Existence of 3-factors in $K_{1, n}$-free graphs with connectivity and edge-connectivity conditions

Keiko Kotani
Department of Mathematics
Tokyo University of Science Shinjuku-ku
Tokyo 162-8601
Japan
kkotani@rs.tus.ac.jp
Shuto Nishida*
Graduate School of Science
Tokyo University of Science Shinjuku-ku
Tokyo 162-8601
Japan
1418702@ed.tus.ac.jp

Abstract

Let t be an integer satisfying $t \geq 5$. We show that if G is a $\lceil(t-1) / 3\rceil$ connected $K_{1, t}-$ free graph of even order with minimum degree at least $\lceil(4 t-1) / 3\rceil$, then G has a 3 -factor, and if G is a $\lceil(4 t-4) / 3\rceil$-connected $K_{1, t}$-free graph of even order, then G has a 3 -factor. We also show that if G is a 2-edge-connected $K_{1,4}$-free graph of even order with minimum degree at least 6 , then G has a 3 -factor.

1 Introduction

In this paper, we consider only finite, simple, undirected graphs with no loops and no multiple edges.

Let $G=(V(G), E(G))$ be a graph. For $x \in V(G), \operatorname{deg}_{G}(x)$ denotes the degree of x in G. We let $\delta(G)$ denote the minimum of $\operatorname{deg}_{G}(x)$ as x ranges over $V(G)$. For an integer $r \geq 1$, a subgraph F of G such that $V(F)=V(G)$ and $\operatorname{deg}_{F}(x)=r$ for all $x \in V(F)$ is called an r-factor of G. The complete bipartite graph $K_{1, t}$ with partite sets of cardinalities 1 and t is called the t-star. We say that G is $K_{1, t}$-free or t-star-free if G does not contain $K_{1, t}$ as an induced subgraph.

[^0]The following theorem was proved by Tokuda and Ota in [4].
Theorem A. Let t, r be integers with $t \geq 3$ and $r \geq 2$. Let G be a connected $K_{1, t}-$ free graph, and suppose that

$$
\delta(G) \geq\left(t+\frac{t-1}{r}\right)\left\lceil\frac{t}{2(t-1)} r\right\rceil-\frac{t-1}{r}\left\lceil\frac{t}{2(t-1)} r\right]^{2}+t-3 .
$$

In the case where r is odd, suppose further that $t \leq r+1$ and $|V(G)|$ is even. Then G has an r-factor.

In the case where $r=3$, the minimum degree condition in Theorem A takes the following simple form.

Corollary B. Let t be 3 or 4 . Let G be a connected $K_{1, t}-$ free graph with $|V(G)|$ even, and suppose that $\delta(G) \geq 5$ or $\delta(G) \geq 7$ according as $t=3$ or $t=4$. Then G has a 3 -factor.

The minimum degree condition in Theorem A is best possible, and hence so are those in Corollary B. On the other hand, if we add the assumption that G is 2 -connected, then we can relax the minimum degree condition as is shown in the following two results which were proved in [3].

Theorem C. Let t be 3 or 4 . Let G be a 2-connected $K_{1, t}-$ free graph with $|V(G)|$ even and suppose that $\delta(G) \geq t+1$. Then G has a 3 -factor.

Theorem D. Let t be an integer with $5 \leq t \leq 7$. Let G be a 2 -connected $K_{1, t}$-free graph with $|V(G)|$ even and suppose that $\delta(G) \geq t+2$. Then G has a 3 -factor.

In Theorems C and D , the conditions on $\delta(G)$ are best possible. However, it is natural to expect that we can weaken the condition on $\delta(G)$ and the condition on t if we replace the assumption that G is 2 -connected by a stronger assumption. Along this line, we show the following results.

Theorem 1. Let t be an integer with $t \geq 5$. Let G be a $\lceil(t-1) / 3\rceil$-connected $K_{1, t^{-}}$ free graph with $|V(G)|$ even and suppose that $\delta(G) \geq\lceil(4 t-1) / 3\rceil$. Then G has a 3-factor.

Theorem 2. Let t be an integer with $t \geq 5$. Let G be $a\lceil(4 t-4) / 3\rceil$-connected $K_{1, t}-$ free graph with $|V(G)|$ even. Then G has a 3-factor.

Note that, since $\lceil(t-1) / 3\rceil=2$ and $t+2=\lceil(t-1) / 3\rceil$ for each $5 \leq t \leq 7$, Theorem 1 implies Theorem D.

The minimum degree conditions are best possible in Theorems 1 and 2 in the sense that, for each $t \geq 5$, there exist infinitely many $\lceil(4 t-7) / 3\rceil$-connected $K_{1, t^{-}}$ free graphs G of even order with $\delta(G) \geq\lceil(4 t-4) / 3\rceil$ such that G has no 3 -factor (see Example 6.1). In Theorem 1, the connectivity condition is best possible in the sense
that, for $t \geq 8$, and for any positive integer δ, there exists a $\lceil(t-4) / 3\rceil$-connected $K_{1, t}$-free graph G of even order with $\delta(G) \geq \delta$ such that G has no 3 -factor (see Example 6.2). Further, for $K_{1,3}$-free graphs and for $K_{1,4}$-free graphs, results like Theorems 1 and 2 do not hold because there exist infinitely many 3 -connected $K_{1,3^{-}}$ free graphs of even order with no 3 -factor (see Example 6.3) and there exist infinitely many 4 -connected $K_{1,4}$-free graphs of even order with no 3 -factor (see Example 6.4).

The following result concerning 2-factors with edge-connectivity conditions was proved [1].

Theorem E. Let t and k be integers with $t \geq 3$ and $k \geq 2$. Let G be a k-edgeconnected $K_{1, t}$-free graph such that $\delta(G) \geq t-2+(t-1) /(k-1)$. In the case where $t=3$ and $k=2$, suppose further that $\delta(G) \geq 4$. Then G has a 2 -factor.

We also show the result on 3-factors which correspond to Theorem E concerning $K_{1,4}$-free graphs.

Theorem 3. Let G be a 2-edge-connected $K_{1,4}$-free graph with $|V(G)|$ even, and suppose that $\delta(G) \geq 6$. Then G has a 3 -factor.

In Theorem 3, the minimum degree condition is best possible in the sense that, there exist infinitely many 2 -edge-connected $K_{1,4}$-free graphs G of even order with $\delta(G) \geq 5$ such that G has no 3 -factor (see Example 6.5).

Note that, unlike the case of vertex-connectivity, even if we assume that the edge-connectivity is sufficiently large, $K_{1,5}$-free-ness does not imply the existence of a 3 -factor; that is to say, for each $k \geq 2$, there exists a k-edge-connected $K_{1,5}$-free graph of even order with no 3 -factor (see Example 6.6).

It is natural to expect that we can weaken the condition on $\delta(G)$ in Theorem 3 if we replace the assumption that G is 2 -edge-connected by a stronger edge-connectivity condition. This problem is still open, and the result which correspond to Theorem 3 concerning $K_{1,3}$-free graphs is also still open.

Our notation is standard, and is mostly taken from Diestel [2]. Possible exceptions are as follows. Let G be a graph. For $x \in V(G), N(x)=N_{G}(x)$ denotes the set of vertices adjacent to x in G; thus $\operatorname{deg}_{G}(x)=\left|N_{G}(x)\right|$. For $A \subseteq V(G)$, we let $N(A)$ denote the union of $N(x)$ as x ranges over A. For $A, B \subseteq V(G)$ with $A \cap B=\emptyset$, $E(A, B)$ denotes the set of those edges of G which join a vertex in A and a vertex in B. For $A \subseteq V(G)$, the subgraph induced by A in G is denoted by $G[A]$, and the graph obtained from G by deleting all vertices in A together with the edges incident with them is denoted by $G-A$; thus $G-A=G[V(G)-A]$. We often identify a subgraph H of G with its vertex set; for example, we write $N(H)$ for $N(V(H))$. Also a vertex x of G is often identified with the set $\{x\}$; for example, if H is a subgraph with $x \notin V(H)$, we write $E(x, H)$ for $E(\{x\}, V(H))$.

2 Preliminary results

In this section we state preliminary lemmas, which we use in the proof of Theorems 1,2 and 3 .

Let G be a graph. For $S, T \subseteq V(G)$ with $S \cap T=\emptyset$, define $\theta(S, T)$ by

$$
\theta(S, T)=3|S|+\sum_{y \in T}\left(\operatorname{deg}_{G-S}(y)-3\right)-h(S, T)
$$

where $h(S, T)$ denotes the number of those components C of $G-S-T$ such that $|E(T, C)|+|V(C)|$ is odd. The following lemma is a special case of the f-Factor Theorem of Tutte [5].

Lemma 2.1. (i) The graph G has a 3-factor if and only if $\theta(S, T) \geq 0$ for all $S, T \subseteq V(G)$ with $S \cap T=\emptyset$.
(ii) If $|V(G)|$ is even, then whether G has a 3-factor or not, $\theta(S, T)$ is even for all $S, T \subseteq V(G)$ with $S \cap T=\emptyset$.

