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Abstract

In this paper, we treat nullity of a poset as the nullity of its cover graph.
Using nullity, we introduce the concepts of a basic retract associated
to a poset and a fundamental basic block associated to a dismantlable
lattice. We prove that a lattice in which all the reducible elements are
comparable is dismantlable but the converse is not true. We establish
recurrence relations and count up to isomorphism all fundamental basic
blocks and all basic retracts/blocks associated to the lattices (with respect
to arbitrary large nullity and/or the number of reducible elements) in
which all the reducible elements are comparable.

1 Introduction and preliminaries

In 1940, Birkhoff [4] posed the open problem of counting all non-isomorphic lattices
and posets on n elements. Klarner [21], Stanley [31], Quackenbush [28] and Erne
et al. [14] have answered Birkhoff’s problems for certain classes of posets. In 1980,
Kleitman and Winston [22] provided asymptotic bounds for the number of lattices
on n elements. Pawar and Waphare [27] have counted lattices with equal numbers
of elements and edges. Thakare et al. [33] have counted lattices with n elements and
up to n + 1 edges. Czédli et al. [11] have counted the number of slim, semimodular
lattices (see also [9], [10] and [12]).
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Kyuno [25], Koda [23], Chaunier and Lygeros [6], and Lygeros and Zimmer-
mann [26] have counted lattices and posets on n elements, for small values of n. In
2002, Brinkmann and Mckay [5] have counted posets on up to 16 points, and Heitzig
and Reinhold [19] have counted lattices on up to 18 points. In 2015, Jipsen and Law-
less [20] have counted lattices on up to 19 points. Recently, Gebhardt and Tawn [15]
have counted lattices on up to 20 points, and Kohonen [24] presented an algorithm
and counted modular lattices on up to 30 elements.

In this paper, we study the class of all lattices such that each member of the
class has all the reducible elements comparable. We refer to this class as the class
of RC-lattices. Thus, if L is an RC-lattice then all the reducible elements of L
form a chain. A chain is regarded as an RC-lattice. We count, up to isomorphism,
four subclasses of the class of RC-lattices. These four classes are, namely, a class
of all non-isomorphic fundamental basic blocks containing r reducible elements, a
class of all non-isomorphic fundamental basic blocks having nullity l, a class of all
non-isomorphic basic blocks having nullity l, and a class of all non-isomorphic basic
retracts having nullity l. In the last section we carry out, by establishing some
recurrence relations, the actual counting of those four classes easily, for arbitrarily
large parameter values r and l, and provide four corresponding integer sequences.
Interestingly, the first three of the four sequences, respectively, resemble the known
sequences A006129, A121251 and A121316 (see the On-line Encyclopedia of Integer
Sequences, OEIS [30]).

In Section 4, we prove that every RC-lattice is a dismantlable lattice, but the
converse is not true. Using the theory of partitions and with the help of counting
all non-isomorphic basic retracts having nullity l, one can carry out the enumeration
of all non-isomorphic RC-lattices having nullity l. Many people are trying to solve
Birkhoff’s open problems for small values of n. We are making an attempt to solve the
problem for the class of RC-lattices for arbitrary large values of n. For this purpose,
here we count the number of those four subclasses of RC-lattices for arbitrary large
values of the parameters r and l, as mentioned above.

A partially ordered set (or poset) is a set P of elements together with a binary
relation ≤ on P which is reflexive, antisymmetric and transitive. An element x ∈ P
is an upper bound for a subset S ⊆ P if s ≤ x for all s ∈ S. An element x ∈ P is the
least upper bound for S ⊆ P if x is an upper bound for S and for any other upper
bound z ∈ P of S, x ≤ z. A lower bound and the greatest lower bound for S ⊆ P are
defined dually. If two elements a and b of P have the least upper bound (greatest
lower bound) then we denote this by a ∨ b (a ∧ b), also called the join (meet) of a
and b.

A lattice is a poset in which every pair of elements has a least upper bound and a
greatest lower bound. A sublattice is a subset S of a lattice such that for any a, b ∈ S,
a ∨ b ∈ S and a ∧ b ∈ S. Two elements a, b ∈ P are comparable if either a ≤ b or
b ≤ a. Two elements of P are said to be incomparable if they are not comparable. A
chain is a lattice in which any two elements are comparable. An antichain is a poset
in which any two elements are incomparable. The width of a poset is the length of
a maximal antichain in it. For a, b ∈ P , if a < b and a ≤ c ≤ b imply c ∈ {a, b},
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then we say that b covers a, or b is an upper cover of a, or a is a lower cover of b,
and this is denoted by a ≺ b. If a is not covered by b then it is denoted by a �≺ b.
The graph on a poset P with edges as covering relations ≺ is called the cover graph,
and is denoted by C(P ). We say that a poset P is connected if C(P ) is a connected
graph.

An element x in a lattice L is join-reducible (meet-reducible) in L if there exist
y, z ∈ L, both distinct from x, such that y ∨ z = x (y ∧ z = x); x is reducible if
it is either join reducible or meet reducible; x is join-irreducible (meet-irreducible)
if it is not join-reducible (meet-reducible); x is doubly irreducible if it is both join-
irreducible and meet-irreducible. We denote the set of doubly irreducible elements in
L by Irr(L). Two posets P1 and P2 are said to be isomorphic, denoted by P1

∼= P2,
if there exists a bijective function φ : P1 → P2 satisfying x ≤ y in P1 if and only if
φ(x) ≤ φ(y) in P2.

Throughout this paper, we assume that all the posets are finite and connected.
The definitions, terminology and notation are taken from [16] and [34]. We now
begin with the following.

Proposition 1.1. [29] If L is a lattice and A ⊆ Irr(L) then the complement of A
in L, L \ A, is a sublattice of L.

M2

� �

� � �

� �������

�

��

Crown

Figure 1

In 1973, Ajtai [1] introduced primitive lattices and studied the properties of prim-
itive lattices. Then Rival [29] also studied primitive lattices with a different name,
namely, dismantlable lattices. A finite lattice L of order n is called dismantlable if
there exists a chain L1 ⊂ L2 ⊂ · · · ⊂ Ln(= L) of sublattices of L such that |Li| = i,
for all i. For example, M2 (see Fig. 1) is a dismantlable lattice. In Section 4, we
prove that every RC-lattice is a dismantlable lattice.

Thakare et al. [33] introduced an adjunct operation on lattices as follows.

Definition 1.2. If L1 and L2 are two disjoint finite lattices and (a, b) is a pair of
elements in L1 such that a < b and a �≺ b, we define the partial order “≤” on
L = L1 ∪ L2 with respect to the pair (a, b) as followsr:.

x ≤ y in L if either x, y ∈ L1 and x ≤ y in L1; or x, y ∈ L2 and x ≤ y in L2;

or x ∈ L1, y ∈ L2 and x ≤ a in L1; or x ∈ L2, y ∈ L1 and b ≤ y in L1.

It is easy to see that L is a lattice containing L1 and L2 as sublattices. The
procedure of obtaining L in this way is called an adjunct operation of L2 to L1 or
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adjunct of L1 with L2. It is denoted by L = L1]
b
aL2 or L = L1]αL2, where α = (a, b)

is called an adjunct pair.

For example, M2 (see Fig. 1) is the adjunct sum of a 3-chain with a 1-chain,
where the adjunct pair is (0, 1). The lattices shown in Fig. 2 are the adjunct of two
chains.
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Figure 2

Using the adjunct operation, Thakare et al. [33] proved the following structure
theorem for dismantlable lattices.

Theorem 1.3 ([33]). A finite lattice is dismantlable if and only if it is an adjunct
of chains.

Corollary 1.4 ([33]). A dismantlable lattice with n elements has n+ r−2 coverings
if and only if it is an adjunct of r chains.

Using Theorem 1.3, Thakare et al. [33] carried out enumeration of non-isomorphic
lattices having nullity up to 2 and containing n elements. In the last section we count,
up to isomorphism, all fundamental basic blocks and all basic retracts/blocks of given
nullity, in which all the reducible elements are comparable. For this purpose, let us
note the following.

The nullity of a graph G is given by m− n+ c, where m is the number of edges
in G, n is the number of vertices in G, and c is the number of connected components
of G. This nullity equals the multiplicity of the eigenvalue 0 in the spectrum of the
adjacency matrix of the graph G (see Cvetkovič and Gutman [8], Cheng and Liu [7],
and Gutman and Borovićanin [17]).

2 Nullity of a poset

We define the nullity of a poset to be the nullity of its cover graph. Therefore the
nullity of a poset P , denoted by η(P ), is given by |E(P )| − |P | + c, where E(P ) is
the set of all edges in C(P ) and c is the number of components of C(P ). Note that,
for a connected poset, c = 1. Clearly, the nullity of a chain is 0. The lattices shown
in Fig. 2 are of nullity 1. Pawar and Waphare [27] have counted non-isomorphic
lattices having nullity 1 and containing n elements. Using Corollary 1.4, we have the
following.
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Theorem 2.1. A dismantlable lattice L containing n elements is of nullity l if and
only if L is an adjunct of l + 1 chains.

