# Some relations on prefix-reversal generators of the symmetric and hyperoctahedral groups 

Saúl A. Blanco<br>Department of Computer Science<br>Indiana University<br>Bloomington, IN 47408<br>U.S.A.<br>sblancor@indiana.edu<br>Charles Buehrle<br>Department of Mathematics, Physics, and Computer Studies<br>Notre Dame of Maryland University<br>Baltimore, MD 21210<br>U.S.A.<br>cbuehrle@ndm.edu


#### Abstract

The symmetric group $S_{n}$ and the group of signed permutations $B_{n}$ (also referred to as the hyperoctahedral group) can be generated by prefixreversal permutations. A natural question is to determine the order of the "Coxeter-like" products formed by multiplying two generators, and in general, the relations satisfied by the prefix-reversal generators (also known as pancake generators or pancake flips). The order of these products is related to the length of certain cycles in the pancake and burnt pancake graphs. Using this connection, we derive a description of the order of the product of any two of these generators from a result due to Konstantinova and Medvedev. We provide a partial description of the order of the product of three generators when one of the generators is the transposition (1,2). Furthermore, we describe the order of the product of two prefix-reversal generators in the hyperoctahedral group and give connections to the length of certain cycles in the burnt pancake graph.


## 1 Introduction

Thinking of the symmetric group as being generated by prefix-reversals (also referred to as pancake flips and pancake generators) has been studied in several areas in mathematics and computer science. However, the purely algebraic question asking for
the relations satisfied by said prefix reversals has not been asked directly. However, there is related work in the literature, mostly in the study of short cycles in the pancake graph.

### 1.1 The pancake and burnt pancake problems

The pancake problem, which first appeared in the Problems and Solutions section of the December 1975 Monthly [21] as follows.

The chef in our place is sloppy, and when he prepares a stack of pancakes they come out all different sizes. Therefore, when I deliver them to a customer, on the way to the table I rearrange them (so that the smallest winds up on top, and so on, down to the largest on the bottom) by grabbing several from the top and flipping them over, repeating this (varying the number I flip) as many times as necessary. If there are $n$ pancakes, what is the maximum number of flips (as a function $f(n)$ of $n$ ) that I will ever have to use to rearrange them?

The problem of determining the maximum number of flips that are ever needed to sort a stack of $n$ pancakes is known as the pancake problem, and the $f(n)$ is known as the pancake number.

This initial posing of the problem was made by Jacob E. Goodman, under the pseudonym Harry Dweighter (a pun on "harried waiter"). In [12], as a commentary to the problem formulation in [21], Michael R. Garey, David S. Johnson, and Shen Lin gave the first upper and lower bound to the the pancake number:

$$
n+1 \leq f(n) \leq 2 n-6 \text { for } n \geq 7
$$

Subsequent results have tightened these bounds. The first significant tightening of the bounds was described in the work of William H. Gates and Christos H. Papadimitriou [17], which incidentally is the only academic paper Gates ever wrote. The best upper and lower bound known today for the general case appeared in [7] and [19], respectively. Combined, one has that

$$
15\left\lfloor\frac{n}{14}\right\rfloor \leq f(n) \leq \frac{18 n}{11}+O(1)
$$

Computing the pancake number for a given $n$ is a complicated task. To our knowledge, the exact value of $f(n)$ is only known for $1 \leq n \leq 19$ (see [2, 8, ,9, [19, 28]). Furthermore, determining an optimal way of sorting a stack of pancakes utilizing pancake flips is an NP-hard problem [6], though 2-approximation algorithms exists [16].

The burnt pancake problem was first posed in [17]. In this variation, the pancakes to be sorted have an orientation and the goal is to sort the stack so that the pancakes are in the respective order according to size and orientation. In this setting, polynomial-time algorithms are known to sort optimally a stack of burnt pancakes by using all reversals (and not just prefix reversals), the first of which was given


Figure 1: Pancake graph of $S_{4}$. The different colors indicate the different pancake generators.
in [18. To our knowledge, no such exact algorithm exists to sort optimally a stack of pancakes, and no exact algorithm is known to sort a stack of burnt pancakes utilizing only prefix reversals [6].

One connection to the pancake and burnt pancake problem that has been heavily explored is to genome rearrangements. It turns out that genomes frequently evolve by reversals that transform a gene order

$$
a_{1} a_{2} \cdots a_{i-1} a_{i} a_{i+1} \cdots a_{j-1} a_{j} a_{j+1} \cdots a_{n}
$$

into

$$
a_{1} a_{2} \cdots a_{i-1} a_{j} a_{j-1} \cdots a_{i+1} a_{i} a_{j+1} \cdots a_{n}
$$

(see [15, Section 3.3] and [18]). Another connection is in the realm of parallel computing, and we discuss this in the next subsection.

### 1.2 Pancake graphs

The pancake problem has connections to parallel computing, in particular in the design of symmetric interconnection networks (networks used to route data between the processors in a multiprocessor computing system) where the so-called pancake graph, the Cayley graph of the symmetric group under prefix reversals, gives a model for processor interconnections (see [1, 32]). A pancake network is shown in Figure 1 . One can also define a burnt pancake graph on signed permutations (See Section 2 for the necessary definitions), and we exhibit one in Figure 2.


Figure 2: Pancake graph of $B_{3}$. Different edge colors indicate the different pancake generators.

Finding the diameter of the pancake graph is effectively the same as solving the pancake problem. Several properties for these graphs are known, including that they are vertex-transitive, which intuitively means that any vertex looks like any other vertex in the graph. There are some results relating to cycles of certain type that exist in the pancake graph [23, 24, 26, 27]. Since the pancake graph is vertextransitive, any cycle $C$ would give rise to a relation satisfied by certain generators. This connection will allow us to derive Theorem 3.1. The results for type $B$ that we present in Section 4 are of a similar flavor, and we derive connections to the length of certain cycles in the burnt pancake graph.

It is known that the pancake graph has cycles of all lengths between its girth of six and $n!$ [20, 33]. In recent results the authors, with Akshay Patidar, have shown that the burnt pancake graph also has cycles of all lengths between its girth of eight and $2^{n} n!$ [4]. Furthermore, again with Akshay Patidar, we applied specific descriptions short cycles to find all permutations and signed permutations that are precisely four prefix reversals from the identity [5].

### 1.3 Our results

One can see that the pancake flips (also referred to as prefix reversals and pancake generators) generate both the symmetric and the hyperoctahedral group. Since both groups are Coxeter groups, then by Tits' theorem [34] it is known that they have solvable word problems regardless of the generators [14, Theorem 2.4.1]. Although the pancake flips share much similarity to the standard Coxeter generators, adjacent transpositions, of both groups these prefix reversals are not Coxeter generators. That is, there are more relations that are satisfied in a complete presentation of either group that are not implied by the product of two generators. So it is a natural question to ask: "what relations are satisfied by these pancake generators?" Another follow up questions is to ask: "what is a complete set of relations to give a presentation for $S_{n}$ (or $B_{n}$ ) in terms of pancake generators?" In this paper, we provide a partial answer to the first question. Specifically, we

1. Describe the relations satisfied by any two pancake generators in $S_{n}$. This result will be derived from a result on the length of certain cycles in the pancake graph from [27]. All the details are included in Section 3.
2. Describe the relations satisfied by any two pancake generators in $B_{n}$. We also make connections to the length of certain cycles in the burnt pancake graph. All the details are included in Section (4,
3. Provide a partial result regarding the relations satisfied by three generators by describing all relations that involve the pancake generator $s_{1}=(1,2)$ in $S_{n}$ ( $s_{1}$ is denoted as $f_{1}$ in our notation as explained in Section 2). This is also included in Section 3 .

Finding a complete presentation of a group is interesting in its own right, as in [30, 31]. The results presented here also provide progress toward answering the second question. Since we describe all relations of pairs of generators, and all of the lexicographically first relations, when ordering the indices, of three generators of $S_{n}$ (those starting with the generator $f_{1}$ ), we have a great deal of known relations to contribute to a complete presentation of either group, and a paradigm to recovering more such relations.

In regard to the original pancake problem, having a complete presentation of the symmetric and hyperoctahedral groups using pancake generators would allow us to employ the Knuth-Bendix algorithm [22] to describe a confluent rewriting system of words in the generators. A system is considered confluent if there exists a unique reduced word in terms of a well-ordering of the generators. Using such a rewriting system it may be possible to implement an algorithm, like in [13], to compute pancake numbers. It would also be worth investigating whether these rules provide any combinatorial descriptions of reductions in terms of the permutation associated with a given word.

## 2 Terminology and Notation

Following [3, Section 1.1], if $S$ is any set, then a Coxeter matrix is one whose entries $m_{s, s^{\prime}} \in \mathbb{Z}^{+} \cup\{\infty\}$ satisfy $m_{s, s^{\prime}}=m_{s^{\prime}, s}$ and $m_{s, s^{\prime}}=1$ if and only if $s=s$ for every $s, s^{\prime} \in S$. It is well known that, up to isomorphism, there is a one-to-one correspondence between Coxeter matrices and Coxeter systems (see [3, Theorem 1.1.2]).