The following lemma is well-known, and appears as Lemma 2.2 in [3].
Lemma 2.2. Let $S, T \subseteq V(G)$ be subsets of $V(G)$ with $S \cap T=\emptyset$ for which $\theta(S, T)$ becomes smallest. Then the following hold.
(i) Let C be a component of $G-S-T$ such that $|E(T, C)| \leq 1$. Then $|V(C)| \geq 2$.
(ii) Suppose that S and T are chosen with $|T|$ is as small as possible, subject to the condition that $\theta(S, T)$ is smallest. Then $\operatorname{deg}_{G[T]}(y) \leq 1$ for every $y \in T$.

3 Notation

Let $t \geq 3, l \geq 1$ and $\delta \geq 3$ be integers, and G be an l-connected $K_{1, t}$-free graph of even order with $\delta(G) \geq \delta$. In this section, we fix notation for the proof of Theorems 1,2 and 3 .

Let S, T be subsets of $V(G)$ with $S \cap T=\emptyset$ for which $\theta(S, T)$ becomes smallest. We choose $S, T \subseteq V(G)$ so that $|T|$ is as small as possible, subject to the condition that $\theta(S, T)$ is smallest. If $S \cup T=\emptyset$, then since G is connected and has even order, we get $h(S, T)=0$, and hence $\theta(S, T)=0$. Thus we may assume $S \cup T \neq \emptyset$.

Let C_{1}, \ldots, C_{k} be the components of $G-S-T$. We may assume that there exists an integer a with $0 \leq a \leq k$ such that $\left|E\left(T, C_{i}\right)\right|=0$ for each $0 \leq i \leq a$, and $\left|E\left(T, C_{i}\right)\right| \geq 1$ for each $a+1 \leq i \leq k$. We may further assume that there exists an integer b with $0 \leq b \leq k-a$ such that $\left|E\left(T, C_{i}\right)\right|=1$ for each $a+1 \leq i \leq a+b$, and $\left|E\left(T, C_{i}\right)\right| \geq 2$ for each $a+b+1 \leq i \leq k$. Note that if $S \neq \emptyset$ and $|T|+k \leq 1$, then $\sum_{y \in T}\left(3-\operatorname{deg}_{G-S}(y)\right)+h(S, T) \leq 3$, and hence $\theta(S, T) \geq 3|S|-3 \geq 0$. Thus we may assume that if $S \neq \emptyset$, then we have $|T|+k \geq 2$.

Let $a \geq 1$, and let $1 \leq i \leq a$. By Lemma 2.2 (i), $\left|V\left(C_{i}\right)\right| \geq 2$. Recall that we have $S \cup T \neq \emptyset$ by the assumption made in the second paragraph. Since G is connected, $\emptyset \neq N\left(C_{i}\right) \cap(S \cup T)=N\left(C_{i}\right) \cap S$; in particular, $S \neq \emptyset$. By the assumption made at the end of the third paragraph in this section, this implies $|T|+k \geq 2$, and hence $G-S \neq C_{i}$. Since G is l-connected, $\left|N\left(C_{i}\right) \cap S\right| \geq l$. Let $x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{l}$ be l distinct vertices in $N\left(C_{i}\right) \cap S$ and let $e_{i}^{j}(1 \leq j \leq l)$ be an edge joining x_{i}^{j} and a vertex u_{i}^{j} in $V\left(C_{i}\right)$. Then

$$
\begin{equation*}
\left|\left\{e_{i}^{j} \mid 1 \leq i \leq a, 1 \leq j \leq l\right\}\right|=l a \tag{3.1}
\end{equation*}
$$

For each $x \in S$, let $L(x)=\left\{u_{i}^{j} \mid 1 \leq i \leq a, 1 \leq j \leq l, x_{i}^{j}=x\right\}$. Clearly

$$
\begin{equation*}
L(x) \subseteq N(x) \text { and } L(x) \text { is independent. } \tag{3.2}
\end{equation*}
$$

Also

$$
\begin{equation*}
\sum_{x \in S}|L(x)|=l a \tag{3.3}
\end{equation*}
$$

by (3.1). If $a=0$, we let $L(x)=\emptyset$ for each $x \in S$; thus (3.2) and (3.3) hold in this case as well.

We now look at components of $G[T]$. Let H_{1}, \ldots, H_{m} be the components of $G[T]$. Then

$$
\begin{equation*}
T=\bigcup_{1 \leq \mu \leq m} V\left(H_{\mu}\right) \text { (disjoint union). } \tag{3.4}
\end{equation*}
$$

In the remainder of this section, we assign real numbers $\theta_{\mu}, \theta_{\mu}^{1}$, and θ_{μ}^{2} to each H_{μ}, and show that $\theta(S, T) \geq \sum_{1 \leq \mu \leq m} \theta_{\mu}, \theta(S, T) \geq \sum_{1 \leq \mu \leq m} \theta_{\mu}^{1}$, and $\theta(S, T) \geq$ $\sum_{1 \leq \mu \leq m} \theta_{\mu}^{2}$. We first prove several claims concerning H_{μ}. Note that H_{μ} is a path of order 1 or 2 by Lemma 2.2 (ii). For each $1 \leq \mu \leq m$, set

$$
\begin{aligned}
I_{\mu}^{1} & =\left\{i \mid a+1 \leq i \leq a+b, E\left(H_{\mu}, C_{i}\right) \neq \emptyset\right\}, \\
I_{\mu}^{2} & =\left\{i \mid a+b+1 \leq i \leq k, E\left(H_{\mu}, C_{i}\right) \neq \emptyset\right\}, \\
I_{\mu} & =I_{\mu}^{1} \cup I_{\mu}^{2}, \\
I_{\mu}^{\prime} & =I_{\mu}^{1} \cup\left\{i \in I_{\mu}^{2}| | E\left(H_{\mu}, C_{i}\right) \mid=1\right\}, \text { and } \\
q_{\mu} & =\sum_{y \in V\left(H_{\mu}\right)} \operatorname{deg}_{G-S}(y) .
\end{aligned}
$$

Claim 3.1. Let $1 \leq \mu \leq m$.
(i) If $\left|V\left(H_{\mu}\right)\right|=1$, then $q_{\mu} \geq 2\left|I_{\mu}\right|-\left|I_{\mu}^{\prime}\right|$ and $\left|N\left(H_{\mu}\right) \cap S\right| \geq \max \left\{\delta-q_{\mu}, 0\right\}$.
(ii) If $\left|V\left(H_{\mu}\right)\right|=2$, then $q_{\mu} \geq 2\left|I_{\mu}\right|-\left|I_{\mu}^{\prime}\right|+2$ and $\left|N\left(H_{\mu}\right) \cap S\right| \geq \max \left\{\delta-\left\lfloor q_{\mu} / 2\right\rfloor, 0\right\}$.

Proof. This immediately follows from the definition of $I_{\mu}, I_{\mu}^{\prime}$ and q_{μ}.

Let $a+1 \leq i \leq a+b$. Then there exists $\mu(1 \leq \mu \leq m)$ with $\left|E\left(H_{\mu}, C_{i}\right)\right|=1$, that is to say, there exists exactly one edge joining $V\left(H_{\mu}\right)$ and $V\left(C_{i}\right)$. Let $y_{i} w_{i}$ be such an edge $\left(y_{i} \in V\left(H_{\mu}\right), w_{i} \in V\left(C_{i}\right)\right)$. Set
$J_{1}=\left\{i \mid a+1 \leq i \leq a+b\right.$, there exists an edge joining S and $\left.V\left(C_{i}\right)-\left\{w_{i}\right\}\right\}$, $J_{1}^{\prime}=\left\{i \mid a+1 \leq i \leq a+b, i \notin J_{1}\right.$, there exists an edge joining $S-N\left(y_{i}\right)$ and $\left.\left\{w_{i}\right\}\right\}$.

