Existence of 3-factors in $K_{1,n}$ -free graphs with connectivity and edge-connectivity conditions

Keiko Kotani

Department of Mathematics Tokyo University of Science Shinjuku-ku Tokyo 162-8601 Japan kkotani@rs.tus.ac.jp

Shuto Nishida*

Graduate School of Science Tokyo University of Science Shinjuku-ku Tokyo 162-8601 Japan 1418702@ed.tus.ac.jp

Abstract

Let t be an integer satisfying $t \ge 5$. We show that if G is a $\lceil (t-1)/3 \rceil$ connected $K_{1,t}$ -free graph of even order with minimum degree at least $\lceil (4t-1)/3 \rceil$, then G has a 3-factor, and if G is a $\lceil (4t-4)/3 \rceil$ -connected $K_{1,t}$ -free graph of even order, then G has a 3-factor. We also show that if G is a 2-edge-connected $K_{1,4}$ -free graph of even order with minimum degree at least 6, then G has a 3-factor.

1 Introduction

In this paper, we consider only finite, simple, undirected graphs with no loops and no multiple edges.

Let G = (V(G), E(G)) be a graph. For $x \in V(G)$, $\deg_G(x)$ denotes the degree of x in G. We let $\delta(G)$ denote the minimum of $\deg_G(x)$ as x ranges over V(G). For an integer $r \geq 1$, a subgraph F of G such that V(F) = V(G) and $\deg_F(x) = r$ for all $x \in V(F)$ is called an r-factor of G. The complete bipartite graph $K_{1,t}$ with partite sets of cardinalities 1 and t is called the t-star. We say that G is $K_{1,t}$ -free or t-star-free if G does not contain $K_{1,t}$ as an induced subgraph.

^{*} Corresponding author.

The following theorem was proved by Tokuda and Ota in [4].

Theorem A. Let t, r be integers with $t \ge 3$ and $r \ge 2$. Let G be a connected $K_{1,t}$ -free graph, and suppose that

$$\delta(G) \ge \left(t + \frac{t-1}{r}\right) \left\lceil \frac{t}{2(t-1)}r \right\rceil - \frac{t-1}{r} \left\lceil \frac{t}{2(t-1)}r \right\rceil^2 + t - 3.$$

In the case where r is odd, suppose further that $t \leq r+1$ and |V(G)| is even. Then G has an r-factor.

In the case where r = 3, the minimum degree condition in Theorem A takes the following simple form.

Corollary B. Let t be 3 or 4. Let G be a connected $K_{1,t}$ -free graph with |V(G)| even, and suppose that $\delta(G) \geq 5$ or $\delta(G) \geq 7$ according as t = 3 or t = 4. Then G has a 3-factor.

The minimum degree condition in Theorem A is best possible, and hence so are those in Corollary B. On the other hand, if we add the assumption that G is 2-connected, then we can relax the minimum degree condition as is shown in the following two results which were proved in [3].

Theorem C. Let t be 3 or 4. Let G be a 2-connected $K_{1,t}$ -free graph with |V(G)| even and suppose that $\delta(G) \ge t + 1$. Then G has a 3-factor.

Theorem D. Let t be an integer with $5 \le t \le 7$. Let G be a 2-connected $K_{1,t}$ -free graph with |V(G)| even and suppose that $\delta(G) \ge t + 2$. Then G has a 3-factor.

In Theorems C and D, the conditions on $\delta(G)$ are best possible. However, it is natural to expect that we can weaken the condition on $\delta(G)$ and the condition on tif we replace the assumption that G is 2-connected by a stronger assumption. Along this line, we show the following results.

Theorem 1. Let t be an integer with $t \ge 5$. Let G be a $\lceil (t-1)/3 \rceil$ -connected $K_{1,t}$ -free graph with |V(G)| even and suppose that $\delta(G) \ge \lceil (4t-1)/3 \rceil$. Then G has a 3-factor.

Theorem 2. Let t be an integer with $t \ge 5$. Let G be a $\lceil (4t-4)/3 \rceil$ -connected $K_{1,t}$ -free graph with |V(G)| even. Then G has a 3-factor.

Note that, since $\lceil (t-1)/3 \rceil = 2$ and $t+2 = \lceil (t-1)/3 \rceil$ for each $5 \le t \le 7$, Theorem 1 implies Theorem D.

The minimum degree conditions are best possible in Theorems 1 and 2 in the sense that, for each $t \ge 5$, there exist infinitely many $\lceil (4t-7)/3 \rceil$ -connected $K_{1,t}$ -free graphs G of even order with $\delta(G) \ge \lceil (4t-4)/3 \rceil$ such that G has no 3-factor (see Example 6.1). In Theorem 1, the connectivity condition is best possible in the sense

that, for $t \ge 8$, and for any positive integer δ , there exists a $\lceil (t-4)/3 \rceil$ -connected $K_{1,t}$ -free graph G of even order with $\delta(G) \ge \delta$ such that G has no 3-factor (see Example 6.2). Further, for $K_{1,3}$ -free graphs and for $K_{1,4}$ -free graphs, results like Theorems 1 and 2 do not hold because there exist infinitely many 3-connected $K_{1,3}$ -free graphs of even order with no 3-factor (see Example 6.3) and there exist infinitely many 4-connected $K_{1,4}$ -free graphs of even order with no 3-factor (see Example 6.4).

The following result concerning 2-factors with edge-connectivity conditions was proved [1].

Theorem E. Let t and k be integers with $t \ge 3$ and $k \ge 2$. Let G be a k-edgeconnected $K_{1,t}$ -free graph such that $\delta(G) \ge t - 2 + (t - 1)/(k - 1)$. In the case where t = 3 and k = 2, suppose further that $\delta(G) \ge 4$. Then G has a 2-factor.

We also show the result on 3-factors which correspond to Theorem E concerning $K_{1,4}$ -free graphs.

Theorem 3. Let G be a 2-edge-connected $K_{1,4}$ -free graph with |V(G)| even, and suppose that $\delta(G) \geq 6$. Then G has a 3-factor.

In Theorem 3, the minimum degree condition is best possible in the sense that, there exist infinitely many 2-edge-connected $K_{1,4}$ -free graphs G of even order with $\delta(G) \geq 5$ such that G has no 3-factor (see Example 6.5).

Note that, unlike the case of vertex-connectivity, even if we assume that the edge-connectivity is sufficiently large, $K_{1,5}$ -free-ness does not imply the existence of a 3-factor; that is to say, for each $k \geq 2$, there exists a k-edge-connected $K_{1,5}$ -free graph of even order with no 3-factor (see Example 6.6).

It is natural to expect that we can weaken the condition on $\delta(G)$ in Theorem 3 if we replace the assumption that G is 2-edge-connected by a stronger edge-connectivity condition. This problem is still open, and the result which correspond to Theorem 3 concerning $K_{1,3}$ -free graphs is also still open.

Our notation is standard, and is mostly taken from Diestel [2]. Possible exceptions are as follows. Let G be a graph. For $x \in V(G)$, $N(x) = N_G(x)$ denotes the set of vertices adjacent to x in G; thus $\deg_G(x) = |N_G(x)|$. For $A \subseteq V(G)$, we let N(A)denote the union of N(x) as x ranges over A. For $A, B \subseteq V(G)$ with $A \cap B = \emptyset$, E(A, B) denotes the set of those edges of G which join a vertex in A and a vertex in B. For $A \subseteq V(G)$, the subgraph induced by A in G is denoted by G[A], and the graph obtained from G by deleting all vertices in A together with the edges incident with them is denoted by G - A; thus G - A = G[V(G) - A]. We often identify a subgraph H of G with its vertex set; for example, we write N(H) for N(V(H)). Also a vertex x of G is often identified with the set $\{x\}$; for example, if H is a subgraph with $x \notin V(H)$, we write E(x, H) for $E(\{x\}, V(H))$.

