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Abstract

A graph G is said to be pancyclic if G contains cycles of lengths from
3 to |V (G)|. The bull B(i, j) is obtained by associating one endpoint of
each of the path Pi+1 and Pj+1 with distinct vertices of a triangle. In [M.
Ferrara et al., Discrete Math. 313 (2013), 460–467], it was shown that
every 4-connected {K1,3, B(i, j)}-free graph with i + j = 6 is pancyclic.
In this paper we show that every 4-connected {K1,3, B(i, j)}-free graph
with i + j = 7 is either pancyclic or it is the line graph of the Petersen
graph.
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1 Introduction

We use [1] for terminology and notation not defined here, and we only consider finite
simple graphs. Let G be a graph. If v ∈ V (G) and S ⊆ V (G), we say that G[S] is
the subgraph induced in G by S, N(v) is the neighborhood of v in G, d(v) = |N(v)|,
and N(S) =

⋃
v∈S N(v). The path with n vertices is denoted by Pn. Given a family

F of graphs, G is said to be F -free if G contains no member of F as an induced
subgraph. If F= {K1,3}, then G is said to be claw-free. A graph G is hamiltonian
if it contains a spanning cycle and pancyclic if it contains cycles of lengths from 3
to |V (G)|. In 1984, Matthews and Sumner [6] conjectured that every 4-connected
claw-free graph is hamiltonian. This conjecture is still open and it has also fostered a
large body of research into other structural properties of cycles for claw-free graphs.
In this paper we are specifically interested in the pancyclicity of claw-free net-free
graphs.

Let �L denote the graph obtained by connecting two disjoint triangles with a
single edge, and let N(i, j, k) denote the net obtained by identifying each vertex of
a triangle K3 with an endpoint of three disjoint paths Pi+1, Pj+1, Pk+1, respectively.
We refer to N(i, j, 0) as the generalized bull, and denote it by B(i, j).

Theorem 1.1 (Gould, �Luczak, Pfender [4]) Let X and Y be connected graphs on
at least three vertices. If neither X nor Y is P3 and Y is not K1,3, then every
3-connected {X, Y }-free graph G is pancyclic if and only if X = K1,3 and Y is a
subgraph of one of the graphs in the family

F = {P7, �L, N(4, 0, 0), N(3, 1, 0), N(2, 2, 0), N(2, 1, 1)}.

Motivated by the Matthews-Sumner Conjecture and Theorem 1.1, Ron Gould
came up with the following problem at the 2010 SIAM Discrete Math Meeting in
Austin, TX.

Problem 1.2 Characterize the pairs of forbidden subgraphs that imply a 4-connected
graph is pancyclic.

Theorem 1.3 (Ferrara, Morris, Wenger [3]) Every 4-connected {K1,3, P10}-free
graph is either pancyclic or is the line graph of the Petersen graph.

Theorem 1.4 (Lai, Zhan, Zhang, and Zhou[5]) Every 4-connected {K1,3, N(8, 0, 0)}-
free graph is either pancyclic or is the line graph of the Petersen graph.

Theorem 1.5 (Ferrara, Gehrke, Gould, Magnant, and Powell [2]) Every 4-conn-
ected {K1,3, B(i, j)}-free graph, where i + j = 6, is pancyclic.

The result of this paper is as follows.
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Theorem 1.6 Every 4-connected {K1,3, B(i, j)}-free graph with i + j = 7 is either
pancyclic or is the line graph of the Petersen graph.

The line graph of the Petersen graph is 4-connected {K1,3, B(i, j)}-free if i+j = 7,
but is not {K1,3, B(i, j)}-free if i + j = 6, and it contains no cycle of length 4. So
Theorem 1.6 implies Theorem 1.5.

Figure 1. The line graph of the Petersen graph is the unique 4-connected

{K1,3, B(i, j)}-free graph with i + j = 7 that is not pancyclic.

In Section 2, we will show that every 4-connected {K1,3, B(i, j)}-free graph with
i+j = 7 contains cycles of all lengths from 9 to |V (G)| by showing that if G contains
a t-cycle (t ≥ 10), then G also contains a (t − 1)-cycle. The existence of a 3-cycle
follows immediately from the fact that G is claw-free. For t-cycles with 4 ≤ t ≤ 5,
we use arguments based on the induced graphs N(8, 0, 0) or P10. For t-cycles with
6 ≤ t ≤ 8, we use similar arguments based on the induced graphs P10. The proof of
the existence of short cycles (4 ≤ t ≤ 8) will be given in Section 3.

2 Long Cycles

Before we proceed, we introduce some additional notation. For the remainder of
the paper, we will let G[{x, y, z}∪ {x1, . . . , xi}∪ {y1, . . . , yj}∪ {z1, . . . , zk}] denote a
copy of N(i, j, k) with central triangle xyz and appended paths xx1 . . . xi, yy1 . . . yj,
and zz1 . . . zk. A copy of the bull B(i, j) is denoted G[{x, y, z} ∪ {x1, . . . , xi} ∪
{y1, . . . , yj}] where xyz is the central triangle with appended paths xx1 . . . xi and
yy1 . . . yj. The following result allows us to establish the hamiltonicity of the graphs
under consideration.