For each $j \in J_{1}$, let $x_{j} u_{j}$ be an edge such that $x_{j} \in S$ and $u_{j} \in V\left(C_{j}\right)-\left\{w_{j}\right\}$. For each $j \in J_{1}^{\prime}$, let $x_{j} u_{j}$ be an edge such that $x_{j} \in S-N\left(y_{j}\right)$ and $u_{j}=w_{j}$. Set

$$
J_{1}(x)=\left\{u_{j} \mid j \in J_{1} \cup J_{1}^{\prime}, x_{j}=x\right\} .
$$

Set

$$
\begin{gathered}
J_{2}^{\prime}=\left\{i \left|a+b+1 \leq i \leq k,\left|V\left(C_{i}\right)\right| \geq 2, \text { there exists } \mu \text { with } 1 \leq \mu \leq m\right.\right. \\
\text { such that } \left.N\left(C_{i}\right) \cap T \subseteq V\left(H_{\mu}\right) \text { and }\left|N\left(H_{\mu}\right) \cap V\left(C_{i}\right)\right|=1\right\}, \\
J_{2}=\left\{i \in J_{2}^{\prime} \mid \text { there exists an edge joining } S \text { and } V\left(C_{i}\right)-N(T)\right\} .
\end{gathered}
$$

For each $j \in J_{2}$, let $x_{j} u_{j}$ be an edge that $x_{j} \in S$ and $u_{j} \in V\left(C_{j}\right)-N(T)$. For each $x \in S$, set

$$
J_{2}(x)=\left\{u_{j} \mid j \in J_{2}, x_{j}=x\right\} .
$$

Clearly $J_{1}(x) \cup J_{2}(x) \subseteq N(x)$. Since u and v belong to distinct components of $G-S-T$ for any $u, v \in L(x) \cup J_{1}(x) \cup J_{2}(x)$ with $u \neq v$, this together with (3.2) implies

$$
\begin{equation*}
L(x) \cup J_{1}(x) \cup J_{2}(x) \subseteq N(x) \text { and } L(x) \cup J_{1}(x) \cup J_{2}(x) \text { is independent. } \tag{3.5}
\end{equation*}
$$

Also

$$
\begin{align*}
\left|J_{1} \cup J_{1}^{\prime}\right| & =\left|\bigcup_{x \in S} J_{1}(x)\right| \quad \text { (disjoint union) and } \tag{3.6}\\
\left|J_{2}\right| & =\left|\bigcup_{x \in S} J_{2}(x)\right| \text { (disjoint union). } \tag{3.7}
\end{align*}
$$

For each $x \in S$, let $\mathcal{N}(x)=\left\{\mu \mid 1 \leq \mu \leq m, x \in N\left(H_{\mu}\right)\right\}$. For each $\mu(1 \leq \mu \leq m)$, set $\mathcal{H}_{\mu}=G\left[V\left(H_{\mu}\right) \cup\left(\bigcup_{i \in I_{\mu}^{1}-J_{1} \cup J_{1}^{\prime}} V\left(C_{i}\right)\right)\right]$. Note that if $I_{\mu}^{1}-J_{1} \cup J_{1}^{\prime}=\emptyset$, then $\mathcal{H}_{\mu}=H_{\mu}$. For each $x \in S$ and for each $\mu \in \mathcal{N}(x)$, we let $\mathcal{J}(x, \mu)$ be a maximal independent set of $N(x) \cap V\left(\mathcal{H}_{\mu}\right)$. If $\mu \notin \mathcal{N}(x)$, let $\mathcal{J}(x, \mu)=\emptyset$. Set $\mathcal{J}(x)=\bigcup_{1 \leq \mu \leq m} \mathcal{J}(x, \mu)$. If $\mu_{1} \neq \mu_{2}$, then $\mathcal{J}\left(x, \mu_{1}\right) \cap \mathcal{J}\left(x, \mu_{2}\right)=\emptyset$ by the definition of $\mathcal{J}(x, \mu)$. Thus

$$
\begin{equation*}
|\mathcal{J}(x)|=\sum_{1 \leq \mu \leq m}|\mathcal{J}(x, \mu)| \tag{3.8}
\end{equation*}
$$

Since $|\mathcal{J}(x, \mu)| \geq 1$ for each $x \in N\left(H_{\mu}\right) \cap S$,

$$
\begin{equation*}
\left|N\left(H_{\mu}\right) \cap S\right| \leq \sum_{x \in S}|\mathcal{J}(x, \mu)| \tag{3.9}
\end{equation*}
$$

Claim 3.2. (i) For each $x \in S, \mathcal{J}(x)$ is independent.
(ii) Let $x \in S$. Then $E(u, \mathcal{J}(x, \mu))=\emptyset$ for any $u \in L(x) \cup J_{1}(x) \cup J_{2}(x)$ and for any $\mu \in \mathcal{N}(x)$. In particular, for each $x \in S$, we have $E(u, \mathcal{J}(x))=\emptyset$ for any $u \in L(x) \cup J_{1}(x) \cup J_{2}(x)$.

Proof. By the definition of $\mathcal{J}(x, \mu)$, for each $x \in S$ and for each $\mu(1 \leq \mu \leq m)$, $\mathcal{J}(x, \mu)$ is independent. Since if $\mu_{1} \neq \mu_{2}$, then $E\left(\mathcal{H}_{\mu_{1}}, \mathcal{H}_{\mu_{2}}\right)=\emptyset$. In particular, for each $x \in S$, we have $E\left(\mathcal{J}\left(x, \mu_{1}\right), \mathcal{J}\left(x, \mu_{2}\right)\right)=\emptyset$ for any $\mu_{1}, \mu_{2} \in \mathcal{N}(x)$ with $\mu_{1} \neq \mu_{2}$. Thus (i) holds. The statement (ii) immediately follows from the definitions of $\mathcal{J}(x)$, $L(x), J_{1}(x)$ and $J_{2}(x)$.
Claim 3.3. $(t-1)|S| \geq \sum_{1 \leq \mu \leq m} \sum_{x \in S}|\mathcal{J}(x, \mu)|+l a+\left|J_{1} \cup J_{1}^{\prime}\right|+\left|J_{2}\right|$.
Proof. Since G is $K_{1, t}$-free, it follows from (3.5) and Claim 3.2 that $|\mathcal{J}(x)|+|L(x)|+$ $\left|J_{1}(x)\right|+\left|J_{2}(x)\right| \leq t-1$ for every $x \in S$. It follows from (3.3), (3.6), (3.7) and (3.8) that

$$
\begin{aligned}
(t-1)|S| & \geq \sum_{x \in S}\left(\sum_{1 \leq \mu \leq m}|\mathcal{J}(x, \mu)|+|L(x)|+\left|J_{1}(x)\right|+\left|J_{2}(x)\right|\right) \\
& =\sum_{x \in S} \sum_{1 \leq \mu \leq m}|\mathcal{J}(x, \mu)|+\sum_{x \in S}|L(x)|+\sum_{x \in S}\left|J_{1}(x)\right|+\sum_{x \in S}\left|J_{2}(x)\right| \\
& =\sum_{1 \leq \mu \leq m} \sum_{x \in S}|\mathcal{J}(x, \mu)|+l a+\left|J_{1} \cup J_{1}^{\prime}\right|+\left|J_{2}\right|,
\end{aligned}
$$

as desired.
Claim 3.4. Suppose that $t \leq 3 l+1$. If $T=\emptyset$, then $\theta(S, T) \geq 0$.
Proof. By Claim 3.3, $|S| \geq l a /(t-1) \geq a / 3$. If $T=\emptyset$, we have $a=k$, and hence $h(S, T) \leq k=a$. Hence $\theta(S, T) \geq 3 \cdot a / 3-a \geq 0$.

In the rest of this section, we suppose that $t \leq 3 l+1$. In view of Claim 3.4, we may assume $T \neq \emptyset$. For each $\mu(1 \leq \mu \leq m)$ and for each $i(a+1 \leq i \leq k)$, we set

$$
w\left(H_{\mu}, C_{i}\right)= \begin{cases}0 & \left(N\left(C_{i}\right) \cap V\left(H_{\mu}\right)=\emptyset\right) \\ 1 / 2 & \left(N\left(C_{i}\right) \cap V\left(H_{\mu}\right) \neq \emptyset, N\left(C_{i}\right) \cap T \nsubseteq V\left(H_{\mu}\right)\right) \\ 1 & \left(N\left(C_{i}\right) \cap V\left(H_{\mu}\right) \neq \emptyset, N\left(C_{i}\right) \cap T \subseteq V\left(H_{\mu}\right)\right)\end{cases}
$$

Then for each $i(a+1 \leq i \leq k)$, we have

$$
\begin{equation*}
\sum_{1 \leq \mu \leq m} w\left(H_{\mu}, C_{i}\right) \geq 1 \tag{3.10}
\end{equation*}
$$

and for each $\mu(1 \leq \mu \leq m)$, we have

$$
\begin{equation*}
\sum_{i \in I_{\mu}} w\left(H_{\mu}, C_{i}\right) \leq\left|I_{\mu}\right| \tag{3.11}
\end{equation*}
$$

We now estimate $\theta(S, T)$ from below. For each $1 \leq \mu \leq m$, set

$$
\begin{aligned}
& \theta_{\mu}= \frac{3}{t-1} \sum_{x \in S}|\mathcal{J}(x, \mu)|+q_{\mu}-3\left|V\left(H_{\mu}\right)\right|+\frac{3}{t-1}\left|I_{\mu}^{1} \cap\left(J_{1} \cup J_{1}^{\prime}\right)\right|+\frac{3}{t-1}\left|I_{\mu}^{2} \cap J_{2}\right| \\
& \quad-\sum_{i \in I_{\mu}} w\left(H_{\mu}, C_{i}\right), \\
& \theta_{\mu}^{1}= \frac{3}{t-1}\left|N\left(H_{\mu}\right) \cap S\right|+q_{\mu}-3\left|V\left(H_{\mu}\right)\right|+\frac{3}{t-1}\left|I_{\mu} \cap\left(J_{1} \cup J_{2}\right)\right|-\sum_{i \in I_{\mu}} w\left(H_{\mu}, C_{i}\right), \text { and } \\
& \theta_{\mu}^{2}=\sum_{x \in S}|\mathcal{J}(x, \mu)|+q_{\mu}-3\left|V\left(H_{\mu}\right)\right|+\left|I_{\mu}^{1} \cap\left(J_{1} \cup J_{1}^{\prime}\right)\right|-\sum_{i \in I_{\mu}} w\left(H_{\mu}, C_{i}\right) .
\end{aligned}
$$

Claim 3.5. Suppose that $t \leq 3 l+1$. Then (i) and (ii) hold.
(i) $\theta(S, T) \geq \sum_{1 \leq \mu \leq m} \theta_{\mu}^{1}$.
(ii) In the case where $t=4, \theta(S, T) \geq \sum_{1 \leq \mu \leq m} \theta_{\mu}^{2}$.