Proof. Suppose a dismantlable lattice L containing n elements is of nullity l. If L
contains m edges then the nullity l = m− n+1 and hence m = n+ l− 1. Therefore
by Corollary 1.4, L is an adjunct of l+1 chains. Conversely, suppose L is an adjunct
of l + 1 chains. Again by Corollary 1.4, the number of edges in L is m = n + l − 1.
Thus l = m− n+ 1 and hence the nullity of L is l.

Lemma 2.2 ([33]). Every lattice with n elements and n+r coverings with −1 ≤ r ≤ 3
is dismantlable.

Theorem 2.3. Any lattice of nullity at most 4 is dismantlable.

Proof. By Lemma 2.2, every lattice with n elements and n + r coverings (or edges)
with −1 ≤ r ≤ 3 is dismantlable. If L is a lattice on n elements, containing m edges
and having nullity l, then l = m−n+1. If m = n+ r and −1 ≤ r ≤ 3 then l = r+1
and 0 ≤ l ≤ 4. Hence the proof follows.

Let G be a loopless connected graph. An ear of a graph G is a subgraph of G
which is a maximal path in which all internal vertices are of degree 2 in G. If G
is a path itself then that path is the only ear of G. An ear which does not contain
any internal vertex is called a trivial ear. Therefore a trivial ear is just an edge in G
and, in this case, the length of the ear is one. An ear which is not an edge is called
a non-trivial ear in G. An ear E : a − x1 − x2 − · · · − xr − b is said to be an ear
associated to the pair (a, b) of length r + 1. Also for each i, we say xi is associated
to the pair (a, b). Hereinafter by a path (or an ear) in a poset/lattice, we mean the
path (or the ear) in the cover graph of that poset/lattice.

An element in a poset P is called doubly irreducible if it has at most one lower
cover and at most one upper cover in P . Let Irr(P ) denote the set of all doubly
irreducible elements in the poset P . Let Red(P ) = P \ Irr(P ).
Definition 2.4. Let P be a poset. Let x ∈ Irr(P ). Then x is called a retractible
element of P if it satisfies either of the following two conditions.

1. There are no y, z ∈ Red(P ) such that y ≺ x ≺ z.

2. There are y, z ∈ Red(P ) such that y ≺ x ≺ z and there is no other directed
path from y to z in P .

It can be easily observed that there are two retractible elements in each of the
posets in Fig. 2, whereas no element of M2 is retractible.

Recall that the posets under consideration are all connected. In the following, we
obtain the condition under which removal of a doubly irreducible element preserves
the nullity of the poset.

Theorem 2.5. Let P be a poset with |P | > 1. Let x ∈ Irr(P ). Then η(P \ {x}) =
η(P ) if and only if x is a retractible element of P .
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Proof. Let x ∈ Irr(P ). Suppose P ′ = P \ {x} and η(P ′) = η(P ). If x satisfies the
condition (1) of Definition 2.4 then we are done. If not, then there are y, z ∈ Red(P )
such that y ≺ x ≺ z. Suppose there is another path from y to z; then η(P ′) =
|E(P ′)| − |P ′| + 1 = (|E(P )| − 2) − (|P | − 1) + 1 = |E(P )| − |P | = η(P ) − 1, a
contradiction. Therefore x must satisfy condition (2) of Definition 2.4. Thus x is a
retractible element of P .

Conversely, suppose x is a retractible element of P . Suppose the condition (1) of
Definition 2.4 is true. If y ≺ x ≺ z in P then either y ∈ Irr(P ) or z ∈ Irr(P ). In any
case, η(P ′) = |E(P ′)| − |P ′|+ 1 = (|E(P )| − 1)− (|P | − 1) + 1 = |E(P )| − |P |+ 1 =
η(P ). Now suppose condition (2) of Definition 2.4 is true. But then we also get
η(P ′) = |E(P ′)| − |P ′|+1 = (|E(P )| − 1)− (|P | − 1)+ 1 = |E(P )| − |P |+1 = η(P ),
since y ≺ z in P ′.

Corollary 2.6. Let L be a lattice with |L| > 1. Let x ∈ L. Then L′ = L \ {x} is a
sublattice of L, maintaining the nullity if and only if x is a retractible element of L.

Proof. Suppose x ∈ L and L′ = L \ {x} is a sublattice of L with η(L′) = η(L). If x
is meet reducible in L then there are a, b ∈ L with a∧ b = x. But then L′ = L \ {x}
will not be a sublattice of L, since a ∧ b will not be maintained in L′, which is a
contradiction. Hence x is not meet reducible in L. Similarly, it can be proved that
x is not join reducible in L. Hence x ∈ Irr(L). The remainder of the proof follows
from Theorem 2.5.

Conversely, suppose x is a retractible element of L. Therefore x ∈ Irr(L) and
satisfies both the conditions of Definition 2.4. As x ∈ Irr(L), by Proposition 1.1,
L′ = L\{x} is a sublattice of L. The rest of the proof follows from Theorem 2.5.

Let P be a poset and let x ∈ P . We denote an element y by x− if y ≺ x and by
x+ if x ≺ y. The indegree of an element x in a poset P is given by |{y ∈ P : y ≺ x}|,
and the outdegree of an element x in a poset P is given by |{z ∈ P : x ≺ z}|. The
degree of an element x in a poset P is the sum of the indegree and the outdegree of x
in P . Note that the degree of x in P is same as the degree of x in C(P ). An element
x of a poset is called pendant if the degree of x is 1. Let Irr∗(P ) = {x ∈ Irr(P ) : x
has exactly one upper cover and exactly one lower cover in P}. Note that, for a
connected poset P , if x ∈ Irr(P ) then either x ∈ Irr∗(P ) or x is a pendant vertex
in P .

Theorem 2.7. Let P be a poset. Let x ∈ Irr∗(P ). Then the respective indegrees as
well as the respective outdegrees of any reducible element in both P and P \ {x} are
the same if and only if x is a retractible element of P .

Proof. Suppose the respective indegrees as well as the respective outdegrees of any
reducible element in both P and P \ {x} are the same. Suppose y ≺ x ≺ z. Now
either at least one of y and z belongs to Irr(P ) or both y, z ∈ Red(P ). If at least one
of y and z belongs to Irr(P ) then x satisfies the condition (1) of Definition 2.4. If
both y, z ∈ Red(P ) then either there is another path from y to z in P or there is no
other directed path from y to z in P . If there is another path from y to z in P then
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the outdegree of y and the indegree of z decrease by one if x is removed from P , since
x ∈ Irr∗(P ), which is not possible by assumption. Thus there are y, z ∈ Red(P )
with y ≺ x ≺ z and there is no other directed path from y to z in P . Therefore x
satisfies the condition (2) of Definition 2.4. Hence x is a retractible element of P .

Conversely, suppose x is a retractible element of P . Therefore either there are no
y, z ∈ Red(P ) with y ≺ x ≺ z, or there are y, z ∈ Red(P ) with y ≺ x ≺ z and there
is no other directed path from y to z in P . Let a ∈ Red(P ). Let d1 and d2 be the
indegree and the outdegree of a in P respectively. Then we have the following three
cases. Case 1 : Suppose a ≺ x. Let x ≺ b. If b ∈ Red(P ) then x must satisfy the
condition (2) of Definition 2.4. Therefore there is no other directed path from a to
b in P . Hence a ≺ b in P \ {x}. Also, if b /∈ Red(P ) then x satisfies the condition
(1) of Definition 2.4. But then b ∈ Irr(P ). As x ∈ Irr∗(P ) and a ≺ x ≺ b, a ≺ b in
P \ {x}. Thus removal of x from P does not change the values of d1 and d2. Case 2 :
Suppose x ≺ a. The proof in this case is similar to that of Case 1. Case 3 : Suppose
neither a ≺ x nor x ≺ a. Let x− ≺ x ≺ x+. Clearly a �= x− as well as a �= x+.
Therefore x− ≺ x+ in P \ {x}. Thus, the removal of x from P does not change the
values of d1 and d2. Hence the proof is complete.

3 Basic retract associated to a poset

We now introduce the concept of a basic retract as follows.

Definition 3.1. A poset P is a basic retract if no element of Irr∗(P ) is retractible
in P .

For example, a 1-chain, a 2-chain, an M2 and a crown (see Fig. 1) are basic
retracts.

It follows that, if x ∈ Irr∗(P ) then P \ {x} is a subposet of P with η(P \ {x}) ≥
η(P )− 1. By Theorem 2.5 and using Definition 5.2, we have the following.

Proposition 3.2. A poset P , which is not a chain, is a basic retract if and only if
removal of any element of Irr∗(P ) reduces η(P ) by one.

We now introduce the concept of a basic retract associated to a poset as follows.

Definition 3.3. Let P be a poset. Consider a (Hasse) diagram of P . If Irr∗(P ) = ∅
then we say that P is a basic retract associated to itself; otherwise, go on removing
elements of Irr∗(P ) one by one as long as η(P ) does not alter. Ultimately we get a
subposet P ′ of P such that no element of Irr∗(P ′) is retractible in P ′. The resultant
subposet P ′ of P is called a basic retract associated to P .

