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Abstract

Let t be an integer satisfying t ≥ 5. We show that if G is a �(t − 1)/3�-
connected K1,t-free graph of even order with minimum degree at least
�(4t− 1)/3�, then G has a 3-factor, and if G is a �(4t− 4)/3�-connected
K1,t-free graph of even order, then G has a 3-factor. We also show that
if G is a 2-edge-connected K1,4-free graph of even order with minimum
degree at least 6, then G has a 3-factor.

1 Introduction

In this paper, we consider only finite, simple, undirected graphs with no loops and
no multiple edges.

Let G = (V (G), E(G)) be a graph. For x ∈ V (G), degG(x) denotes the degree
of x in G. We let δ(G) denote the minimum of degG(x) as x ranges over V (G). For
an integer r ≥ 1, a subgraph F of G such that V (F ) = V (G) and degF (x) = r
for all x ∈ V (F ) is called an r-factor of G. The complete bipartite graph K1,t with
partite sets of cardinalities 1 and t is called the t-star. We say that G is K1,t-free or
t-star-free if G does not contain K1,t as an induced subgraph.
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The following theorem was proved by Tokuda and Ota in [4].

Theorem A. Let t, r be integers with t ≥ 3 and r ≥ 2. Let G be a connected
K1,t-free graph, and suppose that

δ(G) ≥
(
t +

t− 1

r

)⌈
t

2(t− 1)
r

⌉
− t− 1

r

⌈
t

2(t− 1)
r

⌉2
+ t− 3.

In the case where r is odd, suppose further that t ≤ r + 1 and |V (G)| is even. Then
G has an r-factor.

In the case where r = 3, the minimum degree condition in Theorem A takes the
following simple form.

Corollary B. Let t be 3 or 4. Let G be a connected K1,t-free graph with |V (G)|
even, and suppose that δ(G) ≥ 5 or δ(G) ≥ 7 according as t = 3 or t = 4. Then G
has a 3-factor.

The minimum degree condition in Theorem A is best possible, and hence so
are those in Corollary B. On the other hand, if we add the assumption that G is
2-connected, then we can relax the minimum degree condition as is shown in the
following two results which were proved in [3].

Theorem C. Let t be 3 or 4. Let G be a 2-connected K1,t-free graph with |V (G)|
even and suppose that δ(G) ≥ t+ 1. Then G has a 3-factor.

Theorem D. Let t be an integer with 5 ≤ t ≤ 7. Let G be a 2-connected K1,t-free
graph with |V (G)| even and suppose that δ(G) ≥ t + 2. Then G has a 3-factor.

In Theorems C and D, the conditions on δ(G) are best possible. However, it is
natural to expect that we can weaken the condition on δ(G) and the condition on t
if we replace the assumption that G is 2-connected by a stronger assumption. Along
this line, we show the following results.

Theorem 1. Let t be an integer with t ≥ 5. Let G be a �(t− 1)/3�-connected K1,t-
free graph with |V (G)| even and suppose that δ(G) ≥ �(4t − 1)/3�. Then G has a
3-factor.

Theorem 2. Let t be an integer with t ≥ 5. Let G be a �(4t − 4)/3�-connected
K1,t-free graph with |V (G)| even. Then G has a 3-factor.

Note that, since �(t− 1)/3� = 2 and t+2 = �(t− 1)/3� for each 5 ≤ t ≤ 7, Theorem
1 implies Theorem D.

The minimum degree conditions are best possible in Theorems 1 and 2 in the
sense that, for each t ≥ 5, there exist infinitely many �(4t − 7)/3�-connected K1,t-
free graphs G of even order with δ(G) ≥ �(4t−4)/3� such that G has no 3-factor (see
Example 6.1). In Theorem 1, the connectivity condition is best possible in the sense
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that, for t ≥ 8, and for any positive integer δ, there exists a �(t − 4)/3�-connected
K1,t-free graph G of even order with δ(G) ≥ δ such that G has no 3-factor (see
Example 6.2). Further, for K1,3-free graphs and for K1,4-free graphs, results like
Theorems 1 and 2 do not hold because there exist infinitely many 3-connected K1,3-
free graphs of even order with no 3-factor (see Example 6.3) and there exist infinitely
many 4-connected K1,4-free graphs of even order with no 3-factor (see Example 6.4).

The following result concerning 2-factors with edge-connectivity conditions was
proved [1].

Theorem E. Let t and k be integers with t ≥ 3 and k ≥ 2. Let G be a k-edge-
connected K1,t-free graph such that δ(G) ≥ t− 2+ (t− 1)/(k− 1). In the case where
t = 3 and k = 2, suppose further that δ(G) ≥ 4. Then G has a 2-factor.

We also show the result on 3-factors which correspond to Theorem E concerning
K1,4-free graphs.

Theorem 3. Let G be a 2-edge-connected K1,4-free graph with |V (G)| even, and
suppose that δ(G) ≥ 6. Then G has a 3-factor.

In Theorem 3, the minimum degree condition is best possible in the sense that,
there exist infinitely many 2-edge-connected K1,4-free graphs G of even order with
δ(G) ≥ 5 such that G has no 3-factor (see Example 6.5).

Note that, unlike the case of vertex-connectivity, even if we assume that the
edge-connectivity is sufficiently large, K1,5-free-ness does not imply the existence of
a 3-factor; that is to say, for each k ≥ 2, there exists a k-edge-connected K1,5-free
graph of even order with no 3-factor (see Example 6.6).

It is natural to expect that we can weaken the condition on δ(G) in Theorem 3 if
we replace the assumption thatG is 2-edge-connected by a stronger edge-connectivity
condition. This problem is still open, and the result which correspond to Theorem
3 concerning K1,3-free graphs is also still open.