The symmetric group $S_{n}$ is generated by the set $S:=\left\{s_{1}, \ldots, s_{n-1}\right\}$ of adjacent transpositions; that is, $s_{i}=(i, i+1)$ in cycle notation, and has the following presentation

$$
S_{n}:=\left\langle S \mid\left(s_{i} s_{j}\right)^{m_{i, j}}=e\right\rangle,
$$

where $e$ denotes the identify permutation, $m_{i, j}=1$ if and only if $i=j, m_{i, j}=m_{j, i}=2$ if and only if $|i-j| \geq 2$, and $m_{i, j}=m_{j, i}=3$ if and only if $|i-j|=1$ for all $i, j \in[n-1]$. It is well-known that the pair $\left(S_{n}, S\right)$ is a Coxeter system (see [3]). In particular, the matrix $\left(m_{i, j}\right)_{i, j \in[n-1]}$ is a Coxeter matrix.

Following standard notation we shall use $e=\left[\begin{array}{lllll}1 & 2 & 3 & \ldots & n\end{array}\right]$ for the identity permutation in $S_{n}$. We will associate to elements of $S_{n}$ permutations through left actions. That is, for example,

$$
s_{i} \circ[123 \ldots i(i+1) \ldots n]=\left[\begin{array}{lll}
1 & 2 & 3 \ldots(i+1) i \ldots n
\end{array}\right)
$$

The pancake problem has a straight-forward interpretation in terms of permutations. A stack of $n$ pancakes of different sizes can be thought of as an element of $S_{n}$ and flipping a stack of pancakes with a spatula can be thought of as using a prefix reversal permutation; that is, a permutation whose only action when composed with $w \in S_{n}$ is to reverse the first so many characters of $w$, in one-line-notation. In other words, using one-line notation, a prefix reversal permutation of $S_{n}$ has the form

$$
\begin{aligned}
f_{i} & =\left[\begin{array}{lll}
(i+1) & i(i-1) \ldots 21(i+2)(i+3) \ldots n
\end{array}\right] \\
& =(1, i+1)(2, i) \ldots\left(\left\lfloor\frac{i+2}{2}\right\rfloor,\left[\frac{i+2}{2}\right\rceil\right),
\end{aligned}
$$

as a product of transpositions, for some $i \in[n-1]$. We denote the above permutation by $f_{i}$, with $1 \leq i \leq n-1$ and define $P=\left\{f_{1}, \ldots, f_{n-1}\right\}$. For example, in $S_{4}$ one has $f_{1}=\left[\begin{array}{lll}2 & 1 & 3\end{array}\right], f_{2}=\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]$, and $f_{3}=\left[\begin{array}{lll}4 & 3 & 2\end{array}\right]$.

Considering adjacent transpositions with prefix reversal permutations, one can easily see that $s_{i}=f_{i} f_{1} f_{i}$ and that $f_{i}=s_{1}\left(s_{2} s_{1}\right) \cdots\left(s_{i-1} \cdots s_{2} s_{1}\right)\left(s_{i} \cdots s_{2} s_{1}\right)$. Hence, $S_{n}$ is also generated by $P$. We refer to the elements of $P$ as pancake generators (also referred to as pancake flips or prefix-reversal generators) of $S_{n}$.

Let $B_{n}$ be the hyperoctahedral group, most commonly referred to as the group of signed permutations of the set $[ \pm n]=\{\underline{n}, \underline{n-1}, \ldots, \underline{1}, 1,2, \ldots, n\}$, where $\underline{i}=-i$. That is, permutations $w$ of $[ \pm n]$ satisfying $w(\underline{i})=w(i)$ for all $i \in[ \pm n]$. We shall use window notation to denote $w \in B_{n}$; that is, we denote $w$ by $[w(1) w(2) \ldots w(n)]$. The group $B_{n}$ is generated by the set $\left\{s_{0}^{B}, s_{1}^{B}, \ldots, s_{n-1}^{B}\right\}$, where $s_{0}^{B}=[\underline{1} 2 \cdots n]$ and for $1 \leq i \leq n-1, s_{i}^{B}=[12 \cdots(i-1)(i+1) i(i+2) \cdots n]$ (see [3, Chapter 8]).

The burnt pancake generators affect the orientation of the entries: they are negative if they have been reversed an odd number of times and positive otherwise. We define $f_{i}^{B}, 1 \leq i \leq n-1$ to be the signed permutation

$$
\begin{aligned}
f_{i}^{B} & =[\underline{i+1} \underline{i} \underline{i-1} \ldots \underline{2} \underline{1}(i+2)(i+3) \ldots n] \\
& =(1, \underline{i+1}, \underline{1}, i+1)(2, \underline{i}, \underline{2}, i) \ldots\left(\left\lfloor\frac{i+2}{2}\right\rfloor,\left\lfloor\frac{i+2}{2}\right\rceil,\left\lfloor\frac{i+2}{2}\right\rfloor,\left\lceil\frac{i+2}{2}\right\rceil\right)
\end{aligned}
$$

in disjoint cycle form as elements of the symmetry group of $[ \pm n]$, and $f_{0}^{B}=s_{0}^{B}$. Thus, for example, in $B_{4}$ we have $f_{0}^{B}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right], f_{1}^{B}=\left[\begin{array}{lll}\underline{1} & 1 & 3\end{array}\right], f_{2}^{B}=\left[\begin{array}{lll}\underline{3} & \underline{1} & 1\end{array} 4\right]$, and $f_{3}^{B}=[\underline{4} \underline{3} \underline{2} \underline{1}]$. We shall define $P^{B}=\left\{f_{0}^{B}, f_{1}^{B}, \ldots, f_{n-1}^{B}\right\}$ as the set of burnt pancake generators, or burnt pancake flips. It should be noted, that these are the signed versions indicated in this paragraph.

Again, considering (signed) adjacent transpositions and prefix reversals, one can see that $s_{i}^{B}=f_{i}^{B} f_{0}^{B} f_{1}^{B} f_{0}^{B} f_{i}^{B}$ for $1 \leq i \leq n-1$ and $s_{0}^{B}=f_{0}^{B}$, thus $B_{n}$ is also generated by $P^{B}$. Furthermore, we note that $f_{i}^{B}=s_{0}^{B} s_{1}^{B} \ldots s_{0}^{B} s_{i-1}^{B} \ldots s_{2}^{B} s_{1}^{B} s_{0}^{B} s_{i}^{B} \ldots s_{2}^{B} s_{1}^{B} s_{0}^{B}$.

## $3 \quad S_{n}$ results

In this section we take a look at the pancake generators for $S_{n}$. In this case, the pancake matrix $M_{n-1}=\left(m_{i, j}\right)_{(n-1) \times(n-1)}$ where $m_{i, j}$ is the order of $f_{i} f_{j}$ can be derived from [27, Lemma 1]. We include their result and then prove that "reflections" using the pancake generators are just the set of involutions in $S_{n}$; that is, the set of elements that have order 2 . We conclude the section with some results for the order of elements of the form $f_{i} f_{j} f_{k}$.

The theorem below provides a description for $M_{n-1}$. It turns out $M_{n-1}$ is symmetric and all its diagonal entries are 1. Most of these entries are described by rephrasing a result of Konstantinova and Medvedev [27, Lemma 1].
Theorem 3.1. Let $m_{i-1, j-1}$ be the order of $f_{i-1} f_{j-1}$ with $1<i<j \leq n$, then

1. $m_{i-1, i-1}=1$,
2. $m_{i-1, j-1}=m_{j-1, i-1}$,
3. $m_{1,2}=3$, and
4. if $j \geq 4$, then
(a) If $1<i \leq\left\lfloor\frac{j}{2}\right\rfloor$, then $m_{i-1, j-1}=4$.
(b) If $1<\left\lfloor\frac{j}{2}\right\rfloor<i<j-1$, then

$$
m_{i-1, j-1}= \begin{cases}2 q(q+1), & \text { if } r \geq 2, t \geq 2, \text { or } r=1, t \geq 2, q \text { is even, } \\ & \text { or } r \geq 2, t=1, q \text { is odd } ; \\ q(q+1), & \text { if } r=1, t \geq 2, q \text { is odd, or } r \geq 2, t=1 \\ & q \text { is even, or } r=1, t=1 \\ 2 q, & \text { if } r=0\end{cases}
$$

$$
\left(\begin{array}{ccccccccccccccccccc}
1 & 3 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
3 & 1 & 4 & 6 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
4 & 4 & 1 & 5 & 6 & 12 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
4 & 6 & 5 & 1 & 6 & 12 & 6 & 12 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
4 & 4 & 6 & 6 & 1 & 7 & 8 & 6 & 12 & 12 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
4 & 4 & 12 & 12 & 7 & 1 & 8 & 20 & 12 & 6 & 12 & 12 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 6 & 8 & 8 & 1 & 9 & 10 & 24 & 6 & 12 & 12 & 12 & 4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 12 & 6 & 20 & 9 & 1 & 10 & 30 & 8 & 12 & 6 & 12 & 12 & 12 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 12 & 12 & 10 & 10 & 1 & 11 & 12 & 40 & 24 & 6 & 12 & 12 & 12 & 12 & 4 \\
4 & 4 & 4 & 4 & 12 & 6 & 24 & 30 & 11 & 1 & 12 & 42 & 20 & 24 & 12 & 6 & 12 & 12 & 12 \\
4 & 4 & 4 & 4 & 4 & 12 & 6 & 8 & 12 & 12 & 1 & 13 & 14 & 10 & 8 & 24 & 6 & 12 & 12 \\
4 & 4 & 4 & 4 & 4 & 12 & 12 & 12 & 40 & 42 & 13 & 1 & 14 & 56 & 30 & 40 & 24 & 12 & 6 \\
4 & 4 & 4 & 4 & 4 & 4 & 12 & 6 & 24 & 20 & 14 & 14 & 1 & 15 & 16 & 60 & 40 & 24 & 24 \\
4 & 4 & 4 & 4 & 4 & 4 & 12 & 12 & 6 & 24 & 10 & 56 & 15 & 1 & 16 & 72 & 12 & 20 & 8 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 12 & 12 & 12 & 8 & 30 & 16 & 16 & 1 & 17 & 18 & 84 & 10 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 12 & 12 & 6 & 24 & 40 & 60 & 72 & 17 & 1 & 18 & 90 & 42 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 12 & 12 & 6 & 24 & 40 & 12 & 18 & 18 & 1 & 19 & 20 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 12 & 12 & 12 & 12 & 24 & 20 & 84 & 90 & 19 & 1 & 20 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 12 & 12 & 6 & 24 & 8 & 10 & 42 & 20 & 20 & 1
\end{array}\right)
$$

