Pancyclicity of 4-connected claw-free bull-free graphs

Hong-Jian Lai

Department of Mathematics, West Virginia University Morgantown, WV 26506 U.S.A.

Mingquan Zhan

Department of Mathematics, Millersville University of Pennsylvania Millersville, PA 17551 U.S.A.

TAOYE ZHANG

Penn State Scranton Dunmore, PA 18512 U.S.A. tuz3@psu.edu

Ju Zhou

Department of Mathematics, Kutztown University of Pennsylvania Kutztown, PA 19530, U.S.A.

Abstract

A graph G is said to be pancyclic if G contains cycles of lengths from 3 to |V(G)|. The bull B(i, j) is obtained by associating one endpoint of each of the path P_{i+1} and P_{j+1} with distinct vertices of a triangle. In [M. Ferrara et al., *Discrete Math.* 313 (2013), 460–467], it was shown that every 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i + j = 6 is pancyclic. In this paper we show that every 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i + j = 7 is either pancyclic or it is the line graph of the Petersen graph.

1 Introduction

We use [1] for terminology and notation not defined here, and we only consider finite simple graphs. Let G be a graph. If $v \in V(G)$ and $S \subseteq V(G)$, we say that G[S] is the subgraph induced in G by S, N(v) is the neighborhood of v in G, d(v) = |N(v)|, and $N(S) = \bigcup_{v \in S} N(v)$. The path with n vertices is denoted by P_n . Given a family \mathcal{F} of graphs, G is said to be \mathcal{F} -free if G contains no member of \mathcal{F} as an induced subgraph. If $\mathcal{F} = \{K_{1,3}\}$, then G is said to be claw-free. A graph G is hamiltonian if it contains a spanning cycle and pancyclic if it contains cycles of lengths from 3 to |V(G)|. In 1984, Matthews and Sumner [6] conjectured that every 4-connected claw-free graph is hamiltonian. This conjecture is still open and it has also fostered a large body of research into other structural properties of cycles for claw-free graphs. In this paper we are specifically interested in the pancyclicity of claw-free net-free graphs.

Let L denote the graph obtained by connecting two disjoint triangles with a single edge, and let N(i, j, k) denote the net obtained by identifying each vertex of a triangle K_3 with an endpoint of three disjoint paths $P_{i+1}, P_{j+1}, P_{k+1}$, respectively. We refer to N(i, j, 0) as the generalized bull, and denote it by B(i, j).

Theorem 1.1 (Gould, Luczak, Pfender [4]) Let X and Y be connected graphs on at least three vertices. If neither X nor Y is P_3 and Y is not $K_{1,3}$, then every 3-connected $\{X,Y\}$ -free graph G is pancyclic if and only if $X = K_{1,3}$ and Y is a subgraph of one of the graphs in the family

 $\mathcal{F} = \{P_7, L, N(4, 0, 0), N(3, 1, 0), N(2, 2, 0), N(2, 1, 1)\}.$

Motivated by the Matthews-Sumner Conjecture and Theorem 1.1, Ron Gould came up with the following problem at the 2010 SIAM Discrete Math Meeting in Austin, TX.

Problem 1.2 Characterize the pairs of forbidden subgraphs that imply a 4-connected graph is pancyclic.

Theorem 1.3 (Ferrara, Morris, Wenger [3]) Every 4-connected $\{K_{1,3}, P_{10}\}$ -free graph is either pancyclic or is the line graph of the Petersen graph.

Theorem 1.4 (Lai, Zhan, Zhang, and Zhou[5]) Every 4-connected $\{K_{1,3}, N(8,0,0)\}$ -free graph is either pancyclic or is the line graph of the Petersen graph.

Theorem 1.5 (Ferrara, Gehrke, Gould, Magnant, and Powell [2]) Every 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph, where i + j = 6, is pancyclic.

The result of this paper is as follows.

Theorem 1.6 Every 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i + j = 7 is either pancyclic or is the line graph of the Petersen graph.

The line graph of the Petersen graph is 4-connected $\{K_{1,3}, B(i, j)\}$ -free if i+j=7, but is not $\{K_{1,3}, B(i, j)\}$ -free if i+j=6, and it contains no cycle of length 4. So Theorem 1.6 implies Theorem 1.5.

Figure 1. The line graph of the Petersen graph is the unique 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i + j = 7 that is not pancyclic.

In Section 2, we will show that every 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i+j=7 contains cycles of all lengths from 9 to |V(G)| by showing that if G contains a t-cycle $(t \ge 10)$, then G also contains a (t-1)-cycle. The existence of a 3-cycle follows immediately from the fact that G is claw-free. For t-cycles with $4 \le t \le 5$, we use arguments based on the induced graphs N(8,0,0) or P_{10} . For t-cycles with $6 \le t \le 8$, we use similar arguments based on the induced graphs P_{10} . The proof of the existence of short cycles $(4 \le t \le 8)$ will be given in Section 3.

2 Long Cycles

Before we proceed, we introduce some additional notation. For the remainder of the paper, we will let $G[\{x, y, z\} \cup \{x_1, \ldots, x_i\} \cup \{y_1, \ldots, y_j\} \cup \{z_1, \ldots, z_k\}]$ denote a copy of N(i, j, k) with central triangle xyz and appended paths $xx_1 \ldots x_i, yy_1 \ldots y_j$, and $zz_1 \ldots z_k$. A copy of the bull B(i, j) is denoted $G[\{x, y, z\} \cup \{x_1, \ldots, x_i\} \cup \{y_1, \ldots, y_j\}]$ where xyz is the central triangle with appended paths $xx_1 \ldots x_i$ and $yy_1 \ldots y_j$. The following result allows us to establish the hamiltonicity of the graphs under consideration.

Lemma 2.1 (Ferrara, Gehrke, Gould, Magnant, and Powell [2]) Let G be a 4connected $K_{1,3}$ -free graph containing a cycle C of length $t \ge 4$. If C has a chord or if there is a vertex $w \in V(G) - V(C)$ with at least 4 neighbors on C, then G contains another cycle C' of length t - 1.

Lemma 2.2 Let G be a 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph of order n with i+j = 7 and $i, j \neq 0$ and let C be a cycle of length $t \geq 10$ in G. Then G contains another cycle C' of length t-1.

Proof. Assume that G contains no (t-1)-cycles. By Lemma 2.1, C is chordless, and if $w \in V(G) - V(C)$ with $N(w) \cap V(C) \neq \emptyset$, then $|N(w) \cap V(C)| \leq 3$. Let $C = v_1 v_2 \dots v_t v_1$.

Claim 1. Let $x \in V(G) - V(C)$. If $N(x) \cap V(C) \neq \emptyset$, then $|N(x) \cap V(C)| = 3$. Moreover, these three neighbors of x are consecutive on C.

By contradiction, we assume that $|N(x) \cap V(C)| \neq 3$. Then $|N(x) \cap V(C)| \leq 2$. Since $N(x) \cap V(C) \neq \emptyset$, we assume that $xv_i \in E(G)$. As $v_{i+1}v_{i-1} \notin E(G)$, we have either $v_{i+1}x \in E(G)$ or $v_{i-1}x \in E(G)$. Without loss of generality, we assume that $xv_{i-1} \in E(G)$. As $|N(x) \cap V(C)| \leq 2$, $xw \notin E(G)$ for $w \in V(C) - \{v_i, v_{i-1}\}$. As $t \geq 10$, the subgraph induced by $\{x, v_i, v_{i-1}\} \cup (V(C) - \{v_i, v_{i-1}\})$ contains a B(i, j)(i + j = 7), a contradiction. Claim 1 holds.

By Claim 1, every vertex with a neighbor on C has exactly three neighbors on C which are consecutive. For $1 \leq i \leq t$, let $V_i = N(v_{i-1}) \cap N(v_i) \cap N(v_{i+1})$ where indices are taken modulo t. If there is a vertex $w \notin V(C) \cup \bigcup_{i=1}^{l} V_i$ that has a neighbor w_i in some V_i , then $\{w_i, v_{i-1}, v_{i+1}, w\}$ induces a claw. Thus the sets $\{V_1, V_2, \ldots, V_t\}$ is a partition of $V(G) \setminus V(C)$. If there is an edge joining V_i and V_j when $|i - j| > 2 \pmod{t}$, we assume that $w_i \in V_i$, $w_j \in V_j$ and $w_i w_j \in E(G)$. Since $G[\{w_i, w_j, v_{i-1}, v_{i+1}\}] \neq K_{1,3}$, we have either $w_j v_{i+1} \in E(G)$ or $w_j v_{i-1} \in E(G)$. Thus $|N(w_i) \cap V(C)| \ge 4$, a contradiction. If there is an edge $w_i w_{i+2}$ between V_i and V_{i+2} , then $v_1v_2 \ldots v_{i-1}w_iw_{i+2}v_{i+3}\ldots v_tv_1$ is a cycle of length t-1, a contradiction. If there are two nonconsecutive values i < j such that $V_i = \emptyset$ and $V_j = \emptyset$, then $\{v_i, v_j\}$ is a cut set, a contradiction. Therefore, the set $\{i|V_i = \emptyset, i = 1, 2, \dots, t\}$ has at most two elements. If the set has two elements, the indices are adjacent. Without loss of generality, we assume that for $i \in \{1, 2, \ldots, t-3\}, V_i \neq \emptyset$. Let $w_i \in V_i$. By Claim 1, $w_1, w_2, \ldots, w_{t-3}$ are distinct vertices. Let $C_3 = v_1 v_2 w_1 v_1$ be the 3-cycle. Then we can get the 4-cycle C_4 by inserting w_2 into C_3 as $C_4 = v_1 w_2 v_2 w_1 v_1$. Inserting v_3 into C_4 , we can get the 5-cycle $C_5 = v_1 w_2 v_3 v_2 w_1 v_1$. Using this method, we can get all cycles of lengths from 3 to 2t-5. As $t \ge 10$, G has a (t-1)-cycle, a contradiction. \square

Theorem 2.3 (Lai et al. [7]) Every 3-connected $\{K_{1,3}, B(i, j)\}$ -free graph with $i + j \leq 8$ is hamiltonian.

By Lemma 2.2 and Theorem 2.3, G contains cycles of length |V(G)| through 9.

3 Short Cycles

In this section we will prove that if G is a 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i + j = 7 and if G is not the line graph of the Petersen graph, then G has t-cycles, where $4 \le t \le 8$. Suppose that $P_n = v_1 v_2 \dots v_n$ is an induced path in G. Since G is claw-free, the following property follows.

(CF1) If $x \in V(G) \setminus V(P_n)$ is adjacent to v_i for $i \in \{2, 3, ..., n-1\}$, then x is adjacent to either v_{i+1} or v_{i-1} .

(CF2) If
$$x \in V(G) \setminus V(P_n)$$
, then $|N(x) \cap V(P_n)| \le 4$. Furthermore, if $|N(x) \cap V(P_n)| = 4$, then $N(x) \cap V(P_n) = \{v_i, v_{i+1}, v_j, v_{j+1}\}$ for some $1 \le i < j < n$.

Lemma 3.1 If G is a 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i + j = 7, then G is the line graph of the Petersen graph or G has a 4-cycle.

Proof. Suppose that G is a 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i+j = 7 and that G does not have 4-cycles. Since G is claw-free, the neighborhood of any vertex is either connected or two cliques. Since G is 4-connected, the minimum degree of G is at least 4. If the neighborhood of a vertex is connected, then it contains a path of length 3, yielding a 4-cycle. Thus the neighborhood of any vertex is two cliques. If a vertex has degree at least 5, then one of the cliques has at least three vertices, yielding a 4-cycle. Thus

(A1) G is 4-regular and, for any $v \in V(G)$, $G[N(v) \cup \{v\}]$ are two triangles identified at v.

Since G is B(i, j)-free with i + j = 7, by Theorem 1.4, we have $i, j \ge 1$. We prove the lemma by considering the following three cases.

Case 1. B(i, j) = B(6, 1).

Since G is a 4-connected $K_{1,3}$ -free graph and G does not have 4-cycles, by Theorem 1.5, G has an induced subgraph B(6,0). Let B(6,0) be the graph obtained from $P_8 = v_1 v_2 \dots v_8$ by adding a vertex v and joining v to v_1 and v_2 . By (A1), let $a_1, a_2 \in V(G) - V(B(6,0))$ be the other two adjacent neighbors of v, and let $b_1, b_2 \in V(G) - V(B(6,0))$ be the other two adjacent neighbors of v_1 .

Let $x \in \{a_1, a_2, b_1, b_2\}$. Since G does not have 4-cycles, $N(x) \cap \{v_2, v_3\} = \emptyset$. Furthermore, as $G[\{v, v_1, v_2\} \cup \{v_3, \dots, v_8\} \cup \{x\}] \neq B(6, 1), N(x) \cap \{v_4, v_5, \dots, v_8\} \neq \emptyset$. If $N(a_1) \cap V(B(6, 0)) = \{v, v_6, v_7\}$, then $v_5, v_6, v_7, v_8 \notin N(a_2)$, since G has no 4-cycles. By (CF1), $v_4 \notin N(a_2)$, a contradiction. Therefore $N(x) \cap \{v_4, v_5, \dots, v_8\} \neq \{v, v_6, v_7\}$, and $N(x) \cap \{v_4, v_5, \dots, v_8\} \in \{\{v_4, v_5\}, \{v_5, v_6\}, \{v_7, v_8\}, \{v_8\}\}$. Without loss of generality, we may assume that $N(a_1) \cap V(B(6, 0)) = \{v, v_4, v_5\}, N(a_2) \cap V(B(6, 0)) = \{v, v_7, v_8\}, N(b_1) \cap V(B(6, 0)) = \{v_1, v_5, v_6\}$ and $N(b_2) \cap V(B(6, 0)) = \{v_1, v_8\}$.