Lemma 2.1 (Ferrara, Gehrke, Gould, Magnant, and Powell [2]) Let G be a 4-
connected K1,3-free graph containing a cycle C of length t ≥ 4. If C has a chord
or if there is a vertex w ∈ V (G) − V (C) with at least 4 neighbors on C, then G
contains another cycle C ′ of length t− 1.

Lemma 2.2 Let G be a 4-connected {K1,3, B(i, j)}-free graph of order n with i+j =
7 and i, j �= 0 and let C be a cycle of length t ≥ 10 in G. Then G contains another
cycle C ′ of length t− 1.
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Proof. Assume that G contains no (t− 1)-cycles. By Lemma 2.1, C is chordless,
and if w ∈ V (G) − V (C) with N(w) ∩ V (C) �= ∅, then |N(w) ∩ V (C)| ≤ 3. Let
C = v1v2 . . . vtv1.

Claim 1. Let x ∈ V (G) − V (C). If N(x) ∩ V (C) �= ∅, then |N(x) ∩ V (C)| = 3.
Moreover, these three neighbors of x are consecutive on C.

By contradiction, we assume that |N(x) ∩ V (C)| �= 3. Then |N(x) ∩ V (C)| ≤ 2.
Since N(x) ∩ V (C) �= ∅, we assume that xvi ∈ E(G). As vi+1vi−1 �∈ E(G), we
have either vi+1x ∈ E(G) or vi−1x ∈ E(G). Without loss of generality, we assume
that xvi−1 ∈ E(G). As |N(x) ∩ V (C)| ≤ 2, xw �∈ E(G) for w ∈ V (C) − {vi, vi−1}.
As t ≥ 10, the subgraph induced by {x, vi, vi−1} ∪ (V (C) − {vi, vi−1}) contains a
B(i, j)(i + j = 7), a contradiction. Claim 1 holds.

By Claim 1, every vertex with a neighbor on C has exactly three neighbors
on C which are consecutive. For 1 ≤ i ≤ t, let Vi = N(vi−1) ∩ N(vi) ∩ N(vi+1)

where indices are taken modulo t. If there is a vertex w �∈ V (C) ∪
t⋃

i=1

Vi that has

a neighbor wi in some Vi, then {wi, vi−1, vi+1, w} induces a claw. Thus the sets
{V1, V2, . . . , Vt} is a partition of V (G)\V (C). If there is an edge joining Vi and Vj

when |i− j| > 2(mod t), we assume that wi ∈ Vi, wj ∈ Vj and wiwj ∈ E(G). Since
G[{wi, wj, vi−1, vi+1}] �= K1,3, we have either wjvi+1 ∈ E(G) or wjvi−1 ∈ E(G). Thus
|N(wj)∩V (C)| ≥ 4, a contradiction. If there is an edge wiwi+2 between Vi and Vi+2,
then v1v2 . . . vi−1wiwi+2vi+3 . . . vtv1 is a cycle of length t−1, a contradiction. If there
are two nonconsecutive values i < j such that Vi = ∅ and Vj = ∅, then {vi, vj} is
a cut set, a contradiction. Therefore, the set {i|Vi = ∅, i = 1, 2, . . . , t} has at most
two elements. If the set has two elements, the indices are adjacent. Without loss of
generality, we assume that for i ∈ {1, 2, . . . , t − 3}, Vi �= ∅. Let wi ∈ Vi. By Claim
1, w1, w2, . . . , wt−3 are distinct vertices. Let C3 = v1v2w1v1 be the 3-cycle. Then we
can get the 4-cycle C4 by inserting w2 into C3 as C4 = v1w2v2w1v1. Inserting v3 into
C4, we can get the 5-cycle C5 = v1w2v3v2w1v1. Using this method, we can get all
cycles of lengths from 3 to 2t− 5. As t ≥ 10, G has a (t− 1)-cycle, a contradiction.

�

Theorem 2.3 (Lai et al. [7]) Every 3-connected {K1,3, B(i, j)}-free graph with i +
j ≤ 8 is hamiltonian.

By Lemma 2.2 and Theorem 2.3, G contains cycles of length |V (G)| through 9.

3 Short Cycles

In this section we will prove that if G is a 4-connected {K1,3, B(i, j)}-free graph with
i + j = 7 and if G is not the line graph of the Petersen graph, then G has t-cycles,
where 4 ≤ t ≤ 8. Suppose that Pn = v1v2 . . . vn is an induced path in G. Since G is
claw-free, the following property follows.
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(CF1) If x ∈ V (G)\V (Pn) is adjacent to vi for i ∈ {2, 3, . . . , n − 1}, then x is
adjacent to either vi+1 or vi−1.

(CF2) If x ∈ V (G)\V (Pn), then |N(x) ∩ V (Pn)| ≤ 4. Furthermore, if |N(x) ∩
V (Pn)| = 4, then N(x) ∩ V (Pn) = {vi, vi+1, vj , vj+1} for some 1 ≤ i < j < n.

Lemma 3.1 If G is a 4-connected {K1,3, B(i, j)}-free graph with i + j = 7, then G
is the line graph of the Petersen graph or G has a 4-cycle.

