n, s + 1

1

∣∣∣∣− 1

)
.

Proof. The Equation (6) and the relation(−x

n

)
=

(−1)n

n!
(x)n

imply that

fn(Y
rΔ�Y ; s+ �) =

∑
k≥0

(
n− �− r − s

k

)(
s+ k

k

)

=
∑
k≥0

(−1)k

k!
(�+ r + s− n)k

(−1)k

k!
(−s− k)k

=
∑
k≥0

(�+ r + s− n)k(s+ 1)k
(1)k

(−1)k

k!

= 2F 1

(
�+ r + s− n, s+ 1

1

∣∣∣∣− 1

)
.

This completes the proof.

These are some particular closed formulas:

fn(YΔ1Y ; 2) = (n− 1)2n−4, n ≥ 3,

fn(YΔ1Y ; 3) = fn(YΔ1Y Y ; 3) = (n2 − n− 4)2n−7, n ≥ 4,

fn(YΔ1Y ; 4) =
1

3
(n3 − 19n+ 18)2n−9, n ≥ 5,

fn(YΔ2Y ; 3) = (n− 2)2n−5, n ≥ 4,

fn(Y
2Δ2Y ; 7) =

1

3
(n4 − 10n3 − 13n2 + 286n− 408)2n−16, n ≥ 9.
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3 A relation with other combinatorial objects

In this section we give a brief connection between the sequences associated to asym-
metric pyramids and other combinatorial objects; such as Delannoy paths, p-ascent
sequences, q-Catalan numbers, and Fibonacci polynomials.

3.1 A relation with the p-ascent sequences

The number of ascents of the sequence (a1, . . . , an) of non-negative integers is defined
as

asc(a1, . . . , an) := |{j : aj < aj+1, 1 � j < n}|.
A sequence (a1, . . . , an) of non-negative integers is a p-ascent sequence of length
n if a1 = 0 and ai ∈ [0, p+ asc(a1, . . . , ai−1)] for all 2 ≤ i ≤ n. For example,
(0, 2, 3, 2, 0, 1, 2) is a 2-ascent sequences of length 7, with 4 ascents. For the case
p = 1 this concept was studied by Bousquet-Mélou et al. [2] in the context of (2+2)-
free posets of size n. The general case was studied by Kitaev and Remmel [17].

Let {an,p,10}n be the number of p-ascent sequence of length n avoiding the pattern
10. For example, a3,2,10 = 8, with the sequences being

(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 2, 2), (0, 2, 3).

Notice that (0, 1, 0), (0, 2, 0), (0, 2, 1) are 2-ascent sequences but they are not avoiding
the pattern 10. Kitaev and Remmel [17] proved the combinatorial formula:

an,p,10 =

n∑
s=0

(
n− 1

s

)(
p + s− 1

s

)
.

From Equation (6) we have fn(Y
rΔ�Y ; s+ �) = an−�−r−s+1,s+1,10.

3.2 A relation with the asymmetric Delannoy paths

Let A2 = [a2(n, k)]n,k≥0 be the Riordan array defined by

A2 =

(
1

1− x
,
x(2− x)

1− x

)
.

The first few rows of A2 are

A2 = [a2(n, k)]n,k≥0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0
1 3 4 0 0 0 0 0
1 4 8 8 0 0 0 0
1 5 13 20 16 0 0 0
1 6 19 38 48 32 0 0
1 7 26 63 104 112 64 0
1 8 34 96 192 272 256 128
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Note that the entries of the Riordan arrays A1 and A2 are related by a1(n+ k, k) =
a2(n+k−1, n) for all n ≥ 0 and k ≥ 1. Therefore, we have the combinatorial identity,
a2(n, k) = a1(n+ 1, n− k + 1) =

∑k
�=0

(
k
�

)(
n−k+�

�

)
, where 0 ≤ k ≤ n. From Theorem

2.1 and the definition of the Riordan array A2, we have the following theorem.