Let $c_1 \in N(b_2) \cap N(v_8)$. Since G does not have 4-cycles, $v_6, v_7, v_2 \notin N(c_1)$. Since $G[\{c_1, b_2, v_8\} \cup \{v_1, v_2, v_3, v_4, v_5, v_6\} \cup \{a_2\}] \neq B(6, 1)$, we have $N(c_1) \cap V(B(6, 0)) = \{v_8, v_3, v_4\}$. By (A1), there is $c_2 \in N(v_6) \cap N(v_7)$. If $N(c_2) \cap V(B(6, 0)) = \{v_6, v_7\}$, then $G[\{c_2, v_6, v_7\} \cup \{v_5, v_4, v_3, v_2, v_1, b_2\} \cup \{a_2\}]$ is a B(6, 1), a contradiction. So $N(c_2) \cap V(B(6, 0)) = \{v_2, v_3, v_6, v_7\}$. Then G is the line graph of the Petersen graph. **Case 2.** B(i, j) = B(5, 2).

Since G is a 4-connected $K_{1,3}$ -free graph and G does not have 4-cycles, by Theorem 1.5, G has an induced subgraph B(5,1). Let B(5,1) be the graph obtained from $P_8 = v_1 v_2 \dots v_8$ by adding a vertex v and joining v to v_2 and v_3 . By (A1), let a_1, a_2 be two adjacent neighbors of v_1 and $a_3 \in N(v_1) \cap N(v_2)$. Then $v, v_3 \notin N(\{a_1, a_2, a_3\})$.

Suppose that $N(a_3) \cap V(B(5,1)) = \{v_1, v_2\}$. Let $b_1, b_2 \in V(G) - V(B(5,1))$ be two adjacent neighbors of a_3 . Let $x \in \{a_1, a_2\}$ and $y \in \{b_1, b_2\}$. Then $N(x) \cap \{v_4, v_5, v_6, v_7, v_8\} \neq \emptyset$ and $N(y) \cap \{v_4, v_5, v_6, v_7, v_8\} \neq \emptyset$ (otherwise, $G[\{v, v_2, v_3\} \cup \{v_4, v_5, v_6, v_7, v_8\} \cup \{s, t\}]$ is a B(5, 2), where $s = v_1$ if $t \in \{a_1, a_2\}$, or $s = a_3$ if $t \in \{b_1, b_2\}$, a contradiction). Furthermore, $v_4 \in N(\{a_1, a_2, b_1, b_2\})$ (otherwise, by symmetry of b_1, b_2 and a_1, a_2 , we have $N(a_1) \cap V(B(5, 1)) = \{v_1, v_5, v_6\}$, $N(a_2) \cap V(B(5, 1)) = \{v_1, v_8\}$, $N(b_1) \cap V(B(5, 1)) = \{v_5, v_6\}$, and $N(b_2) \cap V(B(5, 1)) = \{v_8\}$. Thus $a_1v_5b_1v_6a_1$ is a 4-cycle in G, a contradiction). Without loss of generality, we assume that $b_1v_4 \in E(G)$. By (CF1), $b_1v_5 \in E(G)$. Notice that G has no 4-cycles. By symmetry of a_1 and a_2 , we may assume that $N(a_1) \cap V(B(5, 1)) = \{v_1, v_5, v_6\}$ and $N(a_2) \cap V(B(5, 1)) = \{v_1, v_8\}$. Thus $N(b_2) \cap V(B(5, 1)) = \{v_7, v_8\}$. Thus $G[\{v, v_2, v_3\} \cup \{v_4, v_5, v_6, v_7, b_2\} \cup \{v_1, a_2\}]$ is a B(5, 2), a contradiction. Therefore, $N(a_3) \cap V(B(5, 1)) \neq \{v_1, v_2\}$.

Assume that $v_4 \notin N(\{a_1, a_2\})$. Then, without loss of generality, we assume that $N(a_1) \cap V(B(5,1)) = \{v_1, v_5, v_6\}$ and $N(a_2) \cap V(B(5,1)) = \{v_1, v_8\}$. Thus $N(a_3) \cap V(B(5,1)) = \{v_1, v_2\}$, a contradiction. So $v_4 \in N(\{a_1, a_2\})$. We assume that $v_4 \in N(a_1)$. Then $N(a_1) \cap V(B(5,1)) = \{v_1, v_4, v_5\}$. Thus $N(a_2) \cap V(B(5,1)) = \{v_1, v_8\}$ and $N(a_3) \cap V(B(5,1)) = \{v_1, v_2, v_6, v_7\}$.

Since d(v) = 4, let $N(v) = \{v_2, v_3, b_1, b_2\}$. Then $b_1b_2 \in E(G)$, and $N(b_i) \cap \{v_3, v_4\} = \emptyset(i = 1, 2)$. Thus $N(b_i) \cap \{v_5, v_6, v_7, v_8\} \neq \emptyset$ (otherwise, $a_2b_i \notin E(G)$ as $b_iv_8 \notin E(G)$. Thus $G[\{a_3, v_6, v_7\} \cup \{v_5, v_4, v_3, v, b_i\} \cup \{v_8, a_2\}]$ is a B(5, 2), a contradiction). Since G has no 4-cycles, we may assume that $N(b_1) \cap V(B(5, 1)) = \{v, v_5, v_6\}$ and $N(b_2) \cap V(B(5, 1)) = \{v, v_8\}$. Since $G[\{v_8, v_7, b_2, a_2\}] \neq K_{1,3}, a_2b_2 \in E(G)$. Let $N(v_8) = \{b_2, v_7, a_2, x\}$. Then $xv_3, xv_4 \in E(G)$ (Otherwise, $\{x, v_3, v_4\}$ is a 3-cut in G). By (A1), $xv_7 \in E(G)$. Therefore, $V(G) = V(B(5, 1)) \cup \{a_1, a_2, a_3, b_1, b_2, x\}$ and G is the line graph of the Petersen graph.

Case 3. B(i, j) = B(4, 3).

By Theorem 1.3, G has an induced subgraph $P_{10} = v_1 v_2 \dots v_{10}$. By (A1), suppose that $a_1 \in N(v_5) \cap N(v_6)$, $a_2 \in N(v_4) \cap N(v_5)$ and $a_3 \in N(v_6) \cap N(v_7)$. Since G does not have 4-cycles, a_1, a_2, a_3 are all distinct non-adjacent vertices.

Consider $N(a_1)$. Since G does not have 4-cycles, $N(a_1) \cap \{v_3, v_4, v_7, v_8\} = \emptyset$. Since G is B(4,3)-free, we have either $N(a_1) \cap \{v_1, v_2\} \neq \emptyset$ or $N(a_1) \cap \{v_9, v_{10}\} \neq \emptyset$. Without loss of generality, we assume that $N(a_1) \cap \{v_1, v_2\} \neq \emptyset$. By (CF2), $N(a_1) \cap \{v_9, v_{10}\} = \emptyset$. Since $G[\{a_1, v_5, v_6\} \cup \{v_7, v_8, v_9, v_{10}\} \cup \{v_4, v_3, v_2\}]$ is not a $B(4,3), a_1v_2 \in E(G)$. By (CF1), $N(a_1) = \{v_1, v_2, v_5, v_6\}$.

Consider $N(a_2)$. Since G has no 4-cycles, $N(a_2) \cap \{v_1, v_2, v_3, v_6, v_7\} = \emptyset$. Since G is B(4,3)-free, $N(a_2) \cap \{v_8, v_9\} \neq \emptyset$. By (CF1), $a_2v_9 \in E(G)$. If $a_2v_8 \notin E(G)$, then $a_2v_{10} \in E(G)$. Thus $G[\{a_2, v_9, v_{10}\} \cup \{v_4, v_3, v_2, v_1\} \cup \{v_8, v_7, v_6\}]$ is a B(4,3), a contradiction. So $a_2v_8 \in E(G)$. Therefore, $N(a_2) = \{v_8, v_9, v_4, v_5\}$.

Consider $N(a_3)$. Since G has no 4-cycles and $v_6 \in N(a_1) \cap N(a_3)$, it follows

that $N(a_3) \cap \{v_1, v_2, v_8, v_9, v_4, v_5, a_1, a_2\} = \emptyset$. By (CF1), $v_3a_3 \notin E(G)$. Since $G[\{a_3, v_6, v_7\} \cup \{v_5, v_4, v_3, v_2\} \cup \{v_8, v_9, v_{10}]$ is not a $B(4, 3), a_3v_{10} \in E(G)$, and so $N(a_3) \cap (V(P_{10}) \cup \{a_1, a_2\}) = \{v_6, v_7, v_{10}\}$. Therefore, $G[\{a_2, v_8, v_9\} \cup \{v_4, v_3, v_2, v_1\} \cup \{v_{10}, a_3, v_6\}]$ is a B(4, 3), a contradiction.

Lemma 3.2 If G is a 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i + j = 7, then G has a 5-cycle.

Proof. Suppose that G is a 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i + j = 7 and that G does not have 5-cycles. By Theorem 1.4, $i, j \ge 1$. By Theorem 1.3, G has an induced subgraph $P_{10} = v_1 v_2 \dots v_{10}$.

(B1) If $N(v_i) \cap N(v_j) \neq \emptyset (1 \le i < j \le 10)$, then $j - i \notin \{2, 3\}$.

Let $x \in N(v_i) \cap N(v_j)$. Since G does not have 5-cycles, $j - i \neq 3$. If j - i = 2, then $w \in N(v_{i+1}) - \{x, v_i, v_{i+2}\}$. By (CF1), we have either $v_i w \in E(G)$ or $v_{i+2} w \in E(G)$. Thus the 4-cycle $xv_iv_{i+1}v_{i+2}x$ can be extended to 5-cycle $xv_iwv_{i+1}v_{i+2}x$ or $xv_iv_{i+1}wv_{i+2}x$, a contradiction. (B1) holds.

Case 1. B(i, j) = B(6, 1)

Assume that v_3 and v_4 have more than one common neighbor. Let a_1 and a_2 be two common neighbors of v_3 and v_4 . By (B1), for $i = 1, 2, N(a_i) \cap \{v_1, v_2, v_5, v_6, v_7\} = \emptyset$. Since G is B(6, 1)-free, $N(a_i) \cap \{v_8, v_9, v_{10}\} \neq \emptyset$. Since G has no 5-cycle, $N(a_1) \cap N(a_2) \cap \{v_8, v_9, v_{10}\} = \emptyset$. Thus, by symmetry and (CF1), we have $v_8a_2, v_9a_2 \in E(G)$ and $a_1v_{10} \in E(G)$. Therefore, $a_1v_3a_2v_9v_{10}a_1$ is a 5-cycle, a contradiction. So v_3 and v_4 have at most one common neighbor. Similarly, v_2 and v_3 have at most one common neighbor. Similarly, $d(v_8) = 4$, and v_7 and v_8 have exactly one common neighbor.

Let $N(v_3) = \{v_2, v_4, a_1, a_2\}$ and $N(v_8) = \{v_7, v_9, b_1, b_2\}$. By (CF1), we assume that $a_1 \in N(v_3) \cap N(v_4), a_2 \in N(v_2) \cap N(v_3), b_1 \in N(v_7) \cap N(v_8), \text{ and } b_2 \in N(v_8) \cap N(v_9)$. Since G is B(6, 1)-free, by (B1), $N(a_1) \cap V(P_{10}) \subseteq \{v_3, v_4, v_8, v_9, v_{10}\}$ and $N(a_2) \cap V(P_{10}) \subseteq \{v_2, v_3, v_7, v_8, v_9, v_{10}\}$. Since G has no 5-cycles, $N(a_1) \cap V(P_{10}) = \{v_3, v_4, v_{10}\}$ and $N(a_2) \cap V(P_{10}) = \{v_2, v_3, v_7, v_8\}$. Similarly, $N(b_1) \cap V(P_{10}) = \{v_7, v_8, v_1\}$ and $N(b_2) \cap V(P_{10}) = \{v_8, v_9, v_3, v_4\}$. Thus, $a_2v_7v_8b_2v_3a_2$ is a 5-cycle in G, a contradiction.

Case 2. B(i, j) = B(5, 2)

Assume that v_4 and v_5 have more than one common neighbor. Let a_1 and a_2 be two common neighbors of v_4 and v_5 . By (B1), $N_{(a_i)} \cap \{v_1, v_2, v_3, v_6, v_7, v_8\} = \emptyset$ for i = 1, 2. Since G is B(5, 2)-free, $N(a_i) \cap \{v_9, v_{10}\} \neq \emptyset$. By (CF1), $v_{10}a_1, v_{10}a_2 \in E(G)$. Thus $a_1v_{10}a_2v_5v_4a_1$ is a 5-cycle, a contradiction. So v_4 and v_5 have at most one common neighbor. Similarly, v_3 and v_4 have at most one common neighbor. Thus, $d(v_4) = 4$, and v_4 and v_5 have exactly one common neighbor.

Let $N(v_4) = \{v_3, v_5, a_1, a_2\}$. By (CF1), we assume that $a_1 \in N(v_4) \cap N(v_5)$ and $a_2 \in N(v_3) \cap N(v_4)$. Since G is B(5, 2)-free, by (B1), $N(a_1) \cap V(P_{10}) \subseteq \{v_4, v_5, v_9, v_{10}\}$

and $N(a_2) \cap V(P_{10}) \subseteq \{v_3, v_4, v_8, v_9, v_{10}\}$. Since G has no 5-cycles, $N(a_1) \cap N(a_2) \cap \{v_8, v_9, v_{10}\} = \emptyset$. By (CF1), $N(a_1) \cap V(P_{10}) = \{v_4, v_5, v_{10}\}$ and $N(a_2) \cap V(P_{10}) = \{v_3, v_4, v_8, v_9\}$. Thus, $a_2v_9v_{10}a_1v_4a_2$ is a 5-cycle in G, a contradiction. Case 3. B(i, j) = B(4, 3)

Assume that v_5 and v_6 have a common neighbor. Let a_1 be a common neighbor of v_5 and v_6 . By (B1), $N(a_1) \cap \{v_2, v_3, v_4, v_7, v_8, v_9\} = \emptyset$. Since G is B(4, 3)-free, $a_1v_1, a_1v_{10} \in E(G)$, contrary to (CF2). Thus v_5 and v_6 have no common neighbors. Let $a_1, a_2 \in N(v_5) - \{v_4, v_6\}$; then $a_1a_2, a_1v_4, a_2v_4 \in E(G)$. By (B1), $N(a_i) \cap \{v_1, v_2, v_3, v_6, v_7, v_8\} = \emptyset$ for i = 1, 2. Since G is B(4, 3)-free, $v_9a_1, v_9a_2 \in E(G)$. Thus $a_1v_9a_2v_4v_5a_1$ is a 5-cycle, a contradiction.