Our notation is standard, and is mostly taken from Diestel [2]. Possible exceptions
are as follows. Let G be a graph. For x ∈ V (G), N(x) = NG(x) denotes the set of
vertices adjacent to x in G; thus degG(x) = |NG(x)|. For A ⊆ V (G), we let N(A)
denote the union of N(x) as x ranges over A. For A,B ⊆ V (G) with A ∩ B = ∅,
E(A,B) denotes the set of those edges of G which join a vertex in A and a vertex
in B. For A ⊆ V (G), the subgraph induced by A in G is denoted by G[A], and the
graph obtained from G by deleting all vertices in A together with the edges incident
with them is denoted by G − A; thus G − A = G[V (G) − A]. We often identify a
subgraph H of G with its vertex set; for example, we write N(H) for N(V (H)). Also
a vertex x of G is often identified with the set {x}; for example, if H is a subgraph
with x /∈ V (H), we write E(x,H) for E({x}, V (H)).
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2 Preliminary results

In this section we state preliminary lemmas, which we use in the proof of Theorems
1, 2 and 3.

Let G be a graph. For S, T ⊆ V (G) with S ∩ T = ∅, define θ(S, T ) by

θ(S, T ) = 3|S|+∑y∈T (degG−S(y)− 3)− h(S, T ),

where h(S, T ) denotes the number of those components C of G − S − T such that
|E(T, C)| + |V (C)| is odd. The following lemma is a special case of the f -Factor
Theorem of Tutte [5].

Lemma 2.1. (i) The graph G has a 3-factor if and only if θ(S, T ) ≥ 0 for all
S, T ⊆ V (G) with S ∩ T = ∅.

(ii) If |V (G)| is even, then whether G has a 3-factor or not, θ(S, T ) is even for all
S, T ⊆ V (G) with S ∩ T = ∅.

The following lemma is well-known, and appears as Lemma 2.2 in [3].

Lemma 2.2. Let S, T ⊆ V (G) be subsets of V (G) with S ∩ T = ∅ for which θ(S, T )
becomes smallest. Then the following hold.

(i) Let C be a component of G−S−T such that |E(T, C)| ≤ 1. Then |V (C)| ≥ 2.

(ii) Suppose that S and T are chosen with |T | is as small as possible, subject to the
condition that θ(S, T ) is smallest. Then degG[T ](y) ≤ 1 for every y ∈ T .

3 Notation

Let t ≥ 3, l ≥ 1 and δ ≥ 3 be integers, and G be an l-connected K1,t-free graph of
even order with δ(G) ≥ δ. In this section, we fix notation for the proof of Theorems
1,2 and 3.

Let S, T be subsets of V (G) with S ∩ T = ∅ for which θ(S, T ) becomes smallest.
We choose S, T ⊆ V (G) so that |T | is as small as possible, subject to the condition
that θ(S, T ) is smallest. If S ∪ T = ∅, then since G is connected and has even order,
we get h(S, T ) = 0, and hence θ(S, T ) = 0. Thus we may assume S ∪ T �= ∅.

Let C1, . . . , Ck be the components of G − S − T . We may assume that there
exists an integer a with 0 ≤ a ≤ k such that |E(T, Ci)| = 0 for each 0 ≤ i ≤ a, and
|E(T, Ci)| ≥ 1 for each a + 1 ≤ i ≤ k. We may further assume that there exists an
integer b with 0 ≤ b ≤ k − a such that |E(T, Ci)| = 1 for each a + 1 ≤ i ≤ a + b,
and |E(T, Ci)| ≥ 2 for each a + b + 1 ≤ i ≤ k. Note that if S �= ∅ and |T |+ k ≤ 1,
then

∑
y∈T (3 − degG−S(y)) + h(S, T ) ≤ 3, and hence θ(S, T ) ≥ 3|S| − 3 ≥ 0. Thus

we may assume that if S �= ∅, then we have |T |+ k ≥ 2.
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Let a ≥ 1, and let 1 ≤ i ≤ a. By Lemma 2.2 (i), |V (Ci)| ≥ 2. Recall that we have
S ∪ T �= ∅ by the assumption made in the second paragraph. Since G is connected,
∅ �= N(Ci) ∩ (S ∪ T ) = N(Ci) ∩ S; in particular, S �= ∅. By the assumption made
at the end of the third paragraph in this section, this implies |T |+ k ≥ 2, and hence
G− S �= Ci. Since G is l-connected, |N(Ci) ∩ S| ≥ l. Let x1

i , x
2
i , . . . , x

l
i be l distinct

vertices in N(Ci) ∩ S and let eji (1 ≤ j ≤ l) be an edge joining xj
i and a vertex uj

i in
V (Ci). Then

|{eji |1 ≤ i ≤ a, 1 ≤ j ≤ l}| = la. (3.1)

For each x ∈ S, let L(x) = {uj
i | 1 ≤ i ≤ a, 1 ≤ j ≤ l, xj

i = x}. Clearly

L(x) ⊆ N(x) and L(x) is independent. (3.2)

Also ∑
x∈S

|L(x)| = la (3.3)

by (3.1). If a = 0, we let L(x) = ∅ for each x ∈ S; thus (3.2) and (3.3) hold in this
case as well.

We now look at components of G[T ]. Let H1, ..., Hm be the components of G[T ].
Then

T =
⋃

1≤µ≤m

V (Hµ) (disjoint union). (3.4)

In the remainder of this section, we assign real numbers θµ, θ
1
µ, and θ2µ to each

Hµ, and show that θ(S, T ) ≥ ∑
1≤µ≤m θµ, θ(S, T ) ≥ ∑

1≤µ≤m θ1µ, and θ(S, T ) ≥∑
1≤µ≤m θ2µ. We first prove several claims concerning Hµ. Note that Hµ is a path of

order 1 or 2 by Lemma 2.2 (ii). For each 1 ≤ μ ≤ m, set

I1µ = {i| a+ 1 ≤ i ≤ a + b, E(Hµ, Ci) �= ∅},
I2µ = {i| a+ b+ 1 ≤ i ≤ k, E(Hµ, Ci) �= ∅},
Iµ = I1µ ∪ I2µ,

I ′µ = I1µ ∪ {i ∈ I2µ| |E(Hµ, Ci)| = 1}, and
qµ =

∑
y∈V (Hµ)

degG−S(y).