Theorem 3.1. If n, s ≥ 0, r, � ≥ 1, and a2(n, k) is the (n, k)-th entry of the Riordan
array A2, then fn(Y

rΔ�Y ; s+ �) = a2(n− �− r, n− s− �− r).

The entries of the matrix A2 are related with the number of asymmetric Delannoy
paths. Let d(n, k) be the number of lattice paths from the point (0, 0) to the point
(n, k + 1), with step set S = {(x, y) : x ≥ 0, y ≥ 1}. The sequence d(n, k) is called
asymmetric Delannoy numbers (see Hetyei [15]). In particular, the sequence d(n, n)
coincides with the central Delannoy numbers (cf. [22]). For example, d(1, 2) = 8
where the paths associated to (1, 2) are shown in Figure 4. From [15, Lemma 3.2]
we have that a2(n, k) = d(n− k, k).

Figure 4: Asymmetric Delannoy paths to the point (1, 3).

3.3 A relation with the q-Catalan numbers

The q-Catalan numbers Cn(q) were introduced by Carlitz and Riordan in [3]. They
can be defined combinatorially by

Cn(q) :=
∑
D∈Dn

qarea(D),

where Dn is the set of Dyck paths of length 2n and area(D) is the area of the Dyck
path D. In Figure 5 we show the Dyck paths counted by C3(q) = q3 + q2 + 2q + 1
and their areas.

q3 q2 q q 1

Figure 5: The area of the Dyck paths of length 6.

The number Cn(q) satisfies the recurrence relation

Cn(q) =

n∑
k=1

qk−1Ck−1(q)Cn−k(q),
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with n ≥ 1 and C0(q) = 1.

In this subsection we show a relation between the Riordan arrayA2 = [a2(n, k)]n,k≥0

and the q-Catalan numbers. In Theorem 3.4 we show how to calculate the entries
of A2 using the q-Catalan numbers. First we introduce some additional results for
Riordan arrays. Rogers [20] introduced the concept of the A-sequence. Specifically,
Rogers observed that every element dn+1,k+1 of a Riordan matrix (not belonging to
row 0 or column 0) can be expressed as a linear combination of the elements in the
preceding row. Merlini et al. [18] introduced the Z-sequence which characterizes
column 0, except for the element d0,0. Therefore, a Riordan array is completely char-
acterized by the A-sequence, the Z-sequence and the element d0,0. Summarizing, we
have the following theorem:

Theorem 3.2 ([18]). An infinite lower triangular array D = [dn,k]n,k∈N is a Riordan
array if and only if d0,0 �= 0 and there are two sequences A = (a0 �= 0, a1, a2, . . . ) and
Z = (z0, z1, z2, . . . ) such that

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · , n, k = 0, 1, . . .

dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + · · · , n = 0, 1, . . . .

Theorem 3.3 ([14, 18]). Let D = (g(x), f(x)) be a Riordan array with inverse
D−1 = (d(x), h(x)). Then the A-sequence and Z-sequence of D are

A(x) =
x

h(x)
; Z(x) =

1

h(x)
(1− d0,0d(x)) .

Theorem 3.4. If n, k ≥ 0, a2(n, k) is the (n, k)-th entry of the Riordan array A2,
and Cn(q) is the q-Catalan number, then

a2(n+ 1, k + 1) = a2(n, k) +
∑
k≥1

Ck(−1)a2(n, k),

and a2(n + 1, 0) = a2(n, 0) with initial value a2(0, 0) = 1.

Proof. The inverse of the Riordan array A2 = (1/(1− x), x(2 − x)/(1− x)) is given
by

A−1
2 =

(
1

2

(
1− 2x+

√
1 + 4x2

)
,
1

2

(
1 + 2x−

√
1 + 4x2

))
.

Therefore, from Theorem 3.3 we have that the generating functions of the A sequence
and the Z sequence for the Riordan array A2 are given by

A(x) =
2x

1 + 2x−√
1 + 4x2

; Z(x) = 1.