Figure 3: Pancake Matrix $M_{19}$ for $S_{20}$. The $m_{i, j}$ entry is the order of $f_{i} f_{j}$. Notice that the matrix is symmetric, the entries in the main diagonal are all 1 and the entries in the off-diagonal are the positive integers that are at least 3 .

$$
\begin{aligned}
& \text { where } d=j-i, q=\left\lfloor\frac{j}{d}\right\rfloor, r=j(\bmod d) \text { and } t=d-r \text {. } \\
& \text { (c) If } i=j-1 \text {, then } m_{i-1, j-1}=j \text {. }
\end{aligned}
$$

Proof. For (11), since $f_{i}$ is an involution, it follows that $m_{i, i}=1$.
For (2) notice that $\left(f_{i} f_{j}\right)^{-1}=f_{j} f_{i}$, so it follows that $m_{i, j}=m_{j, i}$, and therefore $M_{n-1}$ is symmetric.

Case (31) Follows from direct computation.
For Case (4), notice that elements in $S_{n-1}$ can be viewed as elements in $S_{n}$ leaving $n$ fixed, the matrix $M_{n-1}$ can be viewed as a submatrix of $M_{n}$ by ignoring the last row and column of $M_{n}$. So Case (4) follows from [27, Lemma 1] by having $n$ take different values.

Remark. We point out that in [27], the authors use $r_{j}$ with $2 \leq j \leq n$ to denote the permutation that reverses the first $j$ terms from the identity permutation $123 \ldots n$. In other words, $r_{j}=f_{j-1}$, for $2 \leq j \leq n$. However, our notation resembles the notation that is used for $S_{n}$ viewed as a Coxeter group generated by $S$, the set of adjacent transpositions.

Example 3.1. In Figure 3, we depict the $19 \times 19$ Coxeter matrix $M_{19}$ for $S_{20}$.
We now describe the set of so called "reflections" with respect to the generator set $P$, that is, the conjugates of elements of $P$ by permutations. In Coxeter groups, if $(W, S)$ is a Coxeter system, the set $\left\{w s w^{-1} \mid w \in W, s \in S\right\}$ plays a crucial role algebraically and geometrically (see [3]). It turns out that if one uses pancake generators, the set $\left\{w f_{i} w^{-1} \mid w \in S_{n}, i \in[n-1]\right\}$ is the set of involutions in $S_{n}$.
Theorem 3.2. The set of conjugates of the pancake generators

$$
T=\left\{w f_{i} w^{-1} \mid i \in[n-1], w \in S_{n}\right\}
$$

coincides with the set of all involutions (self-inverse permutations) in $S_{n}$.
Proof. If $f_{i} \in P$ and $w \in S_{n}$, then $\left(w f_{i} w^{-1}\right)^{2}=e$, so each element in $T$ is an involution.

Conversely, suppose $t$ is an arbitrary involution in $S_{n}$. Then the $t$ can be written in disjoint cycle notation using only length two cycles. Say $t=\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \cdots\left(a_{k}, b_{k}\right)$ with $a_{1}<a_{2}<\cdots<a_{k}$ and $a_{i}<b_{i}$ for all $i \in[k]$. We know that $k \leq\left\lfloor\frac{n}{2}\right\rfloor$ thus $2 k-1 \leq 2\left\lfloor\frac{n}{2}\right\rfloor-1 \leq n-1$. Consider the flip

$$
f_{2 k-1}=(1,2 k)(2,2 k-1) \cdots(k, k+1)
$$

which consists of $k$ disjoint two-cycles and

$$
w=\left[\begin{array}{llllllll}
a_{1} & a_{2} & \ldots & a_{k} & b_{k} b_{k-1} & \ldots & b_{2} & b_{1} w_{2 k+1}
\end{array} \ldots w_{n}\right], \text { in one-line notation, }
$$

where $w_{2 k+1} \ldots w_{n}$ is an arbitrary permutation of $[n] \backslash\left\{a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{k}, b_{k}\right\}$.
The element $t$ is in $T$ if $w f_{2 k-1}=t w$. Notice that

$$
w f_{2 k-1}=\left[\begin{array}{lllllllll}
b_{1} & b_{2} & \ldots & b_{k-1} & b_{k} & a_{k} & a_{k-1} & \ldots & a_{2}
\end{array} a_{1} w_{2 k+1} \ldots w_{n}\right] .
$$

Furthermore,

$$
t w=\left[\begin{array}{lllllllllll}
b_{1} & b_{2} & \ldots & b_{k-1} & b_{k} & a_{k} & a_{k-1} & \ldots & a_{2} & a_{1} & w_{2 k+1}
\end{array} \ldots w_{n}\right] .
$$

Therefore $t \in T$.
Since $|T|$ is the same as the number of involutions in $S_{n}$, we have the following corollary.
Corollary 3.3. $|T|=\sum_{k=1}^{\lfloor n / 2\rfloor} \frac{n!}{2^{k}(n-2 k)!k!}$.
Remark. In the symmetric group, every reflection, that is, every element of the form $w s w^{-1}$, where $s$ is an adjacent transposition and $w$ is a permutation, is an involution. However, there are involutions in the symmetric group that are not reflections. As Theorem 3.2 shows, if we use the pancake generators for the symmetric group, the "reflections" obtained are indeed all the involutions in $S_{n}$.

### 3.1 Order of $f_{i} f_{j} f_{k}$

We now discuss the order $m_{i, j, k}$ of $f_{i} f_{j} f_{k}$. In $S_{n}$, there would potentially be $(n-1)^{3}$ orders to consider for any three generators. However, all we need to consider are the orders in the case where $i \leq j \leq k$, as the order of $f_{\sigma(i)} f_{\sigma(j)} f_{\sigma(k)}$ is also $m_{i, j, k}$, as shown in the following lemma.

Lemma 3.4. For all $i, j, k$ with $1 \leq i, j, k \leq n$ and any permutation $\sigma$ of $\{i, j, k\}$, the order of $f_{i} f_{j} f_{k}$ is the same as the order of $f_{\sigma(i)} f_{\sigma(j)} f_{\sigma(k)}$.

Proof. There are two cases to consider.
Case $|\{i, j, k\}|<3$ In this case, the order of $f_{i} f_{j} f_{k}$ is 2. Indeed, if $|\{i, j, k\}|=2$ then $f_{i} f_{j} f_{k}$ has the form $f_{a} f_{a} f_{b}$ or $f_{a} f_{b} f_{a}$ or $f_{b} f_{a} f_{a}$, for $a, b \in\{i, j, k\}$, all of which have order two. Furthermore, if $|\{i, j, k\}|=1$, then $f_{i} f_{i} f_{i}=f_{i}$, which also has order 2.

Case $|\{i, j, k\}|=3$ Notice that $f_{i} f_{j} f_{k}, f_{j} f_{k} f_{i}$, and $f_{k} f_{i} f_{j}$ are in the same conjugacy class of $S_{n}$; for example, $f_{k} f_{i} f_{j}=f_{k}\left(f_{i} f_{j} f_{k}\right) f_{k}$. Therefore they all have the same order as they have the same cycle structure. Moreover, $f_{k} f_{j} f_{i}, f_{i} f_{k} f_{j}$, and $f_{j} f_{i} f_{k}$ are in the same conjugacy class, and so they have the same order as well. Since $f_{k} f_{j} f_{i}=\left(f_{i} f_{j} f_{k}\right)^{-1}$, the lemma follows.

Here are a collection of partial results on the orders of elements of the form $f_{i} f_{j} f_{k}$. Specifically these are all of the relations where the leftmost generator is $f_{1}$, i.e. all of the orders of $f_{1} f_{j} f_{k}$.