For example, a crown is the basic retract associated to itself. An M2 is the basic
retract associated to the lattices shown in Fig. 2. In Fig. 3, P ′ is the basic retract
associated to both the posets P1 and P2.
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Figure 3

Duffus and Rival [13] introduced the following.

Definition 3.4. [13] An order-preserving map g : P → Q is a retraction of poset P
onto subposet Q of P provided that g(x) = x for all x ∈ Q. If there is a retraction
of P onto Q, then Q is a retract of P .

By Definition 3.4, it follows that, a basic retract associated to a poset P is a
retract of P . In the following, we prove some properties of basic retracts associated
to the posets.

Theorem 3.5. Let B be a basic retract associated to a poset P . Then

1. B is a sublattice of P whenever P is a lattice.

2. η(B) = η(P ).

3. Red(B) = Red(P ).

4. Irr(B) ⊆ Irr(P ).

5. If an ear is trivial in B associated to a pair (a, b) then there is no another
path from a to b in P and hence there is a unique ear associated to (a, b) in
P . Conversely, if there is no another path from a to b in P then there is no
non-trivial ear associated to (a, b) in B.

6. If x ∈ Irr∗(B) and x is associated to a pair (a, b) in B then x is associated to
the pair (a, b) in P also. Moreover, every ear in B is either of length 1 or 2.

7. If x ∈ Irr∗(B) then x−, x+ ∈ Red(B). Moreover, η(B \ {x}) = η(B) − 1.
Further, outdegree of x− and indegree of x+ both decreases by one.

8. Number of trivial ears in B is greater equal that in P .

9. A non-trivial ear in P associated to (a, b) if exists, becomes a trivial ear in B
if and only if there is no another path from a to b in P .
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10. If there is a non-trivial ear associated to (a, b) in B then the number of non-
trivial ears (or the number of doubly irreducibles) associated to (a, b) in B is
equal to the number of non-trivial ears associated to (a, b) in P .

11. The number of ears associated to (a, b) in B is equal to the number of ears
associated to (a, b) in P .

Proof. 1. Follows from the repeated use of Proposition 1.1.

2. Follows from the repeated use of Theorem 2.5.

3. Follows from the repeated use of Theorem 2.7.

4. The proof is obvious.

5. Let E : a ≺ b be a trivial ear in B associated to the pair (a, b). Let E ′ be the
ear associated to (a, b) in P containing E. If E ′ = E then clearly there is no
other path from a to b in P . If E ′ �= E then E ′ is non-trivial ear. If there is
another path from a to b in P then there is an element say x of E ′ such that
x ∈ B and x is associated to (a, b) in B. This is not possible, since E : a ≺ b
is a trivial ear in B associated to the pair (a, b). Therefore, there is no another
path from a to b in P . Hence E ′ is a unique ear associated to the pair (a, b) in
P . The converse follows from the definition of a basic retract associated to a
poset.

6. First part is obvious. Now suppose there is an ear E associated to (a, b) in B
of length at least three. Let x ≺ y be the elements of E. Then η(B \ {x}) =
η(B), a contradiction. Therefore, every ear in B is of length at most two.

7. Suppose x ∈ Irr∗(B). Let E be the ear containing x. If either x− or x+ or
both are in Irr∗(B) then as x− ≺ x ≺ x+ in B, the length of E is at least three,
a contradiction by (6). Hence x−, x+ ∈ Red(B). Now η(B \ {x}) = η(B)− 1
follows from Proposition 3.2. The remaining proof is obvious.

8. Note that if an ear associated to a pair (a, b) is trivial in P then it is also trivial
in B. Therefore the proof is obvious.

9. Let E : a ≺ x1 ≺ x2 ≺ · · · ≺ xr ≺ b be a non-trivial ear associated to the
pair (a, b) in P . Using the contrapositive, suppose there is another path from
a to b in P . Then by the definition of a basic retract associated to a poset,
a ≺ x1 ≺ b is a non-trivial ear associated to (a, b) in B. The converse follows
from the definition of a basic retract, as there is no other path from a to b in P ,
so we can remove each xi from E to obtain B, and hence E becomes a trivial
ear associated to (a, b) in B.

10. Suppose an ear E associated to (a, b) is non-trivial in B. Let m ≥ 1 be the
number of non-trivial ears associated to (a, b) in B. Let n be the number of
non-trivial ears associated to (a, b) in P . From the first part of (6), it is clear
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that m ≤ n. Now, as there is a non-trivial ear E associated to (a, b) in B, by
the converse part of (5), there is another path from a to b in P . Therefore by
(9), there are n non-trivial ears associated to (a, b) in B. Therefore n ≤ m.
Thus m = n.

11. Suppose there is a trivial ear in B associated to (a, b). Since there cannot be
more than one trivial ear in B associated to (a, b), by (5), there is a unique ear
associated to (a, b) in P . Now suppose there is a non-trivial ear in B associated
to (a, b). But then the proof follows from (10).

Lemma 3.6. Let P1 and P2 be connected posets. Let φ : P1 → P2 be an isomorphism.
Then:

1. An element x is pendant in P1 if and only if φ(x) is pendant in P2.

2. x ∈ Irr∗(P1) if and only if φ(x) ∈ Irr∗(P2).

3. x ∈ Irr(P1) if and only if φ(x) ∈ Irr(P2).

4. If x is pendant or x ∈ Irr∗(P1), that is, if x ∈ Irr(P1), then
P1 \ {x} ∼= P2 \ {φ(x)}.

Proof. 1. Suppose an element x is a pendant vertex in P1. Then either x ≺ z for
exactly one z ∈ P1, or y ≺ x for exactly one y ∈ P1. In the former case we have
φ(x) ≺ φ(z), since φ : P1 → P2 is an isomorphism. Now if there exists v ∈ P2

with φ(x) ≺ v and v �= φ(z) then there exists u ∈ P1 with φ(u) = v. That is,
φ(u) �= φ(z). Also φ(x) ≺ v = φ(u). Therefore we get u �= z and x ≺ u, since
φ−1 : P2 → P1 is also an isomorphism. This is a contradiction. Therefore there
is no v ∈ P2 with φ(x) ≺ v and v �= φ(z). The other case can be proved on the
similar lines. Hence φ(x) is pendant vertex in P2. The converse follows from
the fact that φ−1 : P2 → P1 is also an isomorphism.

2. Suppose x ∈ Irr∗(P1). Therefore there exists y, z ∈ P1 such that y ≺ x ≺ z.
Therefore φ(y) ≺ φ(x) ≺ φ(z), since φ : P1 → P2 is an isomorphism. Therefore
φ(x) ∈ Irr∗(P2). Note that this proof also along the similar lines as that of
(1) above. The converse follows from the fact that φ−1 : P2 → P1 is also an
isomorphism.

3. We know that for a connected poset P , x ∈ Irr(P ) if and only if either x ∈
Irr∗(P ) or x is a pendant vertex in P . Therefore the proof in this case follows
from (1) and (2) above.

4. Suppose x is pendant in P1 or x ∈ Irr∗(P1). Then by (1) and (2) above, either
φ(x) is pendant in P2 or φ(x) ∈ Irr∗(P2). In any case, we have P1 \ {x} ∼=
P2 \ {φ(x)}, since P1

∼= P2.
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Corollary 3.7. Let P1 and P2 be connected posets. Let φ : P1 → P2 be an isomor-
phism. Then an element x is retractible in P1 if and only if φ(x) is retractible in P2.
Moreover, if x is retractible in P1 then P1 \ {x} ∼= P2 \ {φ(x)}.

Proof. Suppose an element x is retractible in P1. Therefore x ∈ Irr(P1). By Theorem
2.5, η(P1 \ {x}) = η(P1). By (3) of Lemma 3.6, φ(x) ∈ Irr(P2). As φ : P1 → P2 is
an isomorphism, |P1| = |P2|. Also |E(P1)| = |E(P2)|, since x ≺ y in P1 if and only if
φ(x) ≺ φ(y) in P2. Therefore φ preserves the nullity, that is, η(P1) = η(P2). Now by
(4) of Lemma 3.6, P1 \ {x} ∼= P2 \ {φ(x)}. Therefore η(P1 \ {x}) = η(P2 \ {φ(x)}).
Hence η(P2 \ {φ(x)}) = η(P2). Therefore by Theorem 2.5, φ(x) is retractible in
P2. The converse follows from the fact that φ−1 : P2 → P1 is also an isomorphism.
Moreover, if x is retractible in P1 then x ∈ Irr(P1). Therefore by (4) of Lemma 3.6,
P1 \ {x} ∼= P2 \ {φ(x)}.

Using Definition 3.3 and by repeated application of (4) of Lemma 3.6, we have
the following.

Proposition 3.8. If R1, R2 are basic retracts associated to the posets P1, P2 respec-
tively and P1

∼= P2 then R1
∼= R2.