Lemma 3.3 If G is a 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i + j = 7, then G has a 6-cycle.

Proof. Suppose that G is a 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i + j = 7 and that G does not have 6-cycles. By Theorem 1.4, $i, j \ge 1$. By Theorem 1.3, G has an induced subgraph $P_{10} = v_1 v_2 \dots v_{10}$.

(C1) If $N(v_i) \cap N(v_j) \neq \emptyset$ $(1 \le i < j \le 10)$, then $j - i \notin \{2, 3, 4\}$.

Let $x \in N(v_i) \cap N(v_j)$. Since G does not have 6-cycles, $j - i \neq 4$. If j - i = 3, let $w \in N(v_{i+1}) - \{x, v_i, v_{i+2}\}$. By (CF1), we have either $v_i w \in E(G)$ or $v_{i+2} w \in E(G)$. Thus the 5-cycle $xv_iv_{i+1}v_{i+2}v_{i+3}x$ can be extended to a 6-cycle $xv_iwv_{i+1}v_{i+2}v_{i+3}x$ or $xv_iv_{i+1}wv_{i+2}v_{i+3}x$, a contradiction. So $j - i \neq 3$.

Assume that j - i = 2. Let $N(v_{i+1}) - \{x, v_i, v_{i+2}\} = \{w_1, \ldots, w_t\}$. By (CF1), either $w_s v_i \in E(G)$ or $w_s v_{i+2} \in E(G)$ for $s = 1, \ldots, t$. Assume that $t \ge 2$. If $w_1 v_i, w_2 v_{i+2} \in E(G)$, then $x v_i w_1 v_{i+1} w_2 v_{i+2} x$ is a 6-cycle in G, a contradiction. So we may assume that $w_1 v_i, w_2 v_i \in E(G)$ and $w_1 v_{i+2}, w_2 v_{i+2} \notin E(G)$. Since G is claw-free, $w_1 w_2 \in E(G)$. Thus $x v_i w_1 w_2 v_{i+1} v_{i+2} x$ is a 6-cycle in G, a contradiction. So t = 1. As G is 4-connected, $N(v_{i+1}) = \{w_1, v_i, v_{i+2}, x\}$. Consider T = N(x) - $\{v_i, v_{i+1}, v_{i+2}, w_1\}$. If $T \neq \emptyset$, let $y \in T$. Then either $yv_i \in E(G)$ or $yv_{i+2} \in E(G)$. Thus $G[\{x, v_i, v_{i+1}, w_1, v_{i+2}, y\}]$ must contain a 6-cycle, a contradiction. So $T = \emptyset$ and $N(x) = \{v_i, v_{i+1}, v_{i+2}, w_1\}$. Therefore, $\{w_1, v_i, v_{i+2}\}$ is a 3-cut in G, a contradiction. So $j - i \neq 2$. (C1) holds.

Case 1. B(i, j) = B(4, 3).

Assume that v_5 and v_6 have a common neighbor. Let $a_1 \in N(v_5) \cap N(v_6)$. By (C1), $N(a_1) \cap V(P_{10}) = \{v_5, v_6\}$. Thus $G[\{a_1, v_5, v_6\} \cup \{v_1, v_2, v_3, v_4\} \cup \{v_7, v_8, v_9\}]$ is a B(4, 3), a contradiction. So v_5 and v_6 do not have common neighbors. Let $a_1 \in N(v_4) \cap N(v_5)$. By (C1), $N(a_1) \cap \{v_1, v_2, v_3, v_6, v_7, v_8, v_9\} = \emptyset$. Thus $G[\{a_1, v_4, v_5\} \cup \{v_6, v_7, v_8, v_9\} \cup \{v_1, v_2, v_3\}]$ is a B(4, 3), a contradiction.

Case 2. B(i, j) = B(5, 2).

Let $x \in N(v_4) \cap N(v_5)$. By (C1), $N(x) \cap \{v_1, v_2, v_3, v_6, v_7, v_8, v_9\} = \emptyset$. As G is B(5, 2)-free, $xv_{10} \in E(G)$. Similarly, $yv_9 \in E(G)$ for any $y \in N(v_3) \cap N(v_4)$.

Assume that v_4 and v_5 have more than one common neighbor. Let $a_1, a_2 \in N(v_4) \cap N(v_5)$. Then $a_1a_2, v_{10}a_1, v_{10}a_2 \in E(G)$. As G has no 6-cycles, $N(a_1) \cup N(a_2) - \{a_1, a_2\} = \{v_4, v_5, v_{10}\}$, and so $\{v_4, v_5, v_{10}\}$ is a 3-cut in G, a contradiction. So v_4 and v_5 have at most one common neighbor. Similarly, v_3 and v_4 have at most one common neighbor.

Consider $N(v_4)$, and let $\{v_3, v_5, a_1, a_2\} \subseteq N(v_4)$. Then we may assume that $a_1 \in N(v_4) \cap N(v_5)$ and $a_2 \in N(v_3) \cap N(v_4)$. Then $a_1v_{10}, a_2v_9 \in E(G)$. Thus $a_1v_{10}v_9a_2v_4v_5a_1$ is a 6-cycle, a contradiction.

Case 3. B(i, j) = B(6, 1).

Let $x \in N(v_3) \cap N(v_4)$. By (C1), $N(x) \cap \{v_1, v_2, v_5, v_6, v_7, v_8\} = \emptyset$. As G is B(6, 1)-free, $N(x) \cap \{v_9, v_{10}\} \neq \emptyset$. By (CF1), $xv_{10} \in E(G)$. Similarly, $yv_9 \in E(G)$ for any $y \in N(v_2) \cap N(v_3)$.

Assume that v_3 and v_4 have more than one common neighbor. Let $a_1, a_2 \in N(v_3) \cap N(v_4)$. Then $a_1a_2, v_{10}a_1, v_{10}a_2 \in E(G)$. As G has no 6-cycles, $N(a_1) \cup N(a_2) - \{a_1, a_2\} = \{v_3, v_4, v_{10}\}$, and so $\{v_3, v_4, v_{10}\}$ is a 3-cut in G, a contradiction. So v_3 and v_4 have at most one common neighbor. Similarly, v_2 and v_3 have at most one common neighbor.

Consider $N(v_3)$, and let $\{v_2, v_4, a_1, a_2\} \subseteq N(v_3)$. Then we may assume that $a_1 \in N(v_3) \cap N(v_4)$ and $a_2 \in N(v_2) \cap N(v_3)$. Then $a_1v_{10}, a_2v_9 \in E(G)$. Thus $a_1v_{10}v_9a_2v_3v_4a_1$ is a 6-cycle, a contradiction.

Lemma 3.4 If G is a 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i + j = 7, then G has a 7-cycle.

Proof. Suppose that G is a 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i + j = 7 and that G does not have 7-cycles. By Theorem 1.4, $i, j \ge 1$. By Theorem 1.3, G has an induced subgraph $P_{10} = v_1 v_2 \dots v_{10}$.

- (D1) If $N(v_i) \cap N(v_j) \neq \emptyset (1 \le i < j \le 10)$, then $j i \ne \{3, 4, 5\}$.
- **(D2)** For $1 \le i \le 8$, $|N(v_i) \cap N(v_{i+2})| \le 1$.
- **(D3)** For $1 \le i \le 7$, if $N(v_i) \cap N(v_{i+2}) \ne \emptyset$, then $N(v_{i+1}) \cap N(v_{i+3}) = \emptyset$.

Let $x \in N(v_i) \cap N(v_j)$. Since G does not have 7-cycles, $j - i \neq 5$. If j - i = 4, let $w \in N(v_{i+1}) - \{v_i, v_{i+2}\}$. By (CF1), we have either $wv_i \in E(G)$ or $wv_{i+2} \in E(G)$. Thus the 6-cycle $xv_i \dots v_j x$ can be extended to a 7-cycle $xv_i wv_{i+1} \dots v_j x$ or $xv_iv_{i+1}wv_{i+2}\dots v_j x$, a contradiction. So $j - i \neq 4$. Assume that j = i + 3. Let $T = N(v_{i+1}) \cup N(v_{i+2}) - \{x, v_i, v_{i+3}\}$. Since G is 4-connected, $|T| \ge 1$. If $|T| \ge 2$, let $y_1, y_2 \in T$. By (CF1) and the fact that G is claw-free, $G[\{v_i, v_{i+1}, v_{i+2}, v_{i+3}, x, y_1, y_2\}]$ must contain a 7-cycle, a contradiction. So |T| = 1. Assume that $T = \{y\}$. Since G is 4-connected, $N(v_{i+1}) = \{v_i, v_{i+2}, y, x\}$ and $N(v_{i+2}) = \{v_{i+1}, v_{i+3}, y, x\}$. Since G is claw-free and G does not have 7-cycles, $N(x) \subseteq \{v_i, v_{i+1}, v_{i+2}, v_{i+3}, y\}$, and so $\{v_i, v_{i+3}, y\}$ is a 3-cut of G, a contradiction. Therefore, $j - i \neq 3$. (D1) follows. Suppose that $x, y \in N(v_i) \cap N(v_{i+2})$. By (D1) and (CF1), $x, y \in N(v_{i+1})$ and $xy \in E(G)$. Then G has the 5-cycle $xv_iv_{i+1}v_{i+2}yx$. Since G is claw-free and G does not have 7-cycles, $|(N(\{x, y, v_{i+1}\}) - \{v_i, v_{i+2}, x, y, v_{i+1}\}| \leq 1$ and then $N(\{x, y, v_{i+1}\}) - \{x, y, v_{i+1}\}$ is a 2-cut or 3-cut, a contradiction. So (D2) follows.

Suppose that $x \in N(v_i) \cap N(v_{i+2})$ and $y \in N(v_{i+1}) \cap N(v_{i+3})$. By (D1) and (CF1), $xv_{i+1}, yv_{i+2} \in E(G)$. Since G is claw-free and G does not have 7-cycles, $N(\{x, y, v_{i+1}, v_{i+2}\}) - \{x, y, v_i, v_{i+1}, v_{i+2}, v_{i+3}\} = \emptyset$, which implies that $\{v_i, v_{i+3}\}$ is a 2-cut of G, a contradiction. So (D3) follows.

Case 1. B(i, j) = B(4, 3).

Assume that v_5 and v_6 have more than one common neighbor. Let $a_1, a_2 \in N(v_5) \cap N(v_6)$. For i = 1, 2, by (D1), $N(a_i) \cap V(P_{10}) \subseteq \{v_4, v_5, v_6, v_7\}$. Since G is B(4,3)-free, $N(a_i) \cap \{v_4, v_7\} \neq \emptyset$, contradicting (D2) or (D3). So v_5 and v_6 have at most one common neighbor. Similarly, v_4 and v_5 have at most one common neighbor, and v_6 and v_7 have at most one common neighbor. Thus $d(v_5) = d(v_6) = 4$. Let $N(v_5) = \{v_4, v_6, a_1, a_2\}$ and $N(v_6) = \{v_5, v_7, a_1, a_3\}$. By (D1), $N(a_1) \cap V(P_{10}) = \{v_5, v_6\}$, and $G[\{a_1, v_5, v_6\} \cup \{v_7, v_8, v_9, v_{10}\} \cup \{v_4, v_3, v_2\}]$ is a B(4, 3), a contradiction. **Case 2.** B(i, j) = B(5, 2).

Assume that v_4 and v_5 have more than one common neighbor. Let $a_1, a_2 \in N(v_4) \cap N(v_5)$. For i = 1, 2, by (D1), $N(a_i) \cap \{v_1, v_2, v_7, v_8, v_9, v_{10}\} = \emptyset$. Since G is B(5, 2)-free, $N(a_i) \cap \{v_3, v_6\} \neq \emptyset$, contradicting (D2) or (D3). So v_4 and v_5 have at most one common neighbor. Similarly, v_3 and v_4 have at most one common neighbor. Thus $d(v_4) = 4$. Let $N(v_4) = \{v_3, v_5, a_1, a_2\}$. Without loss of generality, we assume that $a_1 \in N(v_4) \cap N(v_5), a_2 \in N(v_3) \cap N(v_4)$. Similarly, let $N(v_7) = \{v_6, v_8, b_1, b_2\}$, where $b_1 \in N(v_6) \cap N(v_7), b_2 \in N(v_7) \cap N(v_8)$.

By (D1), $N(a_1) \cap \{v_1, v_2, v_7, v_8, v_9, v_{10}\} = \emptyset$. Since *G* is B(5, 2)-free, $N(a_1) \cap \{v_3, v_6\} \neq \emptyset$. Similarly, $N(a_2) \cap \{v_2, v_5\} \neq \emptyset$. By (D2) and (D3), we have $a_1v_6, a_2v_2 \in E(G)$. Similarly, $b_1v_5, b_2v_9 \in E(G)$, contradicting (D3).

Case 3. B(i, j) = B(6, 1).

Assume that v_3 and v_4 do not have common neighbors. Since G is 4-connected, let $a_1, a_2 \in N(v_2) \cap N(v_3)$ and $b_1, b_2 \in N(v_4) \cap N(v_5)$. Then $a_1a_2, b_1b_2 \in E(G)$, $v_4 \notin N(a_1) \cup N(a_2)$ and $v_3 \notin N(b_1) \cup N(b_2)$. Since G has no 7-cycles, $a_ib_j \notin E(G)$ for $i, j \in \{1, 2\}$. For i = 1, 2, by (D1), $N(a_i) \cap \{v_5, v_6, v_7, v_8\} = \emptyset$ and $N(b_i) \cap \{v_1, v_2, v_7, v_8, v_9, v_{10}\} = \emptyset$. By (D2), we may assume that $v_1a_1, v_6b_1 \notin E(G)$. Since Gis B(6, 1)-free, we have $a_1v_9 \in E(G)$. Thus $G[\{a_1, v_2, v_3\} \cup \{v_1\} \cup \{v_9, v_8, v_7, v_6, v_5, b_1\}]$ is a B(6, 1), a contradiction. So v_3 and v_4 have a common neighbor. Similarly, v_7 and v_8 have a common neighbor.