Claim 3.1. Let 1 ≤ μ ≤ m.
(i) If |V (Hµ)| = 1, then qµ ≥ 2|Iµ| − |I ′µ| and |N(Hµ) ∩ S| ≥ max{δ − qµ, 0}.
(ii) If |V (Hµ)| = 2, then qµ ≥ 2|Iµ|− |I ′µ|+2 and |N(Hµ)∩S| ≥ max{δ−qµ/2�, 0}.

Proof. This immediately follows from the definition of Iµ, I
′
µ and qµ.
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Let a + 1 ≤ i ≤ a + b. Then there exists μ (1 ≤ μ ≤ m) with |E(Hµ, Ci)| = 1,
that is to say, there exists exactly one edge joining V (Hµ) and V (Ci). Let yiwi be
such an edge (yi ∈ V (Hµ), wi ∈ V (Ci)). Set

J1 = {i | a+ 1 ≤ i ≤ a+ b, there exists an edge joining S and V (Ci)− {wi}},
J ′
1 = {i | a+ 1 ≤ i ≤ a+ b, i �∈ J1, there exists an edge joining S−N(yi) and {wi}}.

For each j ∈ J1, let xjuj be an edge such that xj ∈ S and uj ∈ V (Cj)− {wj}. For
each j ∈ J ′

1, let xjuj be an edge such that xj ∈ S −N(yj) and uj = wj. Set

J1(x) = {uj | j ∈ J1 ∪ J ′
1, xj = x}.

Set

J ′
2 = {i | a+ b+ 1 ≤ i ≤ k, |V (Ci)| ≥ 2, there exists μ with 1 ≤ μ ≤ m

such that N(Ci) ∩ T ⊆ V (Hµ) and |N(Hµ) ∩ V (Ci)| = 1},
J2 = {i ∈ J ′

2 | there exists an edge joining S and V (Ci)−N(T )}.
For each j ∈ J2, let xjuj be an edge that xj ∈ S and uj ∈ V (Cj)− N(T ). For each
x ∈ S, set

J2(x) = {uj | j ∈ J2, xj = x}.

Clearly J1(x) ∪ J2(x) ⊆ N(x). Since u and v belong to distinct components of
G − S − T for any u, v ∈ L(x) ∪ J1(x) ∪ J2(x) with u �= v, this together with (3.2)
implies

L(x) ∪ J1(x) ∪ J2(x) ⊆ N(x) and L(x) ∪ J1(x) ∪ J2(x) is independent. (3.5)

Also

|J1 ∪ J ′
1| = |

⋃
x∈S

J1(x)| (disjoint union) and (3.6)

|J2| = |
⋃
x∈S

J2(x)| (disjoint union). (3.7)

For each x ∈ S, letN (x) = {μ| 1 ≤ μ ≤ m, x ∈ N(Hµ)}. For each μ (1 ≤ μ ≤ m), set
Hµ = G[V (Hµ)∪ (

⋃
i∈I1µ−J1∪J ′

1
V (Ci))]. Note that if I

1
µ − J1 ∪ J ′

1 = ∅, then Hµ = Hµ.

For each x ∈ S and for each μ ∈ N (x), we let J (x, μ) be a maximal independent
set of N(x) ∩ V (Hµ). If μ �∈ N (x), let J (x, μ) = ∅. Set J (x) =

⋃
1≤µ≤m J (x, μ). If

μ1 �= μ2, then J (x, μ1) ∩ J (x, μ2) = ∅ by the definition of J (x, μ). Thus

|J (x)| =
∑

1≤µ≤m

|J (x, μ)|. (3.8)

Since |J (x, μ)| ≥ 1 for each x ∈ N(Hµ) ∩ S,

|N(Hµ) ∩ S| ≤
∑
x∈S

|J (x, μ)|. (3.9)
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Claim 3.2. (i) For each x ∈ S, J (x) is independent.
(ii) Let x ∈ S. Then E(u,J (x, μ)) = ∅ for any u ∈ L(x) ∪ J1(x) ∪ J2(x) and for
any μ ∈ N (x). In particular, for each x ∈ S, we have E(u,J (x)) = ∅ for any
u ∈ L(x) ∪ J1(x) ∪ J2(x).

Proof. By the definition of J (x, μ), for each x ∈ S and for each μ (1 ≤ μ ≤ m),
J (x, μ) is independent. Since if μ1 �= μ2, then E(Hµ1 ,Hµ2) = ∅. In particular, for
each x ∈ S, we have E(J (x, μ1),J (x, μ2)) = ∅ for any μ1, μ2 ∈ N (x) with μ1 �= μ2.
Thus (i) holds. The statement (ii) immediately follows from the definitions of J (x),
L(x), J1(x) and J2(x).

Claim 3.3. (t− 1)|S| ≥∑1≤µ≤m

∑
x∈S |J (x, μ)|+ la+ |J1 ∪ J ′

1|+ |J2|.

Proof. Since G is K1,t-free, it follows from (3.5) and Claim 3.2 that |J (x)|+ |L(x)|+
|J1(x)|+ |J2(x)| ≤ t− 1 for every x ∈ S. It follows from (3.3), (3.6), (3.7) and (3.8)
that

(t− 1)|S| ≥
∑
x∈S

( ∑
1≤µ≤m

|J (x, μ)|+ |L(x)|+ |J1(x)|+ |J2(x)|
)

=
∑
x∈S

∑
1≤µ≤m

|J (x, μ)|+
∑
x∈S

|L(x)|+
∑
x∈S

|J1(x)|+
∑
x∈S

|J2(x)|

=
∑

1≤µ≤m

∑
x∈S

|J (x, μ)|+ la + |J1 ∪ J ′
1|+ |J2|,

as desired.

Claim 3.4. Suppose that t ≤ 3l + 1. If T = ∅, then θ(S, T ) ≥ 0.

Proof. By Claim 3.3, |S| ≥ la/(t − 1) ≥ a/3. If T = ∅, we have a = k, and hence
h(S, T ) ≤ k = a. Hence θ(S, T ) ≥ 3 · a/3− a ≥ 0.