Proof. Suppose that G is a 4-connected {K1,3, B(i, j)}-free graph with i+j = 7 and
that G does not have 4-cycles. Since G is claw-free, the neighborhood of any vertex
is either connected or two cliques. Since G is 4-connected, the minimum degree of
G is at least 4. If the neighborhood of a vertex is connected, then it contains a path
of length 3, yielding a 4-cycle. Thus the neighborhood of any vertex is two cliques.
If a vertex has degree at least 5, then one of the cliques has at least three vertices,
yielding a 4-cycle. Thus

(A1) G is 4-regular and, for any v ∈ V (G), G[N(v)∪{v}] are two triangles identified
at v.

Since G is B(i, j)-free with i+ j = 7, by Theorem 1.4, we have i, j ≥ 1. We prove
the lemma by considering the following three cases.

Case 1. B(i, j) = B(6, 1).

Since G is a 4-connected K1,3-free graph and G does not have 4-cycles, by The-
orem 1.5, G has an induced subgraph B(6, 0). Let B(6, 0) be the graph obtained
from P8 = v1v2 . . . v8 by adding a vertex v and joining v to v1 and v2. By (A1),
let a1, a2 ∈ V (G) − V (B(6, 0)) be the other two adjacent neighbors of v, and let
b1, b2 ∈ V (G) − V (B(6, 0)) be the other two adjacent neighbors of v1.

Let x ∈ {a1, a2, b1, b2}. Since G does not have 4-cycles, N(x) ∩ {v2, v3} = ∅.
Furthermore, as G[{v, v1, v2}∪{v3, . . . , v8}∪{x}] �= B(6, 1), N(x)∩{v4, v5, . . . , v8} �=
∅. If N(a1) ∩ V (B(6, 0)) = {v, v6, v7}, then v5, v6, v7, v8 �∈ N(a2), since G has no 4-
cycles. By (CF1), v4 �∈ N(a2), a contradiction. Therefore N(x) ∩ {v4, v5, . . . , v8} �=
{v, v6, v7}, and N(x) ∩ {v4, v5, . . . , v8} ∈ {{v4, v5}, {v5, v6}, {v7, v8}, {v8}}. Without
loss of generality, we may assume that N(a1) ∩ V (B(6, 0)) = {v, v4, v5}, N(a2) ∩
V (B(6, 0)) = {v, v7, v8}, N(b1) ∩ V (B(6, 0)) = {v1, v5, v6} and N(b2) ∩ V (B(6, 0)) =
{v1, v8}.

Let c1 ∈ N(b2) ∩N(v8). Since G does not have 4-cycles, v6, v7, v2 �∈ N(c1). Since
G[{c1, b2, v8} ∪ {v1, v2, v3, v4, v5, v6} ∪ {a2}] �= B(6, 1), we have N(c1) ∩ V (B(6, 0)) =
{v8, v3, v4}. By (A1), there is c2 ∈ N(v6) ∩N(v7). If N(c2) ∩ V (B(6, 0)) = {v6, v7},
then G[{c2, v6, v7} ∪ {v5, v4, v3, v2, v1, b2} ∪ {a2}] is a B(6, 1), a contradiction. So
N(c2)∩V (B(6, 0)) = {v2, v3, v6, v7}. Then G is the line graph of the Petersen graph.

Case 2. B(i, j) = B(5, 2).

Since G is a 4-connected K1,3-free graph and G does not have 4-cycles, by Theo-
rem 1.5, G has an induced subgraph B(5, 1). Let B(5, 1) be the graph obtained from
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P8 = v1v2 . . . v8 by adding a vertex v and joining v to v2 and v3. By (A1), let a1, a2 be
two adjacent neighbors of v1 and a3 ∈ N(v1) ∩N(v2). Then v, v3 �∈ N({a1, a2, a3}).

Suppose that N(a3) ∩ V (B(5, 1)) = {v1, v2}. Let b1, b2 ∈ V (G) − V (B(5, 1))
be two adjacent neighbors of a3. Let x ∈ {a1, a2} and y ∈ {b1, b2}. Then N(x) ∩
{v4, v5, v6, v7, v8} �= ∅ and N(y) ∩ {v4, v5, v6, v7, v8} �= ∅ (otherwise, G[{v, v2, v3} ∪
{v4, v5, v6, v7, v8} ∪ {s, t}] is a B(5, 2), where s = v1 if t ∈ {a1, a2}, or s = a3 if
t ∈ {b1, b2}, a contradiction). Furthermore, v4 ∈ N({a1, a2, b1, b2}) (otherwise, by
symmetry of b1, b2 and a1, a2, we have N(a1) ∩ V (B(5, 1)) = {v1, v5, v6}, N(a2) ∩
V (B(5, 1)) = {v1, v8}, N(b1)∩V (B(5, 1)) = {v5, v6}, and N(b2)∩V (B(5, 1)) = {v8}.
Thus a1v5b1v6a1 is a 4-cycle in G, a contradiction). Without loss of generality, we
assume that b1v4 ∈ E(G). By (CF1), b1v5 ∈ E(G). Notice that G has no 4-cycles.
By symmetry of a1 and a2, we may assume that N(a1) ∩ V (B(5, 1)) = {v1, v5, v6}
and N(a2) ∩ V (B(5, 1)) = {v1, v8}. Thus N(b2) ∩ V (B(5, 1)) = {v7, v8}. Thus
G[{v, v2, v3} ∪ {v4, v5, v6, v7, b2} ∪ {v1, a2}] is a B(5, 2), a contradiction. Therefore,
N(a3) ∩ V (B(5, 1)) �= {v1, v2}.