Proof. Note that

$$
k-a \leq \sum_{a+1 \leq i \leq k} \sum_{1 \leq \mu \leq m} w\left(H_{\mu}, C_{i}\right)=\sum_{1 \leq \mu \leq m} \sum_{a+1 \leq i \leq k} w\left(H_{\mu}, C_{i}\right)=\sum_{1 \leq \mu \leq m} \sum_{i \in I_{\mu}} w\left(H_{\mu}, C_{i}\right)
$$

by (3.10). Hence $h(S, T) \leq k \leq a+\sum_{1 \leq \mu \leq m} \sum_{i \in I_{\mu}} w\left(H_{\mu}, C_{i}\right)$. By (3.4),

$$
\sum_{y \in T}\left(\operatorname{deg}_{G-S}(y)-3\right)=\sum_{1 \leq \mu \leq m}\left(\sum_{y \in V\left(H_{\mu}\right)} \operatorname{deg}_{G-S}(y)-3\left|V\left(H_{\mu}\right)\right|\right)
$$

Therefore it follows from Claim 3.3 that

$$
\begin{aligned}
\theta(S, T) & =3|S|+\sum_{y \in T}\left(\operatorname{deg}_{G-S}(y)-3\right)-h(S, T) \\
& \geq \frac{3}{t-1}\left(\sum_{1 \leq \mu \leq m} \sum_{x \in S}|\mathcal{J}(x, \mu)|+l a+\left|J_{1} \cup J_{1}^{\prime}\right|+\left|J_{2}\right|\right) \\
& +\sum_{1 \leq \mu \leq m}\left(\sum_{y \in V\left(H_{\mu}\right)} \operatorname{deg}_{G-S}(y)-3\left|V\left(H_{\mu}\right)\right|\right)-\left(a+\sum_{1 \leq \mu \leq m} \sum_{i \in I_{\mu}} w\left(H_{\mu}, C_{i}\right)\right) \\
& \geq \sum_{1 \leq \mu \leq m}\left\{\frac{3}{t-1}\left(\sum_{x \in S}|\mathcal{J}(x, \mu)|+\left|I_{\mu}^{1} \cap\left(J_{1} \cup J_{1}^{\prime}\right)\right|+\left|I_{\mu}^{2} \cap J_{2}\right|\right)\right. \\
& \left.+\sum_{y \in V\left(H_{\mu}\right)} \operatorname{deg}_{G-S}(y)-3\left|V\left(H_{\mu}\right)\right|-\sum_{i \in I_{\mu}} w\left(H_{\mu}, C_{i}\right)\right\}+\frac{3}{t-1} l a-a \\
& \geq \sum_{1 \leq \mu \leq m} \theta_{\mu} .
\end{aligned}
$$

It follows from (3.9), $\left|I_{\mu}^{1} \cap\left(J_{1} \cup J_{1}^{\prime}\right)\right| \geq\left|I_{\mu}^{1} \cap J_{1}\right|$ and $\left|I_{\mu}^{1} \cap J_{1}\right|+\left|I_{\mu}^{2} \cap J_{2}\right|=\left|I_{\mu} \cap\left(J_{1} \cup J_{2}\right)\right|$ that $\theta_{\mu} \geq \theta_{\mu}^{1}$ for each $\mu(1 \leq \mu \leq m)$, and hence (i) holds. In the case that $t=4$, we immediately have $\theta_{\mu} \geq \theta_{\mu}^{2}$ for each $\mu(1 \leq \mu \leq m)$, and hence (ii) holds.

4 Proofs of Theorems 1 and 2

Let G be an l-connected $K_{1, t}$-free graph with $\delta(G) \geq \delta$. We continue with the notation of the proceeding section with $t \geq 5$ and $l \geq 2$. Thus, in this section, we suppose that the connectivity of G is at least 2 . First we prove the following technical claim.

Claim 4.1. Suppose that $l \geq 2$, and let $1 \leq \mu \leq m$.
(i) If $t \geq 7$, then $\sum_{i \in I_{\mu}} w\left(H_{\mu}, C_{i}\right)-3\left|I_{\mu} \cap\left(J_{1} \cup J_{2}\right)\right| /(t-1) \leq\left|I_{\mu}\right|-3\left|I_{\mu}^{\prime}\right| /(t-1)$.
(ii) If $t \leq 6$, then $\sum_{i \in I_{\mu}} w\left(H_{\mu}, C_{i}\right)-3\left|I_{\mu} \cap\left(J_{1} \cup J_{2}\right)\right| /(t-1) \leq\left|I_{\mu}\right|-\left|I_{\mu}^{\prime}\right| / 2$.

Proof. Let $i \in I_{\mu}^{\prime}$. First assume that $i \in I_{\mu}^{1}$. Then, since $\left|V\left(C_{i}\right)\right| \geq 2$ by Lemma 2.2(i) and G is 2-connected, there exists an edge joining S and $V\left(C_{i}\right)-N\left(H_{\mu}\right)$, and hence $i \in J_{1}$ by the definition of J_{1}, which implies

$$
\begin{equation*}
w\left(H_{\mu}, C_{i}\right)-\frac{3}{t-1}\left|\{i\} \cap J_{1}\right| \leq 1-\frac{3}{t-1} . \tag{4.1}
\end{equation*}
$$

Next assume that $i \in\left\{j \in I_{\mu}^{2}| | E\left(H_{\mu}, C_{j}\right) \mid=1\right\}$. Then $N\left(C_{i}\right) \cap T \nsubseteq V\left(H_{\mu}\right)$, and hence $w\left(H_{\mu}, C_{i}\right)=1 / 2$. Therefore

$$
\begin{aligned}
& \sum_{i \in I_{\mu}} w\left(H_{\mu}, C_{i}\right)-\frac{3}{t-1}\left|I_{\mu} \cap\left(J_{1} \cup J_{2}\right)\right| \\
& \quad \leq \sum_{i \in I_{\mu}-I_{\mu}^{\prime}} w\left(H_{\mu}, C_{i}\right)+\sum_{i \in I_{\mu}^{\prime}} w\left(H_{\mu}, C_{i}\right)-\frac{3}{t-1}\left|I_{\mu}^{\prime} \cap J_{1}\right| \\
& \quad=\sum_{i \in I_{\mu}-I_{\mu}^{\prime}} w\left(H_{\mu}, C_{i}\right)+\sum_{i \in I_{\mu}^{\prime}}\left(w\left(H_{\mu}, C_{i}\right)-\frac{3}{t-1}\left|\{i\} \cap J_{1}\right|\right) \\
& \quad \leq\left|I_{\mu}-I_{\mu}^{\prime}\right|+\max \left\{\left(1-\frac{3}{t-1}\right), \frac{1}{2}\right\}\left|I_{\mu}^{\prime}\right| \\
& \quad=\left|I_{\mu}\right|-\min \left\{\frac{3}{t-1}, \frac{1}{2}\right\}\left|I_{\mu}^{\prime}\right|,
\end{aligned}
$$

which immediately implies (i) and (ii).
In order to complete the proofs of Theorems 1 and 2, we prove the following three propositions.

Proposition 4.1. Suppose that $t \geq 5, l \geq 2, \delta \geq\lceil(4 t-4) / 3\rceil$ and $\left|V\left(H_{\mu}\right)\right|=1$. Then $\theta_{\mu}^{1} \geq 0$.