Claim 1. Assume that v_3 and v_4 have exactly one common neighbor. Let $a_1 \in N(v_3) \cap N(v_4)$, $a_2 \in N(v_2) \cap N(v_3)$ and $a_3 \in N(v_4) \cap N(v_5)$. Then

- (i) $N(a_1) \cap \{v_1, v_2, v_6, v_7, v_8, v_9\} = \emptyset$. Therefore, either $N(a_1) \cap V(P_{10}) = \{v_3, v_4, v_5\}$ or $N(a_1) \cap V(P_{10}) = \{v_3, v_4, v_{10}\}.$
- (ii) $N(a_2) \cap V(P_{10}) = \{v_1, v_2, v_3\}.$

By (D1), $N(a_1) \cap \{v_1, v_6, v_7, v_8, v_9\} = \emptyset$. Assume that $a_1v_2 \in E(G)$. By (D1), (D2) and (D3), $N(a_2) \cap \{v_1, v_4, v_5, v_6, v_7, v_8\} = \emptyset$. Since G is B(6, 1)-free, $a_2v_9 \in E(G)$. By (CF1), $a_2v_{10} \in E(G)$. Since G has no 7-cycles, $a_1v_5, a_1v_{10} \notin E(G)$. If there is $y \in N(a_1) - \{a_2, v_2, v_3, v_4\}$, then $yv_2 \in E(G)$ or $yv_4 \in E(G)$. If $yv_4 \in E(G)$, since v_3 and v_4 have exactly one common neighbor, by (CF1), $yv_5 \in E(G)$. This implies a 7-cycle $yv_5a_3v_4v_3v_2a_1y$, a contradiction. So $yv_4 \notin E(G)$ and $yv_2 \in E(G)$. Since G has no 7-cycles, $yv_1 \notin E(G)$ and so $yv_3 \in E(G)$. By (D1), (D2) and (D3), $N(y) \cap$ $\{v_4, v_5, v_6, v_7, v_8\} = \emptyset$. As G is B(6, 1)-free, $yv_9 \in E(G)$. By (CF1), $yv_{10} \in E(G)$. Thus $yv_9v_{10}a_2v_2v_3a_1y$ is a 7-cycle in G, a contradiction. So $N(a_1) \subseteq \{a_2, v_2, v_3, v_4\}$. By the symmetry of a_1 and v_3 , $N(v_3) \subseteq \{a_1, a_2, v_2, v_4\}$, and so $\{a_2, v_2, v_4\}$ is a 3-cut of G, a contradiction. Claim 1(i) holds.

Assume that $a_2v_1 \notin E(G)$. Since G is B(6, 1)-free, $a_2v_9 \in E(G)$, and so $a_2v_{10} \in E(G)$. Thus $N(a_2) \cap V(P_{10}) = \{v_2, v_3, v_9, v_{10}\}$. Since G has no 7-cycles, $v_{10} \notin N(a_1)$. By Claim 1(i), $N(a_1) \cap V(P_{10}) = \{v_3, v_4, v_5\}$. By (D3), $a_3v_6 \notin E(G)$. By (D1) and (D2), $N(a_3) \cap V(P_{10}) = \{v_4, v_5\}$. Since G has no 7-cycles, $a_2a_3 \notin E(G)$. Thus $G[\{a_2, v_2, v_3\} \cup \{v_9, v_8, v_7, v_6, v_5, a_3\} \cup \{v_1\}]$ is a B(6, 1), a contradiction. So $a_2v_1 \in E(G)$. By (CF2), $N(a_2) \cap V(P_{10}) = \{v_1, v_2, v_3\}$. So Claim 1(ii) holds.

Claim 2. Assume that v_3 and v_4 have more than one common neighbor. Let $a_1, a_2 \in N(v_3) \cap N(v_4)$. Then, for $i = 1, 2, N(a_i) \cap \{v_1, v_2, v_6, v_7, v_8, v_9\} = \emptyset$. Therefore, by symmetry, $N(a_1) \cap V(P_{10}) = \{v_3, v_4, v_5\}$ and $N(a_2) \cap V(P_{10}) = \{v_3, v_4, v_{10}\}$.

By (D1), $N(a_i) \cap \{v_1, v_6, v_7, v_8, v_9\} = \emptyset$. Without loss of generality, we assume that $a_1v_2 \in E(G)$. By (D2) and (D3), $a_2v_2, a_2v_5 \notin E(G)$. Since G is B(6, 1)-free, $a_2v_{10} \in E(G)$. Since $G[\{v_4, a_1, a_2, v_5\}]$ is not a claw, $a_1a_2 \in E(G)$. Since G is 4-connected, there is a vertex $y \in (N(\{a_1, v_3\}) - \{a_1, v_3\}) - \{v_2, a_2, v_4\}$.

If $ya_1 \in E(G)$, by considering $G[\{a_1, y, v_2, v_4\}]$, we have $N(y) \cap \{v_2, v_4\} \neq \emptyset$. As G has no 7-cycles, $N(y) \cap \{v_1, v_5, v_6, v_7, v_8, v_9, v_{10}\} = \emptyset$. If $yv_4 \notin E(G)$, then $yv_2 \in E(G)$ and $yv_3 \in E(G)$ by (CF1), and so $G[\{y, v_2, v_3\} \cup \{v_4, v_5, v_6, v_7, v_8, v_9\} \cup \{v_1\}] = B(6, 1)$, a contradiction. If $yv_4 \in E(G)$, then $yv_2 \notin E(G)$ by (D2) and $yv_3 \in E(G)$ by (CF1), therefore $G[\{y, v_3, v_4\} \cup \{v_5, v_6, v_7, v_8, v_9, v_{10}\} \cup \{v_2\}] = B(6, 1)$, a contradiction. This implies $yv_3 \in E(G)$. By considering $G[\{v_3, a_2, y, v_2\}]$, we have $yv_2 \in E(G)$. By (D2), $yv_4 \notin E(G)$. As G has no 7-cycles, $N(y) \cap \{v_1, v_5, v_6, v_7, v_8, v_9, v_{10}\} = \emptyset$. Thus $G[\{y, v_2, v_3\} \cup \{v_4, v_5, v_6, v_7, v_7, v_9\} \cup \{v_1\}]$ is a B(6, 1), a contradiction. Claim 2 holds. Claim 3. Suppose that $a_1 \in N(v_3) \cap N(v_4)$ and $b_1 \in N(v_7) \cap N(v_8)$. If $N(a_1) \cap V(P_{10}) = \{v_3, v_4, v_{10}\}$, then $N(b_1) \cap V(P_{10}) \neq \{v_1, v_7, v_8\}$.

Assume that $N(b_1) \cap V(P_{10}) = \{v_1, v_7, v_8\}$. If there is $y \in N(v_5) \cap N(v_6)$, since G does not have 7-cycles, $ya_1, yb_1 \notin E(G)$. By (D1), $N(y) \cap V(P_{10}) \subseteq \{v_4, v_5, v_6, v_7\}$. If $N(y) \cap V(P_{10}) = \{v_5, v_6\}$, then G has a $B(6, 1) = G[\{a_1, v_3, v_4\} \cup \{v_{10}, v_9, v_8, v_7, v_6, y\} \cup \{v_2\}]$, a contradiction. By (D1), suppose that $N(y) \cap V(P_{10}) = \{v_4, v_5, v_6\}$. Let $y' \in N(v_5) - \{v_4, v_6, y\}$. By (D2) and (D3) and the same discussion as $y, y' \notin N(v_6)$. So $y' \in N(v_4) \cap N(v_5)$. By (D1) and (D3), $N(y') \cap V(P_{10}) = \{v_4, v_5\}$. Since G has no 7-cycles, $y'a_1, y'b_1 \notin E(G)$. Thus $G[\{y', v_4, v_5\} \cup \{v_3, v_2, v_1, b_1, v_8, v_9\} \cup \{v_6\}] = B(6, 1)$, a contradiction. So $N(v_5) \cap N(v_6) = \emptyset$. Therefore, there are $a_2, a_3 \in N(v_4) \cap N(v_5)$. By (D1), $N(a_i) \cap V(P_{10}) \subseteq \{v_3, v_4, v_5\}(i = 2, 3)$. Since G does not have 7-cycles,

 $a_2b_1, a_3b_1 \notin E(G)$. By (D2), one of a_2 and a_3 has $N(a_i) \cap V(P_{10}) = \{v_4, v_5\}$, resulting a $B(6, 1) = G[\{a_i, v_4, v_5\} \cup \{v_3, v_2, v_1, b_1, v_8, v_9\} \cup \{v_6\}]$ again, a contradiction. Claim 3 holds.

By Claims 2 and 3, since G is B(6,1)-free, either v_3 and v_4 have exactly one common neighbor, or v_7 and v_8 have exactly one common neighbor.

Claim 4. v_3 and v_4 have exactly one common neighbor, and v_7 and v_8 have exactly one common neighbor.

By symmetry, we assume that v_3 and v_4 have exactly one common neighbor, and v_7 and v_8 have two or more common neighbors. Let $a_1 \in N(v_3) \cap N(v_4)$, $a_3 \in N(v_4) \cap N(v_5)$, and $b_1, b_2 \in N(v_7) \cap N(v_8)$. By Claim 2, we assume that $N(b_1) \cap V(P_{10}) = \{v_1, v_7, v_8\}$, and $N(b_2) \cap V(P_{10}) = \{v_7, v_8, v_9\}$. By Claims 1(i) and 3, we have $N(a_1) \cap V(P_{10}) = \{v_3, v_4, v_5\}$. By (D1), (D2) and (D3), $N(a_3) \cap V(P_{10}) =$ $\{v_4, v_5\}$. Since G has no 7-cycles, $a_3b_1, a_3b_2 \notin E(G)$. Thus G has a B(6, 1) = $G[\{a_3, v_4, v_5\} \cup \{v_3, v_2, v_1, b_1, v_8, v_9\} \cup \{v_6\}]$, a contradiction. Claim 4 holds.

By Claim 4, let $a_1 \in N(v_3) \cap N(v_4)$, $a_2 \in N(v_2) \cap N(v_3)$ and $a_3 \in N(v_4) \cap N(v_5)$, and let $b_1 \in N(v_7) \cap N(v_8)$, $b_2 \in N(v_8) \cap N(v_9)$ and $b_3 \in N(v_6) \cap N(v_7)$. By Claim 1(ii), $N(a_2) \cap V(P_{10}) = \{v_1, v_2, v_3\}$ and $N(b_2) \cap V(P_{10}) = \{v_8, v_9, v_{10}\}$.

Claim 5. $N(a_1) \cap V(P_{10}) = \{v_3, v_4, v_5\}$ and $N(b_1) \cap V(P_{10}) = \{v_6, v_7, v_8\}.$

Assume that $N(a_1) \cap V(P_{10}) \neq \{v_3, v_4, v_5\}$. By Claim 1(i), $N(a_1) \cap V(P_{10}) = \{v_3, v_4, v_{10}\}$. By Claims 1(i) and 3, $N(b_1) \cap V(P_{10}) = \{v_6, v_7, v_8\}$. By (D1), (D2) and (D3), $N(b_3) \cap V(P_{10}) = \{v_6, v_7\}$. Since G has no 7-cycles, $a_1b_3 \notin E(G)$. Thus $G[\{b_3, v_6, v_7\} \cup \{v_8, v_9, v_{10}, a_1, v_3, v_2\} \cup \{v_5\}]$ is a B(6, 1), a contradiction. So $N(a_1) \cap V(P_{10}) = \{v_3, v_4, v_5\}$. By symmetry, $N(b_1) \cap V(P_{10}) = \{v_6, v_7, v_8\}$. Claim 5 holds.

Now we finish the proof of Case 3. Since G does not have 7-cycles, $|N(a_1) \cup N(v_4) - \{a_1, v_4, v_3, v_5, a_3\}| \leq 1$. Since G is 4-connected, $|N(a_1) \cup N(v_4) - \{a_1, v_4, v_3, v_5, a_3\}| = 1$. Let $a_4 \in N(a_1) \cup N(v_4) - \{a_1, v_4, v_3, v_5, a_3\}$. Since G has no 7-cycles, $a_4v_2, a_4v_6 \notin E(G)$. Thus $a_4v_4 \in E(G)$ (if $a_1a_4 \in E(G)$, then either $a_4v_3 \in E(G)$ or $a_4v_5 \in E(G)$. By (CF1), $a_4v_4 \in E(G)$). By Claim 4, $N(a_4) \cap V(P_{10}) = \{v_4, v_5\}$. Since G is clawfree, $G[\{a_1, a_3, a_4, v_4, v_5\}]$ is a K_5 , and so $N(a_1) = \{v_3, v_4, v_5, a_3, a_4\}$ and $N(v_4) = \{v_3, v_5, a_1, a_3, a_4\}$. Similarly there is $b_4 \in N(b_1) \cup N(v_7) - \{v_6, v_8, b_3\}$ with $N(b_4) \cap V(P_{10}) = \{v_6, v_7\}$, and $N(b_1) = \{v_6, v_7, v_8, b_3, b_4\}$ and $N(v_7) = \{v_6, v_8, b_1, b_3, b_4\}$. Since G has no 7-cycles, $a_ib_i \notin E(G)$ for i, j = 1, 2, 3, 4.