Assume that v4 �∈ N({a1, a2}). Then, without loss of generality, we assume
that N(a1) ∩ V (B(5, 1)) = {v1, v5, v6} and N(a2) ∩ V (B(5, 1)) = {v1, v8}. Thus
N(a3) ∩ V (B(5, 1)) = {v1, v2}, a contradiction. So v4 ∈ N({a1, a2}). We assume
that v4 ∈ N(a1). Then N(a1)∩V (B(5, 1)) = {v1, v4, v5}. Thus N(a2)∩V (B(5, 1)) =
{v1, v8} and N(a3) ∩ V (B(5, 1)) = {v1, v2, v6, v7}.

Since d(v) = 4, let N(v) = {v2, v3, b1, b2}. Then b1b2 ∈ E(G), and N(bi) ∩
{v3, v4} = ∅(i = 1, 2). Thus N(bi) ∩ {v5, v6, v7, v8} �= ∅ (otherwise, a2bi �∈ E(G) as
biv8 �∈ E(G). Thus G[{a3, v6, v7}∪{v5, v4, v3, v, bi}∪{v8, a2}] is a B(5, 2), a contradic-
tion). Since G has no 4-cycles, we may assume that N(b1)∩ V (B(5, 1)) = {v, v5, v6}
and N(b2) ∩ V (B(5, 1)) = {v, v8}. Since G[{v8, v7, b2, a2}] �= K1,3, a2b2 ∈ E(G). Let
N(v8) = {b2, v7, a2, x}. Then xv3, xv4 ∈ E(G)(Otherwise, {x, v3, v4} is a 3-cut in G).
By (A1), xv7 ∈ E(G). Therefore, V (G) = V (B(5, 1)) ∪ {a1, a2, a3, b1, b2, x} and G is
the line graph of the Petersen graph.

Case 3. B(i, j) = B(4, 3).

By Theorem 1.3, G has an induced subgraph P10 = v1v2 . . . v10. By (A1), suppose
that a1 ∈ N(v5) ∩N(v6), a2 ∈ N(v4) ∩N(v5) and a3 ∈ N(v6) ∩N(v7). Since G does
not have 4-cycles, a1, a2, a3 are all distinct non-adjacent vertices.

Consider N(a1). Since G does not have 4-cycles, N(a1) ∩ {v3, v4, v7, v8} = ∅.
Since G is B(4, 3)-free, we have either N(a1) ∩ {v1, v2} �= ∅ or N(a1) ∩ {v9, v10} �=
∅. Without loss of generality, we assume that N(a1) ∩ {v1, v2} �= ∅. By (CF2),
N(a1) ∩ {v9, v10} = ∅. Since G[{a1, v5, v6} ∪ {v7, v8, v9, v10} ∪ {v4, v3, v2}] is not a
B(4, 3), a1v2 ∈ E(G). By (CF1), N(a1) = {v1, v2, v5, v6}.

Consider N(a2). Since G has no 4-cycles, N(a2) ∩ {v1, v2, v3, v6, v7} = ∅. Since
G is B(4, 3)-free, N(a2) ∩ {v8, v9} �= ∅. By (CF1), a2v9 ∈ E(G). If a2v8 �∈ E(G),
then a2v10 ∈ E(G). Thus G[{a2, v9, v10} ∪ {v4, v3, v2, v1} ∪ {v8, v7, v6}] is a B(4, 3), a
contradiction. So a2v8 ∈ E(G). Therefore, N(a2) = {v8, v9, v4, v5}.

Consider N(a3). Since G has no 4-cycles and v6 ∈ N(a1) ∩ N(a3), it follows
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that N(a3) ∩ {v1, v2, v8, v9, v4, v5, a1, a2} = ∅. By (CF1), v3a3 �∈ E(G). Since
G[{a3, v6, v7} ∪ {v5, v4, v3, v2} ∪ {v8, v9, v10] is not a B(4, 3), a3v10 ∈ E(G), and so
N(a3)∩(V (P10)∪{a1, a2}) = {v6, v7, v10}. Therefore, G[{a2, v8, v9}∪{v4, v3, v2, v1}∪
{v10, a3, v6}] is a B(4, 3), a contradiction. �

Lemma 3.2 If G is a 4-connected {K1,3, B(i, j)}-free graph with i + j = 7, then G
has a 5-cycle.

Proof. Suppose that G is a 4-connected {K1,3, B(i, j)}-free graph with i + j = 7
and that G does not have 5-cycles. By Theorem 1.4, i, j ≥ 1. By Theorem 1.3, G
has an induced subgraph P10 = v1v2 . . . v10.

(B1) If N(vi) ∩N(vj) �= ∅(1 ≤ i < j ≤ 10), then j − i �∈ {2, 3}.