Proof. First we assume $t \geq 7$. It follows from Claims 3.1(i) and 4.1(i) and $\left|I_{\mu}\right| \geq\left|I_{\mu}^{\prime}\right|$
that

$$
\begin{aligned}
\theta_{\mu}^{1} & \geq \frac{3}{t-1}\left(\left\lceil\frac{4 t-4}{3}\right\rceil-q_{\mu}\right)+q_{\mu}-3-\left|I_{\mu}\right|+\frac{3}{t-1}\left|I_{\mu}^{\prime}\right| \\
& \geq 1+\frac{t-4}{t-1}\left(2\left|I_{\mu}\right|-\left|I_{\mu}^{\prime}\right|\right)-\left|I_{\mu}\right|+\frac{3}{t-1}\left|I_{\mu}^{\prime}\right| \\
& =1+\frac{t-7}{t-1}\left(\left|I_{\mu}\right|-\left|I_{\mu}^{\prime}\right|\right) \geq 0 .
\end{aligned}
$$

Next we assume $t=5$ or 6. It follows from Claims 3.1(i) and 4.1(ii) that

$$
\begin{aligned}
\theta_{\mu}^{1} & \geq \frac{3}{t-1}\left(\delta-q_{\mu}\right)+q_{\mu}-3-\left|I_{\mu}\right|+\frac{1}{2}\left|I_{\mu}^{\prime}\right| \\
& \geq \frac{3}{t-1} \delta-3+\frac{t-4}{t-1}\left(2\left|I_{\mu}\right|-\left|I_{\mu}^{\prime}\right|\right)-\left|I_{\mu}\right|+\frac{1}{2}\left|I_{\mu}^{\prime}\right| \\
& =\frac{3}{t-1} \delta-3-\frac{7-t}{t-1}\left|I_{\mu}\right|+\frac{7-t}{2(t-1)}\left|I_{\mu}^{\prime}\right| .
\end{aligned}
$$

Assume for the moment $t=6$. Then $\delta \geq 7$. Moreover, since G is $K_{1,6}$ free, $\left|I_{\mu}\right| \leq 5$. Hense $\theta_{\mu}^{1} \geq(3 / 5) \cdot 7-3-(1 / 5) \cdot 5=1 / 5>0$. Assume now $t=5$. Then $\delta \geq 6$. Since G is $K_{1,5}$-free, $\left|I_{\mu}\right| \leq 4$. If $\left|I_{\mu}\right| \leq 3$, then $\theta_{\mu}^{1} \geq(3 / 4) \cdot 6-3-(2 / 4) \cdot 3=0$. If $\left|I_{\mu}\right|=4$ and $\left|I_{\mu}^{\prime}\right| \geq 2$, then $\theta_{\mu}^{1} \geq(3 / 4) \cdot 6-3-(2 / 4) \cdot 4+(2 / 8) \cdot 4=0$. Thus we may assume that $\left|I_{\mu}\right|=4$ and $\left|I_{\mu}^{\prime}\right| \leq 1$. Since $\left|N\left(H_{\mu}\right) \cap S\right| \geq 0$,

$$
\begin{aligned}
\theta_{\mu}^{1} & \geq q_{\mu}-3+\frac{3}{4}\left|I_{\mu} \cap\left(J_{1} \cup J_{2}\right)\right|-\sum_{i \in I_{\mu}} w\left(H_{\mu}, C_{i}\right) \\
& \geq 2\left|I_{\mu}\right|-\left|I_{\mu}^{\prime}\right|-3-\left|I_{\mu}\right|+\frac{1}{2}\left|I_{\mu}^{\prime}\right|>0
\end{aligned}
$$

which completes the proof of Proposition 4.1.
Proposition 4.2. Suppose that $t \geq 5, l \geq 2, \delta \geq\lceil(4 t-4) / 3\rceil,\left|V\left(H_{\mu}\right)\right|=2$ and $\left|I_{\mu}\right| \neq 0$. Then $\theta_{\mu}^{1} \geq 0$.

Proof. First we assume that $t \geq 7$. Assume for the moment that $\left|I_{\mu}\right| \geq 2$. Then, it follows from Claims 3.1(ii) and 4.1(i), and $\left|I_{\mu}^{\prime}\right| \leq\left|I_{\mu}\right|$ that

$$
\begin{aligned}
\theta_{\mu}^{1} & \geq \frac{3}{t-1}\left(\frac{4 t-4}{3}-\left\lfloor\frac{q_{\mu}}{2}\right\rfloor\right)+q_{\mu}-6-\left|I_{\mu}\right|+\frac{3}{t-1}\left|I_{\mu}^{\prime}\right| \\
& \geq \frac{2 t-5}{2(t-1)} q_{\mu}-\left|I_{\mu}\right|+\frac{3}{t-1}\left|I_{\mu}^{\prime}\right|-2 \\
& \geq \frac{2 t-5}{2(t-1)}\left(2\left|I_{\mu}\right|-\left|I_{\mu}^{\prime}\right|+2\right)-\left|I_{\mu}\right|+\frac{3}{t-1}\left|I_{\mu}^{\prime}\right|-2 \\
& \geq-\frac{3}{t-1}+\frac{3}{2(t-1)}\left|I_{\mu}\right| \geq 0 .
\end{aligned}
$$

Assume now $\left|I_{\mu}\right|=1$. Then $q_{\mu} \geq 3$. In the case where $\left|I_{\mu}\right|=1$ and $q_{\mu} \geq 4$,

$$
\begin{aligned}
\theta_{\mu}^{1} & \geq \frac{3}{t-1}\left(\frac{4 t-4}{3}-\left\lfloor\frac{q_{\mu}}{2}\right\rfloor\right)+q_{\mu}-6-\left|I_{\mu}\right|+\frac{3}{t-1}\left|I_{\mu}^{\prime}\right| \\
& \geq \frac{2 t-5}{2(t-1)} \cdot 4-3 \geq 0
\end{aligned}
$$

In the case where $\left|I_{\mu}\right|=1$ and $q_{\mu}=3$, since $\left|I_{\mu}^{\prime}\right|=1$,

$$
\begin{aligned}
\theta_{\mu}^{1} & \geq \frac{3}{t-1}\left(\frac{4 t-4}{3}-\left\lfloor\frac{q_{\mu}}{2}\right\rfloor\right)+q_{\mu}-6-\left|I_{\mu}\right|+\frac{3}{t-1}\left|I_{\mu}^{\prime}\right| \\
& \geq \frac{3}{t-1}\left(\frac{4 t-4}{3}-1\right)+3-6-1+\frac{3}{t-1}=0 .
\end{aligned}
$$

Next we assume $t=5$ or 6 . Note that, if $t=5$, then $\delta \geq 6$, and if $t=6$, then $\delta \geq 7$; that is, $\delta \geq t+1$. Assume for the moment that $\left|I_{\mu}\right| \geq 2$. Then, it follows from Claims 3.1(ii) and 4.1(ii), and $\left|I_{\mu}^{\prime}\right| \leq\left|I_{\mu}\right|$ that

$$
\begin{aligned}
\theta_{\mu}^{1} & \geq \frac{3}{t-1}\left(t+1-\left\lfloor\frac{q_{\mu}}{2}\right\rfloor\right)+q_{\mu}-6-\left|I_{\mu}\right|+\frac{1}{2}\left|I_{\mu}^{\prime}\right| \\
& \geq \frac{3(t+1)}{t-1}+\frac{2 t-5}{2(t-1)}\left(2\left|I_{\mu}\right|-\left|I_{\mu}^{\prime}\right|+2\right)-6-\left|I_{\mu}\right|+\frac{1}{2}\left|I_{\mu}^{\prime}\right| \\
& \geq-\frac{t-4}{t-1}+\frac{t-4}{2(t-1)}\left|I_{\mu}\right| \geq 0 .
\end{aligned}
$$

Assume now $\left|I_{\mu}\right|=1$. Then $q_{\mu} \geq 3$. In the case where $\left|I_{\mu}\right|=1$ and $q_{\mu} \geq 4$, it follows from Claim 4.1(ii) that $\theta_{\mu}^{1} \geq 3(t+1) /(t-1)+(2 t-5) q_{\mu} /(2 t-2)-6-\left|I_{\mu}\right|+\left|I_{\mu}^{\prime}\right| / 2 \geq 0$. In the case where $\left|I_{\mu}\right|=1$ and $q_{\mu}=3$, since $\left|I_{\mu}^{\prime}\right|=1, \theta_{\mu}^{1} \geq(7-t) /(2 t-2)>0$, which completes the proof of Proposition 4.2.

Proposition 4.3. Suppose that $t \geq 5, l \geq 2, \delta \geq\lceil(4 t-1) / 3\rceil$ and $\left|V\left(H_{\mu}\right)\right|=2$. Then $\theta_{\mu}^{1} \geq 0$.

Proof. Keeping Proposition 4.2 in mind, we may assume $\left|I_{\mu}\right|=0$, and hence $q_{\mu}=2$. It follows from Claim 3.1(ii) that $\theta_{\mu}^{1} \geq(3 /(t-1)) \cdot\left((4 t-1) / 3-q_{\mu} / 2\right)+q_{\mu}-6 \geq 0$, which completes the proof of Proposition 4.3.

We are now in a position to complete the proofs of Theorems 1 and 2.
Proof of Theorem 1. Let t, G be as in Theorem 1; thus $t \geq 5$ and G be a $\lceil(t-1) / 3\rceil-$ connected $K_{1, t}$-free graph with $\delta(G) \geq\lceil(4 t-1) / 3\rceil$. Let l be the connectivity of G. Then $l \geq\lceil(t-1) / 3\rceil$, and hence $t \leq 3 l+1$. If $T=\emptyset$, then $\theta(S, T) \geq 0$ by Claim 3.4. Thus we may assume $T \neq \emptyset$. By Claim 3.5(i), it suffices to show that $\theta_{\mu}^{1} \geq 0$ for each $1 \leq \mu \leq m$. If $\left|V\left(H_{\mu}\right)\right|=1, \theta_{\mu}^{1} \geq 0$ by Proposition 4.1. If $\left|V\left(H_{\mu}\right)\right|=2, \theta_{\mu}^{1} \geq 0$ by Proposition 4.3. This completes the proof of Theorem 1 by Lemma 2.2(ii).