Let $N(v_1) - \{a_2, v_2\} = \{c_1, c_2, \dots, c_s\}(s \ge 2)$, and let $i \in \{1, \dots, s\}$. Then $N(c_i) \cap \{a_1, v_4, b_1, v_7\} = \emptyset$. Since G has no 7-cycles, $N(c_i) \cap \{v_5, v_6, a_3, a_4\} = \emptyset$. If $c_iv_8 \in E(G)$, then, by (CF1), $c_iv_9 \in E(G)$. By Claim 1(ii), $c_iv_{10} \in E(G)$, and so $\{v_1, v_8, v_9, v_{10}\} \subseteq N(c_i) \cap V(P_{10})$, contrary to (CF2). So $c_iv_8 \notin E(G)$. If $c_iv_9 \in E(G)$, then $c_iv_{10} \in E(G)$. Since $G[\{c_i, v_9, v_{10}\} \cup \{v_8, v_7, v_6, v_5, v_4, v_3\} \cup \{v_1\}]$ is not a B(6, 1), we have $c_iv_3 \in E(G)$, contrary to (D2). So $c_iv_9 \notin E(G)$. If $c_iv_{10} \in E(G)$, by symmetry, $c_iv_2, c_iv_3 \notin E(G)$. Thus $G[\{a_3, v_4, v_5\} \cup \{v_6, v_7, v_8, v_9, v_{10}, c_i\} \cup \{v_3\}]$ is a B(6, 1), a contradiction. So $c_iv_{10} \notin E(G)$. If $c_ib_3 \in E(G)$, as G has no 7-cycles, $c_iv_2, c_iv_3 \notin E(G)$, so $G[\{b_3, v_6, v_7\} \cup \{c_i, v_1, v_2, v_3, v_4, a_3\} \cup \{v_8\}]$ is a B(6, 1). So $c_ib_3 \notin E(G)$. If $c_iv_2 \notin E(G)$, then $c_iv_3 \notin E(G)$, so $G[\{b_3, v_6, v_7\} \cup \{c_i, v_1, v_2, v_3, v_4, a_3\} \cup \{v_8\}]$ is a B(6, 1). So $c_ib_3 \notin E(G)$. If $c_iv_2 \notin E(G)$, then $c_iv_3 \notin E(G)$, so $G[\{b_3, v_6, v_7\} \cup \{c_i, v_1, v_2, v_3, v_4, a_3\} \cup \{v_8\}]$ is a B(6, 1). So $c_ib_3 \notin E(G)$. If $c_iv_2 \notin E(G)$, then $c_iv_3 \notin E(G)$, so $G[\{b_3, v_6, v_7\} \cup \{v_8, v_7\} \cup \{v_5, v_4, v_3, v_2, v_1, c_i\} \cup \{v_8\}]$ is a B(6,1). This shows that $c_i v_2 \in E(G)$. By (D2), $c_i v_3 \notin E(G)$. Therefore, $N(c_i) \cap V(P_{10}) = \{v_1, v_2\}$, and $G[\{c_1, c_2, \ldots, c_s\}]$ is a K_s . Since G has no 7-cycles, s = 2.

Consider $N(a_2)$ and $N(v_2)$. Since G has no 7-cycles, we have $N(v_2) = \{v_1, v_3, c_1, c_2, a_2\}$ and $N(a_2) \subseteq \{c_1, c_2, v_1, v_2, v_3\}$. Thus $\{c_1, c_2, v_3\}$ is a 3-cut in G, a contradiction.

Lemma 3.5 If G is a 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i + j = 7, then G has an 8-cycle.

Proof. Suppose that G is a 4-connected $\{K_{1,3}, B(i, j)\}$ -free graph with i + j = 7 and that G does not have 8-cycles. By Theorem 1.4, $i, j \ge 1$. By Theorem 1.3, G has an induced subgraph $P_{10} = v_1 v_2 \dots v_{10}$.

- (E1) If $N(v_i) \cap N(v_j) \neq \emptyset$ $(1 \le i < j \le 10)$, then $j i \notin \{4, 5, 6\}$. Therefore, for some $x \notin V(P_{10})$, if $\{v_i, v_{i+2}\} \subseteq N(x) \cap V(P_{10})$ $(2 \le i \le 7)$, then $xv_{i+1} \in E(G)$, and if $\{v_i, v_{i+3}\} \subseteq N(x) \cap V(P_{10})$ $(2 \le i \le 6)$, then $xv_{i+1}, xv_{i+2} \in E(G)$.
- (E2) Let $x \in N(v_i) \cap N(v_{i+2}) \{v_{i+1}\}$ $(1 \le i \le 7)$. Then $N(v_{i+1}) \cap N(v_{i+3}) \subseteq \{x\}$. Therefore, there do not exist $x, y \in V(G) - V(P_{10})$ such that $(N(x) \cup N(y)) \cap V(P_{10}) = \{v_i, v_{i+1}, v_{i+2}, v_{i+3}\}$ and $\min(|N(x) \cap V(P_{10})|, |N(y) \cap V(P_{10})|) \ge 3$, where $1 \le i \le 7$.
- (E3) Assume that $a_1, a_2 \in N(v_i) \cap N(v_{i+1}) \cap N(v_{i+2})$ $(2 \le i \le 7)$, and let $T = N(\{a_1, a_2, v_{i+1}\}) \{a_1, a_2, v_{i+1}, v_i, v_{i+2}\}.$ (i) For $y \in T$, $yv_{i+1} \in E(G)$. (ii) Let $y \in T$ and $w \in N(y) \cap \{v_i, v_{i+2}\}, G[\{a_1, a_2, y, v_{i+1}, w\}]$ is a complete graph.

(iii) |T| = 2, and for any $y \in T$, $|N(y) \cap \{v_i, v_{i+2}\}| = 1$. If $T = \{y_1, y_2\}$, then $N(a_1) = \{a_2, v_{i+1}, y_1, y_2, v_i, v_{i+2}\}, N(a_2) = \{a_1, v_{i+1}, y_1, y_2, v_i, v_{i+2}\}, N(v_{i+1}) = \{a_1, a_2, y_1, y_2, v_i, v_{i+2}\}.$

Figure 2. Graph for (E3)

(E4) Assume that $N(x) \cap V(P_{10}) = \{v_i, v_{i+1}, v_{i+2}\}, \text{ and } y \in N(x) - \{v_i, v_{i+1}, v_{i+2}\}.$ Then $yv_{i+3} \notin E(G)$ if $i \leq 7$ and $yv_{i-1} \notin E(G)$ if $i \geq 2$. Therefore, for $2 \leq i \leq 7$, $yv_{i+1} \in E(G), \text{ and } N(\{x, v_{i+1}\}) = N(v_{i+1}) = N(x).$ Let $x \in N(v_i) \cap N(v_j)$. Since G has no 8-cycles, $j - i \neq 6$. If j - i = 5, then let $w \in N(v_{i+1}) - \{v_i, v_{i+2}, x\}$. By (CF1), either $wv_i \in E(G)$ or $wv_{i+2} \in E(G)$. Thus the 7-cycle $xv_i \dots v_j x$ can be extended to an 8-cycle $xv_i wv_{i+1} \dots v_j x$ or $xv_iv_{i+1}wv_{i+2}\dots v_j x$. So $j - i \neq 5$. Assume that j - i = 4. Consider the set $S = (N(\{v_{i+1}, v_{i+2}, v_{i+3}\}) - \{v_{i+1}, v_{i+2}, v_{i+3}\}) - \{x, v_i, v_{i+4}\}$. Then $|S| \ge 1$. If |S| = 1, let $S = \{y\}$. Since G is 4-connected, we have $x \in N(v_{i+l})$ for l = 1, 2, 3, therefore $|N(x) \cap V(P_{10})| \ge 5$, contradicting (CF2). So $|S| \ge 2$. Let $w_1, w_2 \in S$. Then, by (CF1) and G is claw-free, the 6-cycle $xv_iv_{i+1}\dots v_jx$ can be extended to an 8-cycle by inserting w_1 and w_2 , a contradiction. So $j - i \neq 4$. (E1) holds.

Assume that $y \in N(v_{i+1}) \cap N(v_{i+3})$ and $y \neq x$. Let $S = (N(\{x, y, v_{i+1}, v_{i+2}\}) - \{x, y, v_{i+1}, v_{i+2}\}) - \{v_i, v_{i+3}\}$. Since G is 4-connected, $|S| \ge 2$. Let $w_1, w_2 \in S$. If $w_1, w_2 \in N(x) \cup N(y) \cup (N(v_i) \cap N(v_{i+1})) \cup (N(v_{i+2}) \cap N(v_{i+3}))$, then we can insert w_1 and w_2 into the 6-cycle $v_i v_{i+1} y v_{i+3} v_{i+2} x v_i$ to have an 8-cycle. Otherwise, by (CF1), we may assume that $w_1 \in N(v_{i+1}) \cap N(v_{i+2})$. Since $w_1 v_i, w_1 v_{i+3}, w_1 x, w_1 y \notin E(G)$, $xy, xv_{i+3}, yv_i \in E(G)$. Then we can insert w_1 and w_2 into either $v_i v_{i+1} v_{i+2} v_{i+3} y x v_i$, $yv_{i+1} v_{i+2} v_{i+3} x v_i y$, or $xv_{i+2} v_{i+1} v_i y v_{i+3} x$ to have an 8-cycle, a contradiction. (E2) holds.

By (E2), $a_1v_{i-1}, a_1v_{i+3}, a_2v_{i-1}, a_2v_{i+3} \notin E(G)$. Thus $a_1a_2 \in E(G)$. Since G is 4-connected, $|T| \geq 2$. Let $y \in T$ and assume that $yv_{i+1} \notin E(G)$. Without of loss of generality, we assume that $ya_2 \in E(G)$. Since G is claw-free, we have either $yv_i \in E(G)$ or $yv_{i+2} \in E(G)$. We assume that $yv_{i+2} \in E(G)$. By (CF1), $yv_{i+3} \in E(G)$. Since $|T| \geq 2$, let $z \in T - \{y\}$. If $z \in N(a_1)$, then we can insert z into the cyle $v_i a_1 v_{i+2} v_{i+3} y a_2 v_{i+1} v_i$ to have an 8-cycle; if $z \in N(v_{i+1})$, we can insert z into the cycle $v_i v_{i+1} v_{i+2} v_{i+3} y a_2 a_1 v_i$ to have an 8-cycle. We may assume that $z \in N(a_2) - (N(a_1) \cup N(v_{i+1}))$. If $zv_i \in E(G)$, then we have an 8-cycle $v_i z a_2 y v_{i+3} v_{i+2} v_{i+1} a_1 v_i$; if $z v_i \notin E(G)$, then $z v_{i+2} \in E(G)$. Since G is claw-free, $yz \in E(G)$. Then we have an 8-cycle $v_i v_{i+1} v_{i+2} v_{i+3} yz a_2 a_1 v_i$, a contradiction. So $yv_{i+1} \in E(G)$. By (CF1), we assume that $yv_i \in E(G)$. By (E2), $yv_{i-1} \notin E(G)$. Since G is claw-free, $ya_1, ya_2 \in E(G)$. Thus $G[\{a_1, a_2, y, v_{i+1}, v_i\}]$ is a complete graph, so (E3)(ii) holds. Notice that G has no 8-cycles and is claw-free, |T| = 2, and $\{y_2, v_i, v_{i+1}, v_{i+2}, a_1, a_2\}$ and so $\{y_2, v_i, v_{i+2}\}$ is a 3-cut in G, a contradiction. So $|N(y_1) \cap \{v_i, v_{i+2}\}| = 1$. Similarly, $|N(y_2) \cap \{v_i, v_{i+2}\}| = 1$. (E3) holds.

Assume that $yv_{i+3} \in E(G)$. By (E2), $yv_{i+1} \notin E(G)$. Since $d(v_{i+1}) \ge 4$, let $z \in N(v_{i+1}) - \{v_i, v_{i+2}, x\}$. Then we have either $zv_i \in E(G)$ or $zv_{i+2} \in E(G)$. Let $C = xv_i zv_{i+1}v_{i+2}v_{i+3}yx$ if $zv_i \in E(G)$, or $C = xv_i v_{i+1}zv_{i+2}v_{i+3}yx$ if $zv_{i+2} \in E(G)$. Then C is a 7-cycle in G. Notice that G has no 8-cycles, $N(\{x, v_{i+1}, v_{i+2}\} - \{x, v_{i+1}, v_{i+2}\} \subseteq \{y, z, v_i, v_{i+3}\}$. Thus $\{y, z, v_i, v_{i+3}\}$ is a 4-cut in G. Therefore, $N(y) - \{x, z, v_i, v_{i+1}, v_{i+2}, v_{i+3}\} \neq \emptyset$. Since C is a 7-cycle in G and G does not have 8-cycles, $xv_{i+3} \in E(G)$, a contradiction. So $yv_{i+3} \notin E(G)$. Similarly, $yv_{i-1} \notin E(G)$. Since G is claw-free, by (CF1), $yv_{i+1} \in E(G)$. So (E4) holds.

We will prove the lemma by considering the following three cases.

Case 1. B(i, j) = B(4, 3).

Assume that v_5 and v_6 have more than one common neighbor. Let $a_1, a_2 \in N(v_5) \cap N(v_6)$. By (E1), $N(a_i) \cap \{v_1, v_2, v_9, v_{10}\} = \emptyset$. If $v_3a_1 \in E(G)$, by (E1), $v_4a_1 \in E(G)$. By (E1) and (E2), $a_2v_3, a_2v_4, a_2v_7, a_2v_8 \notin E(G)$. So $G[\{a_2, v_5, v_6\} \cup \{\{v_7, v_8, v_9, v_{10}\} \cup \{v_4, v_3, v_2\}]$ is a B(4, 3), a contradiction. So $v_3a_1 \notin E(G)$. Similarly, $a_2v_3, a_1v_8, a_2v_8 \notin E(G)$. Since G is B(4, 3)-free, $a_i \cap \{v_4, v_7\} \neq \emptyset$. By (E2), we may assume that $N(a_1) \cap V(P_{10}) = N(a_2) \cap V(P_{10}) = \{v_4, v_5, v_6\}$. By (E3), let $T = N(\{a_1, a_2, v_5\}) - \{a_1, a_2, v_5, v_4, v_6\} = \{y_1, y_2\}$. Then $|N(y_1) \cap \{v_4, v_6\}| = 1$. By symmetry, we assume that $y_1v_4 \in E(G)$. By (E1) and (E2), $N(y_1) \cap \{v_1, v_3, v_7, v_8, v_9\} = \emptyset$. By (CF1), $y_1v_2 \notin E(G)$. So $G[\{y_1, v_4, v_5\} \cup \{v_6, v_7, v_8, v_9\} \cup \{v_3, v_2, v_1\}]$ is a B(4, 3), a contradiction.