Theorem 3.5. Let $m_{1, j-1, k-1}$ be the order of $f_{1} f_{j-1} f_{k-1}$ with $1<j<k \leq n$, then

1. $m_{1,1, j-1}=m_{1, j-1, j-1}=2$,
2. if $j \geq 6$, then $m_{1,2, j-1}=6$,
3. if $j=k-1$, then $m_{1, j-1, k-1}=k-1$,
4. if $j=k-2$ and $k$ is odd or $j=k-3$ and $2 \neq k(\bmod 3)$, then $m_{1, j-1, k-1}=k$,
5. if $k \geq 5$, then
(a) $m_{1, j-1, k-1}= \begin{cases}4 q, & \text { if } r=0, d \geq 4 ; \\ 2 q+1, & \text { if } r=1, d=2 ; \\ q(3 q+1), & \text { if } r=1, d=4 \text { or } r=1, d \geq 5, q \text { is odd; } \\ 2 q(3 q+1), & \text { if } r=1, d \geq 5, q \text { is } \text { even. }\end{cases}$

$$
\text { (b) } m_{1, j-1, k-1}= \begin{cases}q(q+1), & \text { if } r=2, d=3, \text { or } r=2, d \geq 4, q \text { is odd, } \\ & \text { or } r=3, d=4,0=q(\bmod 3), \\ & \text { or } r=3, d \geq 5,3=q(\bmod 6), \\ 2 q(q+1), & \text { or } r \geq 4, d \geq 5,0=q(\bmod 4) ; \\ & \text { or } r=3, d \geq 5,0=q(\bmod 6), \\ & \text { or } r \geq 4, d \geq 5,2=q(\bmod 4) ; \\ 3 q(q+1), & \text { if } r=3, d=4,0 \neq q(\bmod 3), \\ & \text { or } r=3, d \geq 5,\{1,5\} \ni q(\bmod 6) ; \\ 4 q(q+1), & \text { if } r \geq 4, d \geq 5, q \text { is odd; } \quad \\ 6 q(q+1), & \text { if } r=3, d \geq 5,\{2,4\} \ni q(\bmod 6) ;\end{cases}
$$

where $d=k-j, q=\left\lfloor\frac{k}{d}\right\rfloor$, and $r=k(\bmod d)$.
Proof. For Case (1), note that for any $1 \leq i \leq n-1,\left(f_{i}\right)^{2}=e$. So $f_{1} f_{1} f_{j-1}=f_{j-1}$, which is order two, and $f_{1} f_{j-1} f_{j-1}=f_{1}$, which is also order two.

For each of the following cases we will look at the disjoint cycle notation of the permutations to find the order of the three generators.

For Case (2), let $j \geq 6$.

$$
\begin{aligned}
f_{1} f_{2} f_{j-1} & =\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & j \\
j-1 & j-2 & j & j-3 & \cdots & 1
\end{array}\right) \\
& =(1, j-1,2, j-2,3, j)(4, j-3) \ldots\left(\left\lfloor\frac{j+1}{2}\right\rfloor,\left\lceil\frac{j+1}{2}\right\rceil\right)
\end{aligned}
$$

The least common multiple of these lengths is 6 , which is the order of the permutation.

Since elements in $S_{n}$ is a parabolic subgroup of $S_{n+1}$, generated by all but the largest indexed generator, then the matrix of $\left(m_{1, j-1, k-1}\right)_{1 \leq j, k \leq n}$ is a submatrix of the matrix $\left(m_{1, j-1, k-1}\right)_{1 \leq j, k \leq n+1}$ with the last row and last column removed. Thus it is sufficient to consider only the cases with $k=n$.

For Case (3), the three generators result in

$$
\begin{aligned}
f_{1} f_{n-2} f_{n-1} & =\left(\begin{array}{cccccc}
1 & 2 & 3 & \cdots & n-1 & n \\
3 & 2 & 4 & \cdots & n & 1
\end{array}\right) \\
& =(1,3,4, \ldots, n)
\end{aligned}
$$

The length of this disjoint cycle is $n-1$. Thus the order is $n-1$.
For Case (4), first consider $j=n-2$ and $n$ is odd.

$$
\begin{aligned}
f_{1} f_{n-3} f_{n-1} & =\left(\begin{array}{ccccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 & n \\
4 & 3 & 5 & \cdots & n & 2 & 1
\end{array}\right) \\
& =(1,4,6, \ldots, n-1,2,3,5, \ldots, n)
\end{aligned}
$$

whose cycle length is $n$. Second consider $j=n-3$ and $2 \neq n(\bmod 3)$. Say $n=3 \mathfrak{q}+\mathfrak{r}$.

$$
f_{1} f_{n-4} f_{n-1}=\left(\begin{array}{cccccccc}
1 & 2 & 3 & \cdots & n-3 & n-2 & n-1 & n \\
5 & 4 & 6 & \cdots & n & 3 & 2 & 1
\end{array}\right)
$$

When $\mathfrak{r}=0$,

$$
f_{1} f_{n-4} f_{n-1}=(1,5,8, \ldots, 3(\mathfrak{q}-1)+2,2,4,7, \ldots, 3(\mathfrak{q}-1)+1,3,6, \ldots, 3 \mathfrak{q})
$$

When $\mathfrak{r}=1$,

$$
f_{1} f_{n-4} f_{n-1}=(1,5,8, \ldots, 3(\mathfrak{q}-1)+2,3,6,9, \ldots, 3 \mathfrak{q}, 2,4,7, \ldots 3 \mathfrak{q}+1), \text { when } \mathfrak{r}=1
$$

With both possible values of $\mathfrak{r}$ the length of the disjoint cycle is $n$.
For Case (5) let $d=n-j, q=\left\lfloor\frac{n}{d}\right\rfloor$, and $r=n(\bmod d)$. We will consider each possible value of $r$ followed by the possibilities of $d$. Since $n=q d+r$ and $d=n-j$, then $j=(q-1) d+r$. In general, three generators form the permutation

$$
f_{1} f_{j-1} f_{n-1}=\left(\begin{array}{cccccccc}
1 & 2 & 3 & \cdots & (q-1) d+r & (q-1) d+r+1 & \cdots & n \\
d+2 & d+1 & d+3 & \cdots & n & d & \cdots & 1
\end{array}\right)
$$

Say $r=0$, then in disjoint cycle notation we have that

$$
\begin{aligned}
f_{1} f_{j-1} f_{n-1}= & (1, d+2,2 d+2, \ldots,(q-1) d+2, d-1,2 d-1, \ldots, q d-1 \\
& 2, d+1,2 d+1, \ldots,(q-1) d+1, d, 2 d, \ldots, q d) \\
& (3, d+3,2 d+3, \ldots,(q-1) d+3, d-2,2 d-2, \ldots, q d-2) \\
& (4, d+4,2 d+4, \ldots,(q-1) d+4, d-3,2 d-3, \ldots, q d-3) \\
& \vdots \\
& \left(\left\lfloor\frac{d}{2}\right\rfloor, d+\left\lfloor\frac{d}{2}\right\rfloor, \ldots,(q-1) d+\left\lfloor\frac{d}{2}\right\rfloor,\left\lceil\frac{d}{2}\right\rfloor+1, d+\left\lceil\frac{d}{2}\right\rceil+1,\right. \\
& \left.\ldots,(q-1) d+\left\lceil\frac{d}{2}\right\rfloor+1\right) \\
& \left(\left\lfloor\frac{d}{2}\right\rfloor+1, d+\left\lfloor\frac{d}{2}\right\rfloor+1, \ldots,(q-1) d+\left\lfloor\frac{d}{2}\right\rfloor+1\right) .
\end{aligned}
$$

The first cycle is of length $4 q$, the next $\left\lfloor\frac{d}{2}\right\rfloor-2$ cycles are of length $2 q$, and the last cycle is of length $q$. The least common multiple of these lengths is $4 q$, the order of the permutation. To verify that these are all the disjoint cycles we can see that the number of characters affected is

$$
4 q+2 q\left(\left\lfloor\frac{d}{2}\right\rfloor-2\right)+q=4 q+q(d-1-4)+q=q d=n .
$$

Say $r=1$ and $d=2$, then in disjoint cycle notation we have that

$$
f_{1} f_{j-1} f_{n-1}=(1,4,6, \ldots, 2 q, 2,3,5, \ldots, 2 q+1)
$$

All of the characters are part of this cycle, since $n=2 q+1$, and therefore the order of the permutation is $2 q+1$.

Say $r=1$ and $d=4$, then the disjoint cycle notation is

$$
\begin{aligned}
f_{1} f_{j-1} f_{n-1}= & (1,6,10, \ldots, 4 q-2,4,8, \ldots, 4 q, 2,5,9, \ldots, 4 q+1) \\
& (3,7, \ldots, 4 q-1) .
\end{aligned}
$$

The length of the first cycle is $3 q+1$ and the second cycle is of length $q$. The least common multiple of the cycle lengths is $q(3 q+1)$. All of the characters are part of this cycle, since $n=4 q+1$.