However, the converse of Proposition 3.8 is not true, since the posets given in
Fig. 2 are not isomorphic to each other but the basic retracts associated to them are
isomorphic. In fact those basic retracts are each isomorphic to M2.

Corollary 3.9. If R1 and R2 are basic retracts associated to a poset P then R1
∼= R2.

Proof. Consider an identity map ψ : P → P . Then ψ is an isomorphism. Therefore
using Proposition 3.8, R1

∼= R2.

Thus, by Corollary 3.9, up to isomorphism, there is a unique basic retract asso-
ciated to any poset.

Definition 3.10. A subposet B of a poset P is said to be a basic block associated
to P if B is obtained from the basic retract associated to P by successive removal of
all the pendant vertices and all the retractible elements formed due to removal of all
the pendant vertices.

For example, a 1-chain is the basic block associated to a chain. M2 is the only
basic block associated to the lattices of nullity one. It is clear that, if C(P ) is a tree
then a 1-chain is a basic block associated to the poset P . In Fig. 3, B is the basic
block associated to the posets P1, P2 and P ′. In Fig. 4, we depict the basic blocks
associated to lattices of nullity two.
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Figure 4

Now suppose R1, R2 are basic retracts associated to the posets P1, P2 respectively.
Suppose B1, B2 are basic blocks associated to the posets P1, P2 respectively. There-
fore B1, B2 are obtained from R1, R2 respectively by successive removal of all the
pendant vertices and all the retractible elements formed due to removal of all the
pendant vertices. If P1

∼= P2 then by Proposition 3.8, R1
∼= R2. Suppose B

′
1, B

′
2 are

obtained from R1, R2 respectively by successive removal of all the pendant vertices.
Then B1, B2 are obtained from B′

1, B
′
2 respectively by removal of all the retractible

elements formed due to removal of all the pendant vertices. Therefore by repeated
application of (4) of Lemma 3.6, R1

∼= R2 implies that B′
1
∼= B′

2. Hence by repeated
application of second part of Corollary 3.7, B1

∼= B2. Thus, we have the following.

Proposition 3.11. If B1, B2 are basic blocks associated to the posets P1, P2 respec-
tively and P1

∼= P2 then B1
∼= B2.

However, the converse of Proposition 3.11 is not true, since the posets given in
Fig. 2 are not isomorphic to each other but the basic blocks associated to them are
isomorphic to M2. By Proposition 3.11, we have the following.

Corollary 3.12. If B1 and B2 are basic blocks associated to a poset P then B1
∼= B2.

Thakare et al. [33] enumerated all lattices of nullity two. Therefore by observation
we have the following.

Proposition 3.13. There are exactly seven non-isomorphic basic blocks (given in
Fig. 4) associated to the lattices of nullity two.

Let P and Q be disjoint posets. Let P ∪Q be the union with the inherited order
on P and Q such that p < q for all p ∈ P and q ∈ Q. Then it forms a poset called
the linear sum of P and Q denoted by P ⊕Q.

By Definition 3.10, it follows that, if P is a lattice, then a basic block associated
to P is the basic retract associated to P , without pendant vertices. Thakare et
al. [33] introduced a block as a lattice in which 0 and 1 are reducible elements. If L is
a lattice other than a chain then basic retract associated to L is either B or B⊕{1}
or {0}⊕B or {0}⊕B⊕{1}, where B is a block. In fact B is a basic block associated
to L. Consequently, as M2 is the only basic block associated to the lattices of nullity
one, there are four non-isomorphic basic retracts associated to the lattices of nullity
one. In general, we have the following.
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Theorem 3.14. The number of non-isomorphic basic retracts associated to lattices
having nullity at least one is four times the number of non-isomorphic basic blocks
associated to them.

Proof. Let L be a class of lattices having nullity at least one. Let R be a class of
all non-isomorphic basic retracts associated to the lattices in L . Let B be a class of
all non-isomorphic basic blocks associated to the lattices in L . Using Definition 3.3
and Definition 3.10, if R ∈ R, and B ∈ B is obtained from R, then R takes one of
the following forms. Either B or B⊕{1} or {0}⊕B or {0}⊕B⊕{1}. Now suppose
B1, B2 ∈ B are basic blocks obtained from the basic retracts R1, R2 ∈ R respectively.
Then we have B1

∼= B2 if and only if R1
∼= R2. Therefore |R| = 4× |B|.

Note that a 1-chain and a 2-chain are the only basic retracts having nullity zero.
Using Proposition 3.13 and Theorem 3.14, we have the following.

Corollary 3.15. There are exactly twenty-eight non-isomorphic basic retracts asso-
ciated to the lattices of nullity two.

In order to enumerate up to isomorphism all the basic retracts associated to
dismantlable lattices of a given nullity, we introduce a fundamental basic block in
the next section.

4 Fundamental basic blocks

Definition 4.1. A dismantlable lattice B is said to be a fundamental basic block if
it is a basic block and all the adjunct pairs in the adjunct representation of B into
chains are distinct.

For example, M2 (see Fig. 1) is fundamental basic block, whereas M3 (see
Fig. 4(1)) is not a fundamental basic block. We treat a 1-chain as a fundamen-
tal basic block. Using Proposition 3.13, we obtain, by observation, the following.

Corollary 4.2. There are exactly six non-isomorphic fundamental basic blocks (see
Fig. 4 (2 to 7)) of nullity two.

Lemma 4.3 ([33]). Let L be a dismantlable lattice with an adjunct representation
L = C0]

b1
a1
C1]

b2
a2
C2 . . .]

bl
al
Cl. Then the set of meet irreducibles and join irreducibles are

respectively given by L \ {a1, a2, . . . , al} and L \ {b1, b2, . . . , bl}.

From Lemma 4.3, it follows that for a dismantlable lattice(which is not a chain)
of nullity l containing r reducible elements, 2 ≤ r ≤ 2l. Also l ≥ [ r+1

2
]. Note that

for a real number x, [x] denotes the greatest integer less than or equal to x.

In the following, we prove that every RC-lattice is a dismantlable lattice.

Theorem 4.4. A lattice in which all the reducible elements are comparable is a
dismantlable lattice.
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Proof. Let L be a lattice containing r reducible elements which are all comparable.
Then r ≥ 0 but r �= 1. If r = 0, then L is a chain and we are done. Suppose L is not
a chain. Let |L| = n ≥ 4. We use induction on n. If n = 4, then L =M2 (see Fig. 1)
and we are done. Now suppose n > 4, and the result is true for all lattices L′ with
|L′| < n. Let C be a maximal chain containing all the reducible elements of L and
let x ∈ L \C. Then there exists y ∈ C such that x is incomparable with y in L. Let
a = x ∧ y and b = x ∨ y. Let C ′ : x1 ≺ x2 ≺ · · · ≺ xt be the chain containing x with
a ≺ x1 and xt ≺ b in L. Clearly xi ∈ Irr∗(L), for all i, 1 ≤ i ≤ t. If L \ C ′ = C,
then L = C]baC

′ and we are done; Otherwise, let L′ = L \ C ′. But then L′ contains
at least two reducible elements with |L′| < n. Therefore by induction hypothesis, L′

is a dismantlable lattice. Hence by Theorem 1.3, L′ is an adjunct of chains. Suppose
L′ = C]b1a1C1]

b2
a2C2 · · · ]bkakCk for some k ≥ 1, where for each i, Ci is a chain. But then

L = L′]baC
′. Thus by Theorem 1.3, L is a dismantlable lattice.

However, the converse of Theorem 4.4 is not true. For example, a lattice L =
({0}⊕M2⊕{1})]10M2 is dismantlable lattice (having nullity three) but all the reducible
elements in it are not comparable. This example also suggests that the lattices having
nullity greater than two need not be RC-lattices.

Hereafter, we will restrict ourselves to the study of RC-lattices for achieving the
desired countings. The following result follows from the fact that adjunct operation
preserves the existing coverings of the lattices.

Lemma 4.5. Let C0, C1 and C2 be chains. Let α1 and α2 be adjunct pairs lying in
C0. Then (C0]α1C1)]α2C2 = (C0]α2C2)]α1C1.

Proof. Let α1 = (a1, b1) and α2 = (a2, b2) be adjunct pairs lying in C0. Without loss,
assume that a1 ≤ a2, and if a1 = a2 then b1 ≤ b2. Then we have the following three
cases. Either a1 < b1 ≤ a2 < b2, or a1 < a2 < b2 < b1, or a1 ≤ a2 < b1 ≤ b2 in C0.
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Consider the first case that a1 < b1 ≤ a2 < b2 in C0. Then using Definition 1.2
and from Fig. 5(1− a, 1− b), we have x ≤ y in (C0]α1C1)]α2C2 if and only if x ≤ y in
(C0]α2C2)]α1C1. Also from Fig. 5(1−a, 1−b), it follows that, x and y are incomparable
in (C0]α1C1)]α2C2 if and only if x and y are incomparable in (C0]α2C2)]α1C1. Thus
(C0]α1C1)]α2C2 = (C0]α2C2)]α1C1. The proof for the remaining two cases follows from
Fig. 5(2− a, 2− b, and 3− a, 3− b) on the similar lines.
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Using Lemma 4.5, we have the following.