Proof of Theorem 2. Let t, G be as in Theorem 2; thus $t \geq 5$ and G be a $\lceil(4 t-4) / 3\rceil-$ connected $K_{1, t}$-free graph. Thus $\delta(G) \geq\lceil(4 t-4) / 3\rceil$. Let l be the connectivity of G. Then $l \geq\lceil(4 t-4) / 3\rceil$, and hence $t \leq(3 l+4) / 4<3 l+1$. If $T=\emptyset$, then $\theta(S, T) \geq 0$ by Claim 3.4. Thus we may assume $T \neq \emptyset$. By Claim 3.5(i), it suffices to show that $\theta_{\mu}^{1} \geq 0$ for each $1 \leq \mu \leq m$. If $\left|V\left(H_{\mu}\right)\right|=1, \theta_{\mu}^{1} \geq 0$ by Proposition 4.1. If $\left|V\left(H_{\mu}\right)\right|=2$ and $\left|I_{\mu}\right| \neq 0, \theta_{\mu}^{1} \geq 0$ by Proposition 4.2. Thus we may assume that $\left|V\left(H_{\mu}\right)\right|=2$ and $\left|I_{\mu}\right|=0$. If $|V(G)|=l+1 \geq 7$, then G is the complete graph, and hence G has a 3-factor. Thus, we may assume that $|V(G)| \geq l+2$. Suppose that $\left|N\left(H_{\mu}\right) \cap S\right|<l$. Then $\left|V(G)-V\left(H_{\mu}\right)-\left(N\left(H_{\mu}\right) \cap S\right)\right| \geq 1$, and hence $G-\left(N\left(H_{\mu}\right) \cap S\right)$ is disconnected, which contradicts G is l-connected. Hence we have $\left|N\left(H_{\mu}\right) \cap S\right| \geq l$. Then

$$
\theta_{\mu}^{1}=3\left|N\left(H_{\mu}\right) \cap S\right| /(t-1)+2-6 \geq 3 l /(t-1)+2-6 \geq 0
$$

this together with Propositions 4.1 and 4.2, completes the proof of Theorem 2.

5 Proof of Theorem 3

Let G be as in Theorem 3; thus G is a 2-edge-connected $K_{1,4}$-free graph with $\delta(G) \geq$ 6. We continue with the notation of Section 3 with $t=4, l=1$, and $\delta=6$.

Recall that $\theta_{\mu}^{2}=\sum_{x \in S}|\mathcal{J}(x, \mu)|+q_{\mu}-3\left|V\left(H_{\mu}\right)\right|+\left|I_{\mu}^{1} \cap\left(J_{1} \cup J_{1}^{\prime}\right)\right|-\sum_{i \in I_{\mu}} w\left(H_{\mu}, C_{i}\right)$. In view of Claim 3.5(ii), it suffices to show that $\theta_{\mu}^{2} \geq 0$ for each $1 \leq \mu \leq m$. We divide the proof into the following two cases.
Case 1. $\left|V\left(H_{\mu}\right)\right|=1$.
Since G is $K_{1,4}$-free, $\left|I_{\mu}\right| \leq 3$, this together with (3.9), (3.11) and Claim 3.1(i) implies $\theta_{\mu}^{2} \geq\left|N\left(H_{\mu}\right) \cap S\right|+q_{\mu}-3-\left|I_{\mu}\right| \geq 6-q_{\mu}+q_{\mu}-3-3=0$.
Case 2. $\left|V\left(H_{\mu}\right)\right|=2$.
Having the definition of I_{μ}^{1} in mind, since G is $K_{1,4}$-free,

$$
\begin{equation*}
\left|I_{\mu}^{1}\right| \leq 4 \tag{5.1}
\end{equation*}
$$

By the definition of $q_{\mu}, I_{\mu}^{1}, I_{\mu}^{2}$, and I_{μ}^{\prime}, we have

$$
\begin{equation*}
q_{\mu} \geq\left|I_{\mu}^{1}\right|+2\left|I_{\mu}^{2}\right|-\left|I_{\mu}^{2} \cap I_{\mu}^{\prime}\right|+2 \tag{5.2}
\end{equation*}
$$

By the definition of $w\left(H_{\mu}, C_{i}\right), I_{\mu}^{1}, I_{\mu}^{2}$, and I_{μ}^{\prime}, we also have

$$
\begin{equation*}
\sum_{i \in I_{\mu}} w\left(H_{\mu}, C_{i}\right) \leq\left|I_{\mu}^{1}\right|+\left|I_{\mu}^{2}\right|-\frac{\left|I_{\mu}^{2} \cap I_{\mu}^{\prime}\right|}{2} \tag{5.3}
\end{equation*}
$$

If $\left|N\left(H_{\mu}\right) \cap S\right| \geq 4$, it follows from (3.9), (5.2) and (5.3) that

$$
\theta_{\mu}^{2} \geq\left|I_{\mu}^{2}\right|-\left|I_{\mu}^{2} \cap I_{\mu}^{\prime}\right| / 2+\left|I_{\mu}^{1} \cap\left(J_{1} \cup J_{1}^{\prime}\right)\right| \geq 0
$$

Thus we may assume that

$$
\begin{equation*}
\left|N\left(H_{\mu}\right) \cap S\right| \leq 3 \tag{5.4}
\end{equation*}
$$

It follows from Claim 3.1(ii), (5.2) and (5.3) that

$$
\begin{align*}
& \left|N\left(H_{\mu}\right) \cap S\right|+q_{\mu}-3\left|V\left(H_{\mu}\right)\right|-w\left(H_{\mu}, C_{i}\right) \\
& \quad \geq \delta-\left|\frac{q_{\mu}}{2}\right|+q_{\mu}-3\left|V\left(H_{\mu}\right)\right|-\left(\left|I_{\mu}^{1}\right|+\left|I_{\mu}^{2}\right|-\frac{\left|I_{\mu}^{2} \cap I_{\mu}^{\prime}\right|}{2}\right) \\
& \quad \geq 6+\frac{\left|I_{\mu}^{1}\right|+2\left|I_{\mu}^{2}\right|-\left|I_{\mu}^{2} \cap I_{\mu}^{\prime}\right|+2}{2}-6-\left(\left|I_{\mu}^{1}\right|+\left|I_{\mu}^{2}\right|-\frac{\left|I_{\mu}^{2} \cap I_{\mu}^{\prime}\right|}{2}\right) \\
& \quad \geq-\frac{\left|I_{\mu}^{1}\right|}{2}+1 . \tag{5.5}
\end{align*}
$$

Suppose that $\sum_{x \in S}|\mathcal{J}(x, \mu)| \geq\left|N\left(H_{\mu}\right) \cap S\right|+1$ or $\left|I_{\mu}^{1} \cap\left(J_{1} \cup J_{1}^{\prime}\right)\right| \geq 1$. Then it follows from (5.1) and (5.5) that

$$
\begin{aligned}
\theta_{\mu}^{2} & \geq\left|N\left(H_{\mu}\right) \cap S\right|+1+q_{\mu}-3\left|V\left(H_{\mu}\right)\right|-w\left(H_{\mu}, C_{i}\right) \\
& \geq-\frac{\left|I_{\mu}^{1}\right|}{2}+2 \geq 0 .
\end{aligned}
$$

Suppose that $\left|I_{\mu}^{1}\right| \leq 2$. Then it follows from (3.9) and (5.5) that

$$
\begin{aligned}
\theta_{\mu}^{2} & \geq\left|N\left(H_{\mu}\right) \cap S\right|+q_{\mu}-3\left|V\left(H_{\mu}\right)\right|-w\left(H_{\mu}, C_{i}\right) \\
& \geq-\frac{\left|I_{\mu}^{1}\right|}{2}+1 \geq 0 .
\end{aligned}
$$

Thus we may assume that

$$
\begin{align*}
& \sum_{x \in S}|\mathcal{J}(x, \mu)|=\left|N\left(H_{\mu}\right) \cap S\right|, \tag{5.6}\\
& \left|I_{\mu}^{1} \cap\left(J_{1} \cup J_{1}^{\prime}\right)\right|=0, \quad \text { and } \tag{5.7}\\
& \left|I_{\mu}^{1}\right|=3 \text { or } 4 . \tag{5.8}
\end{align*}
$$