Say $r=1$ and $d \geq 5$. The disjoint cycles are

$$
\begin{aligned}
f_{1} f_{j-1} f_{n-1}= & (1, d+2,2 d+2, \ldots,(q-1) d+2, d, 2 d, \ldots, q d \\
& 2, d+1,2 d+1, \ldots, q d+1) \\
& (3, d+3, \ldots,(q-1) d+3, d-1,2 d-1, \ldots, q d-1) \\
& (4, d+4, \ldots,(q-1) d+4, d-2,2 d-2, \ldots, q d-2) \\
& \vdots \\
& \left(\left\lfloor\frac{d+2}{2}\right\rfloor, d+\left\lfloor\frac{d+2}{2}\right\rfloor, \ldots,(q-1) d+\left\lfloor\frac{d+2}{2}\right\rfloor\right. \\
& \left.\left\lceil\frac{d+2}{2}\right\rceil, d+\left\lceil\frac{d+2}{2}\right\rceil, \ldots,(q-1) d+\left\lceil\frac{d+2}{2}\right\rceil\right)
\end{aligned}
$$

The first cycle is of length $3 q+1$ and the other $\left\lfloor\frac{d+2}{2}\right\rfloor-2$ cycles are of length $2 q$. When $q$ is even the least common multiple of these lengths is $2 q(3 q+1)$. When $q$ is odd, $3 q+1$ is even, and thus the least common multiple of the lengths is $q(3 q+1)$. All of the disjoint cycles are accounted for since the total number of characters in the cycles is

$$
3 q+1+2 q\left(\left\lfloor\frac{d+2}{2}\right\rfloor-2\right)=3 q+1+q(d+1-4)=q d+1
$$

Say $r=2$ and $d=3$, then the disjoint cycles are

$$
f_{1} f_{j-1} f_{n-1}=(1,5,8, \ldots, 3 q+2)(2,4,7, \ldots, 3 q+1)(3,6, \ldots, 3 q)
$$

The first two cycles are of length $q+1$ and the last cycle is of length $q$. The least common multiple of these lengths is $q(q+1)$. It is also clear that these are all the cycles since the sum of the cycle lengths is $3 q+2=n$.

Say $r=2$ and $d \geq 4$. The disjoint cycles are

$$
\begin{aligned}
f_{1} f_{j-1} f_{n-1}= & (1, d+2,2 d+2, \ldots, q d+2)(2, d+1,2 d+1, \ldots, q d+1) \\
& (3, d+3, \ldots,(q-1) d+3, d, 2 d, \ldots, q d) \\
& (4, d+4, \ldots,(q-1) d+4, d-1,2 d-1, \ldots, q d-1) \\
& \vdots \\
& \left(\left\lfloor\frac{d+3}{2}\right\rfloor, d+\left\lfloor\frac{d+3}{2}\right\rfloor, \ldots,(q-1) d+\left\lfloor\frac{d+3}{2}\right\rfloor\right. \\
& \left.\left\lfloor\frac{d+3}{2}\right\rceil, d+\left\lceil\frac{d+3}{2}\right\rceil, \ldots,(q-1) d+\left\lceil\frac{d+3}{2}\right\rceil\right)
\end{aligned}
$$

The first two cycles are of length $q+1$ and the last $\left\lfloor\frac{d+3}{2}\right\rfloor-2$ cycles are of length $2 q$. When $q$ is odd then the least common multiple of the lengths is $q(q+1)$. When $q$ is even then the least common multiple of the lengths is $2 q(q+1)$. These are all of the disjoint cycles since the number of characters in them is

$$
2 q+2+2 q\left(\left\lfloor\frac{d+3}{2}\right\rfloor-2\right)=2 q+2+q(d+2-4)=q d+2=n
$$

Say $r=3$ and $d=4$. The disjoint cycles are

$$
\begin{aligned}
f_{1} f_{j-1} f_{n-1}= & (1,6,10, \ldots, 4 q+2,2,5,9, \ldots, 4 q+1,3,7, \ldots, 4 q+3) \\
& (4,8, \ldots, 4 q)
\end{aligned}
$$

The first cycle is of length $3 q+3$ and the second cycle is of length $q$. If $q$ is a multiple of 3 , then the least common multiple is $q(q+1)$. If $q$ is not a multiple of 3 , then the least common multiple is $3 q(q+1)$. The number of characters in both cycles is $4 q+3=n$.

Say $r=3$ and $d \geq 5$. The disjoint cycles are

$$
\begin{aligned}
f_{1} f_{j-1} f_{n-1}= & (1, d+2,2 d+2, \ldots, q d+2,2, d+1,2 d+1, \ldots, q d+1, \\
& 3, d+3, \ldots, q d+3) \\
& (4, d+4, \ldots,(q-1) d+4, d, 2 d, \ldots, q d) \\
& (5, d+5, \ldots,(q-1) d+5, d-1,2 d-1, \ldots, q d-1) \\
& \vdots \\
& \left(\left\lfloor\frac{d+4}{2}\right\rfloor, d+\left\lfloor\frac{d+4}{2}\right\rfloor, \ldots,(q-1) d+\left\lfloor\frac{d+4}{2}\right\rfloor\right. \\
& \left.\left\lceil\frac{d+4}{2}\right\rceil, d+\left\lceil\frac{d+4}{2}\right\rceil, \ldots,(q-1) d+\left\lceil\frac{d+4}{2}\right\rceil\right) .
\end{aligned}
$$

The first cycle is of length $3 q+3$ and the remaining $\left\lfloor\frac{d+4}{2}\right\rfloor-3$ cycles are of length $2 q$. When $q$ is odd and divisible by 3 the least common multiple is $q(q+1)$. When $q$
divisible by 6 the least common multiple is $2 q(q+1)$. When $q$ is odd and not divisible by 3 the least common multiple is $3 q(q+1)$. When $q$ is even but not divisible by 3 the least common multiple is $6 q(q+1)$. The number of characters in all of the cycles is

$$
3 q+3+2 q\left(\left\lfloor\frac{d+4}{2}\right\rfloor-3\right)=3 q+3+q(d+3-6)=q d+3=n
$$

Say $r=4$ and $d=5$. The disjoint cycles are

$$
\begin{aligned}
f_{1} f_{j-1} f_{n-1}= & (1,7,12, \ldots, 5 q+2,3,8,13, \ldots, 5 q+3,2,6,11, \ldots, 5 q+1 \\
& 4,9, \ldots, 5 q+4)(5,10, \ldots, 5 q)
\end{aligned}
$$

The first cycle is of length $4 q+4$ and the second cycle is of length $q$. If $q$ is a multiple of 4 , then the least common multiple is $q(q+1)$. If $q$ is even but not a multiple of 4 , then the least common multiple is $2 q(q+1)$. If $q$ is odd, then the least common multiple is $4 q(q+1)$. The number of characters in both cycles is $5 q+4=n$.

Say $r=4$ and $d \geq 6$. The disjoint cycles are

$$
\begin{aligned}
f_{1} f_{j-1} f_{n-1}= & (1, d+2,2 d+2, \ldots, q d+2,3, d+3, \ldots, q d+3,2, d+1,2 d+1, \\
& \ldots, q d+1,4, d+4, \ldots, q d+4) \\
& (5, d+5, \ldots,(q-1) d+5, d, 2 d, \ldots, q d) \\
& (6, d+6, \ldots,(q-1) d+6, d-1,2 d-1, \ldots, q d-1) \\
& \vdots \\
& \left(\left\lfloor\frac{d+5}{2}\right\rfloor, d+\left\lfloor\frac{d+5}{2}\right\rfloor, \ldots,(q-1) d+\left\lfloor\frac{d+5}{2}\right\rfloor\right. \\
& \left.\left\lceil\frac{d+5}{2}\right\rceil, d+\left\lceil\frac{d+5}{2}\right\rceil, \ldots,(q-1) d+\left\lceil\frac{d+5}{2}\right\rceil\right)
\end{aligned}
$$

The first cycle is of length $4 q+4$ and the remaining $\left\lfloor\frac{d+5}{2}\right\rfloor-4$ cycles are of length $2 q$. When $q$ is even the least common multiple is $2 q(q+1)$. When $q$ is odd the least common multiple is $4 q(q+1)$. The number of characters in all of the cycles is

$$
4 q+4+2 q\left(\left\lfloor\frac{d+5}{2}\right\rfloor-4\right)=4 q+4+q(d+4-8)=q d+4=n
$$

Say $r \geq 5$ and $d \geq 6$. The disjoint cycles are

$$
\begin{aligned}
f_{1} f_{j-1} f_{n-1}= & (1, d+2,2 d+2, \ldots, q d+2, r-1, d+r-1, \ldots, q d+r-1 \\
& 2, d+1,2 d+1, \ldots, q d+1, r, d+r, \ldots, q d+r) \\
& (3, d+3, \ldots, q d+3, r-2, d+r-2, \ldots, q d+r-2) \\
& (4, d+4, \ldots, q d+4, r-3, d+r-3, \ldots, q d+r-3) \\
& \left(\left\lfloor\frac{r+1}{2}\right\rfloor, d+\left\lfloor\frac{r+1}{2}\right\rfloor, \ldots, q d+\left\lfloor\frac{r+1}{2}\right\rfloor,\left\lceil\frac{r+1}{2}\right\rceil, d+\left\lceil\frac{r+1}{2}\right\rceil\right. \\
& \ldots, q d+\left\lceil\left.\frac{r+1}{2} \right\rvert\,\right) \\
& (r+1, d+r+1, \ldots,(q-1) d+r+1, d, 2 d, \ldots, q d) \\
& (r+2, d+r+2, \ldots,(q-1) d+r+2, d-1,2 d-1, \ldots, q d-1) \\
& \vdots \\
& \left(\left\lfloor\frac{d+r+1}{2}\right\rfloor, d+\left\lfloor\frac{d+r+1}{2}\right\rfloor, \ldots,(q-1) d+\left\lfloor\frac{d+r+1}{2}\right\rfloor\right. \\
& \left\lceil\frac{d+r+1}{2}\right\rceil, d+\left\lceil\frac{d+r+1}{2}\right\rceil, \ldots,(q-1) d+\left\lceil\left.\frac{d+r+1}{2} \right\rvert\,\right)
\end{aligned}
$$