In the rest of this section, we suppose that t ≤ 3l + 1. In view of Claim 3.4, we
may assume T �= ∅. For each μ (1 ≤ μ ≤ m) and for each i (a + 1 ≤ i ≤ k), we set

w(Hµ, Ci) =

⎧⎪⎨
⎪⎩
0 (N(Ci) ∩ V (Hµ) = ∅)
1/2 (N(Ci) ∩ V (Hµ) �= ∅, N(Ci) ∩ T �⊆ V (Hµ))

1 (N(Ci) ∩ V (Hµ) �= ∅, N(Ci) ∩ T ⊆ V (Hµ)).

Then for each i (a + 1 ≤ i ≤ k), we have

∑
1≤µ≤m

w(Hµ, Ci) ≥ 1, (3.10)

and for each μ (1 ≤ μ ≤ m), we have

∑
i∈Iµ

w(Hµ, Ci) ≤ |Iµ|. (3.11)
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We now estimate θ(S, T ) from below. For each 1 ≤ μ ≤ m, set

θµ =
3

t− 1

∑
x∈S

|J (x, μ)|+ qµ − 3|V (Hµ)|+ 3

t− 1
|I1µ ∩ (J1 ∪ J ′

1)|+
3

t− 1
|I2µ ∩ J2|

−
∑
i∈Iµ

w(Hµ, Ci),

θ1µ =
3

t− 1
|N(Hµ) ∩ S|+ qµ − 3|V (Hµ)|+ 3

t− 1
|Iµ ∩ (J1 ∪ J2)| −

∑
i∈Iµ

w(Hµ, Ci), and

θ2µ =
∑
x∈S

|J (x, μ)|+ qµ − 3|V (Hµ)|+ |I1µ ∩ (J1 ∪ J ′
1)| −

∑
i∈Iµ

w(Hµ, Ci).

Claim 3.5. Suppose that t ≤ 3l + 1. Then (i) and (ii) hold.
(i) θ(S, T ) ≥∑1≤µ≤m θ1µ.

(ii) In the case where t = 4, θ(S, T ) ≥∑1≤µ≤m θ2µ.

Proof. Note that

k − a ≤
∑

a+1≤i≤k

∑
1≤µ≤m

w(Hµ, Ci) =
∑

1≤µ≤m

∑
a+1≤i≤k

w(Hµ, Ci) =
∑

1≤µ≤m

∑
i∈Iµ

w(Hµ, Ci)

by (3.10). Hence h(S, T ) ≤ k ≤ a+
∑

1≤µ≤m

∑
i∈Iµ w(Hµ, Ci). By (3.4),

∑
y∈T

(degG−S(y)− 3) =
∑

1≤µ≤m

⎛
⎝ ∑

y∈V (Hµ)

degG−S(y)− 3|V (Hµ)|
⎞
⎠ .

Therefore it follows from Claim 3.3 that

θ(S, T ) = 3|S|+
∑
y∈T

(degG−S(y)− 3)− h(S, T )

≥ 3

t− 1

( ∑
1≤µ≤m

∑
x∈S

|J (x, μ)|+ la+ |J1 ∪ J ′
1|+ |J2|

)

+
∑

1≤µ≤m

⎛
⎝ ∑

y∈V (Hµ)

degG−S(y)− 3|V (Hµ)|
⎞
⎠− (a+

∑
1≤µ≤m

∑
i∈Iµ

w(Hµ, Ci))

≥
∑

1≤µ≤m

{ 3

t− 1

(∑
x∈S

|J (x, μ)|+ |I1µ ∩ (J1 ∪ J ′
1)|+ |I2µ ∩ J2|

)

+
∑

y∈V (Hµ)

degG−S(y)− 3|V (Hµ)| −
∑
i∈Iµ

w(Hµ, Ci)
}
+

3

t− 1
la− a

≥
∑

1≤µ≤m

θµ.

It follows from (3.9), |I1µ∩(J1∪J ′
1)| ≥ |I1µ∩J1| and |I1µ∩J1|+|I2µ∩J2| = |Iµ∩(J1∪J2)|

that θµ ≥ θ1µ for each μ (1 ≤ μ ≤ m), and hence (i) holds. In the case that t = 4, we
immediately have θµ ≥ θ2µ for each μ (1 ≤ μ ≤ m), and hence (ii) holds.
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4 Proofs of Theorems 1 and 2

Let G be an l-connected K1,t-free graph with δ(G) ≥ δ. We continue with the
notation of the proceeding section with t ≥ 5 and l ≥ 2. Thus, in this section, we
suppose that the connectivity of G is at least 2. First we prove the following technical
claim.

Claim 4.1. Suppose that l ≥ 2, and let 1 ≤ μ ≤ m.
(i) If t ≥ 7, then

∑
i∈Iµ w(Hµ, Ci)− 3|Iµ ∩ (J1 ∪ J2)|/(t− 1) ≤ |Iµ| − 3|I ′µ|/(t− 1).

(ii) If t ≤ 6, then
∑

i∈Iµ w(Hµ, Ci)− 3|Iµ ∩ (J1 ∪ J2)|/(t− 1) ≤ |Iµ| − |I ′µ|/2.

Proof. Let i ∈ I ′µ. First assume that i ∈ I1µ. Then, since |V (Ci)| ≥ 2 by Lemma
2.2(i) and G is 2-connected, there exists an edge joining S and V (Ci)−N(Hµ), and
hence i ∈ J1 by the definition of J1, which implies

w(Hµ, Ci)− 3

t− 1
|{i} ∩ J1| ≤ 1− 3

t− 1
. (4.1)

Next assume that i ∈ {j ∈ I2µ | |E(Hµ, Cj)| = 1}. Then N(Ci) ∩ T �⊆ V (Hµ), and
hence w(Hµ, Ci) = 1/2. Therefore

∑
i∈Iµ

w(Hµ, Ci)− 3

t− 1
|Iµ ∩ (J1 ∪ J2)|

≤
∑

i∈Iµ−I′µ

w(Hµ, Ci) +
∑
i∈I′µ

w(Hµ, Ci)− 3

t− 1
|I ′µ ∩ J1|

=
∑

i∈Iµ−I′µ

w(Hµ, Ci) +
∑
i∈I′µ

(
w(Hµ, Ci)− 3

t− 1
|{i} ∩ J1|

)

≤ |Iµ − I ′µ|+max

{(
1− 3

t− 1

)
,
1

2

}
|I ′µ|

= |Iµ| −min

{
3

t− 1
,
1

2

}
|I ′µ|,

which immediately implies (i) and (ii).