Let x ∈ N(vi) ∩ N(vj). Since G does not have 5-cycles, j − i �= 3. If j − i = 2,
then w ∈ N(vi+1) − {x, vi, vi+2}. By (CF1), we have either viw ∈ E(G) or vi+2w ∈
E(G). Thus the 4-cycle xvivi+1vi+2x can be extended to 5-cycle xviwvi+1vi+2x or
xvivi+1wvi+2x, a contradiction. (B1) holds.

Case 1. B(i, j) = B(6, 1)

Assume that v3 and v4 have more than one common neighbor. Let a1 and a2 be
two common neighbors of v3 and v4. By (B1), for i = 1, 2, N(ai)∩{v1, v2, v5, v6, v7} =
∅. Since G is B(6, 1)-free, N(ai) ∩ {v8, v9, v10} �= ∅. Since G has no 5-cycle, N(a1) ∩
N(a2)∩ {v8, v9, v10} = ∅. Thus, by symmetry and (CF1), we have v8a2, v9a2 ∈ E(G)
and a1v10 ∈ E(G). Therefore, a1v3a2v9v10a1 is a 5-cycle, a contradiction. So v3
and v4 have at most one common neighbor. Similarly, v2 and v3 have at most one
common neighbor. Therefore, d(v3) = 4, and v3 and v4 have exactly one common
neighbor. Similarly, d(v8) = 4, and v7 and v8 have exactly one common neighbor.

Let N(v3) = {v2, v4, a1, a2} and N(v8) = {v7, v9, b1, b2}. By (CF1), we assume
that a1 ∈ N(v3) ∩N(v4), a2 ∈ N(v2) ∩N(v3), b1 ∈ N(v7) ∩N(v8), and b2 ∈ N(v8) ∩
N(v9). Since G is B(6, 1)-free, by (B1), N(a1) ∩ V (P10) ⊆ {v3, v4, v8, v9, v10} and
N(a2) ∩ V (P10) ⊆ {v2, v3, v7, v8, v9, v10}. Since G has no 5-cycles, N(a1) ∩ V (P10) =
{v3, v4, v10} and N(a2) ∩ V (P10) = {v2, v3, v7, v8}. Similarly, N(b1) ∩ V (P10) =
{v7, v8, v1} and N(b2) ∩ V (P10) = {v8, v9, v3, v4}. Thus, a2v7v8b2v3a2 is a 5-cycle
in G, a contradiction.

Case 2. B(i, j) = B(5, 2)

Assume that v4 and v5 have more than one common neighbor. Let a1 and a2 be
two common neighbors of v4 and v5. By (B1), N(ai) ∩ {v1, v2, v3, v6, v7, v8} = ∅ for
i = 1, 2. Since G is B(5, 2)-free, N(ai)∩{v9, v10} �= ∅. By (CF1), v10a1, v10a2 ∈ E(G).
Thus a1v10a2v5v4a1 is a 5-cycle, a contradiction. So v4 and v5 have at most one
common neighbor. Similarly, v3 and v4 have at most one common neighbor. Thus,
d(v4) = 4, and v4 and v5 have exactly one common neighbor.

Let N(v4) = {v3, v5, a1, a2}. By (CF1), we assume that a1 ∈ N(v4) ∩ N(v5) and
a2 ∈ N(v3)∩N(v4). Since G is B(5, 2)-free, by (B1), N(a1)∩V (P10) ⊆ {v4, v5, v9, v10}
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and N(a2) ∩ V (P10) ⊆ {v3, v4, v8, v9, v10}. Since G has no 5-cycles, N(a1) ∩N(a2) ∩
{v8, v9, v10} = ∅. By (CF1), N(a1) ∩ V (P10) = {v4, v5, v10} and N(a2) ∩ V (P10) =
{v3, v4, v8, v9}. Thus, a2v9v10a1v4a2 is a 5-cycle in G, a contradiction.

Case 3. B(i, j) = B(4, 3)

Assume that v5 and v6 have a common neighbor. Let a1 be a common neigh-
bor of v5 and v6. By (B1), N(a1) ∩ {v2, v3, v4, v7, v8, v9} = ∅. Since G is B(4, 3)-
free, a1v1, a1v10 ∈ E(G), contrary to (CF2). Thus v5 and v6 have no common
neighbors. Let a1, a2 ∈ N(v5) − {v4, v6}; then a1a2, a1v4, a2v4 ∈ E(G). By (B1),
N(ai) ∩ {v1, v2, v3, v6, v7, v8} = ∅ for i = 1, 2. Since G is B(4, 3)-free, v9a1, v9a2 ∈
E(G). Thus a1v9a2v4v5a1 is a 5-cycle, a contradiction. �

Lemma 3.3 If G is a 4-connected {K1,3, B(i, j)}-free graph with i + j = 7, then G
has a 6-cycle.

Proof. Suppose that G is a 4-connected {K1,3, B(i, j)}-free graph with i + j = 7
and that G does not have 6-cycles. By Theorem 1.4, i, j ≥ 1. By Theorem 1.3, G
has an induced subgraph P10 = v1v2 . . . v10.