2 Preliminary results

In this section we state preliminary lemmas, which we use in the proof of Theorems 1, 2 and 3.

Let G be a graph. For $S, T \subseteq V(G)$ with $S \cap T = \emptyset$, define $\theta(S, T)$ by

 $\theta(S,T) = 3|S| + \sum_{y \in T} (\deg_{G-S}(y) - 3) - h(S,T),$

where h(S,T) denotes the number of those components C of G - S - T such that |E(T,C)| + |V(C)| is odd. The following lemma is a special case of the *f*-Factor Theorem of Tutte [5].

- **Lemma 2.1.** (i) The graph G has a 3-factor if and only if $\theta(S,T) \ge 0$ for all $S,T \subseteq V(G)$ with $S \cap T = \emptyset$.
 - (ii) If |V(G)| is even, then whether G has a 3-factor or not, $\theta(S,T)$ is even for all $S, T \subseteq V(G)$ with $S \cap T = \emptyset$.

The following lemma is well-known, and appears as Lemma 2.2 in [3].

Lemma 2.2. Let $S, T \subseteq V(G)$ be subsets of V(G) with $S \cap T = \emptyset$ for which $\theta(S, T)$ becomes smallest. Then the following hold.

- (i) Let C be a component of G S T such that $|E(T, C)| \leq 1$. Then $|V(C)| \geq 2$.
- (ii) Suppose that S and T are chosen with |T| is as small as possible, subject to the condition that $\theta(S,T)$ is smallest. Then $deg_{G[T]}(y) \leq 1$ for every $y \in T$.

3 Notation

Let $t \geq 3$, $l \geq 1$ and $\delta \geq 3$ be integers, and G be an *l*-connected $K_{1,t}$ -free graph of even order with $\delta(G) \geq \delta$. In this section, we fix notation for the proof of Theorems 1,2 and 3.

Let S, T be subsets of V(G) with $S \cap T = \emptyset$ for which $\theta(S, T)$ becomes smallest. We choose $S, T \subseteq V(G)$ so that |T| is as small as possible, subject to the condition that $\theta(S, T)$ is smallest. If $S \cup T = \emptyset$, then since G is connected and has even order, we get h(S, T) = 0, and hence $\theta(S, T) = 0$. Thus we may assume $S \cup T \neq \emptyset$.

Let C_1, \ldots, C_k be the components of G - S - T. We may assume that there exists an integer a with $0 \le a \le k$ such that $|E(T, C_i)| = 0$ for each $0 \le i \le a$, and $|E(T, C_i)| \ge 1$ for each $a + 1 \le i \le k$. We may further assume that there exists an integer b with $0 \le b \le k - a$ such that $|E(T, C_i)| = 1$ for each $a + 1 \le i \le a + b$, and $|E(T, C_i)| \ge 2$ for each $a + b + 1 \le i \le k$. Note that if $S \ne \emptyset$ and $|T| + k \le 1$, then $\sum_{y \in T} (3 - \deg_{G-S}(y)) + h(S, T) \le 3$, and hence $\theta(S, T) \ge 3|S| - 3 \ge 0$. Thus we may assume that if $S \ne \emptyset$, then we have $|T| + k \ge 2$.

Let $a \ge 1$, and let $1 \le i \le a$. By Lemma 2.2 (i), $|V(C_i)| \ge 2$. Recall that we have $S \cup T \ne \emptyset$ by the assumption made in the second paragraph. Since G is connected, $\emptyset \ne N(C_i) \cap (S \cup T) = N(C_i) \cap S$; in particular, $S \ne \emptyset$. By the assumption made at the end of the third paragraph in this section, this implies $|T| + k \ge 2$, and hence $G - S \ne C_i$. Since G is *l*-connected, $|N(C_i) \cap S| \ge l$. Let $x_i^1, x_i^2, \ldots, x_i^l$ be *l* distinct vertices in $N(C_i) \cap S$ and let e_i^j $(1 \le j \le l)$ be an edge joining x_i^j and a vertex u_i^j in $V(C_i)$. Then

$$|\{e_i^j | 1 \le i \le a, 1 \le j \le l\}| = la.$$
(3.1)

For each $x \in S$, let $L(x) = \{u_i^j \mid 1 \le i \le a, 1 \le j \le l, x_i^j = x\}$. Clearly

$$L(x) \subseteq N(x)$$
 and $L(x)$ is independent. (3.2)

Also

$$\sum_{x \in S} |L(x)| = la \tag{3.3}$$

by (3.1). If a = 0, we let $L(x) = \emptyset$ for each $x \in S$; thus (3.2) and (3.3) hold in this case as well.

We now look at components of G[T]. Let $H_1, ..., H_m$ be the components of G[T]. Then

$$T = \bigcup_{1 \le \mu \le m} V(H_{\mu}) \text{ (disjoint union).}$$
(3.4)

In the remainder of this section, we assign real numbers θ_{μ} , θ_{μ}^{1} , and θ_{μ}^{2} to each H_{μ} , and show that $\theta(S,T) \geq \sum_{1 \leq \mu \leq m} \theta_{\mu}$, $\theta(S,T) \geq \sum_{1 \leq \mu \leq m} \theta_{\mu}^{1}$, and $\theta(S,T) \geq \sum_{1 \leq \mu \leq m} \theta_{\mu}^{2}$. We first prove several claims concerning H_{μ} . Note that H_{μ} is a path of order 1 or 2 by Lemma 2.2 (ii). For each $1 \leq \mu \leq m$, set

$$\begin{split} I^{1}_{\mu} &= \{i \mid a+1 \leq i \leq a+b, E(H_{\mu}, C_{i}) \neq \emptyset\}, \\ I^{2}_{\mu} &= \{i \mid a+b+1 \leq i \leq k, E(H_{\mu}, C_{i}) \neq \emptyset\}, \\ I_{\mu} &= I^{1}_{\mu} \cup I^{2}_{\mu}, \\ I'_{\mu} &= I^{1}_{\mu} \cup \{i \in I^{2}_{\mu} \mid |E(H_{\mu}, C_{i})| = 1\}, and \\ q_{\mu} &= \sum_{y \in V(H_{\mu})} \deg_{G-S}(y). \end{split}$$

Claim 3.1. Let $1 \le \mu \le m$.

(i) If $|V(H_{\mu})| = 1$, then $q_{\mu} \ge 2|I_{\mu}| - |I'_{\mu}|$ and $|N(H_{\mu}) \cap S| \ge \max\{\delta - q_{\mu}, 0\}$. (ii) If $|V(H_{\mu})| = 2$, then $q_{\mu} \ge 2|I_{\mu}| - |I'_{\mu}| + 2$ and $|N(H_{\mu}) \cap S| \ge \max\{\delta - \lfloor q_{\mu}/2 \rfloor, 0\}$.

Proof. This immediately follows from the definition of I_{μ} , I'_{μ} and q_{μ} .

