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Abstract

Balancing numbers were introduced by Behera and Panda. Generaliza-
tions have been introduced by Panda (individually and with collabora-
tors), the authors, and many others. There are numerous connections
with entries of the Online Encyclopedia of Integer Sequences. Recently it
was conjectured that the number of distinct families of A(k, 0)-balancing
numbers satisfied a simple formula. Using elementary algebraic number
theory we settle this conjecture.

1 Introduction

Balancing numbers were introduced by Behera and Panda [3]. Generalizations have
been introduced by Panda [12], Panda and Panda [13, 14], Panda and Rout [16, 17],
Panda and Ray [15], the authors [1, 2], and many others [4, 5, 6, 8, 9, 10, 18, 20, 21,
22]. There are numerous connections with entries of [11] (e.g. A001109, A002203,
A053141, A016278, A076293, A077259, A077443, A077446, A124124, A156066,
A275797) and many related sequences do not yet appear in the encyclopedia. Re-
cently it was conjectured that the number of distinct families of A(k, 0)-balancing
numbers k satisfied a simple formula in terms of the number of positive divisors of
an integer [1]. Using elementary algebraic number theory we settle this conjecture.

Let k and w be integers with k ≥ 0. A positive integer B is an almost k-gap
balancing number with weight w, or an A(k, w)-balancing number, if B ≥ k and

1 + 2 + 3 + · · ·+ (B − k) + w = (B + 1) + (B + 2) + · · ·+ (B + r).

for some non-negative integer r. The integer r is called the A(k, w)-balancer for the
A(k, w)-balancing number B. The integer w is considered a weight, and the integer
k is the gap. The original class of balancing numbers has w = 0 and k = 1. Almost
balancing numbers with w = ±1 were introduced by Panda and Panda [13]. The
generalization to gaps k ≥ 2 and general integer values of w is made in [2]. Dash,
Ota, and Dash [6] give an alternate definition of gap balancing numbers. We find
that our definition generalizes more easily.
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In this paper we consider the number of classes of A(k, 0)-balancing numbers.
Our main result is

Theorem 1.1. For a given gap k the number of distinct families of A(k, 0)-balancing
numbers is the number of positive integer divisors of 2k2 − 1.

This generalizes the result of Tekcan, Tayat and Özbek [22] which dealt with the
case that 2k2 − 1 is an odd prime congruent to ±1 modulo 8.

In the next section we use elementary algebraic number theory to count families
of solutions to the Pell-like equation y2 − 2z2 = N , where N > 1 is an odd positive
integer. In the third section we illustrate how this Pell-like equation arises in the
study of generalized balancing numbers. From this connection we derive an upper
bound on the number of distinct families of A(k, 0)-balancing numbers. In the fourth
section we show that this bound is tight by considering the action of the group of
units in Z[

√
2] on solutions of the Pell-like equation x2 − 2y2 = 2k2 − 1.

2 Classes of solutions to a Pell-like equation

Let R denote the ring Z[
√
2] ∼= Z[x]/〈x2−2〉 and let p denote an odd integral prime.

Because R/p ∼= Zp[x]/〈x2 − 2 (mod p)〉 for an integer prime p > 2, the diophantine
equation

p = u2 − 2v2

is solvable in integers u and v if and only if p ≡ ±1 (mod 8). Hence the prime
elements of R up to associates, are

• √
2

• α ∈ R such that N(α) = p is a prime p ≡ 1, 7 (mod 8)

• integer primes p ≡ 3, 5 (mod 8).

So if p ≡ ±1 (mod 8) it is not prime in R and therefore there are integers a, b so
that p = a2 − 2b2. In other words, since R is a principal ideal domain [19], the
ideal generated by p in R is uniquely factorable as the product of the prime ideals
〈a + b

√
2〉 and 〈a− b

√
2〉 in R.

Now given an odd integer N which can be written as N = a2 − 2b2 by the fun-
damental theorem of arithmetic there are integral primes p1, p2, . . . , ps, q1, q2, . . . , qt
so that we can write N uniquely as

∏s
i=1 p

ei
i

∏t
j=1 q

fj
j where each pi ≡ ±1 (mod 8),

each qj ≡ ±3 (mod 8) and the integers ei and fj give the multiplicities with which
the primes pi and qj respectively divide N . Further, the qj’s remain prime in R and
each ideal generated by one of the pi factors as PiPi = 〈ai + bi

√
2〉〈ai − bi

√
2〉 where

the overline denotes conjugating the square root of 2.