In order to complete the proofs of Theorems 1 and 2, we prove the following three
propositions.

Proposition 4.1. Suppose that t ≥ 5, l ≥ 2, δ ≥ �(4t − 4)/3� and |V (Hµ)| = 1.
Then θ1µ ≥ 0.

Proof. First we assume t ≥ 7. It follows from Claims 3.1(i) and 4.1(i) and |Iµ| ≥ |I ′µ|
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that

θ1µ ≥ 3

t− 1

(⌈
4t− 4

3

⌉
− qµ

)
+ qµ − 3− |Iµ|+ 3

t− 1
|I ′µ|

≥ 1 +
t− 4

t− 1
(2|Iµ| − |I ′µ|)− |Iµ|+ 3

t− 1
|I ′µ|

= 1 +
t− 7

t− 1
(|Iµ| − |I ′µ|) ≥ 0.

Next we assume t = 5 or 6. It follows from Claims 3.1(i) and 4.1(ii) that

θ1µ ≥ 3

t− 1
(δ − qµ) + qµ − 3− |Iµ|+ 1

2
|I ′µ|

≥ 3

t− 1
δ − 3 +

t− 4

t− 1
(2|Iµ| − |I ′µ|)− |Iµ|+ 1

2
|I ′µ|

=
3

t− 1
δ − 3− 7− t

t− 1
|Iµ|+ 7− t

2(t− 1)
|I ′µ|.

Assume for the moment t = 6. Then δ ≥ 7. Moreover, since G is K1,6-free, |Iµ| ≤ 5.
Hense θ1µ ≥ (3/5) · 7−3− (1/5) · 5 = 1/5 > 0. Assume now t = 5. Then δ ≥ 6. Since
G is K1,5-free, |Iµ| ≤ 4. If |Iµ| ≤ 3, then θ1µ ≥ (3/4) · 6− 3− (2/4) · 3 = 0. If |Iµ| = 4
and |I ′µ| ≥ 2, then θ1µ ≥ (3/4) · 6− 3− (2/4) · 4+ (2/8) · 4 = 0. Thus we may assume
that |Iµ| = 4 and |I ′µ| ≤ 1. Since |N(Hµ) ∩ S| ≥ 0,

θ1µ ≥ qµ − 3 +
3

4
|Iµ ∩ (J1 ∪ J2)| −

∑
i∈Iµ

w(Hµ, Ci)

≥ 2|Iµ| − |I ′µ| − 3− |Iµ|+ 1

2
|I ′µ| > 0,

which completes the proof of Proposition 4.1.

Proposition 4.2. Suppose that t ≥ 5, l ≥ 2, δ ≥ �(4t − 4)/3�, |V (Hµ)| = 2 and
|Iµ| �= 0. Then θ1µ ≥ 0.

Proof. First we assume that t ≥ 7. Assume for the moment that |Iµ| ≥ 2. Then, it
follows from Claims 3.1(ii) and 4.1(i), and |I ′µ| ≤ |Iµ| that

θ1µ ≥ 3

t− 1

(
4t− 4

3
−
⌊qµ
2

⌋)
+ qµ − 6− |Iµ|+ 3

t− 1
|I ′µ|

≥ 2t− 5

2(t− 1)
qµ − |Iµ|+ 3

t− 1
|I ′µ| − 2

≥ 2t− 5

2(t− 1)
(2|Iµ| − |I ′µ|+ 2)− |Iµ|+ 3

t− 1
|I ′µ| − 2

≥ − 3

t− 1
+

3

2(t− 1)
|Iµ| ≥ 0.
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Assume now |Iµ| = 1. Then qµ ≥ 3. In the case where |Iµ| = 1 and qµ ≥ 4,

θ1µ ≥ 3

t− 1

(
4t− 4

3
−
⌊qµ
2

⌋)
+ qµ − 6− |Iµ|+ 3

t− 1
|I ′µ|

≥ 2t− 5

2(t− 1)
· 4− 3 ≥ 0.

In the case where |Iµ| = 1 and qµ = 3, since |I ′µ| = 1,

θ1µ ≥ 3

t− 1

(
4t− 4

3
−
⌊qµ
2

⌋)
+ qµ − 6− |Iµ|+ 3

t− 1
|I ′µ|

≥ 3

t− 1

(
4t− 4

3
− 1

)
+ 3− 6− 1 +

3

t− 1
= 0.

Next we assume t = 5 or 6. Note that, if t = 5, then δ ≥ 6, and if t = 6, then
δ ≥ 7; that is, δ ≥ t + 1. Assume for the moment that |Iµ| ≥ 2. Then, it follows
from Claims 3.1(ii) and 4.1(ii), and |I ′µ| ≤ |Iµ| that

θ1µ ≥ 3

t− 1

(
t+ 1−

⌊qµ
2

⌋)
+ qµ − 6− |Iµ|+ 1

2
|I ′µ|

≥ 3(t+ 1)

t− 1
+

2t− 5

2(t− 1)
(2|Iµ| − |I ′µ|+ 2)− 6− |Iµ|+ 1

2
|I ′µ|

≥ −t− 4

t− 1
+

t− 4

2(t− 1)
|Iµ| ≥ 0.

Assume now |Iµ| = 1. Then qµ ≥ 3. In the case where |Iµ| = 1 and qµ ≥ 4, it follows
from Claim 4.1(ii) that θ1µ ≥ 3(t+1)/(t−1)+(2t−5)qµ/(2t−2)−6−|Iµ|+|I ′µ|/2 ≥ 0.
In the case where |Iµ| = 1 and qµ = 3, since |I ′µ| = 1, θ1µ ≥ (7− t)/(2t−2) > 0, which
completes the proof of Proposition 4.2.

Proposition 4.3. Suppose that t ≥ 5, l ≥ 2, δ ≥ �(4t − 1)/3� and |V (Hµ)| = 2.
Then θ1µ ≥ 0.