The first cycle is of length $4 q+4$, the next $\left\lfloor\frac{r+1}{2}\right\rfloor-2$ cycles are each of length $2 q+2$, and the last $\left\lfloor\frac{d+r+1}{2}\right\rfloor-r$ cycles are of length $2 q$. When $q$ is even the least common multiple is $2 q(q+1)$. When $q$ is odd the least common multiple is $4 q(q+1)$. The number of characters in all of the cycles is

$$
\begin{aligned}
4 q & +4+2(q+1)\left(\left\lfloor\frac{r+1}{2}\right\rfloor-2\right)+2 q\left(\left\lfloor\frac{d+r+1}{2}\right\rfloor-r\right) \\
& =4 q+4+(q+1)(r-4)+q(d+r-2 r)=q d+r=n
\end{aligned}
$$

Although Theorem 3.5 and Lemma 3.4 fully characterize the order of elements of the form $f_{1} f_{j} f_{k}$, we do not cover all possible combinations of three generators $f_{i} f_{j} f_{k}$. In order to record all such orders we propose a generalization of the "Coxeter matrix" which we refer to as the Coxeter tensor of rank $r$. In essence it would be a matrix of matrices or vectors depending on the parity of the rank. For three generators the object recording all of the orders would be the Coxeter 3-tensor, visualized as a cube. Using Lemma 3.4 we need only look at the order of the principal tetrahedron consisting of only entries with increasing indices. Theorem 3.5 would be the base of said tetrahedron.
Example 3.2. In Figure 4 , we depict the $24 \times 24$ matrix $m$ whose $(j, k)$ entry is the order of $f_{1} f_{j} f_{k}$ in $S_{25}$.

Figure 4: Three Generator Pancake Matrix with the first generator being $f_{1}$ with $n=25$. The matrix entry $m_{j, k}$ is the order of $f_{1} f_{j} f_{k}$, e.g., $m_{19,24}$ is 20 , which is the order of $f_{1} f_{19} f_{24}$.

In the next section, we describe the pancake matrix for $B_{n}$, and make connections to the corresponding pancake graph of $B_{n}$.

## $4 \quad B_{n}$ results

We now provide a complete description for the order of $f_{i}^{B} f_{j}^{B}, 0 \leq i, j \leq n-1$ for signed permutations.
Theorem 4.1. Let $m_{i-1, j-1}^{B}$ be the order of $f_{i-1}^{B} f_{j-1}^{B}$ with $1 \leq i<j \leq n$; then

1. $m_{i-1, i-1}^{B}=1$.
2. $m_{i-1, j-1}^{B}=m_{j-1, i-1}^{B}$.
3. If $1<i \leq\left\lfloor\frac{j}{2}\right\rfloor$ (with $j \geq 4$ ) then $m_{i-1, j-1}^{B}=4$.
4. If $1 \leq\left\lfloor\frac{j}{2}\right\rfloor<i<j-1$ (with $j \geq 4$ ), then

$$
m_{i-1, j-1}^{B}= \begin{cases}2 q & \text { if } r=0, \text { and } \\ 2 q(q+1) & \text { if } r \neq 0\end{cases}
$$

where $d=j-i, q=\left\lfloor\frac{j}{d}\right\rfloor, r=j(\bmod d)$.
5. If $i=j-1$ (with $j \geq 3)$ then $m_{i-1, j-1}^{B}=2 j$.

Proof. For Case (11), notice that $\left(f_{i}^{B}\right)^{-1}=f_{i}^{B}$, and therefore $m_{i, i}^{B}=1$.
For Case (2), notice that $\left(f_{i}^{B} f_{j}^{B}\right)^{-1}=f_{j}^{B} f_{i}^{B}$, and therefore $m_{i, j}^{B}=m_{j, i}^{B}$.
Since elements in $B_{n}$ can be thought of as elements in $B_{n+1}$ that leave $n$ fixed, $M_{n}^{B}$ can be thought of as the $n \times n$ submatrix of $M_{n+1}^{B}$ obtained by deleting the last row and the last column of $M_{n+1}^{B}$. Therefore, it is enough to prove the remaining cases when $j=n$.

For Case (3), notice that the identity permutation $e=\left[\begin{array}{llll}1 & 2 & 3 & \cdots\end{array}\right]$ becomes

$$
\left[\underline{n} \underline{n-1} \cdots\left(\underline{\left\lfloor\frac{n}{2}\right\rfloor+1}\right) \cdots \cdots 12 \cdots i\right]
$$

after multiplying it by $f_{n-1}^{B} f_{i-1}^{B}$. In other words, $f_{n-1}^{B} f_{i-1}^{B}$ will reverse the last $n-i$ symbols of the identity in $B_{n}$, change their sign and place them at the beginning of the window notation. Since $i \leq\left\lfloor\frac{n}{2}\right\rfloor$, the first $i$ characters and the last $n-i$ characters of $e$ (seen as a string in window notation) do not overlap, and thus will behave independently after multiplying by $f_{n-1}^{B} f_{i-1}^{B}$. It takes 4 multiplications by $f_{n-1}^{B} f_{i-1}^{B}$ for the first $i$ characters of $e$ to return to their original position. Moreover, since $i \leq n-i$, it also takes 4 multiplications by $f_{n-1}^{B} f_{i-1}^{B}$ for the last $n-i$ characters in $e$ to return to their original position in $e$. Thus $m_{n-1, i-1}^{B}=4$.

For Case (4), let $d=n-j, q=\left\lfloor\frac{n}{d}\right\rfloor$ and $r=n(\bmod d)$. Notice that any element $w=\left[w_{1} w_{2} \cdots w_{n}\right]$ in $B_{n}$ can be written in the form

$$
\left[\beta_{0} \alpha_{1} \beta_{1} \cdots \alpha_{q} \beta_{q}\right]
$$

where $\alpha_{k}$ and $\beta_{l}$ are substrings of $w$ written in window notation and satisfying $\ell\left(\alpha_{k} \beta_{k}\right)=d$, and $\ell\left(\beta_{l}\right)=r$ for $1 \leq k \leq q, 0 \leq l \leq q$ (and therefore $\ell\left(\alpha_{k}\right)=d-r$ ). Here, $\ell(\cdot)$ denotes the length function on strings with brackets ignored. So, for example, $\ell\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\right)=3$ and $\ell\left(\left[\begin{array}{llll}4 & 3 & \underline{2} & 1\end{array}\right]\right)=4$.

Multiplying $\left[\beta_{0} \alpha_{1} \beta_{1} \cdots \alpha_{q} \beta_{q}\right]$ by $f_{n-1}^{B} f_{j-1}^{B}$ gives

$$
\left[\underline{\overline{\beta_{q}}} \underline{\overline{\alpha_{q}}} \beta_{0} \alpha_{1} \beta_{1} \cdots \alpha_{q-1} \beta_{q-1}\right],
$$

where if $x=x_{1} x_{2} \cdots x_{m}, \underline{x}$ and $\bar{x}$ denote $\frac{x_{1}}{x_{2}} \cdots \underline{x_{m}}$ and $x_{m} x_{m-1} \cdots x_{2} x_{1}$, respectively. Since repeated applications of $f_{n-1}^{\bar{B}} \overline{f_{j-1}^{B}}$ to $\bar{w}$ will eventually return $w$ to itself, it follows that the $\alpha$ and $\beta$ segments would return to their original positions. Therefore the periods of the different $\alpha$ and $\beta$ under multiplication by $f_{n-1}^{B} f_{j-1}^{B}$ have to be the same. The effect of $f_{n-1}^{B} f_{j-1}^{B}$ reverses the last $d$ characters of $w$ and changes their sign. If $r=0$ then there are $q \alpha$ substrings and no $\beta$ substrings. The period of [ $\alpha_{1} \alpha_{2} \cdots \alpha_{q}$ ] under $f_{n-1}^{B} f_{j-1}^{B}$ is $2 q$. Furthermore, if $r \neq 0$ then there are $q \alpha$ substrings and $q+1 \beta$ substrings, and therefore the period of $\left[\beta_{0} \alpha_{1} \beta_{1} \ldots \alpha_{q} \beta_{q}\right]$ under $f_{n-1}^{B} f_{j-1}^{B}$ is $2 q(q+1)$. This proves Case (4).