Let $a + 1 \leq i \leq a + b$. Then there exists μ $(1 \leq \mu \leq m)$ with $|E(H_{\mu}, C_i)| = 1$, that is to say, there exists exactly one edge joining $V(H_{\mu})$ and $V(C_i)$. Let $y_i w_i$ be such an edge $(y_i \in V(H_{\mu}), w_i \in V(C_i))$. Set

 $J_1 = \{i \mid a+1 \le i \le a+b, \text{ there exists an edge joining } S \text{ and } V(C_i) - \{w_i\}\}, \\ J'_1 = \{i \mid a+1 \le i \le a+b, i \notin J_1, \text{ there exists an edge joining } S - N(y_i) \text{ and } \{w_i\}\}.$

For each $j \in J_1$, let $x_j u_j$ be an edge such that $x_j \in S$ and $u_j \in V(C_j) - \{w_j\}$. For each $j \in J'_1$, let $x_j u_j$ be an edge such that $x_j \in S - N(y_j)$ and $u_j = w_j$. Set

$$J_1(x) = \{ u_j \mid j \in J_1 \cup J'_1, x_j = x \}.$$

Set

$$J_2' = \{i \mid a+b+1 \le i \le k, |V(C_i)| \ge 2, \text{ there exists } \mu \text{ with } 1 \le \mu \le m \\ \text{such that } N(C_i) \cap T \subseteq V(H_\mu) \text{ and } |N(H_\mu) \cap V(C_i)| = 1\},$$

 $J_2 = \{i \in J'_2 \mid \text{ there exists an edge joining } S \text{ and } V(C_i) - N(T)\}.$

For each $j \in J_2$, let $x_j u_j$ be an edge that $x_j \in S$ and $u_j \in V(C_j) - N(T)$. For each $x \in S$, set

$$J_2(x) = \{ u_j \mid j \in J_2, x_j = x \}.$$

Clearly $J_1(x) \cup J_2(x) \subseteq N(x)$. Since u and v belong to distinct components of G - S - T for any $u, v \in L(x) \cup J_1(x) \cup J_2(x)$ with $u \neq v$, this together with (3.2) implies

$$L(x) \cup J_1(x) \cup J_2(x) \subseteq N(x) \text{ and } L(x) \cup J_1(x) \cup J_2(x) \text{ is independent.}$$
 (3.5)

Also

$$|J_1 \cup J_1'| = |\bigcup_{x \in S} J_1(x)| \quad \text{(disjoint union) and} \tag{3.6}$$

$$|J_2| = |\bigcup_{x \in S} J_2(x)| \quad \text{(disjoint union)}. \tag{3.7}$$

For each $x \in S$, let $\mathcal{N}(x) = \{\mu \mid 1 \leq \mu \leq m, x \in N(H_{\mu})\}$. For each μ $(1 \leq \mu \leq m)$, set $\mathcal{H}_{\mu} = G[V(H_{\mu}) \cup (\bigcup_{i \in I_{\mu}^{1} - J_{1} \cup J'_{1}} V(C_{i}))]$. Note that if $I_{\mu}^{1} - J_{1} \cup J'_{1} = \emptyset$, then $\mathcal{H}_{\mu} = H_{\mu}$. For each $x \in S$ and for each $\mu \in \mathcal{N}(x)$, we let $\mathcal{J}(x, \mu)$ be a maximal independent set of $N(x) \cap V(\mathcal{H}_{\mu})$. If $\mu \notin \mathcal{N}(x)$, let $\mathcal{J}(x, \mu) = \emptyset$. Set $\mathcal{J}(x) = \bigcup_{1 \leq \mu \leq m} \mathcal{J}(x, \mu)$. If $\mu_{1} \neq \mu_{2}$, then $\mathcal{J}(x, \mu_{1}) \cap \mathcal{J}(x, \mu_{2}) = \emptyset$ by the definition of $\mathcal{J}(x, \mu)$. Thus

$$|\mathcal{J}(x)| = \sum_{1 \le \mu \le m} |\mathcal{J}(x,\mu)|.$$
(3.8)

Since $|\mathcal{J}(x,\mu)| \ge 1$ for each $x \in N(H_{\mu}) \cap S$,

$$|N(H_{\mu}) \cap S| \le \sum_{x \in S} |\mathcal{J}(x,\mu)|.$$
(3.9)

Claim 3.2. (i) For each $x \in S$, $\mathcal{J}(x)$ is independent. (ii) Let $x \in S$. Then $E(u, \mathcal{J}(x, \mu)) = \emptyset$ for any $u \in L(x) \cup J_1(x) \cup J_2(x)$ and for any $\mu \in \mathcal{N}(x)$. In particular, for each $x \in S$, we have $E(u, \mathcal{J}(x)) = \emptyset$ for any $u \in L(x) \cup J_1(x) \cup J_2(x)$.

Proof. By the definition of $\mathcal{J}(x,\mu)$, for each $x \in S$ and for each μ $(1 \leq \mu \leq m)$, $\mathcal{J}(x,\mu)$ is independent. Since if $\mu_1 \neq \mu_2$, then $E(\mathcal{H}_{\mu_1},\mathcal{H}_{\mu_2}) = \emptyset$. In particular, for each $x \in S$, we have $E(\mathcal{J}(x,\mu_1),\mathcal{J}(x,\mu_2)) = \emptyset$ for any $\mu_1, \mu_2 \in \mathcal{N}(x)$ with $\mu_1 \neq \mu_2$. Thus (i) holds. The statement (ii) immediately follows from the definitions of $\mathcal{J}(x)$, $L(x), J_1(x)$ and $J_2(x)$.

Claim 3.3. $(t-1)|S| \ge \sum_{1 \le \mu \le m} \sum_{x \in S} |\mathcal{J}(x,\mu)| + la + |J_1 \cup J'_1| + |J_2|.$

Proof. Since G is $K_{1,t}$ -free, it follows from (3.5) and Claim 3.2 that $|\mathcal{J}(x)| + |L(x)| + |J_1(x)| + |J_2(x)| \le t - 1$ for every $x \in S$. It follows from (3.3), (3.6), (3.7) and (3.8) that

$$\begin{aligned} (t-1)|S| &\geq \sum_{x \in S} \left(\sum_{1 \leq \mu \leq m} |\mathcal{J}(x,\mu)| + |L(x)| + |J_1(x)| + |J_2(x)| \right) \\ &= \sum_{x \in S} \sum_{1 \leq \mu \leq m} |\mathcal{J}(x,\mu)| + \sum_{x \in S} |L(x)| + \sum_{x \in S} |J_1(x)| + \sum_{x \in S} |J_2(x)| \\ &= \sum_{1 \leq \mu \leq m} \sum_{x \in S} |\mathcal{J}(x,\mu)| + la + |J_1 \cup J_1'| + |J_2|, \end{aligned}$$

as desired.

Claim 3.4. Suppose that $t \leq 3l + 1$. If $T = \emptyset$, then $\theta(S, T) \geq 0$.

Proof. By Claim 3.3, $|S| \ge la/(t-1) \ge a/3$. If $T = \emptyset$, we have a = k, and hence $h(S,T) \le k = a$. Hence $\theta(S,T) \ge 3 \cdot a/3 - a \ge 0$.

In the rest of this section, we suppose that $t \leq 3l + 1$. In view of Claim 3.4, we may assume $T \neq \emptyset$. For each μ $(1 \leq \mu \leq m)$ and for each i $(a + 1 \leq i \leq k)$, we set

$$w(H_{\mu}, C_i) = \begin{cases} 0 & (N(C_i) \cap V(H_{\mu}) = \emptyset) \\ 1/2 & (N(C_i) \cap V(H_{\mu}) \neq \emptyset, N(C_i) \cap T \not\subseteq V(H_{\mu})) \\ 1 & (N(C_i) \cap V(H_{\mu}) \neq \emptyset, N(C_i) \cap T \subseteq V(H_{\mu})). \end{cases}$$

Then for each $i \ (a+1 \le i \le k)$, we have

$$\sum_{1 \le \mu \le m} w(H_{\mu}, C_i) \ge 1, \tag{3.10}$$

and for each μ $(1 \le \mu \le m)$, we have

$$\sum_{i \in I_{\mu}} w(H_{\mu}, C_i) \le |I_{\mu}|.$$
(3.11)