Proof. Keeping Proposition 4.2 in mind, we may assume |Iµ| = 0, and hence qµ = 2.
It follows from Claim 3.1(ii) that θ1µ ≥ (3/(t− 1)) · ((4t− 1)/3− qµ/2) + qµ − 6 ≥ 0,
which completes the proof of Proposition 4.3.

We are now in a position to complete the proofs of Theorems 1 and 2.

Proof of Theorem 1. Let t, G be as in Theorem 1; thus t ≥ 5 and G be a �(t− 1)/3�-
connected K1,t-free graph with δ(G) ≥ �(4t− 1)/3�. Let l be the connectivity of G.
Then l ≥ �(t − 1)/3�, and hence t ≤ 3l + 1. If T = ∅, then θ(S, T ) ≥ 0 by Claim
3.4. Thus we may assume T �= ∅. By Claim 3.5(i), it suffices to show that θ1µ ≥ 0 for
each 1 ≤ μ ≤ m. If |V (Hµ)| = 1, θ1µ ≥ 0 by Proposition 4.1. If |V (Hµ)| = 2, θ1µ ≥ 0
by Proposition 4.3. This completes the proof of Theorem 1 by Lemma 2.2(ii).
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Proof of Theorem 2. Let t, G be as in Theorem 2; thus t ≥ 5 and G be a �(4t−4)/3�-
connected K1,t-free graph. Thus δ(G) ≥ �(4t−4)/3�. Let l be the connectivity of G.
Then l ≥ �(4t− 4)/3�, and hence t ≤ (3l+4)/4 < 3l+1. If T = ∅, then θ(S, T ) ≥ 0
by Claim 3.4. Thus we may assume T �= ∅. By Claim 3.5(i), it suffices to show that
θ1µ ≥ 0 for each 1 ≤ μ ≤ m. If |V (Hµ)| = 1, θ1µ ≥ 0 by Proposition 4.1. If |V (Hµ)| = 2
and |Iµ| �= 0, θ1µ ≥ 0 by Proposition 4.2. Thus we may assume that |V (Hµ)| = 2 and
|Iµ| = 0. If |V (G)| = l + 1 ≥ 7, then G is the complete graph, and hence G has a
3-factor. Thus, we may assume that |V (G)| ≥ l + 2. Suppose that |N(Hµ) ∩ S| < l.
Then |V (G)−V (Hµ)−

(
N(Hµ)∩S

)| ≥ 1, and hence G−(N(Hµ)∩S
)
is disconnected,

which contradicts G is l-connected. Hence we have |N(Hµ) ∩ S| ≥ l. Then

θ1µ = 3|N(Hµ) ∩ S|/(t− 1) + 2− 6 ≥ 3l/(t− 1) + 2− 6 ≥ 0;

this together with Propositions 4.1 and 4.2, completes the proof of Theorem 2.

5 Proof of Theorem 3

Let G be as in Theorem 3; thus G is a 2-edge-connected K1,4-free graph with δ(G) ≥
6. We continue with the notation of Section 3 with t = 4, l = 1, and δ = 6.

Recall that θ2µ =
∑

x∈S |J (x, μ)|+qµ−3|V (Hµ)|+|I1µ∩(J1∪J ′
1)|−

∑
i∈Iµ w(Hµ, Ci).

In view of Claim 3.5(ii), it suffices to show that θ2µ ≥ 0 for each 1 ≤ μ ≤ m. We
divide the proof into the following two cases.

Case 1. |V (Hµ)| = 1.

Since G is K1,4-free, |Iµ| ≤ 3, this together with (3.9), (3.11) and Claim 3.1(i)
implies θ2µ ≥ |N(Hµ) ∩ S|+ qµ − 3− |Iµ| ≥ 6− qµ + qµ − 3− 3 = 0.

Case 2. |V (Hµ)| = 2.

Having the definition of I1µ in mind, since G is K1,4-free,

|I1µ| ≤ 4. (5.1)

By the definition of qµ, I
1
µ, I

2
µ, and I ′µ, we have

qµ ≥ |I1µ|+ 2|I2µ| − |I2µ ∩ I ′µ|+ 2. (5.2)

By the definition of w(Hµ, Ci), I
1
µ, I

2
µ, and I ′µ, we also have

∑
i∈Iµ

w(Hµ, Ci) ≤ |I1µ|+ |I2µ| −
|I2µ ∩ I ′µ|

2
. (5.3)

If |N(Hµ) ∩ S| ≥ 4, it follows from (3.9), (5.2) and (5.3) that

θ2µ ≥ |I2µ| − |I2µ ∩ I ′µ|/2 + |I1µ ∩ (J1 ∪ J ′
1)| ≥ 0.

Thus we may assume that

|N(Hµ) ∩ S| ≤ 3. (5.4)
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It follows from Claim 3.1(ii), (5.2) and (5.3) that

|N(Hµ) ∩ S|+ qµ − 3|V (Hµ)| − w(Hµ, Ci)

≥ δ −
⌊qµ
2

⌋
+ qµ − 3|V (Hµ)| −

(
|I1µ|+ |I2µ| −

|I2µ ∩ I ′µ|
2

)

≥ 6 +
|I1µ|+ 2|I2µ| − |I2µ ∩ I ′µ|+ 2

2
− 6−

(
|I1µ|+ |I2µ| −

|I2µ ∩ I ′µ|
2

)

≥ −|I1µ|
2

+ 1. (5.5)

Suppose that
∑

x∈S |J (x, μ)| ≥ |N(Hµ) ∩ S| + 1 or |I1µ ∩ (J1 ∪ J ′
1)| ≥ 1. Then it

follows from (5.1) and (5.5) that

θ2µ ≥ |N(Hµ) ∩ S|+ 1 + qµ − 3|V (Hµ)| − w(Hµ, Ci)

≥ −|I1µ|
2

+ 2 ≥ 0.

Suppose that |I1µ| ≤ 2. Then it follows from (3.9) and (5.5) that

θ2µ ≥ |N(Hµ) ∩ S|+ qµ − 3|V (Hµ)| − w(Hµ, Ci)

≥ −|I1µ|
2

+ 1 ≥ 0.