To prove Case (5), notice that $e$ becomes

$$
[\underline{n} 12 \ldots(n-1)]
$$

$$
\left(\begin{array}{cccccccccccccccccccc}
1 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
4 & 1 & 6 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
4 & 6 & 1 & 8 & 12 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
4 & 4 & 8 & 1 & 10 & 6 & 12 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
4 & 4 & 12 & 10 & 1 & 12 & 24 & 12 & 12 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 6 & 12 & 1 & 14 & 8 & 6 & 12 & 12 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 12 & 24 & 14 & 1 & 16 & 40 & 24 & 12 & 12 & 12 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 12 & 8 & 16 & 1 & 18 & 10 & 24 & 6 & 12 & 12 & 12 & 4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 12 & 6 & 40 & 18 & 1 & 20 & 60 & 8 & 24 & 12 & 12 & 12 & 12 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4 & 12 & 24 & 10 & 20 & 1 & 22 & 12 & 40 & 24 & 6 & 12 & 12 & 12 & 12 & 4 \\
4 & 4 & 4 & 4 & 4 & 12 & 12 & 24 & 60 & 22 & 1 & 24 & 84 & 40 & 24 & 24 & 12 & 12 & 12 & 12 \\
4 & 4 & 4 & 4 & 4 & 4 & 12 & 6 & 8 & 12 & 24 & 1 & 26 & 14 & 10 & 8 & 24 & 6 & 12 & 12 \\
4 & 4 & 4 & 4 & 4 & 4 & 12 & 12 & 24 & 40 & 84 & 26 & 1 & 28 & 112 & 60 & 40 & 24 & 24 & 12 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 12 & 12 & 24 & 40 & 14 & 28 & 1 & 30 & 16 & 60 & 40 & 24 & 24 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 12 & 12 & 6 & 24 & 10 & 112 & 30 & 1 & 32 & 144 & 12 & 40 & 8 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 12 & 12 & 24 & 8 & 60 & 16 & 32 & 1 & 34 & 18 & 84 & 10 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 12 & 12 & 12 & 24 & 40 & 60 & 144 & 34 & 1 & 36 & 180 & 84 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 12 & 12 & 6 & 24 & 40 & 12 & 18 & 36 & 1 & 38 & 20 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 12 & 12 & 12 & 24 & 24 & 40 & 84 & 180 & 38 & 1 & 40 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 12 & 12 & 12 & 24 & 8 & 10 & 84 & 20 & 40 & 1
\end{array}\right)
$$

Figure 5: Burnt Pancake Matrix with $n=20$. The $m_{i, j}^{B}$ entry is the order of $f_{i-1}^{B} f_{j-1}^{B}$. Notice that the matrix is symmetric, the entries in the main diagonal are all 1 and the entries in the off-diagonal are the even integers that are at least 4.
after multiplying it by $f_{n-1}^{B} f_{n-2}^{B}$. That is, the effect of multiplying an arbitrary signed permutation $[w(1) w(2) \cdots w(n)]$ by $f_{n-1}^{B} f_{n-2}^{B}$ is to place the last character into the first position and reverse its sign. Thus $2 n$ applications of $f_{n-1}^{B} f_{n-2}^{B}$ are needed to return the characters of $e$ to its original position and its original sign. Hence, $m_{n-1, n-2}^{B}=2 n$.

Example 4.1. In Figure 5, we depict the $20 \times 20$ Coxeter matrix for $B_{20}$.

### 4.1 Connection with the burnt pancake graph

The Pancake graph of $S_{n}$, and in particular its cycle structure, has been extensively studied (see, for example, [2, [19, 20, [26, 28, 27, 29]). From the results from Theorem 4.1, one can derive results regarding the cycle structure of the Cayley graph corresponding to $B_{n}$ generated by $P^{B}$. Figure 2 displays this graph for $B_{3}$. Indeed, the following theorem, which is a signed version of [27, Lemma 1], is obtained directly from Theorem 4.1.

Theorem 4.2. The Cayley graph of $B_{n}$ with the generators $P^{B}$ (burnt pancake graph of $B_{n}$ ), with $n \geq 2$, contains a maximal set of $\frac{2^{n} n!}{\ell}$ independent $\ell$-cycles of the form
$\left(f_{i}^{B} f_{j}^{B}\right)^{k}$, with $0 \leq i<j<n, \ell=2 k$ and $k=\left(M_{n}^{B}\right)_{i+1, j+1}$, the $(i+1, j+1)$ entry in $M_{n}^{B}$.

Proof. The length of the cycles is given by Theorem 4.1. Furthermore, every vertex in the burnt pancake graph is incident to exactly one edge corresponding to $f_{i}^{B}$ and one edge corresponding to $f_{j}^{B}$ (with $0 \leq i<j<n$ ), these cycles are independent. Since every signed permutation is the vertex of a cycle of the form $\left(f_{i}^{B} f_{j}^{B}\right)^{k}$, there are $\frac{2^{n} n!}{\ell}$ of such independent cycles.

To illustrate the cycle structure described in the Theorem 4.2, one can look at Figure 2 showing the burnt pancake graph of $B_{3}$. If one considers generators $f_{0}^{B}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ and $f_{1}^{B}=\left[\begin{array}{lll}\underline{1} & 1\end{array}\right]$, then the order of $f_{0}^{B} f_{1}^{B}$ is 8 , and one can indeed notice that there are $\frac{2^{3} \cdot 3 \cdot}{8}=6$ independent cycles labeled with the generators $f_{0}^{B}$ (in purple/dotted) and $f_{1}^{B}$ (in red/solid).

It is known that the burnt pancake graph of $B_{n}$ with $n \geq 2$ is an $n$-regular, connected graph that has no triangles nor subgraphs isomorphic to $K_{2,3}$ (see [25]). Moreover, if $g(n)$ denotes the diameter of the pancake graph of $B_{n}$, then $3 n / 2 \leq$ $g(n) \leq 2 n-2$ (see [9]). Determining the diameter of the pancake graph of $B_{n}$ remains an open problem, though exact values are known for $n \leq 17$ (see [8]).

We recall that a chord in a cycle $C$ is an edge not belonging to a $C$ that connects two vertices of $C$. Just in the case for the pancake graph of $S_{n}$ (see [27]), the cycles described in Theorem 4.2 have no chords. We make this formal in the following Lemma.

Lemma 4.3. The cycles described in Theorem 4.2 have no chords.
To prove this lemma, we first recall that the burnt pancake graph of $B_{n}$ cannot have any simple cycles of length six.

Lemma 4.4 (Theorem 10 in [10]). The girth (length of the shortest simple cycle) of the burnt pancake graph of $B_{n}$ is 8 .

Proof of Lemma 4.3. Let $C=\left(f_{i} f_{j}\right)^{m_{i, j}^{B}}$ be a cycle and suppose that $C$ has a chord. Therefore there exists signed permutations $w_{1}$ and $w_{2}$, and $f_{k}^{B} \in P_{n}^{B}$ such that $w_{2} f_{k}^{B}=w_{1}$, with $w_{1}$ and $w_{2}$ being vertices of $C$. Furthermore, either $w_{1}\left(f_{i}^{B} f_{j}^{B}\right)^{s}=w_{2}$ and $\left(f_{i}^{B} f_{j}^{B}\right)^{s} f_{k}^{B}=e$, or $w_{1}\left(f_{i}^{B} f_{j}^{B}\right)^{s} f_{i}^{B}=w_{2}$ and $\left(f_{i}^{B} f_{j}^{B}\right)^{s} f_{i}^{B} f_{k}^{B}=e$ with $s<m_{i, j}^{B}$. Hence, either

$$
\begin{gathered}
w_{2} f_{i}^{B} f_{j}^{B} f_{k}^{B}=w_{1}\left(f_{i}^{B} f_{j}^{B}\right)^{s} f_{i}^{B} f_{j}^{B} f_{k}^{B}=w_{1} f_{i}^{B} f_{j}^{B}\left(f_{i}^{B} f_{j}^{B}\right)^{s} f_{k}^{B}=w_{1} f_{i}^{B} f_{j}^{B} \text {, or } \\
w_{2} f_{j}^{B} f_{i}^{B} f_{k}^{B}=w_{1}\left(f_{i}^{B} f_{j}^{B}\right)^{s} f_{i}^{B} f_{j}^{B} f_{i}^{B} f_{k}^{B}=w_{1} f_{i}^{B} f_{j}^{B}\left(f_{i}^{B} f_{j}^{B}\right)^{s} f_{i}^{B} f_{k}^{B}=w_{1} f_{i}^{B} f_{j}^{B} .
\end{gathered}
$$

Therefore, there exist a 6 -cycle of the form $f_{i}^{B} f_{j}^{B} f_{k}^{B} f_{j}^{B} f_{i}^{B} f_{k}^{B}$ or of the form $\left(f_{i}^{B} f_{j}^{B} f_{k}^{B}\right)^{2}$. This contradicts Lemma 4.4, and therefore no such cycle $C$ exists.

### 4.2 Reflections

We now describe the set of burnt pancake reflections

$$
T_{B}^{ \pm}=\left\{w f_{i}^{B} w^{-1} \mid 0 \leq i \leq n-1, w \in B_{n}\right\}
$$

We recall that any element in the set of reflections $T_{B}=\left\{w s_{i}^{B} w^{-1} \mid w \in B_{n}, 0 \leq\right.$ $i \leq n-1\}$ for signed adjacent transpositions $S^{B}$ has the following form (see [3, Proposition 8.1.5]):

$$
\{(i, j)(\underline{i}, \underline{j})|1 \leq i<|j| \leq n\} \cup\{(i, \underline{i}) \mid 1 \leq i \leq n\}
$$

If $t \in T_{B}^{ \pm}$then $t=w f_{i}^{B} w^{-1}$ for some $w \in B_{n}$ and $0 \leq i \leq n-1$. If $w=$ $\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{n}\end{array}\right]$, then from $w f_{i}^{B} w^{-1}=t$ we have

$$
\left[\underline{w_{i+1}} \underline{w_{i}} \cdots \underline{w_{1}} w_{i+2} w_{i+3} \cdots w_{n}\right]=t w
$$

and so $t=\left(w_{1}, \underline{w_{i+1}}\right)\left(w_{2}, \underline{w_{i}}\right) \cdots\left(w_{i+1}, \underline{w_{1}}\right)$. In terms of notation, if a $w_{j}<0,1 \leq$ $j \leq n$, then $\underline{w_{j}}=-w_{j}>0$. Therefore,

$$
\begin{equation*}
T_{B}^{ \pm}=\left\{\left(w_{1}, \underline{w_{i+1}}\right)\left(w_{2}, \underline{w_{i}}\right) \cdots\left(w_{i+1}, \underline{w_{1}}\right) \mid w_{i} \in[ \pm n], 0 \leq i<n, w_{a} \neq w_{b} \text { if } a \neq b\right\} \tag{4.1}
\end{equation*}
$$

In terms of comparing $T_{B}$ and $T_{B}^{ \pm}$, we notice that any permutation of the form $(i, \underline{i})$ is in both sets. However, permutations of the form $(i, j)(i, \underline{j})$ with $1 \leq i<|j| \leq$ $n$ are not.