If

Ca(x) :=
∑
n≥0

Cn(1)x
n =

1−√
1− 4x

2x
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is the generating function of the Catalan numbers, then A(x) = 1+ x+ x2Ca(−x2).
It is easy to show that

G(x) :=
∑
n≥0

Cn(−1)xn = 1 + xCa(−x2).

Therefore, A(x) = 1 + xG(x). This and Theorem 3.2 prove the first equality. Since
Z(x) = 1, the second equality clearly holds.

The first few values of the sequence Cn(−1) are

1, 1, 0, −1, 0, 2, 0, −5, 0, 14, 0, −42, 0, 132, . . . .

So, a2(n+ 1, k + 1) is equal to

a2(n, k)+a2(n, k+1)+a2(n, k+2)−a2(n, k+4)+2a2(n, k+6)−5a2(n, k+8)+ · · · .

3.4 A relation with the Fibonacci polynomials

The Fibonacci polynomials Fn(x) are defined recursively by Fn(x) = xFn−1(x) +
Fn−2(x) for n ≥ 2, with initial values F0(x) = 0 and F1(x) = 1. The generating
function of these polynomials is

F (z) :=
∑
n≥0

Fn(x)z
n =

z

1− xz − z2
.

From this we obtain the generating function of the binomial transform of the Fi-
bonacci polynomials

1

1− z
F

(
z

1− z

)
=
∑
n≥0

n∑
k=0

(
n

k

)
Fk(x)z

n =
z

1− (2 + x)z + xz2
. (8)

We use Hn(x) to denote the polynomial

Hn(x) :=

n∑
k=0

(
n

k

)
Fk(x).

The first few polynomials are

H1(x) = 1, H2(x) = x+ 2, H3(x) = x2 + 3x+ 4, H4(x) = x3 + 4x2 + 8x+ 8,

H5(x) = x4 + 5x3 + 13x2 + 20x+ 16, . . .

In Theorem 3.5 we show that the coefficients of Hn(x) coincide with the entries of
the matrix A2.

Theorem 3.5. If 0 ≤ k ≤ n and a2(n, k) is the (n, k)-th entry of the Riordan array
A2, then a2(n, k) = [xk]xn−1Hn(1/x).
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Proof. From the summation property of the Riordan arrays we have∑
n≥0

n∑
k=0

a2(n, k)x
kzn = A2 ∗ 1

1− xz
=

(
1

1− z
,
z(2 − z)

1− z

)
∗ 1

1− xz

=
1

1− z

(
1

1− xz(2−z)
1−z

)
=

1

1− (2 + x)z + xz2
.

Note that 1/(1 − (2 + x)z + xz2) is equal to (8), so comparing coefficients we
obtain the desired result.

4 Counting asymmetric pyramids in a configuration of the
form XrΔ�X

t

In this section we count the number of paths having a maximal pyramid Δ�, at a
fixed height and lying in a configuration XrΔ�X

t, where �, r, and t are fixed positive
integers. We give a closed formula for fn(X

rΔ�X
t; s + �), where s is the height at

where the pyramid Δ� is located. Note that by the nature of non-decreasing Dyck
paths the configuration XrΔ�X

t holds at most once in a path.

The generating function that counts the total number of non-decreasing Dyck
paths of length 2n is given by D(x) = (x(1 − x))/(1 − 3x + x2) =

∑∞
n=1 F2n−1x

n,
where Fn is a Fibonacci number (see [1]). Now we define the generating function

T
(2)
s,�,r,t(x) :=

∑
n≥s+�+t

fn(X
rΔ�X

t; s+ �)xn.

Theorem 4.1. The generating function T
(2)
s,�,r,t(x) is given by

T
(2)
s,�,r,t(x) =

(1− x)xs+�+t

1− 3x+ x2

(
1− x

1− 2x

)s−r+1

.