We now estimate $\theta(S,T)$ from below. For each $1 \le \mu \le m$, set

$$\begin{aligned} \theta_{\mu} &= \frac{3}{t-1} \sum_{x \in S} |\mathcal{J}(x,\mu)| + q_{\mu} - 3|V(H_{\mu})| + \frac{3}{t-1} |I_{\mu}^{1} \cap (J_{1} \cup J_{1}')| + \frac{3}{t-1} |I_{\mu}^{2} \cap J_{2}| \\ &- \sum_{i \in I_{\mu}} w(H_{\mu}, C_{i}), \\ \theta_{\mu}^{1} &= \frac{3}{t-1} |N(H_{\mu}) \cap S| + q_{\mu} - 3|V(H_{\mu})| + \frac{3}{t-1} |I_{\mu} \cap (J_{1} \cup J_{2})| - \sum_{i \in I_{\mu}} w(H_{\mu}, C_{i}), and \\ \theta_{\mu}^{2} &= \sum_{x \in S} |\mathcal{J}(x,\mu)| + q_{\mu} - 3|V(H_{\mu})| + |I_{\mu}^{1} \cap (J_{1} \cup J_{1}')| - \sum_{i \in I_{\mu}} w(H_{\mu}, C_{i}). \end{aligned}$$

Claim 3.5. Suppose that $t \leq 3l + 1$. Then (i) and (ii) hold. (i) $\theta(S,T) \geq \sum_{1 \leq \mu \leq m} \theta^1_{\mu}$. (ii) In the case where t = 4, $\theta(S,T) \geq \sum_{1 \leq \mu \leq m} \theta^2_{\mu}$.

Proof. Note that

$$k - a \leq \sum_{a+1 \leq i \leq k} \sum_{1 \leq \mu \leq m} w(H_{\mu}, C_{i}) = \sum_{1 \leq \mu \leq m} \sum_{a+1 \leq i \leq k} w(H_{\mu}, C_{i}) = \sum_{1 \leq \mu \leq m} \sum_{i \in I_{\mu}} w(H_{\mu}, C_{i})$$

by (3.10). Hence $h(S, T) \leq k \leq a + \sum_{1 \leq \mu \leq m} \sum_{i \in I_{\mu}} w(H_{\mu}, C_{i})$. By (3.4),

$$\sum_{y \in T} (\deg_{G-S}(y) - 3) = \sum_{1 \le \mu \le m} \left(\sum_{y \in V(H_{\mu})} \deg_{G-S}(y) - 3|V(H_{\mu})| \right).$$

Therefore it follows from Claim 3.3 that

$$\begin{split} \theta(S,T) &= 3|S| + \sum_{y \in T} (\deg_{G-S}(y) - 3) - h(S,T) \\ &\geq \frac{3}{t-1} \bigg(\sum_{1 \leq \mu \leq m} \sum_{x \in S} |\mathcal{J}(x,\mu)| + la + |J_1 \cup J_1'| + |J_2| \bigg) \\ &+ \sum_{1 \leq \mu \leq m} \left(\sum_{y \in V(H_{\mu})} \deg_{G-S}(y) - 3|V(H_{\mu})| \bigg) - (a + \sum_{1 \leq \mu \leq m} \sum_{i \in I_{\mu}} w(H_{\mu},C_i)) \right) \\ &\geq \sum_{1 \leq \mu \leq m} \bigg\{ \frac{3}{t-1} \bigg(\sum_{x \in S} |\mathcal{J}(x,\mu)| + |I_{\mu}^1 \cap (J_1 \cup J_1')| + |I_{\mu}^2 \cap J_2| \bigg) \\ &+ \sum_{y \in V(H_{\mu})} \deg_{G-S}(y) - 3|V(H_{\mu})| - \sum_{i \in I_{\mu}} w(H_{\mu},C_i) \bigg\} + \frac{3}{t-1} la - a \\ &\geq \sum_{1 \leq \mu \leq m} \theta_{\mu}. \end{split}$$

It follows from (3.9), $|I_{\mu}^{1} \cap (J_{1} \cup J_{1}')| \geq |I_{\mu}^{1} \cap J_{1}|$ and $|I_{\mu}^{1} \cap J_{1}| + |I_{\mu}^{2} \cap J_{2}| = |I_{\mu} \cap (J_{1} \cup J_{2})|$ that $\theta_{\mu} \geq \theta_{\mu}^{1}$ for each μ ($1 \leq \mu \leq m$), and hence (i) holds. In the case that t = 4, we immediately have $\theta_{\mu} \geq \theta_{\mu}^{2}$ for each μ ($1 \leq \mu \leq m$), and hence (ii) holds.

4 Proofs of Theorems 1 and 2

Let G be an *l*-connected $K_{1,t}$ -free graph with $\delta(G) \geq \delta$. We continue with the notation of the proceeding section with $t \geq 5$ and $l \geq 2$. Thus, in this section, we suppose that the connectivity of G is at least 2. First we prove the following technical claim.

Claim 4.1. Suppose that $l \ge 2$, and let $1 \le \mu \le m$. (i) If $t \ge 7$, then $\sum_{i \in I_{\mu}} w(H_{\mu}, C_i) - 3|I_{\mu} \cap (J_1 \cup J_2)|/(t-1) \le |I_{\mu}| - 3|I'_{\mu}|/(t-1)$. (ii) If $t \le 6$, then $\sum_{i \in I_{\mu}} w(H_{\mu}, C_i) - 3|I_{\mu} \cap (J_1 \cup J_2)|/(t-1) \le |I_{\mu}| - |I'_{\mu}|/2$.

Proof. Let $i \in I'_{\mu}$. First assume that $i \in I^1_{\mu}$. Then, since $|V(C_i)| \ge 2$ by Lemma 2.2(i) and G is 2-connected, there exists an edge joining S and $V(C_i) - N(H_{\mu})$, and hence $i \in J_1$ by the definition of J_1 , which implies

$$w(H_{\mu}, C_i) - \frac{3}{t-1} |\{i\} \cap J_1| \le 1 - \frac{3}{t-1}.$$
(4.1)

Next assume that $i \in \{j \in I^2_{\mu} | |E(H_{\mu}, C_j)| = 1\}$. Then $N(C_i) \cap T \not\subseteq V(H_{\mu})$, and hence $w(H_{\mu}, C_i) = 1/2$. Therefore

$$\begin{split} \sum_{i \in I_{\mu}} w(H_{\mu}, C_{i}) &- \frac{3}{t-1} |I_{\mu} \cap (J_{1} \cup J_{2})| \\ &\leq \sum_{i \in I_{\mu} - I_{\mu}'} w(H_{\mu}, C_{i}) + \sum_{i \in I_{\mu}'} w(H_{\mu}, C_{i}) - \frac{3}{t-1} |I_{\mu}' \cap J_{1}| \\ &= \sum_{i \in I_{\mu} - I_{\mu}'} w(H_{\mu}, C_{i}) + \sum_{i \in I_{\mu}'} \left(w(H_{\mu}, C_{i}) - \frac{3}{t-1} |\{i\} \cap J_{1}| \right) \\ &\leq |I_{\mu} - I_{\mu}'| + \max\left\{ \left(1 - \frac{3}{t-1} \right), \frac{1}{2} \right\} |I_{\mu}'| \\ &= |I_{\mu}| - \min\left\{ \frac{3}{t-1}, \frac{1}{2} \right\} |I_{\mu}'|, \end{split}$$

which immediately implies (i) and (ii).

In order to complete the proofs of Theorems 1 and 2, we prove the following three propositions.

Proposition 4.1. Suppose that $t \ge 5$, $l \ge 2$, $\delta \ge \lceil (4t-4)/3 \rceil$ and $|V(H_{\mu})| = 1$. Then $\theta_{\mu}^1 \ge 0$.