Corollary 4.6. Let L = C0]α1C1]α2C2 · · · ]αi
Ci · · · ]αj

Cj · · · ]αk
Ck, where C0 is a max-

imal chain containing all the reducible elements of L. Then for any i �= j, L =
C0]α1C1]α2C2 · · · ]αj

Cj · · · ]αi
Ci · · · ]αk

Ck.

Using Theorem 4.4 and Corollary 4.6, we have the following.

Proposition 4.7. Let L be an RC-lattice. Let C be a maximal chain containing all
the reducible elements of L. Then there exist chains C1, C2, . . . , Ck in L such that
L = C]α1C1]α2C2 · · · ]αk

Ck, where the adjunct pairs follow lexicographic(or dictionary)
order defined on C × C.

Proposition 4.8. Let L be an RC-lattice of nullity l containing r ≥ 2 reducible
elements. If l = [ r+1

2
] then the multiplicity of each adjunct pair in an adjunct repre-

sentation of L into chains is one.

Proof. By Theorem 4.4, it is clear that L is a dismantlable lattice. As L is a lattice
of nullity l, by Theorem 2.1, L is an adjunct of l + 1 chains. Therefore by Propo-
sition 4.7, L = C0]α1C1]α2C2 · · · ]αl

Cl, where C0 is a maximal chain containing all
the r reducible elements, and for each i, Ci is a chain and αi is an adjunct pair.
Suppose for some i, the adjunct pair αi has multiplicity more than one. There-
fore there must be at least one j �= i such that αi = αj. Then by Corollary 4.6,
L = C0]α1C1]α2C2 · · · ]αi−1

Ci−1]αl
Cl]αi+1

Ci+1 · · · ]αl−1
Cl−1]αi

Ci. But then by Proposi-
tion 1.1, L \ Ci is a sublattice of L. Moreover, L \ Ci contains r reducible elements.
Also by Theorem 2.1, nullity of L\Ci is l−1. Thus, L\Ci is a dismantlable lattice of
nullity l−1 containing r reducible elements. Therefore l−1 ≥ [ r+1

2
]. This contradicts

the fact that l = [ r+1
2
].

Using Definition 4.1 and by Proposition 4.8, we have the following.

Corollary 4.9. If r ≥ 2 and l = [ r+1
2
] then every basic block associated to an RC-

lattice of nullity l containing r reducible elements is a fundamental basic block.

Note that, in Corollary 4.9, the condition l = [ r+1
2
] is necessary, since if r = 2

and l = 2 > [ r+1
2
] = 1 then we get M3, which is not a fundamental basic block.

Now in order to count the number of non-isomorphic basic retracts/blocks asso-
ciated to the RC-lattices, we introduce the following.

Definition 4.10. Let L be an RC-lattice. Let B be a basic block associated to L. If
B itself is a fundamental basic block, then we say that B is a fundamental basic block
associated to L; otherwise, let (a, b) be an adjunct pair in an adjunct representation of
B. If the interval (a, b) ⊆ Irr(B) then remove all but two non-trivial ears associated
to (a, b) in B; otherwise, remove all but one non-trivial ear associated to (a, b) in
B. Perform the operation of removal of non-trivial ears associated to (a, b), for each
adjunct pair (a, b) in an adjunct representation of B. The resultant sublattice of B
is called a fundamental basic block associated to L.
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For example, M2 (see Fig. 1) is a fundamental basic block associated to M3 (see
Fig. 4 (1)). In Fig. 6, F is the fundamental basic block associated to the RC-lattice
L. Note that F is also the fundamental basic block associated to R as well as B.
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Note that, in Fig. 6, R and B are respectively the basic retract and the basic
block associated to the RC-lattice L.

By Proposition 3.11, if B1, B2 are basic blocks associated to the RC-lattices L1, L2

respectively and L1
∼= L2 then B1

∼= B2. If F1, F2 are fundamental basic blocks
associated to the RC-lattices L1, L2 respectively then F1, F2 are obtained from B1, B2

respectively using Definition 4.10. Hence, by repeated application of (4) of Lemma
3.6, B1

∼= B2 implies that F1
∼= F2. Thus, we have the following.

Proposition 4.11. If F1, F2 are fundamental basic blocks associated to the RC-
lattices L1, L2 respectively and L1

∼= L2 then F1
∼= F2.

However, the converse of Proposition 4.11 is not true. This is because M2 is the
fundamental basic block associated to the RC-lattices shown in Fig. 2, but those
lattices are not isomorphic to each other. Using Proposition 4.11, we have the fol-
lowing.

Corollary 4.12. If F1 and F2 are fundamental basic blocks associated to an RC-
lattice L then F1

∼= F2.

From Proposition 4.11, it follows that, if two fundamental basic blocks are non-
isomorphic, then the RC-lattices associated by these fundamental basic blocks are
also non-isomorphic. Also, using Corollary 4.12, it follows that, up to isomorphism,
there is a unique fundamental basic block associated to any RC-lattice. It can be
observed that, the fundamental basic block associated to an RC-lattice is having the
same or a smaller width as compared to the basic block associated to that lattice.

Let L be an RC-lattice of nullity l containing r ≥ 2 reducible elements. By
Theorem 4.4, L is a dismantlable lattice. Let (a1, b1), (a2, b2), . . . , (ak, bk) be the
distinct adjunct pairs in the adjunct representation of L, containing C as a maximal
chain containing all the r reducible elements of L. By Proposition 4.7, we can assume
that (a1, b1) < (a2, b2) < . . . < (ak, bk) with respect to the dictionary order defined on
C×C. Let ni be the multiplicity of an adjunct pair (ai, bi) for each i, 1 ≤ i ≤ k. Let
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Tk = (n1, n2, . . . , nk). By Theorem 2.1, it is clear that l =
k∑

i=1

ni. Now L is adjunct

sum of l + 1 chains and hence contain l adjunct pairs (repetition is allowed, if any).
In the following, we prove that, if all the adjunct pairs in an adjunct representation
of a lattice (in which all the r ≥ 2 reducible elements are comparable) are distinct,
then the nullity of that lattice cannot exceed

(
r
2

)
.

Proposition 4.13. For an RC-lattice of nullity l containing r ≥ 2 reducible elements
with Tk = 1k = (1, 1, . . . , 1), [ r+1

2
] ≤ k = l ≤ (

r
2

)
.

Proof. Let L be an RC-lattice of nullity l containing r ≥ 2 reducible elements.
By Theorem 4.4, L is a dismantlable lattice. We know that [ r+1

2
] ≤ l. Also, if

Tk = (n1, n2, . . . , nk) then by Theorem 2.1, l =
k∑

i=1

ni. Therefore for Tk = 1k =

(1, 1, . . . , 1), l = k. Now the multiplicity of each adjunct pair in an adjunct repre-
sentation of L is one. Therefore the number of adjunct pairs is k. But L contains
r reducible elements and one adjunct pair corresponds to two reducible elements.
Therefore k ≤ (

r
2

)
. Thus [ r+1

2
] ≤ l = k ≤ (

r
2

)
.

Using Definition 4.1 and by Proposition 4.13, we have the following.

Corollary 4.14. For any fundamental basic block of nullity l containing r ≥ 2
reducible elements which are all comparable, [ r+1

2
] ≤ l ≤ (

r
2

)
.

5 Recurrence relations and Enumerations

In this section for the counting purpose, we are going to establish some recurrence
relations in terms of the number of all non-isomorphic fundamental basic blocks (of
given nullity) such that each one of them has r reducible elements which are all
comparable. In this connection, let us see the following.

Definition 5.1. For r ≥ 0, let Fr be the class of all non-isomorphic fundamental
basic blocks such that each one of them has r reducible elements which are all
comparable.

Let F ∈ Fr, where r ≥ 0. Then F1 = ∅. Also F is an RC-lattice. Moreover, F
is a basic retract as no element of Irr∗(F ) is retractible in F .

Proposition 5.2. Let F ∈ Fr+1, where r ≥ 1. Let R = F \ {1} be a poset obtained
from F by deleting 1 of F . Let B be a basic block associated to R. Then R is a basic
retract and B ∈ Fj for some j, 0 ≤ j ≤ r with j �= 1.

Proof. Let x and y be incomparable elements in F with x ∨ y = 1. As F is an RC-
lattice, both x, y /∈ Red(F ). Therefore either x ∈ Irr∗(F ) or y ∈ Irr∗(F ). Suppose
x ∈ Irr∗(F ). But then x must be pendant in R = F \ {1}. Moreover, if z ≺ x then
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z ∈ Red(F ). Thus x ∈ Irr∗(F ) if and only if x ∈ Irr∗(R) or x is pendant in R.
Therefore no element of Irr∗(R) is retractible in R, since F being a basic retract,
no element of Irr∗(F ) is retractible in F . Hence R is a basic retract. Now B is a
basic block associated to R. Therefore B is obtained from R by successive removal
of all the pendant vertices and all the retractible elements formed due to removal of
all the pendant vertices. As F is a fundamental basic block, B is also a fundamental
basic block. The remaining part of the proof is obvious.