Thus we may assume that ∑
x∈S

|J (x, μ)| = |N(Hµ) ∩ S|, (5.6)

|I1µ ∩ (J1 ∪ J ′
1)| = 0, and (5.7)

|I1µ| = 3 or 4. (5.8)

Let i ∈ I1µ. By the definition of I1µ, we may write E(Hµ, Ci) = {yzi} (y ∈ V (Hµ),
zi ∈ V (Ci)). Since G is 2-edge-connected and |I1µ ∩ (J1 ∪ J ′

1)| = 0, there exists
x ∈ N(Hµ) ∩ S such that x ∈ N(y) ∩ N(zi), say xi. Since i ∈ I1µ is arbitrary,
|I1µ| ≤

∑
x∈N(Hµ)∩S |J (x, μ)| =∑x∈S |J (x, μ)|. Hence it follows from (5.4), (5.6) and

(5.8) that |I ′µ| = 3. If xi = xi′ for i, i
′ ∈ I1µ (i �= i′) then∑

x∈S
|J (x, μ)| =

∑
x∈S−xi

|J (x, μ)|+ |J (xi, μ)|

≥ |N(Hµ) ∩ (S − xi)|+ |J (xi, μ)|
≥ |N(Hµ) ∩ (S − xi)|+ 2 = |N(Hµ) ∩ S|+ 1,

which contradicts (5.6). Thus for each i, i′ ∈ I1µ (i �= i′), xi �= xi′ . Set Iµ = {i1, i2, i3},
and V (Hµ) = {y1, y2}. Then N(Hµ) ∩ S = {xi1 , xi2 , xi3}. Since G is K1,4-free, we
may assume that |E(y1, Ci1)| = |E(y1, Ci2)| = 1, |E(y1, Ci3)| = 0, |E(y2, Ci1)| =
|E(y2, Ci2)| = 0 and |E(y2, Ci3)| = 1. Let y1z1, y1z2, y2z3 ∈ E(G) (z1 ∈ V (Ci1),
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z2 ∈ V (Ci2), z3 ∈ V (Ci3)), and let x3 ∈ N(y2) ∩ N(z3). Since |E(y1, Ci3)| = 0,
y1z3 �∈ E(G). Since N(y1)− S = {y2, z1, z2} and deg(y1) ≥ δ = 6, |N(y1) ∩ S| ≥ 3;
this together with |N(Hµ)∩S| = 3 implies x3 ∈ N(y1). Hence |J (x3, μ)| ≥ |{y1, z3}|.
Consequently

∑
x∈S |J (x, μ)| ≥ ∑

x∈S−x3
|J (x, μ)| + |J (x3, μ)| = |N(Hµ) ∩ S| + 1,

which contradicts (5.6).

6 Examples

In this section, we construct examples which show that the conditions in Theorems
1, 2 and 3 are best possible.

Example 6.1. Let t ≥ 5 be an integer. There exist infinitely many �(4t − 7)/3�-
connected K1,t-free graphs G of even order with δ(G) ≥ �(4t − 4)/3� such that G
has no 3-factor. Let m ≥ t be an arbitrary integer relatively prime to t − 1. Set
l = �(4t− 7)/3�. Let I1, I2, . . . , I2m be disjoint copies of the complete graph of order
�l/2�, and let J1, J2, . . . , J2m be disjoint copies of the complete graph of order l/2�,
and let H1, H2, . . . , H2m(t−1) be disjoint copies of the complete graph of order 2. For
each 1 ≤ k ≤ 2m, set

Tk =
⋃

1≤j≤t−1

V (H(k−1)(t−1)+j),

T ′
k =

⋃
1≤j≤t−1

V (H(j−1)2m+k).

Now define a graph G by

V (G) =

( ⋃
1≤k≤2m

(V (Ik) ∪ V (Jk))

)
∪
⎛
⎝ ⋃

1≤i≤2m(t−1)

V (Hi)

⎞
⎠ ,

E(G) =

( ⋃
1≤k≤2m

(E(Ik) ∪ E(Jk)) ∪ {xy|x ∈ V (Ik), y ∈ Tk} ∪ {xy|x ∈ V (Jk), y ∈ T ′
k}
)

∪
⎛
⎝ ⋃

1≤i≤2m(t−1)

E(Hi)

⎞
⎠ .

Then G is �(4t − 7)/3�-connected and K1,t-free, and satisfies δ(G) = l + 1 = �(4t−
4)/3�. However, we easily see that G does not have a 3-factor (for example, if we
apply Lemma 2.1 with S =

⋃
1≤k≤2m(V (Ik) ∪ V (Jk)) and T =

⋃
1≤i≤2m(t−1) V (Hi),

then we get θ(S, T ) ≤ −2m).

Example 6.2. Let t ≥ 8 be an integer. For any positive integer δ, there exists a
�(t − 4)/3�-connected K1,t-free graph G of even order with δ(G) ≥ δ such that G
has no 3-factor. Let m ≥ t be an arbitrary integer relatively prime to t− 1, and set
l = �(t− 4)/3�. Let I1, I2, . . . , I2m be disjoint copies of the complete graph of order
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�l/2�, and let J1, J2, . . . , J2m be disjoint copies of the complete graph of order l/2�.
Let p be an odd integer with p ≥ δ− l+1, and let C1, . . . , C2m(t−1) be disjoint copies
of the complete graph of order p. For each 1 ≤ k ≤ 2m, set

Tk =
⋃

1≤j≤t−1

V (C(k−1)(t−1)+j),

T ′
k =

⋃
1≤j≤t−1

V (C(j−1)2m+k).

Now define a graph G by

V (G) =

( ⋃
1≤k≤2m

(V (Ik) ∪ V (Jk))

)
∪
⎛
⎝ ⋃

1≤i≤2m(t−1)

V (Ci)

⎞
⎠ ,

E(G) =

( ⋃
1≤k≤2m

E(Ik) ∪ E(Jk) ∪ {xy|x ∈ V (Ik), y ∈ Tk} ∪ {xy|x ∈ V (Jk), y ∈ T ′
k}
)

∪
⎛
⎝ ⋃

1≤i≤2m(t−1)

E(Ci)

⎞
⎠ .