Proof. First we assume $t \ge 7$. It follows from Claims 3.1(i) and 4.1(i) and $|I_{\mu}| \ge |I'_{\mu}|$

that

$$\begin{split} \theta^{1}_{\mu} &\geq \frac{3}{t-1} \left(\left\lceil \frac{4t-4}{3} \right\rceil - q_{\mu} \right) + q_{\mu} - 3 - |I_{\mu}| + \frac{3}{t-1} |I'_{\mu}| \\ &\geq 1 + \frac{t-4}{t-1} (2|I_{\mu}| - |I'_{\mu}|) - |I_{\mu}| + \frac{3}{t-1} |I'_{\mu}| \\ &= 1 + \frac{t-7}{t-1} (|I_{\mu}| - |I'_{\mu}|) \geq 0. \end{split}$$

Next we assume t = 5 or 6. It follows from Claims 3.1(i) and 4.1(ii) that

$$\begin{aligned} \theta^{1}_{\mu} &\geq \frac{3}{t-1} \left(\delta - q_{\mu}\right) + q_{\mu} - 3 - |I_{\mu}| + \frac{1}{2} |I'_{\mu}| \\ &\geq \frac{3}{t-1} \delta - 3 + \frac{t-4}{t-1} (2|I_{\mu}| - |I'_{\mu}|) - |I_{\mu}| + \frac{1}{2} |I'_{\mu}| \\ &= \frac{3}{t-1} \delta - 3 - \frac{7-t}{t-1} |I_{\mu}| + \frac{7-t}{2(t-1)} |I'_{\mu}|. \end{aligned}$$

Assume for the moment t = 6. Then $\delta \ge 7$. Moreover, since G is $K_{1,6}$ -free, $|I_{\mu}| \le 5$. Hense $\theta_{\mu}^1 \ge (3/5) \cdot 7 - 3 - (1/5) \cdot 5 = 1/5 > 0$. Assume now t = 5. Then $\delta \ge 6$. Since G is $K_{1,5}$ -free, $|I_{\mu}| \le 4$. If $|I_{\mu}| \le 3$, then $\theta_{\mu}^1 \ge (3/4) \cdot 6 - 3 - (2/4) \cdot 3 = 0$. If $|I_{\mu}| = 4$ and $|I'_{\mu}| \ge 2$, then $\theta_{\mu}^1 \ge (3/4) \cdot 6 - 3 - (2/4) \cdot 4 + (2/8) \cdot 4 = 0$. Thus we may assume that $|I_{\mu}| = 4$ and $|I'_{\mu}| \le 1$. Since $|N(H_{\mu}) \cap S| \ge 0$,

$$\theta^{1}_{\mu} \geq q_{\mu} - 3 + \frac{3}{4} |I_{\mu} \cap (J_{1} \cup J_{2})| - \sum_{i \in I_{\mu}} w(H_{\mu}, C_{i})$$

$$\geq 2|I_{\mu}| - |I'_{\mu}| - 3 - |I_{\mu}| + \frac{1}{2} |I'_{\mu}| > 0,$$

which completes the proof of Proposition 4.1.

Proposition 4.2. Suppose that $t \ge 5$, $l \ge 2$, $\delta \ge \lceil (4t-4)/3 \rceil$, $|V(H_{\mu})| = 2$ and $|I_{\mu}| \ne 0$. Then $\theta_{\mu}^1 \ge 0$.

Proof. First we assume that $t \ge 7$. Assume for the moment that $|I_{\mu}| \ge 2$. Then, it follows from Claims 3.1(ii) and 4.1(i), and $|I'_{\mu}| \le |I_{\mu}|$ that

$$\begin{split} \theta^{1}_{\mu} &\geq \frac{3}{t-1} \left(\frac{4t-4}{3} - \left\lfloor \frac{q_{\mu}}{2} \right\rfloor \right) + q_{\mu} - 6 - |I_{\mu}| + \frac{3}{t-1} |I'_{\mu}| \\ &\geq \frac{2t-5}{2(t-1)} q_{\mu} - |I_{\mu}| + \frac{3}{t-1} |I'_{\mu}| - 2 \\ &\geq \frac{2t-5}{2(t-1)} (2|I_{\mu}| - |I'_{\mu}| + 2) - |I_{\mu}| + \frac{3}{t-1} |I'_{\mu}| - 2 \\ &\geq -\frac{3}{t-1} + \frac{3}{2(t-1)} |I_{\mu}| \geq 0. \end{split}$$

Assume now $|I_{\mu}| = 1$. Then $q_{\mu} \ge 3$. In the case where $|I_{\mu}| = 1$ and $q_{\mu} \ge 4$,

$$\begin{aligned} \theta^{1}_{\mu} &\geq \frac{3}{t-1} \left(\frac{4t-4}{3} - \left\lfloor \frac{q_{\mu}}{2} \right\rfloor \right) + q_{\mu} - 6 - |I_{\mu}| + \frac{3}{t-1} |I'_{\mu}| \\ &\geq \frac{2t-5}{2(t-1)} \cdot 4 - 3 \geq 0. \end{aligned}$$

In the case where $|I_{\mu}| = 1$ and $q_{\mu} = 3$, since $|I'_{\mu}| = 1$,

$$\theta_{\mu}^{1} \geq \frac{3}{t-1} \left(\frac{4t-4}{3} - \left\lfloor \frac{q_{\mu}}{2} \right\rfloor \right) + q_{\mu} - 6 - |I_{\mu}| + \frac{3}{t-1} |I_{\mu}'|$$
$$\geq \frac{3}{t-1} \left(\frac{4t-4}{3} - 1 \right) + 3 - 6 - 1 + \frac{3}{t-1} = 0.$$

Next we assume t = 5 or 6. Note that, if t = 5, then $\delta \ge 6$, and if t = 6, then $\delta \ge 7$; that is, $\delta \ge t + 1$. Assume for the moment that $|I_{\mu}| \ge 2$. Then, it follows from Claims 3.1(ii) and 4.1(ii), and $|I'_{\mu}| \le |I_{\mu}|$ that

$$\begin{aligned} \theta_{\mu}^{1} &\geq \frac{3}{t-1} \left(t+1 - \left\lfloor \frac{q_{\mu}}{2} \right\rfloor \right) + q_{\mu} - 6 - |I_{\mu}| + \frac{1}{2} |I_{\mu}'| \\ &\geq \frac{3(t+1)}{t-1} + \frac{2t-5}{2(t-1)} (2|I_{\mu}| - |I_{\mu}'| + 2) - 6 - |I_{\mu}| + \frac{1}{2} |I_{\mu}'| \\ &\geq -\frac{t-4}{t-1} + \frac{t-4}{2(t-1)} |I_{\mu}| \geq 0. \end{aligned}$$

Assume now $|I_{\mu}| = 1$. Then $q_{\mu} \ge 3$. In the case where $|I_{\mu}| = 1$ and $q_{\mu} \ge 4$, it follows from Claim 4.1(ii) that $\theta_{\mu}^1 \ge 3(t+1)/(t-1) + (2t-5)q_{\mu}/(2t-2) - 6 - |I_{\mu}| + |I'_{\mu}|/2 \ge 0$. In the case where $|I_{\mu}| = 1$ and $q_{\mu} = 3$, since $|I'_{\mu}| = 1$, $\theta_{\mu}^1 \ge (7-t)/(2t-2) > 0$, which completes the proof of Proposition 4.2.

Proposition 4.3. Suppose that $t \ge 5$, $l \ge 2$, $\delta \ge \lceil (4t-1)/3 \rceil$ and $|V(H_{\mu})| = 2$. Then $\theta_{\mu}^1 \ge 0$.

Proof. Keeping Proposition 4.2 in mind, we may assume $|I_{\mu}| = 0$, and hence $q_{\mu} = 2$. It follows from Claim 3.1(ii) that $\theta_{\mu}^{1} \geq (3/(t-1)) \cdot ((4t-1)/3 - q_{\mu}/2) + q_{\mu} - 6 \geq 0$, which completes the proof of Proposition 4.3.