Proof. Since the configuration XrΔ�X
t, where the associated peak has feature (s +

�, �) holds at most once in a non-decreasing Dyck path, we have that any non-
decreasing Dyck path in D with this configuration may be decomposed as either

s−r︷ ︸︸ ︷
TXTX · · ·TX TXrΔ�Δ≥tDY s or

s−r︷ ︸︸ ︷
TXTX · · ·TX TXrΔ�X

t (D ∪ λ)Y tY s,
(9)

where D is a non-empty non-decreasing Dyck path, λ is the empty path, T ∈ D
contains only valleys of height zero. See Figure 6.

Therefore, we obtain the following generating function

T
(2)
s,�,r,t(x) = (xV (x))s−r V (x)xrx� xt

1− x
D(x) + (xV (x))s−r V (x)xrx�xt(D(x) + 1)

= xs+�+t

(
1− x

1− 2x

)s−r+1(
2− x

1− x
D(x) + 1

)
.
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� ≥ t

s

r

� t

s

r

Figure 6: Factoring the paths in (9).

So,

T
(2)
s,�,r,t(x) = xs+�+t

(
1− x

1− 2x

)s−r+1(
1− x

1− 3x+ x2

)
.

Let B = [b(n, k)]n,k≥0 be the Riordan array defined by

B =

(
1− x

1− 3x+ x2
,
x(1 − x)

1− 2x

)
.

The first few rows of B are

B1 = [b(n, k)]n,k≥0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0
5 3 1 0 0 0 0 0
13 9 4 1 0 0 0 0
34 26 14 5 1 0 0 0
89 73 45 20 6 1 0 0
233 201 137 71 27 7 1 0
610 546 402 234 105 35 8 1
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The proof of the following theorem is similar to the proof of Theorem 2.2, so it
is omitted.

Theorem 4.2. Let �, s, r, t ≥ 1 and n ≥ �+ r+ t. If c2 = XrΔ�X
t, then fn(c2; s+ �)

satisfies the recurrence relation

fn(c2; s+ �) = 2fn−1(c2; s+ �) + fn−1(c2; s− 1 + �)− fn−2(c2; s− 1 + �),

where fn(c2; �) = F2(n−�−r−t+1)+1 − 2n−�−r−t and fn(c2; s+ �) = 0 if n < r + �+ t.
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Note that by the generating function given in Theorem 4.1 and the definition of
the Riordan array B we have the following theorem.

Theorem 4.3. If n ≥ 0, t ≥ 1, 1 ≤ r ≤ s and b(n, k) is the (n, k)-th entry of the
Riordan array B, then fn(X

rΔ�X
t; s+ �) = b(n− �− r − t+ 1, s− r + 1).

The following theorem shows that the entries of the matrix B can be expressed
as a linear combination of the entries of the matrix A1 and Fibonacci numbers.

Theorem 4.4. Let n and k be nonnegative integers. If a1(n, k) and b(n, k) are the
(n, k)-th entry of the Riordan arrays A1 and B, respectively, and Fm is a Fibonacci
number, then

b(n, k) =
n−1∑
i=0

F2(n−i)a1(i, k) + a1(n, k).

Proof. From the product of Riordan arrays we have

B =

(
(1− x)2

1− 3x+ x2
, x

)
A1. (10)

Since
(1− x)2

1− 3x+ x2
= 1 +

x

1− 3x+ x2
= 1 +

∑
k≥0

F2kx
k,

we conclude that (
(1− x)2

1− 3x+ x2
, x

)
= [f(n, k)]n,k≥0 ,

where

f(n, k) :=

⎧⎪⎨
⎪⎩
1, if n = k;

F2(n−k), if n > k;

0, otherwise.

From the product in (10) we have

b(n, k) =
n∑

i=0

f(n, i)a1(i, k) =
n−1∑
i=0

F2(n−i)a1(i, k) + a1(n, k).

For some particular values of s, �, r, we obtain these two examples,

fn(XΔ1X; 2) = F2n−3 − 2n−3, n ≥ 3,

fn(X
2Δ1X; 3) = fn(XΔ1X; 3) = F2n−5 − 2n−4, n ≥ 4.
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