Then G is l-connected and K1,t-free, and satisfies δ(G) = p− 1+ l ≥ δ. However, we
easily see that G does not have a 3-factor (for example, if we apply Lemma 2.1 in
Section 2 with S =

⋃
1≤k≤2m(V (Ik)∪V (Jk)) and T = ∅, then we get θ(S, T ) ≤ −2m).

Example 6.3. There exist infinitely many 3-connected K1,3-free graphs of even
order with no 3-factor. Let m ≥ 2 be an even integer. Let I1, I2, . . . , Im be disjoint
copies of the complete graph of order 1, and set V (Ik) = {xk} (1 ≤ k ≤ m). Let
H1, H2, . . . , H2m disjoint copies of the complete graph of order 2, and set V (Hi) =
{yi, y′i} (1 ≤ i ≤ 2m). Let L, L′ be disjoint copies of the complete graph of order
2m, and set V (L) = {z1, z2, . . . , z2m} and V (L′) = {z′1, z′2, . . . , z′2m}. Now define a
graph G of order 9m by

V (G) =

( ⋃
1≤k≤m

V (Ik)

)
∪
( ⋃

1≤i≤2m

V (Hk)

)
∪ V (L) ∪ V (L′),

E(G) =

( ⋃
1≤k≤m

{xky | y ∈ V (H2k−1) ∪ V (H2k)}
)

∪
( ⋃

1≤i≤2m

{yiy′i, yizi, y′iz′i}
)

∪ E(L) ∪ E(L′).

Then G is a 3-connected K1,3-free graph of even order. However, we easily see that
G does not have a 3-factor (for example, if we apply Lemma 2.1 in Section 2 with
S =

⋃
1≤k≤m V (Ik) and T =

⋃
1≤i≤2m V (Hi), then we get θ(S, T ) = −m).
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Example 6.4. There exist infinitely many 4-connected K1,4-free graphs of even
order with no 3-factor. Let m ≥ 2 be an arbitrary integer. Let I1, I2, . . . , Im be
disjoint copies of the complete graph of order 2. Let H1, H2, . . . , H3m disjoint copies
of the complete graph of order 2, and set V (Hi) = {yi, y′i} (1 ≤ i ≤ 2m). Let
L, L′ be disjoint copies of the complete graph of order 3m + 1, and set V (L) =
{z1, z2, . . . , z3m+1} and V (L′) = {z′1, z′2, . . . , z′3m+1}. Now define a graph G of order
14m+ 2 by

V (G) =

( ⋃
1≤k≤m

V (Ik)

)
∪
( ⋃

1≤i≤3m

V (Hi)

)
∪ V (L) ∪ V (L′)

E(G) =

( ⋃
1≤k≤m

E(Ik) ∪ {xy | x ∈ V (Ik), y ∈ V (H3k−2) ∪ V (H3k−1) ∪ V (H3k)}
)

∪
( ⋃

1≤i≤3m

{yiy′i, yizi, y′iz′i}
)

∪ E(L) ∪ E(L′).

Then G is a 4-connected K1,4-free graph of even order. However, we easily see that
G does not have a 3-factor (for example, if we apply Lemma 2.1 in Section 2 with
S =

⋃
1≤k≤m V (Ik) and T =

⋃
1≤i≤3m V (Hi), then we get θ(S, T ) = −2).

Example 6.5. There exist infinitely many 2-edge-connected K1,4-free graphs of even
order satisfies δ(G) ≥ 5 with no 3-factor. Let p1 ≥ 7 be an odd integer, and let p2 ≥ 6
be an even integer. Let C1, C2, . . . , C8 be disjoint copies of the complete graph of
order p1, and let D1, D2, . . . , D7 be disjoint copies of the complete graph of order p2.
For each Ci (1 ≤ i ≤ 8), take two vertices c1i , c

2
i ∈ V (Ci). For each Di (1 ≤ i ≤ 7),

take one vertex di ∈ V (Di). We define the graph of order 8p1 + 7p2 + 8 by

V (G) = {x1, x2} ∪ {y1, y2, y3, y4, y5, y6} ∪
⋃

1≤i≤8

V (Ci) ∪
⋃

1≤i≤7

V (Di)

E(G) = {x1yi, x1di | i = 1, 2, 3} ∪ {x2yi, x2di | i = 4, 5, 6}
∪ {yic1i , yic2i , yidi | 1 ≤ i ≤ 6} ∪ {y1c17, y4c27, y2c18, y5c28} ∪ {y3d7, y6d7}
∪
⋃

1≤i≤8

E(Ci) ∪
⋃

1≤i≤7

E(Di).

Then G is a 2-edge-connected K1,4-free graph, and satisfies δ(G) = 5. However, we
easily see that G does not have a 3-factor (for example, if we apply Lemma 2.1 in
Section 2 with S = {x1, x2} and T = {y1, y2, y3, y4, y5, y6}, then we get θ(S, T ) = −2).

Example 6.6. For each k ≥ 2, there exists a k-edge-connected K1,5-free graph of
even order with no 3-factor. Let k ≥ 2 and s ≥ k−1

2
be integers. Let I and J be the

complete graphs of order k and 2, respectively. For each v ∈ V (I), let C1
v , C

2
v , C

3
v

be disjoint copies of complete graphs of order 2s + 1. For each C i
v, take k distinct

vertices ziv(1), z
i
v(2), . . . , z

i
v(k) from V (C i

v). Let G be a graph of order (6s+ 4)k + 2
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by

V (G) =V (J) ∪ V (I) ∪
⋃

v∈V (I)

( 3⋃
i=1

V (C i
v)
)
,

E(G) =E(J) ∪ E(I) ∪
⋃

v∈V (I)

( 3⋃
i=1

E(C i
v)
)

∪ {xy | x ∈ V (J), y ∈ V (I)}

∪
⋃

v∈V (I)

( 3⋃
i=1

{vziv(1), vziv(2), . . . , vziv(k)}
)
.

Then G is a k-edge-connected K1,5-free graph of even order. However, we easily see
that G does not have a 3-factor (for example, if we apply Lemma 2.1 with S = V (I)
and T = V (J), then we get θ(S, T ) = −4).
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