We are now in a position to complete the proofs of Theorems 1 and 2.

Proof of Theorem 1. Let t, G be as in Theorem 1; thus $t \ge 5$ and G be a $\lceil (t-1)/3 \rceil$ connected $K_{1,t}$ -free graph with $\delta(G) \ge \lceil (4t-1)/3 \rceil$. Let l be the connectivity of G. Then $l \ge \lceil (t-1)/3 \rceil$, and hence $t \le 3l+1$. If $T = \emptyset$, then $\theta(S,T) \ge 0$ by Claim 3.4. Thus we may assume $T \ne \emptyset$. By Claim 3.5(i), it suffices to show that $\theta_{\mu}^1 \ge 0$ for each $1 \le \mu \le m$. If $|V(H_{\mu})| = 1, \theta_{\mu}^1 \ge 0$ by Proposition 4.1. If $|V(H_{\mu})| = 2, \theta_{\mu}^1 \ge 0$ by Proposition 4.3. This completes the proof of Theorem 1 by Lemma 2.2(ii). Proof of Theorem 2. Let t, G be as in Theorem 2; thus $t \ge 5$ and G be a $\lceil (4t-4)/3 \rceil$ connected $K_{1,t}$ -free graph. Thus $\delta(G) \ge \lceil (4t-4)/3 \rceil$. Let l be the connectivity of G. Then $l \ge \lceil (4t-4)/3 \rceil$, and hence $t \le (3l+4)/4 < 3l+1$. If $T = \emptyset$, then $\theta(S,T) \ge 0$ by Claim 3.4. Thus we may assume $T \ne \emptyset$. By Claim 3.5(i), it suffices to show that $\theta^1_{\mu} \ge 0$ for each $1 \le \mu \le m$. If $|V(H_{\mu})| = 1, \theta^1_{\mu} \ge 0$ by Proposition 4.1. If $|V(H_{\mu})| = 2$ and $|I_{\mu}| \ne 0, \theta^1_{\mu} \ge 0$ by Proposition 4.2. Thus we may assume that $|V(H_{\mu})| = 2$ and $|I_{\mu}| = 0$. If $|V(G)| = l + 1 \ge 7$, then G is the complete graph, and hence G has a 3-factor. Thus, we may assume that $|V(G)| \ge l + 2$. Suppose that $|N(H_{\mu}) \cap S| < l$. Then $|V(G) - V(H_{\mu}) - (N(H_{\mu}) \cap S)| \ge 1$, and hence $G - (N(H_{\mu}) \cap S)$ is disconnected, which contradicts G is l-connected. Hence we have $|N(H_{\mu}) \cap S| \ge l$. Then

$$\theta_{\mu}^{1} = 3|N(H_{\mu}) \cap S|/(t-1) + 2 - 6 \ge 3l/(t-1) + 2 - 6 \ge 0;$$

this together with Propositions 4.1 and 4.2, completes the proof of Theorem 2.

5 Proof of Theorem 3

Let G be as in Theorem 3; thus G is a 2-edge-connected $K_{1,4}$ -free graph with $\delta(G) \geq 6$. We continue with the notation of Section 3 with t = 4, l = 1, and $\delta = 6$.

Recall that $\theta_{\mu}^2 = \sum_{x \in S} |\mathcal{J}(x,\mu)| + q_{\mu} - 3|V(H_{\mu})| + |I_{\mu}^1 \cap (J_1 \cup J'_1)| - \sum_{i \in I_{\mu}} w(H_{\mu}, C_i)$. In view of Claim 3.5(ii), it suffices to show that $\theta_{\mu}^2 \ge 0$ for each $1 \le \mu \le m$. We divide the proof into the following two cases.

Case 1. $|V(H_{\mu})| = 1.$

Since G is $K_{1,4}$ -free, $|I_{\mu}| \leq 3$, this together with (3.9), (3.11) and Claim 3.1(i) implies $\theta_{\mu}^2 \geq |N(H_{\mu}) \cap S| + q_{\mu} - 3 - |I_{\mu}| \geq 6 - q_{\mu} + q_{\mu} - 3 - 3 = 0$. Case 2. $|V(H_{\mu})| = 2$.

Having the definition of I^1_{μ} in mind, since G is $K_{1,4}$ -free,

$$|I_{\mu}^{1}| \le 4. \tag{5.1}$$

By the definition of q_{μ} , I^{1}_{μ} , I^{2}_{μ} , and I'_{μ} , we have

$$q_{\mu} \ge |I_{\mu}^{1}| + 2|I_{\mu}^{2}| - |I_{\mu}^{2} \cap I_{\mu}'| + 2.$$
(5.2)

By the definition of $w(H_{\mu}, C_i)$, I_{μ}^1 , I_{μ}^2 , and I'_{μ} , we also have

$$\sum_{i \in I_{\mu}} w(H_{\mu}, C_i) \le |I_{\mu}^1| + |I_{\mu}^2| - \frac{|I_{\mu}^2 \cap I_{\mu}'|}{2}.$$
(5.3)

If $|N(H_{\mu}) \cap S| \ge 4$, it follows from (3.9), (5.2) and (5.3) that

$$\theta_{\mu}^{2} \ge |I_{\mu}^{2}| - |I_{\mu}^{2} \cap I_{\mu}'|/2 + |I_{\mu}^{1} \cap (J_{1} \cup J_{1}')| \ge 0.$$

Thus we may assume that

$$|N(H_{\mu}) \cap S| \le 3. \tag{5.4}$$

It follows from Claim 3.1(ii), (5.2) and (5.3) that

$$|N(H_{\mu}) \cap S| + q_{\mu} - 3|V(H_{\mu})| - w(H_{\mu}, C_{i})$$

$$\geq \delta - \left\lfloor \frac{q_{\mu}}{2} \right\rfloor + q_{\mu} - 3|V(H_{\mu})| - \left(|I_{\mu}^{1}| + |I_{\mu}^{2}| - \frac{|I_{\mu}^{2} \cap I_{\mu}'|}{2} \right)$$

$$\geq 6 + \frac{|I_{\mu}^{1}| + 2|I_{\mu}^{2}| - |I_{\mu}^{2} \cap I_{\mu}'| + 2}{2} - 6 - \left(|I_{\mu}^{1}| + |I_{\mu}^{2}| - \frac{|I_{\mu}^{2} \cap I_{\mu}'|}{2} \right)$$

$$\geq -\frac{|I_{\mu}^{1}|}{2} + 1.$$
(5.5)

Suppose that $\sum_{x \in S} |\mathcal{J}(x,\mu)| \ge |N(H_{\mu}) \cap S| + 1$ or $|I_{\mu}^1 \cap (J_1 \cup J_1')| \ge 1$. Then it follows from (5.1) and (5.5) that

$$\theta_{\mu}^{2} \ge |N(H_{\mu}) \cap S| + 1 + q_{\mu} - 3|V(H_{\mu})| - w(H_{\mu}, C_{i})$$
$$\ge -\frac{|I_{\mu}^{1}|}{2} + 2 \ge 0.$$

Suppose that $|I_{\mu}^{1}| \leq 2$. Then it follows from (3.9) and (5.5) that

$$\begin{aligned} \theta_{\mu}^{2} &\geq |N(H_{\mu}) \cap S| + q_{\mu} - 3|V(H_{\mu})| - w(H_{\mu}, C_{i}) \\ &\geq -\frac{|I_{\mu}^{1}|}{2} + 1 \geq 0. \end{aligned}$$