Assume that v_5 and v_6 have one common neighbor. Let $a_1 \in N(v_5) \cap N(v_6)$, $a_2 \in N(v_4) \cap N(v_5)$ and $a_3 \in N(v_6) \cap N(v_7)$. Then $a_2v_6, a_3v_5 \notin E(G)$. By (E1) and (CF1), $N(a_2) \cap V(P_{10}) \subseteq \{v_2, v_3, v_4, v_5\}$ and $N(a_1) \cap V(P_{10}) \subseteq \{v_3, v_4, v_5, v_6, v_7, v_8\}$. If $v_3 \in N(a_1)$, then by (CF1), $v_4 \in N(a_1)$. By (CF2), $N(a_1) \cap V(P_{10}) = \{v_3, v_4, v_5, v_6\}$, and so $G[\{a_1, v_5, v_6\} \cup \{v_7, v_8, v_9, v_{10}\} \cup \{v_3, v_2, v_1\}]$ is a B(4, 3), a contradiction. So $a_1v_3 \notin E(G)$. Similarly, $a_1v_8 \notin E(G)$. Notice that $N(a_1) \cap \{v_4, v_7\} \neq \emptyset$. By symmetry, we assume that $a_1v_4 \in E(G)$. Consider $N(a_2)$. By (E2), $a_2v_3 \notin E(G)$. By (CF1), $v_2a_2 \notin E(G)$. Thus $N(a_2) \cap V(P_{10}) = \{v_4, v_5\}$, and so $G[\{a_2, v_4, v_5\} \cup \{v_6, v_7, v_8, v_9\} \cup \{v_3, v_2, v_1\}]$ is a B(4, 3), a contradiction. So v_5 and v_6 do not have common neighbors.

Let $a_1, a_2 \in N(v_4) \cap N(v_5)$. By (E1), $N(a_i) \cap \{v_1, v_8, v_9, v_{10}\} = \emptyset$. Since $v_6 \notin N(a_1) \cup N(a_2)$, by (CF1), $v_7 \notin N(a_1) \cup N(a_2)$. Thus $a_1a_2 \in E(G)$. If $v_2a_1 \in V(a_1) \cup N(a_2)$. E(G), by (CF1), $v_3a_1 \in E(G)$. By (E2), $a_2v_2, a_2v_3 \notin E(G)$. Thus $G[\{a_2, v_4, v_5\} \cup$ $\{v_6, v_7, v_8, v_9\} \cup \{v_1, v_2, v_3\}$ is a B(4, 3), a contradiction. So $a_1v_2 \notin E(G)$. Similarly, $a_2v_2 \notin E(G)$. Since G is B(4,3)-free, $N(a_1) \cap V(P_{10}) = N(a_2) \cap V(P_{10}) =$ $\{v_3, v_4, v_5\}$. By (E3), let $S = (N(\{a_1, a_2, v_4\}) - \{a_1, a_2, v_4\}) - \{v_3, v_5\} = \{y_1, y_2\}.$ Then $y_1v_4, y_2v_4 \in E(G)$. For i = 1, 2, if $N(y_i) \cap \{v_3, v_4, v_5\} = \{v_4, v_5\}$, then, by (E1) and (E2), $G[\{y_i, v_4, v_5\} \cup \{v_6, v_7, v_8, v_9\} \cup \{v_3, v_2, v_1\}] = B(4, 3)$, a contradiction. So $N(y_i) \cap \{v_3, v_4, v_5\} = \{v_3, v_4\}$. By (E1), (E2) and (E3), $N(y_i) \cap$ $V(P_{10}) = \{v_3, v_4\}, \ N(a_1) = \{a_2, v_3, v_4, v_5, y_1, y_2\}, \ N(a_2) = \{a_1, v_3, v_4, v_5, y_1, y_2\},$ and $N(v_4) = \{a_1, a_2, v_3, v_5, y_1, y_2\}$. Since v_5 and v_6 do not have common neighborships of the second seco bors, $N(v_5) = \{a_1, a_2, v_4, v_6\}$. Similarly, let $b_1, b_2 \in N(v_6) \cap N(v_7)$. Let T = $(N(b_1) \cup N(b_2) \cup N(v_7) - \{b_1, b_2, v_7\}) - \{v_6, v_8\} = \{z_1, z_2\}.$ Then $N(z_1) \cap V(P_{10}) =$ $N(z_2) \cap V(P_{10}) = \{v_7, v_8\}, G[\{b_1, b_2, z_1, z_2, v_7, v_8\}]$ is a K_6 , and $N(v_6) = \{b_1, b_2, v_5, v_7\},$ $N(v_7) = \{b_1, b_2, z_1, z_2, v_6, v_8\}, N(b_1) = \{b_2, z_1, z_2, v_6, v_7, v_8\}$ and $N(b_2) = \{b_1, z_1, z_2, v_6, v_7, v_8\}$ v_6, v_7, v_8 (see Figure 3).

Figure 3.

Now let us consider $N(v_1)$. Let $x \in N(v_1) - \{v_2\}$. Then $N(x) \cap \{a_1, a_2, b_1, b_2, v_4, v_5, v_6, v_7\} = \emptyset$. Since G has no 8-cycles, $xy_1, xy_2 \notin E(G)$. If $x \notin N(v_2)$, then, by (CF1), $xv_3 \notin E(G)$. Since $G[\{y_1, v_3, v_4\} \cup \{v_5, v_6, v_7, v_8\} \cup \{v_2, v_1, x\}] \neq B(4, 3)$, we have $xv_8 \in E(G)$. Similarly, $xz_1, xz_2 \in E(G)$. This would result in the 8-cycle $v_6v_7v_8xz_2z_1b_1b_2v_6$. So $x \in N(v_2)$, and $N(x) \cap V(P_{10}) \subseteq \{v_1, v_2, v_3, v_9, v_{10}\}$ and $xz_1, xz_2 \notin E(G)$.

Let $W = N(\{v_1, v_2, v_3\}) - \{v_1, v_2, v_3, a_1, a_2, v_4, y_1, y_2\}, W_1 = \{x \mid x \in N(v_1) \cap N(v_2) \cap N(v_3)\}, W_2 = \{x \mid x \in N(v_1) \cap N(v_2) - N(v_3)\} \text{ and } W_3 = \{x \mid x \in N(v_2) \cap N(v_3) - N(v_1)\}.$ Then $N(v_2) = W_1 \cup W_2 \cup W_3 \cup \{v_1, v_3\}, N(v_1) = W_1 \cup W_2 \cup \{v_2\}.$ Also, $G[W_2 \cup \{v_1, v_2\}], G[W_1 \cup W_3 \cup \{v_2, v_3\}]$ are complete subgraphs in G, and $N(W_1) - W_1 = W_2 \cup W_3 \cup \{v_1, v_2, v_3\}.$ Thus $W_1 \cup W_2 \cup \{v_2\}$ is a cut in G. For i = 1, 2, 3, let $w_i = |W_i|.$ Since G is 4-connected, we have $w_1 + w_2 \ge 3.$

Since G is 4-connected, $|N(W_2) - (W_2 \cup \{v_1, v_2\})| \ge 2$. Consider $W'_2 = N(W_2) - (W_1 \cup W_3 \cup \{v_1, v_2, v_3\})$. If $W'_2 = \emptyset$, then $W_3 \cup \{v_3\}$ is a cut in G, and so $w_3 \ge 3$. Thus $w_1 + w_2 + w_3 \ge 6$. Therefore, $G[W \cup \{v_1, v_2, v_3\}]$ must contain an 8-cycle, a contradiction. So $W'_2 \ne \emptyset$. Let $d \in W'_2$ and $c \in W_2$ with $cd \in E(G)$. Then $dv_2, dv_3 \notin E(G)$. Clearly, $N(d) \cap \{v_4, v_5, v_6, v_7\} = \emptyset$. Since G has no 8-cycles, $cy_1, dy_1 \notin E(G)$. Since $G[\{y_1, v_3, v_4\} \cup \{v_5, v_6, v_7, v_8\} \cup \{v_2, c, d\}] \ne B(4, 3), dv_8 \in E(G)$. Similarly, $dz_1, dz_2 \in E(G)$. Thus $v_6 b_1 b_2 v_8 dz_2 z_1 v_7 v_6$ is an 8-cycle in G, a contradiction.

Case 2. B(i, j) = B(5, 2).

Assume that v_5 and v_6 do not have common neighbors. Let $a_1, a_2 \in N(v_4) \cap N(v_5)$. By (E1), $N(a_i) \cap \{v_1, v_8, v_9, v_{10}\} = \emptyset$. Since $v_6 \notin N(a_1) \cup N(a_2)$, by (CF1), $v_7 \notin N(a_1) \cup N(a_2)$. If $v_2a_1 \in E(G)$, by (CF1), $v_3a_1 \in E(G)$. Then $G[\{a_1, v_4, v_5\} \cup \{v_6, v_7, v_8, v_9, v_{10}\} \cup \{v_2, v_1\}]$ is a B(5, 2), a contradiction. So $a_1v_2 \notin E(G)$. Similarly, $a_2v_2 \notin E(G)$. Since G is B(5, 2)-free, $N(a_1) \cap V(P_{10}) = N(a_2) \cap V(P_{10}) = \{v_3, v_4, v_5\}$. By (E3), let $S = (N(\{a_1, a_2, v_4\}) - \{a_1, a_2, v_4\}) - \{v_3, v_5\} = \{y_1, y_2\}, N(a_1) = \{v_3, v_4, v_5, y_1, y_2, a_2\}, N(a_2) = \{v_3, v_4, v_5, y_1, y_2, a_1\}$, and $N(v_4) = \{v_3, v_5, a_1, a_2, y_1, y_2\}$. Also, $|N(y_1) \cap \{v_3, v_5\}| = 1$. Notice that G has no 8-cycles. If $y_1v_3 \in E(G)$, then, by (E1), (E2), $N(y_1) \cap V(P_{10}) = \{v_3, v_4\}$, and so $G[\{y_1, v_3, v_4\} \cup \{v_5, v_6, v_7, v_8, v_9\} \cup \{v_2, v_1\}] = B(5, 2)$; if $y_1v_5 \in E(G)$, then, by (E1), (E2), $N(y_1) \cap V(P_{10}) = \{v_3, v_2\}| = B(5, 2)$, a contradiction.

Assume that v_5 and v_6 have one common neighbor. Let $a_1 \in N(v_5) \cap N(v_6)$, $a_2 \in N(v_4) \cap N(v_5)$ and $a_3 \in N(v_6) \cap N(v_7)$. Then $a_2v_6 \notin E(G)$. By (E1) and (CF1), $N(a_2) \cap V(P_{10}) \subseteq \{v_2, v_3, v_4, v_5\}$. Since $G[\{a_2, v_4, v_5\} \cup \{v_6, v_7, v_8, v_9, v_{10}\} \cup \{v_1, v_2\}] =$ B(5, 2) if $a_2v_2 \in E(G)$ and $G[\{a_2, v_4, v_5\} \cup \{v_6, v_7, v_8, v_9, v_{10}\} \cup \{v_2, v_3\}] = B(5, 2)$ if $a_2v_3 \notin E(G)$, we have $N(a_2) \cap V(P_{10}) = \{v_3, v_4, v_5\}$. Consider $S = N(\{a_2, v_4\}) \{a_2, v_3, v_4, v_5\}$. Let $y \in S$. By (E4), $yv_4 \in E(G)$. We want to prove that $y \in$ $N(v_3) \cap N(v_4) \cap N(v_5)$. Otherwise, we have $yv_4, yv_3 \in E(G)$, but $yv_5 \notin E(G)$. By (E1) and (E2), $N(y) \cap \{v_2, v_7, v_8, v_9, v_{10}\} = \emptyset$, and so $yv_6 \notin E(G)$ by (CF1). Since G is B(5, 2)-free, $v_1y \in E(G)$. Let $w \in N(v_2)$. Thus we have an 8-cycle $v_1wv_2v_3a_2v_5v_4yv_1$ or $v_1v_2wv_3a_2v_5v_4yv_1$, a contradiction. So, for any $y \in S$, $y \in N(v_3) \cap N(v_4) \cap N(v_5)$. Therefore, $\{v_3, v_5\}$ is a 2-cut in G, a contradiction. Therefore, v_5 and v_6 have more than one common neighbor. Let $a_1, a_2 \in N(v_5) \cap N(v_6)$. For i = 1, 2, by (E1), $N(a_i) \cap V(P_{10}) \subseteq \{v_3, v_4, v_5, v_6, v_7, v_8\}$. If $v_3 \in N(a_i)$, then by (CF1), $v_4 \in N(a_i)$. Thus $G[\{a_i, v_3, v_4\} \cup \{v_6, v_7, v_8, v_9, v_{10}\} \cup \{v_1, v_2\}]$ is a B(5, 2), a contradiction. So $v_3 a_i \notin E(G)$. Similarly, $v_8 a_i \notin E(G)$. So, for $i \in \{1, 2\}$, $N(a_i) \cap V(P_{10}) \subseteq \{v_4, v_5, v_6, v_7\}$.

Claim 2.1. Both $|N(a_1) \cap V(P_{10})| \le 3$ and $|N(a_2) \cap V(P_{10})| \le 3$.

Assume that $N(a_1) \cap V(P_{10}) = \{v_4, v_5, v_6, v_7\}$. By (E2), $N(a_2) \cap V(P_{10}) = \{v_5, v_6\}$. Let $a_3 \in N(v_4)$. Then $a_3v_5 \notin E(G)$ (otherwise, by (E1) and (E2), $N(a_3) \cap \{v_3, v_6, v_7, v_8, v_9, v_{10}\} = \emptyset$. Since G is B(5, 2)-free, $v_2a_3 \in E(G)$. This would result in the 8-cycle $v_2a_3v_5v_6v_7a_1v_4v_3v_2$, a contradiction). By (CF1), $a_3v_3 \in E(G)$. By (E1) and (E2), $N(a_3) \cap \{v_5, v_6, v_7, v_8, v_9, v_{10}\} = \emptyset$. Since G is B(5, 2)-free, $N(a_3) \cap \{v_1, v_2\} \neq \emptyset$. Let $x \in N(v_1) - \{v_2\}$. By (E1), $N(x) \cap \{v_5, v_6, v_7\} = \emptyset$. Since G has no 8-cycles, $N(x) \cap \{v_8, a_1, a_2\} = \emptyset$. Thus $N(x) \cap V(P_{10}) \subseteq \{v_1, v_2, v_3, v_4, v_9, v_{10}\}$.