Let ar = |Fr|, for all r ≥ 0. Then a0 = 1, since F0 consists of a 1-chain only.
a1 = 0, since F1 is an empty class. a2 = 1, since F2 consists of an M2 (see Fig. 1)
only. We now obtain a recursive formula which produces ar in the following.

Theorem 5.3. For r ≥ 2, ar+1 =

⎛
⎝ r∑

j=0

(r
j

)
2jaj

⎞
⎠ - ar with a0 = a2 = 1 and a1 = 0.

Proof. Let F ∈ Fr+1, where r ≥ 2. Then F is an RC-lattice. Consider the poset
F \ {1} obtained from F by deleting 1 of F . Let B be the basic block associated to
F \ {1}. Then by Proposition 5.2, F \ {1} is a basic retract, and B is a fundamental
basic block containing j (0 ≤ j ≤ r, j �= 1) reducible elements of F except 1. Note
that, for F1, F2 ∈ Fr+1, if B1, B2 are basic blocks associated to the posets F1 \ {1},
F2 \{1} respectively and F1

∼= F2 then F1 \{1} ∼= F2 \{1}, and hence by Proposition
3.11, B1

∼= B2. Let C be a maximal chain in F containing all the reducible elements
of F . Let Cr : x1 ≺ x2 ≺ · · · ≺ xr be a r-chain. Then we have the following three
cases.

Case 1 : B ∈ F0. That is, B is a 1-chain, say x1 (in this case, C(F \ {1}) is
a tree). Then F can be constructed using B in unique way as F = (Cr ⊕ {x} ⊕
{1})]1x1

{y1}]1x2
{y2} · · · ]1xr

{yr}. Note that in this case we assume that Cr is precisely
C ∩Red(F ) \ {1}, and C = Cr ⊕ {x} ⊕ {1}.

Case 2 : B ∈ Fj for some j = 2, 3, · · · , r − 1. In this case we assume that
C ∩ Red(B) ⊂ Cr with |C ∩ Red(B)| = j. Let xi1 , xi2 , . . . , xij ∈ Red(B). These j
elements clearly have

(
r
j

)
choices. Now for fixed j, every member F of Fr+1 can be

obtained in a unique way using a member B of Fj as follows.

For fixed B ∈ Fj , let F ′ = ((B ∪ Cr) ⊕ {1})]1z1{y1}]1z2{y2} · · · ]1zr−j
{yr−j} or

F ′ = ((B∪Cr)⊕{x}⊕{1})]1z1{y1}]1z2{y2} · · · ]1zr−j
{yr−j}, where z1, z2, . . . , zr−j ∈ Cr \

{xi1 , xi2 , . . . , xij} with z1 < z2 < · · · < zr−j . The latter construction is required when-
ever ij = r or zr−j = xr. Then either F = F ′ or F = F ′]1w1

{yr−j+1}]1w2
{yr−j+2} · · ·

]1wi
{yr−j+i} for 1 ≤ i ≤ j, where for each k, 1 ≤ k ≤ i, wk ∈ {xi1 , xi2 , . . . , xij} with

w1 < w2 < · · · < wi. For fixed i, 1 ≤ i ≤ j, there are
(
j
i

)
independent choices for the

latter construction. Thus, if we vary i, then by this kind of construction using B,

we get in all 1 +
((

j
1

)
+ · · ·+ (

j
j

))
= 2j non-isomorphic members of Fr+1. Now for

fixed j and for variable choices of the j elements of Red(B), we get in all
(
r
j

) × 2j

non-isomorphic members of Fr+1. Therefore, for fixed j and for variable B ∈ Fj,
we get in all

(
r
j

)× 2j × |Fj| non-isomorphic members of Fr+1. Hence in this case, if
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we vary j, we get in all
r−1∑
j=2

((
r
j

)
× 2j × |Fj |

)
non-isomorphic members of Fr+1.

Case 3 : B ∈ Fr. In this case we assume that Cr = Red(B). Now every
member F of Fr+1 can be obtained in a unique way using a member B of Fr

as follows. For fixed B ∈ Fr, F = (B ⊕ {1})]1w1
{y1}]1w2

{y2} · · · ]1wi
{yi} or F =

(B ⊕ {x} ⊕ {1})]1w1
{y1}]1w2

{y2} · · · ]1wi
{yi} for 1 ≤ i ≤ r, where for each k, 1 ≤ k ≤ i,

wk ∈ Cr with w1 < w2 < · · · < wi. The latter construction is required whenever
wk = xr for some k. For fixed i, 1 ≤ i ≤ r, there are

(
r
i

)
independent choices for

these constructions. Thus, if we vary i, we get in all
(
r
1

)
+

(
r
2

)
+ · · ·+ (

r
r

)
= 2r − 1

non-isomorphic members of Fr+1. Hence in this case, for variable B ∈ Fr, we get
in all (2r − 1)× |Fr| non-isomorphic members of Fr+1.

Therefore by Case 1, Case 2 and Case 3, for r ≥ 2, the total number of non-
isomorphic fundamental basic blocks in Fr+1, which can be obtained using all non-

isomorphic members of Fj , 0 ≤ j ≤ r, j �= 1 is given by 1 +
⎛
⎝r−1∑

j=2

(
r
j

)
2jaj

⎞
⎠+(2r − 1)ar.

But a1 = 0 and a0 = a2 = 1. Hence for r ≥ 2, ar+1 = |Fr+1| =
⎛
⎝ r∑

j=0

(
r
j

)
2jaj

⎞
⎠−ar.

Note that the formula given by Theorem 5.3 also works for r ≥ 0. In the following,
we obtain another form of a recursive formula for ar.

Corollary 5.4. For r ≥ 1, ar+1 =
r∑

k=1

k∑
j=0

(
r
j

)(
r−j
k−j

)
ar−j with a0 = 1 and a1 = 0.

Proof. By Theorem 5.3, ar+1 =
⎛
⎝ r∑

j=0

(
r
j

)
2jaj

⎞
⎠−ar =

(
r
r

)
2rar +

(
r

r−1

)
2r−1ar−1

+
(

r
r−2

)
2r−2ar−2 + · · ·+ (

r
r−(r−1)

)
2r−(r−1)ar−(r−1) +

(
r

r−r

)
2r−rar−r − ar

=
(
r
r

)
(2r − 1)ar +

(
r

r−1

)
2r−1ar−1 +

(
r

r−2

)
2r−2ar−2 + · · ·

+
(

r
r−(r−1)

)
2r−(r−1)ar−(r−1) +

(
r

r−r

)
2r−rar−r

=
(
r
0

)
(2r − 1)ar +

(
r
1

)
(2r−1)ar−1 +

(
r
2

)
(2r−2)ar−2 + · · ·+ (

r
r−1

)
(2r−(r−1))ar−(r−1)

+
(
r
r

)
(2r−r)ar−r

=
(
r
0

) ((
r
1

)
+
(
r
2

)
+ · · ·+ (

r
r

))
ar +

(
r
1

) ((
r−1
0

)
+
(
r−1
1

)
+ · · ·+ (

r−1
r−1

))
ar−1

+
(
r
2

) ((
r−2
0

)
+
(
r−2
1

)
+ · · ·+ (

r−2
r−2

))
ar−2 + · · ·

+
(

r
r−1

) ((
r−(r−1)

0

)
+
(
r−(r−1)

1

))
ar−(r−1) +

(
r
r

) ((
r−r
0

))
ar−r

=
((

r
0

)(
r
1

)
ar +

(
r
1

)(
r−1
0

)
ar−1

)
+
((

r
0

)(
r
2

)
ar +

(
r
1

)(
r−1
1

)
ar−1 +

(
r
2

)(
r−2
0

)
ar−2

)
+ · · ·

+
((

r
0

)(
r
r

)
ar +

(
r
1

)(
r−1
r−1

)
ar−1 + · · ·+ (

r
r

)(
r−r
0

)
ar−r

)

=

⎛
⎝ 1∑

j=0

(
r

j

)(
r − j

1− j

)
ar−j

⎞
⎠+

⎛
⎝ 2∑

j=0

(
r

j

)(
r − j

2− j

)
ar−j

⎞
⎠+ · · ·+

⎛
⎝ r∑

j=0

(
r

j

)(
r − j

r − j

)
ar−j

⎞
⎠

=
r∑

k=1

k∑
j=0

(
r

j

)(
r − j

k − j

)
ar−j .

Thus, ar+1 =
r∑

k=1

k∑
j=0

(
r
j

)(
r−j
k−j

)
ar−j.
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Definition 5.5. Let Fr(l) be the subclass of Fr such that each fundamental basic
block in it is of nullity l. For 1 ≤ k ≤ r and for [ r+2

2
] ≤ l ≤ (

r+1
2

)
, let C l

k = {F ∈
Fr+1(l) : Indegree of 1 in F is k + 1}.