Let $i \in I_{\mu}^{1}$. By the definition of I_{μ}^{1}, we may write $E\left(H_{\mu}, C_{i}\right)=\left\{y z_{i}\right\}\left(y \in V\left(H_{\mu}\right)\right.$, $\left.z_{i} \in V\left(C_{i}\right)\right)$. Since G is 2-edge-connected and $\left|I_{\mu}^{1} \cap\left(J_{1} \cup J_{1}^{\prime}\right)\right|=0$, there exists $x \in N\left(H_{\mu}\right) \cap S$ such that $x \in N(y) \cap N\left(z_{i}\right)$, say x_{i}. Since $i \in I_{\mu}^{1}$ is arbitrary, $\left|I_{\mu}^{1}\right| \leq \sum_{x \in N\left(H_{\mu}\right) \cap S}|\mathcal{J}(x, \mu)|=\sum_{x \in S}|\mathcal{J}(x, \mu)|$. Hence it follows from (5.4), (5.6) and (5.8) that $\left|I_{\mu}^{\prime}\right|=3$. If $x_{i}=x_{i^{\prime}}$ for $i, i^{\prime} \in I_{\mu}^{1}\left(i \neq i^{\prime}\right)$ then

$$
\begin{aligned}
\sum_{x \in S}|\mathcal{J}(x, \mu)| & =\sum_{x \in S-x_{i}}|\mathcal{J}(x, \mu)|+\left|\mathcal{J}\left(x_{i}, \mu\right)\right| \\
& \geq\left|N\left(H_{\mu}\right) \cap\left(S-x_{i}\right)\right|+\left|\mathcal{J}\left(x_{i}, \mu\right)\right| \\
& \geq\left|N\left(H_{\mu}\right) \cap\left(S-x_{i}\right)\right|+2=\left|N\left(H_{\mu}\right) \cap S\right|+1
\end{aligned}
$$

which contradicts (5.6). Thus for each $i, i^{\prime} \in I_{\mu}^{1}\left(i \neq i^{\prime}\right), x_{i} \neq x_{i^{\prime}}$. Set $I_{\mu}=\left\{i_{1}, i_{2}, i_{3}\right\}$, and $V\left(H_{\mu}\right)=\left\{y_{1}, y_{2}\right\}$. Then $N\left(H_{\mu}\right) \cap S=\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right\}$. Since G is $K_{1,4}$-free, we may assume that $\left|E\left(y_{1}, C_{i_{1}}\right)\right|=\left|E\left(y_{1}, C_{i_{2}}\right)\right|=1,\left|E\left(y_{1}, C_{i_{3}}\right)\right|=0,\left|E\left(y_{2}, C_{i_{1}}\right)\right|=$ $\left|E\left(y_{2}, C_{i_{2}}\right)\right|=0$ and $\left|E\left(y_{2}, C_{i_{3}}\right)\right|=1$. Let $y_{1} z_{1}, y_{1} z_{2}, y_{2} z_{3} \in E(G)\left(z_{1} \in V\left(C_{i_{1}}\right)\right.$,
$\left.z_{2} \in V\left(C_{i_{2}}\right), z_{3} \in V\left(C_{i_{3}}\right)\right)$, and let $x_{3} \in N\left(y_{2}\right) \cap N\left(z_{3}\right)$. Since $\left|E\left(y_{1}, C_{i_{3}}\right)\right|=0$, $y_{1} z_{3} \notin E(G)$. Since $N\left(y_{1}\right)-S=\left\{y_{2}, z_{1}, z_{2}\right\}$ and $\operatorname{deg}\left(y_{1}\right) \geq \delta=6,\left|N\left(y_{1}\right) \cap S\right| \geq 3$; this together with $\left|N\left(H_{\mu}\right) \cap S\right|=3$ implies $x_{3} \in N\left(y_{1}\right)$. Hence $\left|\mathcal{J}\left(x_{3}, \mu\right)\right| \geq\left|\left\{y_{1}, z_{3}\right\}\right|$. Consequently $\sum_{x \in S}|\mathcal{J}(x, \mu)| \geq \sum_{x \in S-x_{3}}|\mathcal{J}(x, \mu)|+\left|\mathcal{J}\left(x_{3}, \mu\right)\right|=\left|N\left(H_{\mu}\right) \cap S\right|+1$, which contradicts (5.6).

6 Examples

In this section, we construct examples which show that the conditions in Theorems 1,2 and 3 are best possible.

Example 6.1. Let $t \geq 5$ be an integer. There exist infinitely many $\lceil(4 t-7) / 3\rceil-$ connected $K_{1, t}$-free graphs G of even order with $\delta(G) \geq\lceil(4 t-4) / 3\rceil$ such that G has no 3 -factor. Let $m \geq t$ be an arbitrary integer relatively prime to $t-1$. Set $l=\lceil(4 t-7) / 3\rceil$. Let $I_{1}, I_{2}, \ldots, I_{2 m}$ be disjoint copies of the complete graph of order $\lceil l / 2\rceil$, and let $J_{1}, J_{2}, \ldots, J_{2 m}$ be disjoint copies of the complete graph of order $\lfloor l / 2\rfloor$, and let $H_{1}, H_{2}, \ldots, H_{2 m(t-1)}$ be disjoint copies of the complete graph of order 2. For each $1 \leq k \leq 2 m$, set

$$
\begin{aligned}
& T_{k}=\bigcup_{1 \leq j \leq t-1} V\left(H_{(k-1)(t-1)+j}\right), \\
& T_{k}^{\prime}=\bigcup_{1 \leq j \leq t-1} V\left(H_{(j-1) 2 m+k}\right)
\end{aligned}
$$

Now define a graph G by

$$
\begin{aligned}
V(G)= & \left(\bigcup_{1 \leq k \leq 2 m}\left(V\left(I_{k}\right) \cup V\left(J_{k}\right)\right)\right) \cup\left(\bigcup_{1 \leq i \leq 2 m(t-1)} V\left(H_{i}\right)\right), \\
E(G)= & \left(\bigcup_{1 \leq k \leq 2 m}\left(E\left(I_{k}\right) \cup E\left(J_{k}\right)\right) \cup\left\{x y \mid x \in V\left(I_{k}\right), y \in T_{k}\right\} \cup\left\{x y \mid x \in V\left(J_{k}\right), y \in T_{k}^{\prime}\right\}\right) \\
& \cup\left(\bigcup_{1 \leq i \leq 2 m(t-1)} E\left(H_{i}\right)\right) .
\end{aligned}
$$

Then G is $\lceil(4 t-7) / 3\rceil$-connected and $K_{1, t}$-free, and satisfies $\delta(G)=l+1=\lceil(4 t-$ 4)/37. However, we easily see that G does not have a 3 -factor (for example, if we apply Lemma 2.1 with $S=\bigcup_{1 \leq k \leq 2 m}\left(V\left(I_{k}\right) \cup V\left(J_{k}\right)\right)$ and $T=\bigcup_{1 \leq i \leq 2 m(t-1)} V\left(H_{i}\right)$, then we get $\theta(S, T) \leq-2 m)$.

Example 6.2. Let $t \geq 8$ be an integer. For any positive integer δ, there exists a $\lceil(t-4) / 3\rceil$-connected $K_{1, t}$-free graph G of even order with $\delta(G) \geq \delta$ such that G has no 3 -factor. Let $m \geq t$ be an arbitrary integer relatively prime to $t-1$, and set $l=\lceil(t-4) / 3\rceil$. Let $I_{1}, I_{2}, \ldots, I_{2 m}$ be disjoint copies of the complete graph of order
$\lceil l / 2\rceil$, and let $J_{1}, J_{2}, \ldots, J_{2 m}$ be disjoint copies of the complete graph of order $\lfloor l / 2\rfloor$. Let p be an odd integer with $p \geq \delta-l+1$, and let $C_{1}, \ldots, C_{2 m(t-1)}$ be disjoint copies of the complete graph of order p. For each $1 \leq k \leq 2 m$, set

$$
\begin{aligned}
T_{k} & =\bigcup_{1 \leq j \leq t-1} V\left(C_{(k-1)(t-1)+j}\right), \\
T_{k}^{\prime} & =\bigcup_{1 \leq j \leq t-1} V\left(C_{(j-1) 2 m+k}\right) .
\end{aligned}
$$

Now define a graph G by

$$
\begin{aligned}
V(G)= & \left(\bigcup_{1 \leq k \leq 2 m}\left(V\left(I_{k}\right) \cup V\left(J_{k}\right)\right)\right) \cup\left(\bigcup_{1 \leq i \leq 2 m(t-1)} V\left(C_{i}\right)\right), \\
E(G)= & \left(\bigcup_{1 \leq k \leq 2 m} E\left(I_{k}\right) \cup E\left(J_{k}\right) \cup\left\{x y \mid x \in V\left(I_{k}\right), y \in T_{k}\right\} \cup\left\{x y \mid x \in V\left(J_{k}\right), y \in T_{k}^{\prime}\right\}\right) \\
& \cup\left(\bigcup_{1 \leq i \leq 2 m(t-1)} E\left(C_{i}\right)\right) .
\end{aligned}
$$

Then G is l-connected and $K_{1, t}$-free, and satisfies $\delta(G)=p-1+l \geq \delta$. However, we easily see that G does not have a 3 -factor (for example, if we apply Lemma 2.1 in Section 2 with $S=\bigcup_{1 \leq k \leq 2 m}\left(V\left(I_{k}\right) \cup V\left(J_{k}\right)\right)$ and $T=\emptyset$, then we get $\left.\theta(S, T) \leq-2 m\right)$.