We claim that $v_1a_3 \in E(G)$. Otherwise, $N(a_3) \cap V(P_{10}) = \{v_2, v_3, v_4\}$. Consider $N(v_1) = \{v_2, c_1, c_2, \ldots, c_t\}(t \ge 3)$. By (E1), $c_iv_3 \notin E(G)$. By (CF1), $c_iv_4 \notin E(G)$. Since $G[\{a_2, v_5, v_6\} \cup \{v_4, v_3, v_2, v_1, c_i\} \cup \{v_7, v_8\}] \neq B(5, 2)$, $c_iv_2 \in E(G)$. Thus $N(c_i) \cap V(P_{10}) = \{v_1, v_2\}$ and so $G[N(v_1) \cup \{v_1\}]$ is a complete subgraph in G. Since G is 4-connected, there is a vertex z such that $zc_i \in E(G)$ but $zv_2 \notin E(G)$ for some c_i . Since G has no 8-cycles, $N(z) \cap \{a_1, a_2, v_3, v_4, v_5, v_6, v_7, v_8\} = \emptyset$. So $G[\{a_2, v_5, v_6\} \cup \{v_4, v_3, v_2, c_i, z\} \cup \{v_7, v_8\}] = B(5, 2)$, a contradiction. So $v_1a_3 \in E(G)$.

Let $N(v_1) = \{v_2, a_3, d_1, \ldots, d_s\} (s \ge 2)$. Since G has no 8-cycles, $N(d_i) \cap \{v_5, v_6, v_7, v_8\} = \emptyset$. Since $G[\{a_2, v_5, v_6\} \cup \{v_4, v_3, v_2, v_1, d_i\} \cup \{v_7, v_8\}] \neq B(5, 2)$, we have $N(d_i) \cap \{v_2, v_3, v_4\} \neq \emptyset$. If $d_i v_4 \in E(G)$, as $d_i v_5 \notin E(G)$, we have $d_i v_3 \in E(G)$. By (E2), $a_3 v_2, d_i v_2 \notin E(G)$. Thus the 6-cycle $v_1 d_i v_4 a_3 v_3 v_2 v_1$ can be extended to an 8-cycle by considering the two neighbors of v_2 which are not in $V(P_{10})$, a contradiction. So $d_i v_4 \notin E(G)$. By (CF1), $d_i v_2 \in E(G)$. By (E2), $d_i v_3 \notin E(G)$. Thus $G[N(v_1)]$ is a complete subgraph in G. The 7-cycle $v_1 d_1 d_2 v_2 v_3 v_4 a_3 v_1$ can be extended to an 8-cycle by considering a neighbors of v_3 which are not in $\{v_2, v_4, a_3\}$, a contradiction.

Claim 2.2. $|N(a_1) \cap V(P_{10})| = 2$ and $|N(a_2) \cap V(P_{10})| = 2$.

Assume that $N(a_1) \cap V(P_{10}) = \{v_4, v_5, v_6\}$. By (E2), $a_2v_7 \notin E(G)$. Thus $N(a_2) \cap V(P_{10}) \subseteq \{v_4, v_5, v_6\}$. Consider $N(v_7)$. Let $y \in N(v_7) - (V(P_{10}) \cup \{a_1, a_2\})$. Assume that $yv_6 \in E(G)$. By (E1) and (E2), $N(y) \cap \{v_5, v_3, v_2, v_1, v_{10}\} = \emptyset$. Thus $yv_4 \notin E(G)$. Since $G[\{y, v_6, v_7\} \cup \{v_5, v_4, v_3, v_2, v_1\} \cup \{v_8, v_9\}]$ is not a B(5, 2), $N(y) \cap \{v_8, v_9\} \neq \emptyset$. If $yv_9 \in E(G)$, then $G[\{y, v_6, v_7\} \cup \{v_5, v_4, v_3, v_2, v_1\} \cup \{v_9, v_{10}\}]$ is a B(5, 2), a contradiction. So $N(y) \cap V(P_{10}) = \{v_6, v_7, v_8\}$. Let $S = N(y) \cup N(v_7) - \{v_6, v_8\}$, and let $w \in S$. By (E4), $wv_7 \in E(G)$. Then $w \in N(v_6) \cap N(v_7) \cap N(v_8)$ (Otherwise, we have $wv_6 \notin E(G)$ by considering the method we just used above for $y \in N(v_7)$. By (CF1), $wv_8 \in E(G)$. Since G is B(5, 2)-free, $wv_{10} \in E(G)$. Thus the 7-cycle $v_6yv_8v_9v_{10}wv_7v_6$ can be extended to an 8-cycle by considering a neighbor of v_9 , a contradiction). Hence, $\{v_6, v_8\}$ is a 2-cut in G, a contradiction. So, for any $y \in N(v_7)$, $yv_6 \notin E(G)$.

Let $a_3, a_4 \in N(v_7) - \{v_6, v_8\}$. Then, for $i = 3, 4, a_i v_8 \in E(G)$, and $N(a_i) \cap$

 $\{v_1, v_2, v_3, v_4, v_5\} = \emptyset$ by (E1) and (E2). Since G is B(5, 2)-free, $N(a_i) \cap \{v_9, v_{10}\} \neq \emptyset$ (i = 3, 4). Assume that $a_3v_9 \notin E(G)$. Then $a_3v_{10} \in E(G)$. By (E2), $a_4v_9 \notin E(G)$, and so $a_4v_{10} \in E(G)$. Thus the 6-cycle $v_7v_8v_9v_{10}a_3a_4v_7$ can be extended to an 8-cycle by considering two neighbors of v_9 , a contradiction. So $a_3v_9 \in E(G)$. Similarly, $a_4v_9 \in E(G)$. By (E1) and (E2), $N(a_i) \cap V(P_{10}) = \{v_7, v_8, v_9\}$. Then $a_3a_4 \in E(G)$.

Let $S = N(\{a_3, a_4, v_8\}) - \{a_3, a_4, v_8, v_7, v_9\}$. Since G is 4-connected, let $S = \{c_1, c_2, \ldots, c_t\}(t \ge 2)$. For $i = 1, 2, \ldots, t$, by (E4), $c_i v_8 \in E(G)$. By (CF1), we have either $c_i v_7 \in E(G)$ or $c_i v_9 \in E(G)$, and so t = 2. Furthermore, $c_i v_7 \notin E(G)$ (otherwise, $N(c_i) \cap V(P_{10}) = \{v_7, v_8, v_9\}$ and so $\{c_1, c_2, v_7, v_9\} - \{c_i\}$ is a 3-cut in G, a contradiction). Thus $G[\{a_3, a_4, v_8, v_9, c_1, c_2\}]$ is a complete subgraph in G, $N(a_3) = \{v_7, v_8, v_9, a_4, c_1, c_2\}$, $N(a_4) = \{v_7, v_8, v_9, a_3, c_1, c_2\}$, $N(v_8) = \{v_7, v_9, a_3, a_4, c_1, c_2\}$. Since G has no 8-cycles, by (E1) and (E2), $N(c_i) \cap \{v_2, v_3, v_4, v_5, v_6, v_7, v_{10}\} = \emptyset$ (i = 1, 2).

For i = 1, 2, consider $C_i = N(c_i) - \{v_8, v_9, a_3, a_4, c_1, c_2\}$. Since G is 4-connected, $C_i \neq \emptyset$. Let $d_i \in C_i$. Since G has no 8-cycles, $C_1 \cap C_2 = \emptyset$, and there are no edges between C_1 and C_2 . Thus $d_1d_2 \notin E(G)$. Let $e_i \in N(d_i) - \{c_i\}$. Since Ghas no 8-cycles, e_1 and e_2 are different vertices, $e_1e_2 \notin E(G)$, $N(e_1) \cap N(e_2) = \emptyset$, $N(d_i) \cap \{v_3, v_4, \ldots, v_9\} = \emptyset$ and $N(e_i) \cap \{v_4, v_5, \ldots, v_9\} = \emptyset$. Since $G[\{c_i, v_8, v_9\} \cup \{v_7, v_6, v_5, v_4, v_3\} \cup \{d_i, e_i\}]$ is not a $B(5, 2), e_iv_3 \in E(G)$, a contradiction. So Claim 2.2 holds.

By Claim 2.2, we have $N(a_1) \cap V(P_{10}) = N(a_2) \cap V(P_{10}) = \{v_5, v_6\}$. Actually, for any $x \in N(v_5) \cap N(v_6)$, $N(x) \cap V(P_{10}) = \{v_5, v_6\}$. Let $y \in N(v_4)$. Assume that $yv_5 \in E(G)$. Then $yv_6 \notin E(G)$ by Claim 2.2. By (E1) and (E2), $N(y) \cap$ $\{v_1, v_8, v_9, v_{10}\} = \emptyset$. Thus $yv_7 \notin E(G)$. Since $G[\{y, v_4, v_5\} \cup \{v_6, \dots, v_{10}\} \cup \{v_2, v_3\}] \neq$ $B(5, 2), N(y) \cap \{v_2, v_3\} \neq \emptyset$. Notice that $G[\{y, v_4, v_5\} \cup \{v_6, \dots, v_{10}\} \cup \{v_1, v_2\}]$ would be a B(5, 2) if $yv_2 \in E(G)$. So $yv_2 \notin E(G)$ and then $yv_3 \in E(G)$. Consider $S = N(y) \cup N(v_4) - \{v_3, v_5\}$, and let $z \in S$. By (E4), $z \in N(v_4)$. Next we want to prove that $z \in N(v_3) \cap N(v_4) \cap N(v_5)$. Otherwise, we have $zv_5 \notin E(G)$ and $zv_3 \in E(G)$. By (E1) and (E2), $N(z) \cap \{v_2, v_6, v_7, v_8, v_9, v_{10}\} = \emptyset$. If $zv_1 \in E(G)$, then the 7-cycle $v_1v_2v_3yv_5v_4zv_1$ can be extended to an 8-cycle by considering a neighbor of v_2 . This tells us that $zv_1 \notin E(G)$. Thus $G[\{z, v_3, v_4\} \cup \{v_5, \dots, v_9\} \cup \{v_1, v_2\}]$ is a B(5, 2), a contradiction. Thus $z \in N(v_3) \cap N(v_4) \cap N(v_5)$, and so $\{v_3, v_5\}$ is a 2-cut in G, a contradiction. So, for any $y \in N(v_4)$, $yv_5 \notin E(G)$.

Let $N(v_4) - \{v_3, v_5\} = \{c_1, c_2, \dots, c_t\} (t \ge 2)$. Then $c_i v_5 \notin E(G), c_i v_3 \in E(G)$ for $i = 1, 2, \dots, t$, and $c_i c_j \in E(G)$ for $1 \le i < j \le t$. By (E1) and (E2), $N(c_i) \cap \{v_7, v_8, v_9, v_{10}\} = \emptyset$. By (CF1), $c_i v_6 \notin E(G)$. If $c_i v_1 \in E(G)$ for some *i*, then the cycle $v_1 c_i c_{i+1} \dots c_t c_1 \dots c_{i-1} v_4 v_3 v_2 v_1$ can be extended to an 8-cycle by considering neighbors of v_2 . So, for $i = 1, 2, \dots, t$, $c_i v_1 \notin E(G)$. Thus $c_i v_2 \in E(G)$ since $G[\{c_i, v_3, v_4\} \cup \{v_5, \dots, v_{10}\} \cup \{v_1, v_2\}] \neq B(5, 2)$. Similarly, $|N(v_7) \cap N(v_8) \cap N(v_9)| \ge 2$. Let $d_1, d_2 \in N(v_7) \cap N(v_8) \cap N(v_9)$. Then $d_1 d_2 \in E(G)$.

Consider $S = N(\{c_1, c_2, \dots, c_t, v_3\}) - \{c_1, c_2, \dots, c_t, v_2, v_3, v_4\}$, and let $w \in S$. Then $wv_4 \notin E(G)$. By (E4), $wv_3 \in E(G)$. By (CF1), $wv_2 \in E(G)$. By (E1) and (E2), $N(w) \cap \{v_1, v_5, v_6, v_7, v_8, v_9\} = \emptyset$. Let $V_1 = N(v_1) - \{v_2\} = \{e_1, e_2, \dots, e_s\}$ $(s \geq 1)$ 3). Since G has no 8-cycles, $N(e_i) \cap \{c_1, \ldots, c_t, w, v_3, v_4, \ldots, v_7\} = \emptyset$. Considering $G[\{w, v_2, v_3\} \cup \{v_4, v_5, v_6, v_7, v_8\} \cup \{v_1, e_i\}]$, we have $N(e_i) \cap \{v_2, v_8\} \neq \emptyset$. Since G has no 8-cycles, $|\{e_i \mid e_i v_8 \in E(G)\}| \leq 1$. (Otherwise, assume that $e_1 v_8, e_2 v_8 \in E(G)$. By (CF1), $e_1 v_9, e_2 v_9 \in E(G)$. Thus $v_7 v_8 e_1 v_1 e_2 v_9 d_2 d_1 v_7$ is an 8-cycle in G, a contradiction.) So we assume that, for $i = 2, 3, \ldots, s$, we have $e_i v_8 \notin E(G)$, and so $e_i v_2 \in E(G)$.

Let $V_2 = N(\{e_2, \ldots, e_s\}) - \{e_1, e_2, \ldots, e_s, v_1, v_2\}$. Since G is 4-connected, $|V_2| \geq 2$. 2. Furthermore, there are two vertices in V_2 adjacent to two different vertices in $\{e_2, \ldots, e_s\}$. Without loss of generality, we assume that $f_2, f_3 \in V_2$ such that $e_2f_2, e_3f_3 \in E(G)$. Then $f_2v_1, f_3v_1 \notin E(G)$. For i = 2, 3, if $f_iv_2 \in E(G)$, then $f_iv_3 \in E(G)$. Thus $v_1e_if_iv_3v_4c_2c_1v_2v_1$ is an 8-cycle in G, a contradiction. So $f_2v_2, f_3v_2 \notin E(G)$. Since G has no 8-cycles, $N(f_i) \cap \{w, v_3, v_4, v_5, v_6, v_7\} = \emptyset(i = 2, 3)$. Notice that $G[\{w, v_2, v_3\} \cup \{v_4, v_5, v_6, v_7, v_8\} \cup \{e_i, f_i\} \neq B(5, 2)$ for i = 2, 3, $f_iv_8 \in E(G)$ and so $f_iv_9 \in E(G)$. This would result in an 8-cycle $v_1e_2f_2v_8v_9f_3e_3v_2v_1$, a contradiction. This finishes the proof of Case 2.