Note that F0(0) consists of a 1-chain only. F1(l) = ∅ for all l ≥ 0. F2(1) as well
as C 1

1 consists of M2 (see Fig. 1) only. Also, if l < [ r+1
2
] or

(
r
2

)
< l then Fr(l) = ∅.

Proposition 5.6. Let F ∈ Fr+1(l), where r ≥ 1. Let R = F \{1} be a poset obtained
from F by deleting 1 of F . Let B be a basic block associated to R. If indegree of 1
in F is k + 1, where 1 ≤ k ≤ r then B ∈ Fr−j(l − k) for some j, 0 ≤ j ≤ k with
j �= r − 1.

Proof. As F ∈ Fr+1(l), F is an RC-lattice having nullity l. Let C be a maximal
chain in F containing all the reducible elements of F . If indegree of 1 in F is k + 1,
then there exist x1, x2, . . . , xk ∈ Irr∗(F ) with xi /∈ C and xi ≺ 1 for all i, 1 ≤ i ≤ k.
Also for each i, 1 ≤ i ≤ k, xi is pendant in R = F \ {1}. Now B is a basic block
associated to R. Therefore B is obtained from R by successive removal of all the
pendant vertices, and all the retractible elements formed due to removal of all the
pendant vertices. Hence xi /∈ B for all i, 1 ≤ i ≤ k. As F is a fundamental basic
block, B is also a fundamental basic block. Now F is a dismantlable lattice of nullity
l. Hence by Theorem 2.1, F is adjunct of l+1 chains. But then B would be adjunct
of (l+1)−k chains. Hence again by Theorem 2.1, B is of nullity l−k. The remaining
part of the proof is obvious.

Note that, in the above formula, if l < k then the class Fr−j(l − k) would be
considered as empty. For r = 2, |C 2

1 | = 2, |C 3
1 | = 0, |C 2

2 | = 1 and |C 3
2 | = 1. In the

following, we obtain the formula for |C l
k| in terms of the number of non-isomorphic

fundamental basic blocks of nullity l − k, in which the reducible elements are all
comparable.

Theorem 5.7. For fixed r ≥ 1, for 1 ≤ k ≤ r, and for [ r+2
2
] ≤ l ≤ (

r+1
2

)
,

|C l
k| =

k∑
j=0

(
r

j

)(
r − j

k − j

)
|Fr−j(l − k)|.

Proof. For fixed r ≥ 1, 1 ≤ k ≤ r and [ r+2
2
] ≤ l ≤ (

r+1
2

)
, let F ∈ C l

k. Therefore
F ∈ Fr+1(l) with indegree of 1 in F is k + 1. Consider the poset F \ {1} obtained
from F by deleting 1 of F . Let B be a basic block associated to F \ {1}. Then by
Proposition 5.2, F \{1} is a basic retract. Also by Proposition 5.6, B is a fundamental
basic block in Fr−j(l − k) for some j = 0, 1, 2, . . . , k with j �= r − 1. Note that, for
F1, F2 ∈ Fr+1, if B1, B2 are basic blocks associated to the posets F1 \ {1}, F2 \ {1}
respectively and F1

∼= F2 then F1 \ {1} ∼= F2 \ {1}, and hence by Proposition 3.11,
B1

∼= B2. Therefore, for any F1, F2 ∈ C l
k, if the corresponding basic blocks B1 and

B2 are not isomorphic then F1 �∼= F2.

Note that the removal of 1 from F means the removal of k 1-chains corresponding
to k adjunct pairs of the type (a, 1), where a �= 1 and a ∈ Red(F ). As F is a
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fundamental basic block, at most k out of r (excluding 1) reducible elements of F
may become irreducible(in fact retractible) in F \{1} after removal of all the pendant
vertices. Therefore r−k ≤ |Red(B)| ≤ r and Red(B) ⊆ Red(F ). Let C be a maximal
chain in F containing all the reducible elements of F . Let Cr : x1 ≺ x2 ≺ · · · ≺ xr
be a r-chain. Then we have the following three cases.

Case 1: B ∈ Fr(l − k). That is j = 0. In this case Cr = Red(B). Therefore
every member F of C l

k can be obtained in a unique way using a member B of
Fr(l−k) as follows. For fixed B ∈ Fr(l−k), F = (B⊕{1})]1z1{y1}]1z2{y2} · · · ]1zk{yk}
or F = (B ⊕ {x} ⊕ {1})]1z1{y1}]1z2{y2} · · · ]1zk{yk}, where z1, z2, . . . , zk ∈ Cr with
z1 < z2 < · · · < zk. The latter construction is required whenever zk = xr. Note that
these k reducible elements can be chosen out of r reducible elements of Cr in

(
r
k

)
ways, and nullity of F becomes l. Thus, using fixed B ∈ Fr(l− k), we get in all

(
r
k

)
non-isomorphic members of C l

k. Hence in this case, for variable B ∈ Fr(l − k), we
get in all

(
r
k

)× |Fr(l − k)| non-isomorphic members of C l
k.

Case 2: B ∈ Fr−j(l− k) for some j = 1, 2, . . . , k ≤ r− 2. In this case we assume
that C ∩ Red(B) ⊂ Cr with |C ∩ Red(B)| = r − j. Let xi1 , xi2 , . . . , xir−j

∈ Red(B).
For fixed j, these r−j reducible elements clearly have

(
r
j

)
choices. Now every member

F of C l
k can be obtained in a unique way using a member B of Fr−j(l−k) as follows.

For fixed B ∈ Fr−j(l − k), let F ′ = ((B ∪ Cr) ⊕ {1})]1z1{y1}]1z2{y2} · · · ]1zj{yj} or

F ′ = ((B ∪ Cr) ⊕ {x} ⊕ {1})]1z1{y1}]1z2{y2} · · · ]1zj{yj}, where z1, z2, . . . , zj ∈ Cr \
{xi1 , xi2 , . . . , xir−j

} with z1 < z2 < · · · < zj . The latter construction is required
whenever ir−j = r or zj = xr. Note that nullity of F ′ ∈ Fr+1 becomes (l − k) + j.
If j = k then F = F ′; otherwise, F = F ′]1w1

{yj+1}]1w2
{yj+2} · · · ]1wk−j

{yj+(k−j)}, where
for each p, 1 ≤ p ≤ k − j, wp ∈ {xi1 , xi2 , . . . , xir−j

} with w1 < w2 < · · · < wk−j.

For fixed j, 1 ≤ j ≤ k ≤ r − 2, there are
(
r−j
k−j

)
independent choices for the latter

construction. Now for fixed j and for variable choices of the r−j elements of Red(B),
we get in all

(
r
j

) × (
r−j
k−j

)
non-isomorphic members of C l

k. Therefore, for fixed j and

for variable B ∈ Fr−j(l−k), we get in all
(
r
j

)× (
r−j
k−j

)×|Fr−j(l−k)| non-isomorphic

members of C l
k. Hence in this case, if we vary j, we get in all

k∑
j=1

((
r

j

)
×

(
r − j

k − j

)
× |Fr−j(l − k)|

)

non-isomorphic members of C l
k, where k ≤ r − 2.

Case 3: B ∈ F0(l − k). That is, B is a 1-chain, say B = x1, and j = r. Hence
k = r. In this case F ∈ C l

k can be constructed using B in a unique way as per the
following. F = (Cr ⊕ {x} ⊕ {1})]1x1

{y1}]1x2
{y2} · · · ]1xr

{yr}.
Therefore by Cases 1, 2 and 3, for r ≥ 1,

|C l
k| =

(
r

k

)
|Fr(l − k)|+

k≤r−2∑
j=1

(
r

j

)(
r − j

k − j

)
|Fr−j(l − k)|+ 1.

Note that, for j = r − 1, Fr−j(l − k) = ∅. Also |F0(0)| = 1. Hence for r ≥ 1,

|C l
k| =

k∑
j=0

(
r
j

)(
r−j
k−j

)|Fr−j(l − k)|.

For fixed r ≥ 1 and fixed l with [ r+2
2
] ≤ l ≤ (

r+1
2

)
, the collection {C l

k : 1 ≤ k ≤ r}
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forms a partition of Fr+1(l). Therefore by Theorem 5.7, we have the following.

Corollary 5.8. For fixed r ≥ 1 and for [ r+2
2
] ≤ l ≤ (

r+1
2

)
,

|Fr+1(l)| =
r∑

k=1

k∑
j=0

(
r

j

)(
r − j

k − j

)
|Fr−j(l − k)|.

Remark 5.9. Coincidentally, the sequence obtained using Corollary 5.8 matches
with the sequence A054548 (see the On-line Encyclopedia of Integer Sequences, OEIS
[30]). This sequence gives the number of labeled graphs on r ≥ 1 unisolated vertices
and l edges, where 0 ≤ l ≤ (

r
2

)
. This problem was posed by Harary and Palmer [18]

in 1973.

Note that if l < [ r+1
2
] or

(
r
2

)
< l, then Fr(l) = ∅. Now the collection {Fr+1(l) :

[ r+2
2
] ≤ l ≤ (

r+1
2

)} forms a partition of Fr+1. Therefore by Corollary 5.8, we also
have the following.