(C1) If N(vi) ∩N(vj) �= ∅ (1 ≤ i < j ≤ 10), then j − i �∈ {2, 3, 4}.

Let x ∈ N(vi)∩N(vj). Since G does not have 6-cycles, j− i �= 4. If j− i = 3, let
w ∈ N(vi+1)− {x, vi, vi+2}. By (CF1), we have either viw ∈ E(G) or vi+2w ∈ E(G).
Thus the 5-cycle xvivi+1vi+2vi+3x can be extended to a 6-cycle xviwvi+1vi+2vi+3x or
xvivi+1wvi+2vi+3x, a contradiction. So j − i �= 3.

Assume that j − i = 2. Let N(vi+1) − {x, vi, vi+2} = {w1, . . . , wt}. By (CF1),
either wsvi ∈ E(G) or wsvi+2 ∈ E(G) for s = 1, . . . , t. Assume that t ≥ 2. If
w1vi, w2vi+2 ∈ E(G), then xviw1vi+1w2vi+2x is a 6-cycle in G, a contradiction. So
we may assume that w1vi, w2vi ∈ E(G) and w1vi+2, w2vi+2 �∈ E(G). Since G is
claw-free, w1w2 ∈ E(G). Thus xviw1w2vi+1vi+2x is a 6-cycle in G, a contradiction.
So t = 1. As G is 4-connected, N(vi+1) = {w1, vi, vi+2, x}. Consider T = N(x) −
{vi, vi+1, vi+2, w1}. If T �= ∅, let y ∈ T . Then either yvi ∈ E(G) or yvi+2 ∈ E(G).
Thus G[{x, vi, vi+1, w1, vi+2, y}] must contain a 6-cycle, a contradiction. So T = ∅ and
N(x) = {vi, vi+1, vi+2, w1}. Therefore, {w1, vi, vi+2} is a 3-cut in G, a contradiction.
So j − i �= 2. (C1) holds.

Case 1. B(i, j) = B(4, 3).

Assume that v5 and v6 have a common neighbor. Let a1 ∈ N(v5) ∩ N(v6). By
(C1), N(a1) ∩ V (P10) = {v5, v6}. Thus G[{a1, v5, v6} ∪ {v1, v2, v3, v4} ∪ {v7, v8, v9}]
is a B(4, 3), a contradiction. So v5 and v6 do not have common neighbors. Let a1 ∈
N(v4) ∩N(v5). By (C1), N(a1) ∩ {v1, v2, v3, v6, v7, v8, v9} = ∅. Thus G[{a1, v4, v5} ∪
{v6, v7, v8, v9} ∪ {v1, v2, v3}] is a B(4, 3), a contradiction.

Case 2. B(i, j) = B(5, 2).

Let x ∈ N(v4) ∩ N(v5). By (C1), N(x) ∩ {v1, v2, v3, v6, v7, v8, v9} = ∅. As G is
B(5, 2)-free, xv10 ∈ E(G). Similarly, yv9 ∈ E(G) for any y ∈ N(v3) ∩N(v4).
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Assume that v4 and v5 have more than one common neighbor. Let a1, a2 ∈
N(v4) ∩ N(v5). Then a1a2, v10a1, v10a2 ∈ E(G). As G has no 6-cycles, N(a1) ∪
N(a2) − {a1, a2} = {v4, v5, v10}, and so {v4, v5, v10} is a 3-cut in G, a contradiction.
So v4 and v5 have at most one common neighbor. Similarly, v3 and v4 have at most
one common neighbor.

Consider N(v4), and let {v3, v5, a1, a2} ⊆ N(v4). Then we may assume that
a1 ∈ N(v4) ∩ N(v5) and a2 ∈ N(v3) ∩ N(v4). Then a1v10, a2v9 ∈ E(G). Thus
a1v10v9a2v4v5a1 is a 6-cycle, a contradiction.

Case 3. B(i, j) = B(6, 1).

Let x ∈ N(v3) ∩ N(v4). By (C1), N(x) ∩ {v1, v2, v5, v6, v7, v8} = ∅. As G is
B(6, 1)-free, N(x) ∩ {v9, v10} �= ∅. By (CF1), xv10 ∈ E(G). Similarly, yv9 ∈ E(G)
for any y ∈ N(v2) ∩N(v3).

Assume that v3 and v4 have more than one common neighbor. Let a1, a2 ∈
N(v3) ∩ N(v4). Then a1a2, v10a1, v10a2 ∈ E(G). As G has no 6-cycles, N(a1) ∪
N(a2) − {a1, a2} = {v3, v4, v10}, and so {v3, v4, v10} is a 3-cut in G, a contradiction.
So v3 and v4 have at most one common neighbor. Similarly, v2 and v3 have at most
one common neighbor.

Consider N(v3), and let {v2, v4, a1, a2} ⊆ N(v3). Then we may assume that
a1 ∈ N(v3) ∩ N(v4) and a2 ∈ N(v2) ∩ N(v3). Then a1v10, a2v9 ∈ E(G). Thus
a1v10v9a2v3v4a1 is a 6-cycle, a contradiction. �

Lemma 3.4 If G is a 4-connected {K1,3, B(i, j)}-free graph with i + j = 7, then G
has a 7-cycle.