Example 2.1. When N = 161 = 7 · 23. In Z[
√
2],

〈161〉 = 〈3 +
√
2〉〈3−

√
2〉〈5 +

√
2〉〈5−

√
2〉.
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Here we get four distinct class representatives of solutions to the equation y2−2z2 =
161. From (3+

√
2)(5+

√
2) = 17+8

√
2 arises y = 17, z = 8, while (3−√

2)(5−√
2)

gives y = 17, z = −8. From (3 +
√
2)(5 − √

2) = 13 + 2
√
2 arises y = 13, z = 2.

Lastly (3−√
2)(5 +

√
2) = 13− 2

√
2 yields y = 13, z = −2.

Theorem 2.1. Let N > 1 be an odd integer with N = a2 − 2b2, for some integers
a, b. Further write N = AB, where A =

∏s
i=1 p

ei
i , where each pi ≡ ±1 (mod 8)

and no prime divisor of B =
∏t

j=1 q
fj
j is congruent to ±1 (mod 8). The number of

distinct families of solutions to y2− 2z2 = N is the number of positive divisors of A.

Proof. In R we can write the ideal generated by N , 〈N〉, as the product of two
conjugate ideals 〈a + b

√
2〉〈a − b

√
2〉 and so as a product of prime ideals in R if

any prime divides 〈a + b
√
2〉 in R, its conjugate must divide 〈a− b

√
2〉 in R. Since

all of the qj ’s are self-conjugate, they must appear with even ramification in the
factorization of 〈N〉 in R. Thus fj = 2gj for some integer gj for all j.

Furthermore if we write 〈a+b
√
2〉 as a product of primes inR, each time a prime Pi

appears as a factor, its conjugate P i must appear as a factor in the factorization of the
ideal 〈a−b

√
2〉. So we can write 〈a+b

√
2〉 = Πs

i=1〈ai+bi
√
2〉xi〈ai−bi

√
2〉ei−xiΠt

j=1q
gj
j .

Here we can choose xi to be any integer with 0 ≤ xi ≤ ei. and thus there are ei + 1
choices for xi.

Finally it is known that solutions in integers to a2 − 2b2 = N come in infinite
cyclic families where the elements in each family differ by a unit in R. This means
that any two members from the same family must differ by a unit. So they are
divisible by the same primes in R. Thus each family of solutions corresponds to a
particular choice of the exponents xi. So the number of families of solutions is the
number of positive integer divisors of A.

Example 2.2. When N = 32 · 7 · 23, we have A = 161 as in Example 2.1. but now
B = 9. In Z[

√
2],

〈N〉 = 〈3〉2〈3 +
√
2〉〈3−

√
2〉〈5 +

√
2〉〈5−

√
2〉.

Here we get four distinct class representatives of solutions to the equation y2 −
2z2 = N . From 3 · (3 +

√
2)(5 +

√
2) = 51 + 24

√
2 arises y = 51, z = 24, while

3 · (3−√
2)(5−√

2) gives y = 51, z = −24. From 3 · (3 +√
2)(5−√

2) = 39 + 6
√
2

arises y = 39, z = 6. Finally, from 3 · (3 − √
2)(5 +

√
2) = 39 − 6

√
2 we get

y = 39, z = −6.

In greater generality if R = Z[
√
d] is a principal ideal domain and we have

y2 − dz2 = N where N 
≡ 0 (mod d), then the prime divisors of the left-hand side
appear in conjugate pairs. We know that each prime ideal P in R contains exactly
one prime ideal 〈p〉 with p ∈ Z, so either P = 〈p〉, or there exist integers a, b so that
P = 〈a+ b

√
d〉, where 〈p〉 = 〈a+ b

√
d〉〈a− b

√
d〉.

Recall that the Legendre symbol (d
p
) is 1 if d is a quadratic residue mod p and

−1 if d is a quadratic non-residue mod p. If we write N = Π( d
pi

)=1p
ei
i Π( d

qj
)=−1q

2gj
j
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and A = Π( d
pi

)=1p
ei
i , then the number of families of solutions to y2 − dz2 = N is the

number of positive integral divisors of A.

Again, members of the same family of solutions differ only by a unit in R. So if
d > 0 there are infinitely many units and the families are infinite, cyclic and pairwise
disjoint (by prime factorization). Meanwhile if d < 0 there are finitely many units
in R and therefore finitely many solutions in integers to y2 − dz2 = N

Ireland and Rosen [7, p. 192] indicate that for d > 0 Gauss conjectured that there
are infinitely many fields Q(

√
d) for which the class number is one. This remains an

open problem.