Case 3. B(i, j) = B(6, 1).

Claim 3.1. Let $x \in (N(v_3) - \{v_2, v_4\}) - N(v_4)$, and let $y \in (N(v_8) - \{v_7, v_9\}) - N(v_7)$. Then $N(x) \cap V(P_{10}) = \{v_1, v_2, v_3\}$ and $N(y) \cap V(P_{10}) = \{v_8, v_9, v_{10}\}$.

Since $xv_4 \notin E(G)$, by (CF1), $xv_2 \in E(G)$. By (E1), $N(x) \cap \{v_6, v_7, v_8, v_9\} = \emptyset$. By (CF1), $xv_5 \notin E(G)$. Since G is B(6, 1)-free, $xv_1 \in E(G)$. By (CF2), $N(x) \cap V(P_{10}) = \{v_1, v_2, v_3\}$. Similarly, $N(y) \cap V(P_{10}) = \{v_8, v_9, v_{10}\}$. Claim 3.1 holds. Claim 3.2. Let $W_3 = (N(v_3) - \{v_2, v_4\}) - N(v_4)$ and $V_3 = (N(v_8) - \{v_7, v_9\}) - N(v_7)$.

Then $W_3 = V_3 = \emptyset$.

Assume that $x \in W_3$. By Claim 3.1, $N(x) \cap V(P_{10}) = \{v_1, v_2, v_3\}$. Furthermore, if $x' \in N(v_1) \cap N(v_2) \cap N(v_3)$, then $x'v_4 \notin E(G)$ (otherwise, $G[\{x', v_3, v_4\} \cup \{v_5, v_6, v_7, v_8, v_9, v_{10}\} \cup \{v_1\}] = B(6, 1)$, a contradiction). So $W_3 = N(v_1) \cap N(v_2) \cap N(v_3)$. Let $W_2 = N(v_2) \cap N(v_1) - N(v_3)$ and $W_1 = (N(v_1) - \{v_2\}) - N(v_2)$, and let $w_i = |W_i|$ (i = 1, 2, 3). Then $N(v_2) = W_2 \cup W_3 \cup \{v_1, v_3\}$, and $N(v_1) = W_1 \cup W_2 \cup W_3 \cup \{v_2\}$. Clearly, $G[W_1 \cup \{v_1\}]$, $G[W_2 \cup \{v_1, v_2\}]$, and $G[W_3]$ are complete graphs.

Let $y \in N(W_3) - \{v_1, v_2, v_3\}$. By (E4), $yv_4 \notin E(G)$. If $yv_3 \in E(G)$, then $y \in W_3$; if $yv_3 \notin E(G)$, then $yv_1 \in E(G)$, and so $y \in W_1 \cup W_2$. This imples that $N(W_3) \subseteq W_3 \cup W_1 \cup W_2 \cup \{v_1, v_2, v_3\}$, and $W_1 \cup W_2 \cup \{v_3\}$ is a cut in G. So we have $w_1 + w_2 \geq 3$. As $N(v_2) = W_2 \cup W_3 \cup \{v_1, v_3\}$, it follows that $w_2 + w_3 \geq 2$. If $w_2 = 0$, then $w_3 \geq 2$ and $w_1 \geq 3$. i As $N(W_3) - (W_3 \cup \{v_1, v_2, v_3\}) \subseteq W_1 \cup W_2 = W_1$, there is an edge joining W_1 and W_3 . Thus $G[W_1 \cup W_3 \cup \{v_1, v_2, v_3\}]$ contains an 8-cycle, a contradiction. So $w_2 \geq 1$.

Consider $S = N(W_2) - (W_1 \cup W_2 \cup W_3 \cup \{v_1, v_2, v_3\})$. If $S = \emptyset$, then $W_1 \cup \{v_3\}$ is a cut in G. Thus $w_1 \ge 3$. It is clear that there is an edge joining W_1 and $W_2 \cup W_3$ (otherwise, $\{v_1, v_2, v_3\}$ is a cut in G, a contradiction). So $G[W_1 \cup W_2 \cup W_3 \cup \{v_1, v_2, v_3\}]$ contains an 8-cycle, a contradiction. So $S \ne \emptyset$. Let $y_1 \in W_2$. Also, let $z_1 \in S$. Then $y_1v_3, z_1v_1, z_1v_2 \notin E(G)$. By (E1), $N(y_1) \cap \{v_5, v_6, v_7, v_8\} = \emptyset$. By (CF1), $y_1v_4 \notin E(G)$. Since G has no 8-cycles, $N(z_1) \cap \{v_5, v_6, v_7\} = \emptyset$. If $z_1v_3 \in E(G)$, since $z_1v_2 \notin E(G)$, we have $z_1v_4 \in E(G)$. By (E1), $N(z_1) \cap \{v_8, v_9, v_{10}\} = \emptyset$. Thus $G[\{z_1, v_3, v_4\} \cup \{v_5, v_6, v_7, v_8, v_9, v_{10}\} \cup \{v_2\}] = B(6, 1)$, a contradiction. So $z_1v_3 \notin E(G)$. By (CF1), $z_1v_4 \notin E(G)$. Since $G[\{y_1, v_1, v_2\} \cup \{v_3, v_4, v_5, v_6, v_7, v_8\} \cup \{z_1\}] \neq B(6, 1), z_1v_8 \in E(G)$. By Claim 3.1, $N(z_1) \cap V(P_{10}) = \{v_8, v_9, v_{10}\}$.

Let $V_2 = N(v_9) \cap N(v_{10}) - N(v_8)$ and $V_1 = (N(v_{10}) - \{v_9\}) - N(v_9)$. As for the discussion on W_1, W_2 and W_3 , there are $y_2 \in V_2$ and $z_2 \in N(V_2) - (V_1 \cup V_2 \cup V_3 \cup \{v_8, v_9, v_{10}\})$ such that $y_2 z_2 \in E(G)$ and $N(z_2) \cap V(P_{10}) = \{v_1, v_2, v_3\}$. Now we have an 8-cycle $y_1 z_1 v_8 v_9 v_{10} y_2 z_2 v_2 y_1$, a contradiction. So $W_3 = \emptyset$. Similarly, $V_3 = \emptyset$. Claim 3.2 holds.

By Claim 3.2, v_3 and v_4 have more than one common neighbor, and v_7 and v_8 have more than one common neighbor. Let $a_1, a_2 \in N(v_3) \cap N(v_4)$, and let $b_1, b_2 \in N(v_7) \cap N(v_8)$. By (E1), $N(a_i) \cap \{v_7, v_8, v_9, v_{10}\} = \emptyset$ (i = 1, 2). If $v_1 \in N(a_1)$, then $N(a_1) \cap V(P_{10}) \subseteq \{v_1, v_2, v_3, v_4\}$ and then G has a $B(6, 1) = G[\{a_1, v_3, v_4\} \cup \{v_1\} \cup \{v_5, v_6, v_7, v_8, v_9, v_{10}\}]$, a contradiction. So $v_1 \notin N(a_1)$. If $v_6 \in N(a_1)$, by (E2), $a_2v_5, a_2v_6, a_2v_2 \notin E(G)$. Thus $G[\{a_2, v_3, v_4\} \cup \{v_5, v_6, v_7, v_8, v_9, v_{10}\} \cup \{v_2\}\}]$ is a B(6, 1), a contradiction. So $a_1v_6 \notin E(G)$, and $N(a_1) \cap V(P_{10}) \subseteq \{v_2, v_3, v_4, v_5\}$. Similarly, $N(a_2) \cap V(P_{10}) \subseteq \{v_2, v_3, v_4, v_5\}$. Since G is B(6, 1)-free, by (E2), we have either $N(a_1) \cap V(P_{10}) = N(a_2) \cap V(P_{10}) = \{v_2, v_3, v_4\}$ or $N(a_1) \cap V(P_{10}) = N(a_2) \cap V(P_{10}) = \{v_3, v_4, v_5\}$.

Suppose that $N(a_1) \cap V(P_{10}) = N(a_2) \cap V(P_{10}) = \{v_2, v_3, v_4\}$. By (E3), let $T_1 = (N(\{a_1, a_2, v_3\}) - \{a_1, a_2, v_3\}) - \{v_2, v_4\} = \{y_1, y_2\}, N(a_1) = \{v_2, v_3, v_4, y_1, y_2, a_2\}, N(a_2) = \{v_2, v_3, v_4, y_1, y_2, a_1\}, \text{ and } N(v_3) = \{v_2, v_4, a_1, a_2, y_1, y_2\}.$ Also, $|N(y_1) \cap \{v_2, v_4\}| = 1$. If $y_1v_4 \in E(G)$, then $G[\{y_1, v_3, v_4\} \cup \{v_5, v_6, v_7, v_8, v_9, v_{10}\} \cup \{v_2\}] = B(6, 1)$; if $y_1v_2 \in E(G)$, then $G[\{y_1, v_2, v_3\} \cup \{v_4, v_5, v_6, v_7, v_8, v_9\} \cup \{v_1\}] = B(6, 1)$, a contradiction. So $N(a_1) \cap V(P_{10}) = N(a_2) \cap V(P_{10}) = \{v_3, v_4, v_5\}$. Similarly, $N(b_1) \cap V(P_{10}) = N(b_2) \cap V(P_{10}) = \{v_6, v_7, v_8\}.$

By (E3) again, let $T_2 = (N(\{a_1, a_2, v_4\}) - \{a_1, a_2, v_4\}) - \{v_3, v_5\} = \{z_1, z_2\},$ $N(a_1) = \{v_3, v_4, v_5, z_1, z_2, a_2\}, N(a_2) = \{v_3, v_4, v_5, z_1, z_2, a_1\}, \text{ and } N(v_4) = \{v_3, v_5, a_1, a_2, z_1, z_2\}.$ Also, $|N(z_i) \cap \{v_3, v_5\}| = 1$ (i = 1, 2). If $z_i v_3 \in E(G)$, then

 $G[\{z_i, v_3, v_4\} \cup \{v_5, v_6, v_7, v_8, v_9, v_{10}\} \cup \{v_2\}] = B(6, 1),$

a contradiction. So for $i = 1, 2, z_i v_5 \in E(G)$. Since G has no 8-cycles, $N(v_3) = \{a_1, a_2, v_2, v_4\}$. Similarly, by (E3), let $T_3 = (N(\{b_1, b_2, v_7\}) - \{b_1, b_2, v_7\}) - \{v_6, v_8\} = \{w_1, w_2\}, N(b_1) = \{v_6, v_7, v_8, w_1, w_2, b_2\}, N(b_2) = \{v_6, v_7, v_8, w_1, w_2, b_1\}, \text{ and } N(v_7) = \{v_6, v_8, b_1, b_2, w_1, w_2\}$. Also, for $i = 1, 2, N(w_i) \cap \{v_6, v_8\} = \{v_6\}$. By (E1) and (E2), for $i = 1, 2, N(z_i) \cap V(P_{10}) = \{v_4, v_5\}$ and $N(w_i) \cap V(P_{10}) = \{v_6, v_7\}$. Also, we have $N(v_8) = \{v_7, v_9, b_1, b_2\}$. Since G is 4-connected, let $c_1 \in N(z_1) - \{v_4, v_5, a_1, a_2\}$ and $c_2 \in N(z_2) - \{v_4, v_5, a_1, a_2\}$. Then $N(c_i) \cap V(P_{10}) = \emptyset$ (i = 1, 2).

Consider $N(v_{10})$. Let $x \in N(v_{10}) - \{v_9\}$. Then $N(x) \cap \{v_3, v_4, v_7, v_8\} = \emptyset$. Since G has no 8-cycles, $N(x) \cap \{v_5, v_6, z_1, z_2\} = \emptyset$, and $|N(x) \cap \{v_3, c_1, c_2\}| \le 1$. Without loss of generality, we assume that $c_1x \notin E(G)$. Since $G[\{z_1, v_4, v_5\} \cup \{v_6, v_7, v_8, v_9, v_{10}, x\} \cup \{c_1\}] \neq B(6, 1), xv_9 \in E(G)$. Since $xv_8 \notin E(G)$, it follows that $G[N(v_{10})]$ is a complete graph. Since G is 4-connected, let $d \in N(N(v_{10})) - \{v_8, v_9, v_{10}\}$. Also, we assume that $dx \in E(G)$, where $x \in N(v_{10})$. Since G has no 8-cycles, $|N(d) \cap \{c_1, c_2, v_3\}| \leq 1$. Hence $|(N(d) \cup N(x)) \cap \{c_1, c_2, v_3\}| \leq 2$. There is a vertex $u \in \{c_1, c_2, v_3\}$ with $u \notin N(d) \cup N(x)$. Thus $G[\{z_1, v_4, v_5\} \cup \{v_6, v_7, v_8, v_9, x, d\} \cup \{u\}] = B(6, 1)$, a contradiction.

References

- [1] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, Elsevier, New York, (1976).
- [2] M. Ferrara, R. Gould, S. Gehrke, C. Magnant and F. Pfender, Pancyclicity of 4-connected {claw, generalized net}-free graphs, *Discrete Math.* 313 (2013), 460– 467.
- [3] M. Ferrara, T. Morris and P. Wenger, Pancyclicity of 4-connected, claw-free, P₁₀-free graphs, J. Graph Theory 71 (2012), 435–447.
- [4] R. Gould, T. Luczak and F. Pfender, Pancyclicity of 3-connected graphs: pairs of forbidden subgraphs, J. Graph Theory 47 (2004), 183–202.
- [5] H.-J. Lai, M. Zhan, T. Zhang and J. Zhou, Pancyclicity of 4-connected $\{K_{1,3}, Z_8\}$ -free graphs, *Graphs Combin.* 35 (2019), 67–89.
- [6] M. M. Matthews and D. P. Sumner, Hamiltonian results in $K_{1,3}$ -free graphs, J. Graph Theory 8 (1984), 139–146.
- [7] W. Xiong, H.-J Lai, X. Ma, K. Wang and M. Zhang, Hamilton cycles in 3connected claw-free and net-free graphs, *Discrete Math.* 313 (2013), 784–795.

(Received 30 Nov 2018; revised 10 Jan 2020)