Proof. Suppose that G is a 4-connected {K1,3, B(i, j)}-free graph with i + j = 7
and that G does not have 7-cycles. By Theorem 1.4, i, j ≥ 1. By Theorem 1.3, G
has an induced subgraph P10 = v1v2 . . . v10.

(D1) If N(vi) ∩N(vj) �= ∅(1 ≤ i < j ≤ 10), then j − i �= {3, 4, 5}.

(D2) For 1 ≤ i ≤ 8, |N(vi) ∩N(vi+2)| ≤ 1.

(D3) For 1 ≤ i ≤ 7, if N(vi) ∩N(vi+2) �= ∅, then N(vi+1) ∩N(vi+3) = ∅.

Let x ∈ N(vi) ∩ N(vj). Since G does not have 7-cycles, j − i �= 5. If j − i = 4,
let w ∈ N(vi+1) − {vi, vi+2}. By (CF1), we have either wvi ∈ E(G) or wvi+2 ∈
E(G). Thus the 6-cycle xvi . . . vjx can be extended to a 7-cycle xviwvi+1 . . . vjx or
xvivi+1wvi+2 . . . vjx, a contradiction. So j − i �= 4. Assume that j = i + 3. Let
T = N(vi+1)∪N(vi+2)−{x, vi, vi+3}. Since G is 4-connected, |T | ≥ 1. If |T | ≥ 2, let
y1, y2 ∈ T . By (CF1) and the fact that G is claw-free, G[{vi, vi+1, vi+2, vi+3, x, y1, y2}]
must contain a 7-cycle, a contradiction. So |T | = 1. Assume that T = {y}. Since
G is 4-connected, N(vi+1) = {vi, vi+2, y, x} and N(vi+2) = {vi+1, vi+3, y, x}. Since
G is claw-free and G does not have 7-cycles, N(x) ⊆ {vi, vi+1, vi+2, vi+3, y}, and so
{vi, vi+3, y} is a 3-cut of G, a contradiction. Therefore, j − i �= 3. (D1) follows.
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Suppose that x, y ∈ N(vi)∩N(vi+2). By (D1) and (CF1), x, y ∈ N(vi+1) and xy ∈
E(G). Then G has the 5-cycle xvivi+1vi+2yx. Since G is claw-free and G does not
have 7-cycles, |(N({x, y, vi+1})− {vi, vi+2, x, y, vi+1}| ≤ 1 and then N({x, y, vi+1})−
{x, y, vi+1} is a 2-cut or 3-cut, a contradiction. So (D2) follows.

Suppose that x ∈ N(vi) ∩ N(vi+2) and y ∈ N(vi+1) ∩ N(vi+3). By (D1) and
(CF1), xvi+1, yvi+2 ∈ E(G). Since G is claw-free and G does not have 7-cycles,
N({x, y, vi+1, vi+2}) − {x, y, vi, vi+1, vi+2, vi+3} = ∅, which implies that {vi, vi+3} is a
2-cut of G, a contradiction. So (D3) follows.

Case 1. B(i, j) = B(4, 3).

Assume that v5 and v6 have more than one common neighbor. Let a1, a2 ∈
N(v5) ∩ N(v6). For i = 1, 2, by (D1), N(ai) ∩ V (P10) ⊆ {v4, v5, v6, v7}. Since
G is B(4, 3)-free, N(ai) ∩ {v4, v7} �= ∅, contradicting (D2) or (D3). So v5 and v6
have at most one common neighbor. Similarly, v4 and v5 have at most one common
neighbor, and v6 and v7 have at most one common neighbor. Thus d(v5) = d(v6) = 4.
Let N(v5) = {v4, v6, a1, a2} and N(v6) = {v5, v7, a1, a3}. By (D1), N(a1) ∩ V (P10) =
{v5, v6}, and G[{a1, v5, v6}∪{v7, v8, v9, v10}∪{v4, v3, v2}] is a B(4, 3), a contradiction.

Case 2. B(i, j) = B(5, 2).

Assume that v4 and v5 have more than one common neighbor. Let a1, a2 ∈
N(v4) ∩ N(v5). For i = 1, 2, by (D1), N(ai) ∩ {v1, v2, v7, v8, v9, v10} = ∅. Since G is
B(5, 2)-free, N(ai) ∩ {v3, v6} �= ∅, contradicting (D2) or (D3). So v4 and v5 have at
most one common neighbor. Similarly, v3 and v4 have at most one common neighbor.
Thus d(v4) = 4. Let N(v4) = {v3, v5, a1, a2}. Without loss of generality, we assume
that a1 ∈ N(v4) ∩N(v5), a2 ∈ N(v3) ∩N(v4). Similarly, let N(v7) = {v6, v8, b1, b2},
where b1 ∈ N(v6) ∩N(v7), b2 ∈ N(v7) ∩N(v8).

By (D1), N(a1) ∩ {v1, v2, v7, v8, v9, v10} = ∅. Since G is B(5, 2)-free, N(a1) ∩
{v3, v6} �= ∅. Similarly, N(a2)∩{v2, v5} �= ∅. By (D2) and (D3), we have a1v6, a2v2 ∈
E(G). Similarly, b1v5, b2v9 ∈ E(G), contradicting (D3).