3 Upper bounds for the number of families of general
balancing numbers

If T (n) = n(n + 1)/2 is the nth triangular number, then B is an A(k, w)-balancing
number if and only if

T (B − k) + T (B) + w = T (B + r). (1)

Solving Equation (1) for r gives

r =
−(2B + 1) +

√
8B2 + 8(1− k)B + (2k − 1)2 + 8w

2

So B is an A(k, w)-balancing number if and only if 8B2+8(1−k)B+(2k−1)2+8w is
a perfect square. In this case the integer C =

√
8B2 + 8(1− k)B + (2k − 1)2 + 8w

is the corresponding A(k, w)-Lucas-balancing number. Further the pair of numbers
(B,C) is a solution (x, y) to the Pell-like equation y2 = 8x2+8(1−k)x+(2k−1)2+8w,
which after a change of variable z = 2x+ 1− k takes the form

y2 − 2z2 = 2k2 + 8w − 1 (2)

which is called the A(k, w)-companion equation [2].

Corollary 3.1. For a given gap k the number of distinct families of A(k, 0)-balancing
numbers is at most the number of positive divisors of 2k2 − 1.

Proof. Apply Theorem 2.1 with N = 2k2 − 1 = (1 + k
√
2)(−1 + k

√
2). If qj ≡ ±3

(mod 8) divides N , by Euclid’s Lemma it either divides 1 + k
√
2 or 1 − k

√
2. But

this is impossible since we then need ±1/qj ∈ Z. Thus the quantity B from Theorem
2.1 is an empty product. Since any balancing pair (x, y) gives a solution (y, z) to
the companion equation, which in turn gives a prime factorization of N in R, the
number of families of A(k, 0)-balancing numbers is at most the number of positive
divisors of N = A.
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For a fixed positive integer k, a k-circular balancing number satisfies the Dio-
phantine equation

(k+1)+ (k+2)+ · · ·+ (n− 1) = (n+1)+ (n+2)+ · · ·+m+ (1+ 2+ · · ·+ (k− 1))

for some natural number m [14]. One can show that the companion equation for this
type of balancing number is y2 − 8z2 = 1− 8k2.

Corollary 3.2. For a positive integer k the number of distinct families of k-circular
balancing numbers is at most the number of positive divisors of 8k2 − 1.

4 Distinct families of A(k, 0)-balancing numbers

4.1 The action of units on solutions to the companion equation

In this section R = Z[
√
2]. The group of units G ∼= Z2 × Z for R is generated

by 〈−1, w = 1 +
√
2〉. The argument is two-fold: First, reduce to the case where

a + b
√
2 ∈ G, with b ≥ 0. Second, induct on b.

We are concerned with the action of G on solutions of the companion equation
y2 − 2z2 = N , where N > 1 is an integer. In particular we want to determine how
multiplication by an element of G acts on a solution y + z

√
2 to the companion

equation.

Two conjugate hyperbolas, see figure 4.1 arise here H : y2 − 2z2 = N , and
H : y2 − 2z2 = −N . Further H has an upper branch Hu and a bottom branch Hb,
and H has a right branch Hr and a left branch Hl.

The groupG acts transitively on lattice points of these branches by multiplication.
This action induces an action on the four branches Hr, Hl, Hu, and Hb.

The map −, which corresponds to multiplication by −1, takes a point y + z
√
2

to the point −(y+ z
√
2) = −y− z

√
2 and leaves the norm y2− 2z2 invariant. So the

action of − on the branches is synopsized in cycle notation as (Hr, Hl)(Hu, Hb).

The map w, which corresponds to multiplication by w = 1 +
√
2 takes a point

y + z
√
2 to the point y′ + z′

√
2 = (y + 2z) + (y + z)

√
2, but if y2 − 2z2 = N , then

(y′)2−2(z′)2 = −N . Thus the upper part of Hr (y, z > 0) is mapped to the right part
of Hu and vice versa. As the map is clearly continuous we must have w(Hr) = Hu

and vice versa. Similarly with the lower part of Hl (y, z < 0) maps to the left part
of Hb. So the action of w on the branches is (Hr, Hu)(Hl, Hb) in cycle notation.

Finally, the map w which corresponds to multiplication by w = 1 − √
2 sends

y+z
√
2 to y′+z′

√
2 = (y−2z)+(z−y)

√
2 and if y2−2z2 = N , then (y′)2−2(z′)2 =

−N . Thus the lower part of Hr (y > 0, z < 0) is mapped to the right part of Hb,
while the upper part of Hl (y < 0, z > 0) is mapped to the left part of Hu. So the
action of w on the branches is (Hr, Hb)(Hl, Hu) by continuity.