As for the number of burnt reflections, from the description in (4.1), one gets
Corollary 4.5. $\left|T_{B}^{ \pm}\right|=\sum_{i=1}^{n}\binom{n}{i} 2^{\lfloor i / 2\rfloor}$.

## 5 Conclusion and further directions

Our main question of interest in this paper is a purely algebraic one: Can one describe all the relations satisfied by the pancake generators? Our contributions are a complete description of all relations in $S_{n}$ of the form

- $\left(f_{i} f_{j}\right)^{m_{i, j}}=e$ (using a result from [27]), and
- $\left(f_{i} f_{j} f_{k}\right)^{m_{i, j, k}}$ where $1 \in\{i, j, k\}$.

We furthermore provide a description of all the relations of the form $f_{i}^{B} f_{j}^{B}=e$ in $B_{n}$.

There is a direct connection between relations of the form $\left(g_{1} \cdots g_{k}\right)^{m_{1, \ldots, k}}=e$ and cycles in the pancake and burnt pancake graphs: Each relation in that form would correspond to a cycle in those graphs. Therefore, understanding these relations provides information about the cycle structure of the pancake and burnt pancake graphs, and we point out these connections in the respective sections.

Another application of having these relations is in the problem of finding reduced expressions for a permutation using generators from $P$ or $P^{B}$. It is well-known that if $(W, S)$ is a Coxeter system, the only relations needed in order to reduce a word are those coming from the product of two generators in $S$. However since neither $\left(S_{n}, P\right)$ nor $\left(B_{n}, P^{B}\right)$ are Coxeter systems, more relations other than those we provide are needed in order to reduced a word. Another interesting approach that might be worth pursuing is determining the number of pancake generators needed to generate a random permutation using ideas similar to those in [11], which in turn might provide some bounds on the original pancake problem.

## Acknowledgments

The authors are grateful to Ivars Peterson whose talk at an EPaDel sectional meeting inspired the authors' work on this particular problem. We also thank Jacob Mooney and Kyle Yohler for independently writing computer code to verify our results. We also thank Kyle Petersen and the anonymous reviewers for providing valuable suggestions on how to improve this paper.

## References

[1] S. B. Akers and B. Krishnamurthy, A group-theoretic model for symmetric interconnection networks, IEEE Trans. Comput. 38(4) (1989), 555-566.
[2] S. Asai, Y. Kounoike, Y. Shinano and K. Kaneko, Computing the Diameter of 17-Pancake Graph Using a PC Cluster, Euro-Par 2006 Parallel Processing: 12th Int. Euro-Par Conf., Dresden, Germany, August 28-September 1, 2006; Proceedings, 1114-1124.
[3] A. Björner and F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics 231, Springer, New York, 2005.
[4] S. A. Blanco, C. Buehrle and A. Patidar, Cycles in the Burnt Pancake Graphs, Discrete Appl. Math. 271 (2019), 1-14.
[5] S. A. Blanco, C. Buehrle and A. Patidar, On the number of pancake stacks requiring four flips to be sorted, Discrete Math. 8 Theoret. Comp. Sci. 21(2), Permutation Patterns 2018, (2019).
[6] L. Bulteau, G. Fertin and I. Rusu, Pancake flipping is hard, J. Comput. System Sci. 81(8) (2015), 1556-1574.
[7] B. Chitturi, W. Fahle, Z. Meng, L. Morales, C. O. Shields, I. H. Sudborough and W. Voit, An (18/11) $n$ upper bound for sorting by prefix reversals, Theoret. Comput. Sci. 410(36) (2009), 3372-3390.
[8] J. Cibulka, On average and highest number of flips in pancake sorting, Theoret. Comput. Sci. 412(8-10) (2011), 822-834.
[9] D. S. Cohen and M. Blum, On the problem of sorting burnt pancakes, Discrete Appl. Math. 61(2) (1995), 105-120.
[10] P.E.C. Compeau, Girth of pancake graphs, Discrete Appl. Math. 159(15) (2011), 1641-1645.
[11] P. Diaconis and M. Shahshahani, Generating a random permutation with random transpositions, Z. Wahrsch. Verw. Gebiete 57(2) (1981), 159-179.
[12] H. Dweighter, M. R. Garey, D. S. Johnson and S. Lin, E2569, Amer. Math. Monthly 84(4) (1977), 296-296.
[13] D. B. A. Epstein, D. F. Holt and S. E. Rees, The use of Knuth-Bendix methods to solve the word problem in automatic groups, J. Symbolic Comput. 12(4-5) (1991), 397-414.
$[14]$ D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V.F. Levy, M. S. Paterson and W.P. Thurston, Word processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992.
[15] G. Fertin, A. Labarre, I. Rusu, É. Tannier and S. Vialette, Combinatorics of genome rearrangements, Computational Molecular Biology, MIT Press, Cambridge, MA, 2009.
[16] J. Fischer and S. W. Ginzinger, A 2-Approximation Algorithm for Sorting by Prefix Reversals, Algorithms-ESA 2005: 13th Annual European Symposium, Palma de Mallorca, Spain, October 3-6, 2005; Proceedings (2005), 415-425.
[17] W.H. Gates and C.H. Papadimitriou, Bounds for sorting by prefix reversal, Discrete Math. 27(1) (1979), 47-57.
[18] S. Hannenhalli and P.A. Pevzner, Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals, J. ACM 46(1) (1999), 1-27.
[19] M. H. Heydari and I. H. Sudborough, On the diameter of the pancake network, J. Algorithms 25(1) (1997), 67-94.
[20] A. Kanevsky and C. Feng, On the embedding of cycles in pancake graphs, Parallel Computing 21(6) (1995), 923-936.
[21] D. J. Kleitman, E. Kramer, J. H. Conway, S. Bell and H. Dweighter, Problems and Solutions: Elementary Problems: E2564-E2569, Amer. Math. Monthly 82(10) (1975), 1009-1010.
[22] D. E. Knuth and P. B. Bendix, Simple word problems in universal algebras, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), (1970), 263-297.
[23] E. V. Konstantinova and A. N. Medvedev, Cycles of length seven in the pancake graph, Diskretn. Anal. Issled. Oper. 17(5) (2010), 46-55, 95.
[24] E. V. Konstantinova and A. N. Medvedev, Cycles of length nine in the pancake graph, Diskretn. Anal. Issled. Oper. 18(6) (2011), 33-60, 93-94.
[25] E. Konstantinova, On reconstruction of signed permutations distorted by reversal errors, Selected Papers from 20th British Combin. Conf., Discrete Math. 308(5) (2008), 974-984.
[26] E. Konstantinova and A. N. Medvedev, Small cycles in the Pancake graph, Ars Math. Contemp. 7(1) (2014), 237-246.
[27] E. Konstantinova and A. N. Medvedev, Independent even cycles in the pancake graph and greedy prefix-reversal Gray codes, Graphs Combin. 32(5) (2016), 1965-1978.
[28] Y. Kounoike, K. Kaneko and Y. Shinano, Computing the diameters of 14- and 15-pancake graphs, 8th Int. Symposium on Parallel Architectures, Algorithms and Networks (ISPAN'05), (2005).
[29] S Lakshmivarahan, J.-S. Jwo and S. K. Dhall, Symmetry in interconnection networks based on cayley graphs of permutation groups: A survey, Parallel Computing 19(4) (1993), 361-407.
[30] P. Le Chenadec, Canonical forms in finitely presented algebras, Research Notes in Theoretical Computer Science. Pitman Publishing, Ltd., London; John Wiley \& Sons, Inc., New York, 1986.
[31] P. Le Chenadec, A catalogue of complete group presentations, J. Symbolic Comput. 2(4) (1986), 363-381.
[32] K. Qiu, H. Meijer and S. G. Akl, Parallel routing and sorting on the pancake network, Advances in Computing and Information-ICCI '91: Int. Conf. on Computing and Information, Ottawa, Canada, May 27-29, 1991 Proceedings (1991), 360-371.
[33] J.-J. Sheu, J. J. M. Tan and K.-T. Chu, Cycle embedding in pancake interconnection networks, In Proc. 23rd Workshop on Combin. Math. and Computation Theory (2006), 85-92.
[34] J. Tits, Le problème des mots dans les groupes de Coxeter, Symposia Mathematica (INDAM, Rome, 1967/68), Vol. 1 (1969), 175-185.