Example 6.3. There exist infinitely many 3 -connected $K_{1,3}$-free graphs of even order with no 3 -factor. Let $m \geq 2$ be an even integer. Let $I_{1}, I_{2}, \ldots, I_{m}$ be disjoint copies of the complete graph of order 1 , and set $V\left(I_{k}\right)=\left\{x_{k}\right\}(1 \leq k \leq m)$. Let $H_{1}, H_{2}, \ldots, H_{2 m}$ disjoint copies of the complete graph of order 2, and set $V\left(H_{i}\right)=$ $\left\{y_{i}, y_{i}^{\prime}\right\}(1 \leq i \leq 2 m)$. Let L, L^{\prime} be disjoint copies of the complete graph of order $2 m$, and set $V(L)=\left\{z_{1}, z_{2}, \ldots, z_{2 m}\right\}$ and $V\left(L^{\prime}\right)=\left\{z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{2 m}^{\prime}\right\}$. Now define a graph G of order $9 m$ by

$$
\begin{aligned}
V(G)= & \left(\bigcup_{1 \leq k \leq m} V\left(I_{k}\right)\right) \cup\left(\bigcup_{1 \leq i \leq 2 m} V\left(H_{k}\right)\right) \cup V(L) \cup V\left(L^{\prime}\right) \\
E(G)= & \left(\bigcup_{1 \leq k \leq m}\left\{x_{k} y \mid y \in V\left(H_{2 k-1}\right) \cup V\left(H_{2 k}\right)\right\}\right) \\
& \cup\left(\bigcup_{1 \leq i \leq 2 m}\left\{y_{i} y_{i}^{\prime}, y_{i} z_{i}, y_{i}^{\prime} z_{i}^{\prime}\right\}\right) \cup E(L) \cup E\left(L^{\prime}\right) .
\end{aligned}
$$

Then G is a 3 -connected $K_{1,3}$-free graph of even order. However, we easily see that G does not have a 3 -factor (for example, if we apply Lemma 2.1 in Section 2 with $S=\bigcup_{1 \leq k \leq m} V\left(I_{k}\right)$ and $T=\bigcup_{1 \leq i \leq 2 m} V\left(H_{i}\right)$, then we get $\left.\theta(S, T)=-m\right)$.

Example 6.4. There exist infinitely many 4 -connected $K_{1,4}$-free graphs of even order with no 3 -factor. Let $m \geq 2$ be an arbitrary integer. Let $I_{1}, I_{2}, \ldots, I_{m}$ be disjoint copies of the complete graph of order 2 . Let $H_{1}, H_{2}, \ldots, H_{3 m}$ disjoint copies of the complete graph of order 2 , and set $V\left(H_{i}\right)=\left\{y_{i}, y_{i}^{\prime}\right\}(1 \leq i \leq 2 m)$. Let L, L^{\prime} be disjoint copies of the complete graph of order $3 m+1$, and set $V(L)=$ $\left\{z_{1}, z_{2}, \ldots, z_{3 m+1}\right\}$ and $V\left(L^{\prime}\right)=\left\{z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{3 m+1}^{\prime}\right\}$. Now define a graph G of order $14 m+2$ by

$$
\begin{aligned}
V(G)= & \left(\bigcup_{1 \leq k \leq m} V\left(I_{k}\right)\right) \cup\left(\bigcup_{1 \leq i \leq 3 m} V\left(H_{i}\right)\right) \cup V(L) \cup V\left(L^{\prime}\right) \\
E(G)= & \left(\bigcup_{1 \leq k \leq m} E\left(I_{k}\right) \cup\left\{x y \mid x \in V\left(I_{k}\right), y \in V\left(H_{3 k-2}\right) \cup V\left(H_{3 k-1}\right) \cup V\left(H_{3 k}\right)\right\}\right) \\
& \cup\left(\bigcup_{1 \leq i \leq 3 m}\left\{y_{i} y_{i}^{\prime}, y_{i} z_{i}, y_{i}^{\prime} z_{i}^{\prime}\right\}\right) \cup E(L) \cup E\left(L^{\prime}\right) .
\end{aligned}
$$

Then G is a 4 -connected $K_{1,4}$-free graph of even order. However, we easily see that G does not have a 3 -factor (for example, if we apply Lemma 2.1 in Section 2 with $S=\bigcup_{1 \leq k \leq m} V\left(I_{k}\right)$ and $T=\bigcup_{1 \leq i \leq 3 m} V\left(H_{i}\right)$, then we get $\left.\theta(S, T)=-2\right)$.

Example 6.5. There exist infinitely many 2-edge-connected $K_{1,4}$-free graphs of even order satisfies $\delta(G) \geq 5$ with no 3 -factor. Let $p_{1} \geq 7$ be an odd integer, and let $p_{2} \geq 6$ be an even integer. Let $C_{1}, C_{2}, \ldots, C_{8}$ be disjoint copies of the complete graph of order p_{1}, and let $D_{1}, D_{2}, \ldots, D_{7}$ be disjoint copies of the complete graph of order p_{2}. For each $C_{i}(1 \leq i \leq 8)$, take two vertices $c_{i}^{1}, c_{i}^{2} \in V\left(C_{i}\right)$. For each $D_{i}(1 \leq i \leq 7)$, take one vertex $d_{i} \in V\left(D_{i}\right)$. We define the graph of order $8 p_{1}+7 p_{2}+8$ by

$$
\begin{aligned}
V(G) & =\left\{x_{1}, x_{2}\right\} \cup\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right\} \cup \bigcup_{1 \leq i \leq 8} V\left(C_{i}\right) \cup \bigcup_{1 \leq i \leq 7} V\left(D_{i}\right) \\
E(G) & =\left\{x_{1} y_{i}, x_{1} d_{i} \mid i=1,2,3\right\} \cup\left\{x_{2} y_{i}, x_{2} d_{i} \mid i=4,5,6\right\} \\
& \cup\left\{y_{i} c_{i}^{1}, y_{i} c_{i}^{2}, y_{i} d_{i} \mid 1 \leq i \leq 6\right\} \cup\left\{y_{1} c_{7}^{1}, y_{4} c_{7}^{2}, y_{2} c_{8}^{1}, y_{5} c_{8}^{2}\right\} \cup\left\{y_{3} d_{7}, y_{6} d_{7}\right\} \\
& \cup \bigcup_{1 \leq i \leq 8} E\left(C_{i}\right) \cup \bigcup_{1 \leq i \leq 7} E\left(D_{i}\right) .
\end{aligned}
$$

Then G is a 2-edge-connected $K_{1,4}$-free graph, and satisfies $\delta(G)=5$. However, we easily see that G does not have a 3 -factor (for example, if we apply Lemma 2.1 in Section 2 with $S=\left\{x_{1}, x_{2}\right\}$ and $T=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right\}$, then we get $\theta(S, T)=-2$).

Example 6.6. For each $k \geq 2$, there exists a k-edge-connected $K_{1,5}$-free graph of even order with no 3 -factor. Let $k \geq 2$ and $s \geq \frac{k-1}{2}$ be integers. Let I and J be the complete graphs of order k and 2, respectively. For each $v \in V(I)$, let $C_{v}^{1}, C_{v}^{2}, C_{v}^{3}$ be disjoint copies of complete graphs of order $2 s+1$. For each C_{v}^{i}, take k distinct vertices $z_{v}^{i}(1), z_{v}^{i}(2), \ldots, z_{v}^{i}(k)$ from $V\left(C_{v}^{i}\right)$. Let G be a graph of order $(6 s+4) k+2$
by

$$
\begin{aligned}
V(G)= & V(J) \cup V(I) \cup \bigcup_{v \in V(I)}\left(\bigcup_{i=1}^{3} V\left(C_{v}^{i}\right)\right) \\
E(G)= & E(J) \cup E(I) \cup \bigcup_{v \in V(I)}\left(\bigcup_{i=1}^{3} E\left(C_{v}^{i}\right)\right) \\
& \cup\{x y \mid x \in V(J), y \in V(I)\} \\
& \cup \bigcup_{v \in V(I)}\left(\bigcup_{i=1}^{3}\left\{v z_{v}^{i}(1), v z_{v}^{i}(2), \ldots, v z_{v}^{i}(k)\right\}\right)
\end{aligned}
$$

Then G is a k-edge-connected $K_{1,5}$-free graph of even order. However, we easily see that G does not have a 3-factor (for example, if we apply Lemma 2.1 with $S=V(I)$ and $T=V(J)$, then we get $\theta(S, T)=-4)$.

References

[1] R. E. L. Aldred, Y. Egawa, J. Fujisawa, K. Ota and A. Saito, The existence of a 2-factor in $K_{1, n}$-free graphs with large connectivity and large edge-connectivity, J. Graph Theory 68 (2011), 77-89.
[2] R. Diestel, "Graph Theory", fifth ed., Graduate Texts in Mathematics, vol. 173, Springer (2010).
[3] Y. Egawa, K. Kotani and T. Yashima, Existence of 3-Factors in 2-connected Star-free Graphs, Far East J. Appl. Math. 79(2) (2013), 127-150.
[4] K. Ota and T. Tokuda, A degree condition for the existence of regular factors in $K_{1, n}$-free graphs, J. Graph Theory 22 (1996), 59-64.
[5] W. T. Tutte, The factors of graphs, Canad. J. Math. 4 (1952), 314-328.

[^0]: * Corresponding author.