Thus the subgroup K of G that leaves the set of lattice points of Hr (y > 0)
invariant must be the subgroup of index 4 generated by u = w2 = 3 + 2

√
2.

Consequently, it follows that:
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Hr

Hl

Hu

Hb

y

z

Figure 1: Hyperbolas H and H

Theorem 4.1. Two solutions y + z
√
2 and y′ + z′

√
2 of the companion equation

y2 − 2z2 = N with y > 0 that lead to the same factorization of N into two conjugate
factors over R must differ by a power of 3 + 2

√
2 = u, say ue, where e ∈ Z.

4.2 Inverse integral maps for A(k, 0)-balancing numbers

For A(k, 0)-balancing numbers, the map P which sends a balancing pair (x, y) to a
solution of the companion equation by (y, z) by y �→ y and x �→ z = 2x − k + 1
clearly takes lattice points to lattice points. In fact the inverse map P−1 by y �→ y
and z �→ x = (z + k − 1)/2 does too.

To see this first realize that if (y, z) is a solution to the companion equation,
then y2 = 2z2 + 2k2 − 1 is odd. Thus y = 2m + 1 for some integer m. If we
additionally assume k = 2l + 1 for some integer l, the companion equation can be
solved for z2 = 2m2 + 2m − 4l2 − 4l. Thus z2 is even, so z has opposite parity
from k. If we assume that k = 2l instead, solving the companion equation for
z2 = 2m2 + 2m − 4l2 − 1 shows z2 is odd. So in either case z and k have opposite
parity. Hence P−1 maps lattice points to lattice points.

4.3 Decomposition of a map

As defined in [1] there is a map f which translates a balancing pair of A(k, 0)-
balancing numbers in a particular family to the next member in the family by
(xi, yi) �→ (xi+1, yi+1) where

[
xi+1

yi+1

]
=

[
3 4
2 3

] [
xi

yi

]
+ (1− k)

[
1
4

]
.

We state without proof the following lemma.
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Lemma 4.2. The map f decomposes as PAP−1 where the map A represents multi-

plication by u in R via matrix multiplication. The matrix for A is

[
3 2
4 3

]
.

Proof of Theorem 1.1: By Corollary 3.1 we know that the number of distinct families
of A(k, 0)-balancing numbers is at most the number of positive divisors of 2k2 − 1.
It remains to show that the number of distinct families is at least the number of
positive divisors of 2k2 − 1.

Denote a complete set of representatives of distinct factorizations of 2k2 − 1 into
two conjugate factors over R by S. If we start with a balancing pair (x, y) and
move to a solution (y, z) to the companion equation, there is an integer e so that the
factorization of 2k2 − 1 into two conjugate parts over R from the pair (y, z) is in the
same class as arising from y′ + z′

√
2 ∈ S. That is y + z

√
2 = ue(y′ + z′

√
2) for some

integer e. Thus P−1(y′, z′) = (x′, y′) = f e(x, y). Thus each factorization of 2k2−1 in
Z[
√
2] into two conjugate factors produces at most one family of balancing pairs.
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[22] A. Tekcan, M. Tayat and M. Özbek, The Diophantine Equation 8x2 − y2 +
8x(1+ t)+(2t+1)2 = 0 and t−Balancing Numbers, ISRN Comb. 2014 (2014),
5 pp.

(Received 20 Oct 2018; revised 6 Nov 2019, 7 June 2020)

http://www.ams.org/mathscinet-getitem?mr=MR2741864
http://www.ams.org/mathscinet-getitem?mr=MR2298912
http://www.ams.org/mathscinet-getitem?mr=MR2566154
http://www.oeis.org
http://www.ams.org/mathscinet-getitem?mr=MR2438198
http://www.ams.org/mathscinet-getitem?mr=MR3467623
http://www.ams.org/mathscinet-getitem?mr=MR3734632
http://www.ams.org/mathscinet-getitem?mr=MR2176762
http://www.ams.org/mathscinet-getitem?mr=MR3093677
http://www.ams.org/mathscinet-getitem?mr=MR3315286
http://www.ams.org/mathscinet-getitem?mr=MR3781687
http://www.ams.org/mathscinet-getitem?mr=MR3655291

	Introduction
	Classes of solutions to a Pell-like equation
	Upper bounds for the number of families of generalbalancing numbers
	Distinct families of A(k,0)-balancing numbers
	The action of units on solutions to the companion equation
	Inverse integral maps for A(k,0)-balancing numbers
	Decomposition of a map