Corollary 5.10. For r ≥ 1, ar+1 =

(r+1
2 )∑

l=[ r+2
2

]

r∑
k=1

k∑
j=0

(
r
j

)(
r−j
k−j

)|Fr−j(l − k)|.

For 1 ≤ k ≤ r, let F k
r+1 = {B ∈ Fr+1 : Indegree, say d, of 1 in B is k + 1}. It is

clear that 2 ≤ d ≤ r + 1, for any B ∈ Fr+1. Also, for fixed 1 ≤ k ≤ r, the collection
{C l

k : [ r+2
2
] ≤ l ≤ (

r+1
2

)} forms a partition of F k
r+1. Therefore by Theorem 5.7, we

have the following.

Corollary 5.11. For fixed r ≥ 1 and for 1 ≤ k ≤ r,

|F k
r+1| =

(r+1
2 )∑

l=[ r+2
2

]

k∑
j=0

(
r

j

)(
r − j

k − j

)
|Fr−j(l − k)|.

The collection {F k
r+1 : 1 ≤ k ≤ r} also forms a partition of Fr+1. Therefore

Corollary 5.10 can also be obtained using Corollary 5.11. It can be observed that
the fundamental basic block associated to an RC-lattice is having the same or a
smaller width as compared to the basic block associated to that lattice. In order to
obtain the formula which gives the number of non-isomorphic basic blocks of nullity
l, containing the reducible elements which are all comparable, using the number of
non-isomorphic fundamental basic blocks of nullity m ≤ l, we see the following.

Definition 5.12. Let Br be the class of all non-isomorphic basic blocks such that
each basic block in it has r reducible elements which are all comparable. Let Br(l)
be the subclass of Br such that each basic block in it is of nullity l.

By Corollary 4.9, if l = m = [ r+1
2
] then Br(l) = Fr(m). In general, if l ≥ m

then |Br(l)| ≥ |Fr(m)|. Let prn denote the number of (weak) compositions of n into
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r (non-negative) parts. Then prn is the number of non-negative integer solutions to
the equation n = x1 + x2 + · · ·+ xr. The number of solutions is actually the number
of distinct r-tuples, (x1, x2, . . . , xr) satisfying the equation n = x1 + x2 + · · · + xr,
where for each i, xi ≥ 0. It is known that prn =

(
n+r−1
r−1

)
. We now obtain the formula

for the number of non-isomorphic basic blocks of nullity l containing the reducible
elements which are all comparable.

Theorem 5.13. For fixed r ≥ 2 and for [ r+1
2
] ≤ m ≤ l ≤ (

r
2

)
,

|Br(l)| =
l∑

m=[ r+1
2

]

(
l − 1

m− 1

)
|Fr(m)|.

Proof. For fixed r ≥ 2 and for fixed [ r+1
2
] ≤ l ≤ (

r
2

)
, let B ∈ Br(l). Suppose F is the

fundamental basic block associated to B. Clearly Red(F ) = Red(B). If m = η(F )
then it is clear that m ≤ l. Let s = l−m. Therefore any B ∈ Br(l) can be obtained
in a unique way using a member F of Fr(m) with the help of exactly s adjunct of
the 1-chains, where all the adjunct pairs are the adjunct pairs of F . Further, by
Proposition 4.11, for any B1, B2 ∈ Br(l), if the corresponding fundamental basic
blocks F1 and F2 are not isomorphic then B1 �∼= B2.

By Theorem 2.1, as nullity of F ism, it is an adjunct ofm+1 chains. Suppose C is
a maximal chain containing all the r reducible elements of F . Then using Definition
4.1 and by Proposition 4.7, F = C]α1{c1}]α2{c2} · · · ]αm{cm} with all the adjunct
pairs αi = (ai, bi) are distinct with (a1, b1) < (a2, b2) < . . . < (am, bm) with respect
to the dictionary order defined on C × C. Here note that, for any isomorphism φ of
F ∈ Fr(m) to itself, φ(ai) = ai, φ(bi) = bi and hence φ(ai, bi) = (ai, bi), for each i,
1 ≤ i ≤ m.

For each F ∈ Fr(m), let AF = {B ∈ Br(l) : F is the fundamental basic block
associated to B}. Also, for each i, 1 ≤ i ≤ m, let ni be the multiplicity of an adjunct
pair (ai, bi) in B ∈ Br(l). Then there is a one-to-one correspondence between the
set AF and the set S = {(n1, n2, . . . , nm) : n1 + n2 + · · · + nm = l, ni ≥ 1}. Now
S is equivalent to the set S ′ = {(n1, n2, . . . , nm) : n1 + n2 + · · ·+ nm = s, ni ≥ 0}.
Therefore |AF | = |S| = |S ′| = pms . But p

m
s =

(
s+m−1
m−1

)
=

(
l−1
m−1

)
. Hence |AF | =

(
l−1
m−1

)
.

Thus for fixed m, the number of non-isomorphic basic blocks in Br(l) which can be
obtained from all the non-isomorphic members of Fr(m) is

∑
F∈Fr(m)

|AF | =
∑

F∈Fr(m)

(
l − 1

m− 1

)
=

(
l − 1

m− 1

)
|Fr(m)|.

Hence |Br(l)| =
l∑

m=[ r+1
2

]

(
l − 1

m− 1

)
|Fr(m)|.

Definition 5.14. Let F (l) be the class of all non-isomorphic fundamental basic
blocks of nullity l such that the reducible elements in each fundamental basic block
in it are all comparable. Let B(l) be the class of all non-isomorphic basic blocks of
nullity l such that the reducible elements in each basic block in it are all comparable.
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For r ≥ 2, it follows that, ar =

(r2)∑
l=[ r+1

2
]

|Fr(l)|. Now let fl = |F (l)| and bl = |B(l)|,

for all l ≥ 0. Then for l ≥ 1, it follows that, fl =
∑2l

r=2 |Fr(l)| and bl =
∑2l

r=2 |Br(l)|.
Note that 1-chain is the only basic block or fundamental basic block of nullity 0. Let
rl denote the number of all non-isomorphic basic retracts having nullity l. Then we
have the following.

Remark 5.15. Using Theorem 5.3, Corollary 5.8, Theorem 5.13, and Theorem 3.14,
we obtain four important integer sequences viz., 〈ar〉, 〈fl〉, 〈bl〉 and 〈rl〉 respectively
in the following.

1. For r ≥ 0, 〈ar〉 : 1, 0, 1, 4, 41, 768, 27449, 1887284, 252522481, 66376424160,
34509011894545, . . ..
Coincidentally, this is the sequence A006129 (see OEIS [30]), representing the
number of labeled graphs on r unisolated vertices. This sequence also represents
the counting of edge covers of labeled complete graph on r vertices (see [32]).

2. For l ≥ 0, 〈fl〉 : 1, 1, 6, 62, 900, 16824, 384668, 10398480, 324420840,
11472953760, 453518054216, . . ..
Coincidentally again, this is the sequence A121251 (see OEIS [30]), representing
the number of labeled graphs with unisolated vertices and containing l ≥ 0
edges (see also [3]).

3. For l ≥ 0, 〈bl〉 : 1, 1, 7, 75, 1105, 20821, 478439, 12977815, 405909913,
14382249193, 569377926495, . . ..
Note that this is also a known sequence A121316 (see OEIS [30]). This se-
quence represents the counting of labeled multigraphs without isolated vertices
and containing l ≥ 1 edges. This sequence also represents the number of
generic l-rook placements with l ≥ 1 rooks below the main diagonal (of the
chess board). These are precisely generalised Eulerian numbers (see Banaian
et al. [2]). According to Banaian et al. [2], there is a close connection between
the mathematics of juggling and the mathematics of rook placements (see also
the sequence A269744 in OEIS [30]).

4. For l ≥ 0, 〈rl〉 : 2, 4, 28, 300, 4420, 83284, 1913756, . . ..
Note that for l ≥ 1, rl = 4× bl.

6 Conclusion

In Theorem 3.5, we proved that basic retract associated to a poset preserves the nul-
lity of the poset. In Theorem 4.4, we proved that every RC-lattice is a dismantlable
lattice. But the converse is not true. It follows that, up to isomorphism, there is a
unique basic block/retract associated to any poset. Also, up to isomorphism, there
is a unique fundamental basic block associated to any RC-lattice.
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In the end, we have obtained the four desired integer sequences (see Remark 5.15).
However, it still remains to establish the equivalences of the sequences 〈|Fr(l)|〉, 〈ar〉,
〈fl〉, and 〈bl〉 with the sequences A054548, A006129, A121251, and A121316 (see
OEIS [30]) respectively.

The main purpose behind introducing the concepts of a basic retract/block as-
sociated to posets, and a fundamental basic block associated to RC-lattices, is the
counting of lattices and posets. We feel that the problem of counting lattices (in
particular, RC-lattices) and posets can be dealt with using the theory of partitions
and with the help of basic retracts.
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