Thus we may assume that

$$\sum_{x \in S} |\mathcal{J}(x,\mu)| = |N(H_{\mu}) \cap S|,$$
(5.6)

$$|I_{\mu}^{1} \cap (J_{1} \cup J_{1}')| = 0, \text{ and}$$
 (5.7)

$$|I_{\mu}^{1}| = 3 \text{ or } 4. \tag{5.8}$$

Let $i \in I^1_{\mu}$. By the definition of I^1_{μ} , we may write $E(H_{\mu}, C_i) = \{yz_i\}$ $(y \in V(H_{\mu}), z_i \in V(C_i))$. Since G is 2-edge-connected and $|I^1_{\mu} \cap (J_1 \cup J'_1)| = 0$, there exists $x \in N(H_{\mu}) \cap S$ such that $x \in N(y) \cap N(z_i)$, say x_i . Since $i \in I^1_{\mu}$ is arbitrary, $|I^1_{\mu}| \leq \sum_{x \in N(H_{\mu}) \cap S} |\mathcal{J}(x,\mu)| = \sum_{x \in S} |\mathcal{J}(x,\mu)|$. Hence it follows from (5.4), (5.6) and (5.8) that $|I'_{\mu}| = 3$. If $x_i = x_{i'}$ for $i, i' \in I^1_{\mu}$ $(i \neq i')$ then

$$\sum_{x \in S} |\mathcal{J}(x,\mu)| = \sum_{x \in S - x_i} |\mathcal{J}(x,\mu)| + |\mathcal{J}(x_i,\mu)|$$

$$\geq |N(H_{\mu}) \cap (S - x_i)| + |\mathcal{J}(x_i,\mu)|$$

$$\geq |N(H_{\mu}) \cap (S - x_i)| + 2 = |N(H_{\mu}) \cap S| + 1,$$

which contradicts (5.6). Thus for each $i, i' \in I^1_{\mu}$ $(i \neq i'), x_i \neq x_{i'}$. Set $I_{\mu} = \{i_1, i_2, i_3\}$, and $V(H_{\mu}) = \{y_1, y_2\}$. Then $N(H_{\mu}) \cap S = \{x_{i_1}, x_{i_2}, x_{i_3}\}$. Since G is $K_{1,4}$ -free, we may assume that $|E(y_1, C_{i_1})| = |E(y_1, C_{i_2})| = 1$, $|E(y_1, C_{i_3})| = 0$, $|E(y_2, C_{i_1})| =$ $|E(y_2, C_{i_2})| = 0$ and $|E(y_2, C_{i_3})| = 1$. Let $y_1z_1, y_1z_2, y_2z_3 \in E(G)$ $(z_1 \in V(C_{i_1}),$ $z_2 \in V(C_{i_2}), z_3 \in V(C_{i_3})), \text{ and let } x_3 \in N(y_2) \cap N(z_3).$ Since $|E(y_1, C_{i_3})| = 0, y_1z_3 \notin E(G).$ Since $N(y_1) - S = \{y_2, z_1, z_2\}$ and $\deg(y_1) \ge \delta = 6, |N(y_1) \cap S| \ge 3;$ this together with $|N(H_{\mu}) \cap S| = 3$ implies $x_3 \in N(y_1).$ Hence $|\mathcal{J}(x_3, \mu)| \ge |\{y_1, z_3\}|.$ Consequently $\sum_{x \in S} |\mathcal{J}(x, \mu)| \ge \sum_{x \in S - x_3} |\mathcal{J}(x, \mu)| + |\mathcal{J}(x_3, \mu)| = |N(H_{\mu}) \cap S| + 1,$ which contradicts (5.6).

6 Examples

In this section, we construct examples which show that the conditions in Theorems 1, 2 and 3 are best possible.

Example 6.1. Let $t \ge 5$ be an integer. There exist infinitely many $\lceil (4t-7)/3 \rceil$ connected $K_{1,t}$ -free graphs G of even order with $\delta(G) \ge \lceil (4t-4)/3 \rceil$ such that Ghas no 3-factor. Let $m \ge t$ be an arbitrary integer relatively prime to t-1. Set $l = \lceil (4t-7)/3 \rceil$. Let I_1, I_2, \ldots, I_{2m} be disjoint copies of the complete graph of order $\lceil l/2 \rceil$, and let J_1, J_2, \ldots, J_{2m} be disjoint copies of the complete graph of order $\lfloor l/2 \rfloor$, and let $H_1, H_2, \ldots, H_{2m(t-1)}$ be disjoint copies of the complete graph of order 2. For each $1 \le k \le 2m$, set

$$T_{k} = \bigcup_{1 \le j \le t-1} V(H_{(k-1)(t-1)+j}),$$
$$T'_{k} = \bigcup_{1 \le j \le t-1} V(H_{(j-1)2m+k}).$$

Now define a graph G by

$$\begin{split} V(G) &= \left(\bigcup_{1 \le k \le 2m} (V(I_k) \cup V(J_k)) \right) \cup \left(\bigcup_{1 \le i \le 2m(t-1)} V(H_i) \right), \\ E(G) &= \left(\bigcup_{1 \le k \le 2m} (E(I_k) \cup E(J_k)) \cup \{xy | x \in V(I_k), y \in T_k\} \cup \{xy | x \in V(J_k), y \in T'_k\} \right) \\ & \cup \left(\bigcup_{1 \le i \le 2m(t-1)} E(H_i) \right). \end{split}$$

Then G is $\lceil (4t-7)/3 \rceil$ -connected and $K_{1,t}$ -free, and satisfies $\delta(G) = l + 1 = \lceil (4t-4)/3 \rceil$. However, we easily see that G does not have a 3-factor (for example, if we apply Lemma 2.1 with $S = \bigcup_{1 \le k \le 2m} (V(I_k) \cup V(J_k))$ and $T = \bigcup_{1 \le i \le 2m(t-1)} V(H_i)$, then we get $\theta(S,T) \le -2m$).

Example 6.2. Let $t \ge 8$ be an integer. For any positive integer δ , there exists a $\lceil (t-4)/3 \rceil$ -connected $K_{1,t}$ -free graph G of even order with $\delta(G) \ge \delta$ such that G has no 3-factor. Let $m \ge t$ be an arbitrary integer relatively prime to t-1, and set $l = \lceil (t-4)/3 \rceil$. Let I_1, I_2, \ldots, I_{2m} be disjoint copies of the complete graph of order

 $\lceil l/2 \rceil$, and let J_1, J_2, \ldots, J_{2m} be disjoint copies of the complete graph of order $\lfloor l/2 \rfloor$. Let p be an odd integer with $p \ge \delta - l + 1$, and let $C_1, \ldots, C_{2m(t-1)}$ be disjoint copies of the complete graph of order p. For each $1 \le k \le 2m$, set

$$T_{k} = \bigcup_{1 \le j \le t-1} V(C_{(k-1)(t-1)+j}),$$
$$T'_{k} = \bigcup_{1 \le j \le t-1} V(C_{(j-1)2m+k}).$$

Now define a graph G by

$$\begin{split} V(G) &= \left(\bigcup_{1 \le k \le 2m} \left(V(I_k) \cup V(J_k)\right)\right) \cup \left(\bigcup_{1 \le i \le 2m(t-1)} V(C_i)\right), \\ E(G) &= \left(\bigcup_{1 \le k \le 2m} E(I_k) \cup E(J_k) \cup \{xy | x \in V(I_k), y \in T_k\} \cup \{xy | x \in V(J_k), y \in T'_k\}\right) \\ & \cup \left(\bigcup_{1 \le i \le 2m(t-1)} E(C_i)\right). \end{split}$$

Then G is *l*-connected and $K_{1,t}$ -free, and satisfies $\delta(G) = p - 1 + l \ge \delta$. However, we easily see that G does not have a 3-factor (for example, if we apply Lemma 2.1 in Section 2 with $S = \bigcup_{1 \le k \le 2m} (V(I_k) \cup V(J_k))$ and $T = \emptyset$, then we get $\theta(S, T) \le -2m$).

Example 6.3. There exist infinitely many 3-connected $K_{1,3}$ -free graphs of even order with no 3-factor. Let $m \ge 2$ be an even integer. Let I_1, I_2, \ldots, I_m be disjoint copies of the complete graph of order 1, and set $V(I_k) = \{x_k\}$ $(1 \le k \le m)$. Let H_1, H_2, \ldots, H_{2m} disjoint copies of the complete graph of order 2, and set $V(H_i) = \{y_i, y'_i\}$ $(1 \le i \le 2m)$. Let L, L' be disjoint copies of the complete graph of order 2m, and set $V(L) = \{z_1, z_2, \ldots, z_{2m}\}$ and $V(L') = \{z'_1, z'_2, \ldots, z'_{2m}\}$. Now define a graph G of order 9m by

$$V(G) = \left(\bigcup_{1 \le k \le m} V(I_k)\right) \cup \left(\bigcup_{1 \le i \le 2m} V(H_k)\right) \cup V(L) \cup V(L'),$$

$$E(G) = \left(\bigcup_{1 \le k \le m} \{x_k y \mid y \in V(H_{2k-1}) \cup V(H_{2k})\}\right)$$

$$\cup \left(\bigcup_{1 \le i \le 2m} \{y_i y'_i, y_i z_i, y'_i z'_i\}\right) \cup E(L) \cup E(L').$$

Then G is a 3-connected $K_{1,3}$ -free graph of even order. However, we easily see that G does not have a 3-factor (for example, if we apply Lemma 2.1 in Section 2 with $S = \bigcup_{1 \le k \le m} V(I_k)$ and $T = \bigcup_{1 \le i \le 2m} V(H_i)$, then we get $\theta(S, T) = -m$).

Example 6.4. There exist infinitely many 4-connected $K_{1,4}$ -free graphs of even order with no 3-factor. Let $m \geq 2$ be an arbitrary integer. Let I_1, I_2, \ldots, I_m be disjoint copies of the complete graph of order 2. Let H_1, H_2, \ldots, H_{3m} disjoint copies of the complete graph of order 2, and set $V(H_i) = \{y_i, y'_i\}$ $(1 \leq i \leq 2m)$. Let L, L' be disjoint copies of the complete graph of order 3m + 1, and set $V(L) = \{z_1, z_2, \ldots, z_{3m+1}\}$ and $V(L') = \{z'_1, z'_2, \ldots, z'_{3m+1}\}$. Now define a graph G of order 14m + 2 by

$$\begin{split} V(G) &= \left(\bigcup_{1 \le k \le m} V(I_k)\right) \cup \left(\bigcup_{1 \le i \le 3m} V(H_i)\right) \cup V(L) \cup V(L') \\ E(G) &= \left(\bigcup_{1 \le k \le m} E(I_k) \cup \{xy \mid x \in V(I_k), y \in V(H_{3k-2}) \cup V(H_{3k-1}) \cup V(H_{3k})\}\right) \\ & \cup \left(\bigcup_{1 \le i \le 3m} \{y_i y'_i, y_i z_i, y'_i z'_i\}\right) \cup E(L) \cup E(L'). \end{split}$$

Then G is a 4-connected $K_{1,4}$ -free graph of even order. However, we easily see that G does not have a 3-factor (for example, if we apply Lemma 2.1 in Section 2 with $S = \bigcup_{1 \le k \le m} V(I_k)$ and $T = \bigcup_{1 \le i \le 3m} V(H_i)$, then we get $\theta(S, T) = -2$).

Example 6.5. There exist infinitely many 2-edge-connected $K_{1,4}$ -free graphs of even order satisfies $\delta(G) \geq 5$ with no 3-factor. Let $p_1 \geq 7$ be an odd integer, and let $p_2 \geq 6$ be an even integer. Let C_1, C_2, \ldots, C_8 be disjoint copies of the complete graph of order p_1 , and let D_1, D_2, \ldots, D_7 be disjoint copies of the complete graph of order p_2 . For each C_i $(1 \leq i \leq 8)$, take two vertices $c_i^1, c_i^2 \in V(C_i)$. For each D_i $(1 \leq i \leq 7)$, take one vertex $d_i \in V(D_i)$. We define the graph of order $8p_1 + 7p_2 + 8$ by

$$\begin{split} V(G) &= \{x_1, x_2\} \cup \{y_1, y_2, y_3, y_4, y_5, y_6\} \cup \bigcup_{1 \le i \le 8} V(C_i) \cup \bigcup_{1 \le i \le 7} V(D_i) \\ E(G) &= \{x_1 y_i, x_1 d_i \mid i = 1, 2, 3\} \cup \{x_2 y_i, x_2 d_i \mid i = 4, 5, 6\} \\ &\cup \{y_i c_i^1, y_i c_i^2, y_i d_i \mid 1 \le i \le 6\} \cup \{y_1 c_7^1, y_4 c_7^2, y_2 c_8^1, y_5 c_8^2\} \cup \{y_3 d_7, y_6 d_7\} \\ &\cup \bigcup_{1 \le i \le 8} E(C_i) \cup \bigcup_{1 \le i \le 7} E(D_i). \end{split}$$

Then G is a 2-edge-connected $K_{1,4}$ -free graph, and satisfies $\delta(G) = 5$. However, we easily see that G does not have a 3-factor (for example, if we apply Lemma 2.1 in Section 2 with $S = \{x_1, x_2\}$ and $T = \{y_1, y_2, y_3, y_4, y_5, y_6\}$, then we get $\theta(S, T) = -2$).

Example 6.6. For each $k \geq 2$, there exists a k-edge-connected $K_{1,5}$ -free graph of even order with no 3-factor. Let $k \geq 2$ and $s \geq \frac{k-1}{2}$ be integers. Let I and J be the complete graphs of order k and 2, respectively. For each $v \in V(I)$, let C_v^1, C_v^2, C_v^3 be disjoint copies of complete graphs of order 2s + 1. For each C_v^i , take k distinct vertices $z_v^i(1), z_v^i(2), \ldots, z_v^i(k)$ from $V(C_v^i)$. Let G be a graph of order (6s + 4)k + 2

$$V(G) = V(J) \cup V(I) \cup \bigcup_{v \in V(I)} \left(\bigcup_{i=1}^{3} V(C_v^i) \right),$$

$$E(G) = E(J) \cup E(I) \cup \bigcup_{v \in V(I)} \left(\bigcup_{i=1}^{3} E(C_v^i) \right)$$

$$\cup \{xy \mid x \in V(J), y \in V(I)\}$$

$$\cup \bigcup_{v \in V(I)} \left(\bigcup_{i=1}^{3} \{vz_v^i(1), vz_v^i(2), \dots, vz_v^i(k)\} \right).$$

Then G is a k-edge-connected $K_{1,5}$ -free graph of even order. However, we easily see that G does not have a 3-factor (for example, if we apply Lemma 2.1 with S = V(I) and T = V(J), then we get $\theta(S, T) = -4$).

References

- R. E. L. Aldred, Y. Egawa, J. Fujisawa, K. Ota and A. Saito, The existence of a 2-factor in K_{1,n}-free graphs with large connectivity and large edge-connectivity, J. Graph Theory 68 (2011), 77–89.
- [2] R. Diestel, "Graph Theory", fifth ed., Graduate Texts in Mathematics, vol. 173, Springer (2010).
- [3] Y. Egawa, K. Kotani and T. Yashima, Existence of 3-Factors in 2-connected Star-free Graphs, Far East J. Appl. Math. 79(2) (2013), 127–150.
- [4] K. Ota and T. Tokuda, A degree condition for the existence of regular factors in $K_{1,n}$ -free graphs, J. Graph Theory **22** (1996), 59–64.
- [5] W. T. Tutte, The factors of graphs, Canad. J. Math. 4 (1952), 314–328.

(Received 19 Mar 2020; revised 18 Oct 2020)