Case 3. B(i, j) = B(6, 1).

Assume that v3 and v4 do not have common neighbors. Since G is 4-connected,
let a1, a2 ∈ N(v2) ∩ N(v3) and b1, b2 ∈ N(v4) ∩ N(v5). Then a1a2, b1b2 ∈ E(G),
v4 �∈ N(a1) ∪ N(a2) and v3 �∈ N(b1) ∪ N(b2). Since G has no 7-cycles, aibj �∈ E(G)
for i, j ∈ {1, 2}. For i = 1, 2, by (D1), N(ai) ∩ {v5, v6, v7, v8} = ∅ and N(bi) ∩
{v1, v2, v7, v8, v9, v10} = ∅. By (D2), we may assume that v1a1, v6b1 �∈ E(G). Since G
is B(6, 1)-free, we have a1v9 ∈ E(G). Thus G[{a1, v2, v3}∪{v1}∪{v9, v8, v7, v6, v5, b1}]
is a B(6, 1), a contradiction. So v3 and v4 have a common neighbor. Similarly, v7
and v8 have a common neighbor.

Claim 1. Assume that v3 and v4 have exactly one common neighbor. Let a1 ∈
N(v3) ∩N(v4), a2 ∈ N(v2) ∩N(v3) and a3 ∈ N(v4) ∩N(v5). Then

(i) N(a1) ∩ {v1, v2, v6, v7, v8, v9} = ∅. Therefore, either N(a1) ∩ V (P10) = {v3, v4, v5}
or N(a1) ∩ V (P10) = {v3, v4, v10}.

(ii) N(a2) ∩ V (P10) = {v1, v2, v3}.
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By (D1), N(a1)∩{v1, v6, v7, v8, v9} = ∅. Assume that a1v2 ∈ E(G). By (D1), (D2)
and (D3), N(a2) ∩ {v1, v4, v5, v6, v7, v8} = ∅. Since G is B(6, 1)-free, a2v9 ∈ E(G).
By (CF1), a2v10 ∈ E(G). Since G has no 7-cycles, a1v5, a1v10 �∈ E(G). If there is
y ∈ N(a1) − {a2, v2, v3, v4}, then yv2 ∈ E(G) or yv4 ∈ E(G). If yv4 ∈ E(G), since
v3 and v4 have exactly one common neighbor, by (CF1), yv5 ∈ E(G). This implies
a 7-cycle yv5a3v4v3v2a1y, a contradiction. So yv4 �∈ E(G) and yv2 ∈ E(G). Since G
has no 7-cycles, yv1 �∈ E(G) and so yv3 ∈ E(G). By (D1), (D2) and (D3), N(y) ∩
{v4, v5, v6, v7, v8} = ∅. As G is B(6, 1)-free, yv9 ∈ E(G). By (CF1), yv10 ∈ E(G).
Thus yv9v10a2v2v3a1y is a 7-cycle in G, a contradiction. So N(a1) ⊆ {a2, v2, v3, v4}.
By the symmetry of a1 and v3, N(v3) ⊆ {a1, a2, v2, v4}, and so {a2, v2, v4} is a 3-cut
of G, a contradiction. Claim 1(i) holds.

Assume that a2v1 �∈ E(G). Since G is B(6, 1)-free, a2v9 ∈ E(G), and so a2v10 ∈
E(G). Thus N(a2)∩V (P10) = {v2, v3, v9, v10}. Since G has no 7-cycles, v10 �∈ N(a1).
By Claim 1(i), N(a1) ∩ V (P10) = {v3, v4, v5}. By (D3), a3v6 �∈ E(G). By (D1)
and (D2), N(a3) ∩ V (P10) = {v4, v5}. Since G has no 7-cycles, a2a3 �∈ E(G). Thus
G[{a2, v2, v3} ∪ {v9, v8, v7, v6, v5, a3} ∪ {v1}] is a B(6, 1), a contradiction. So a2v1 ∈
E(G). By (CF2), N(a2) ∩ V (P10) = {v1, v2, v3}. So Claim 1(ii) holds.

Claim 2. Assume that v3 and v4 have more than one common neighbor. Let a1, a2 ∈
N(v3) ∩ N(v4). Then, for i = 1, 2, N(ai) ∩ {v1, v2, v6, v7, v8, v9} = ∅. Therefore, by
symmetry, N(a1) ∩ V (P10) = {v3, v4, v5} and N(a2) ∩ V (P10) = {v3, v4, v10}.

By (D1), N(ai) ∩ {v1, v6, v7, v8, v9} = ∅. Without loss of generality, we assume
that a1v2 ∈ E(G). By (D2) and (D3), a2v2, a2v5 �∈ E(G). Since G is B(6, 1)-free,
a2v10 ∈ E(G). Since G[{v4, a1, a2, v5}] is not a claw, a1a2 ∈ E(G). Since G is
4-connected, there is a vertex y ∈ (N({a1, v3}) − {a1, v3}) − {v2, a2, v4}.

If ya1 ∈ E(G), by considering G[{a1, y, v2, v4}], we have N(y)∩{v2, v4} �= ∅. As G
has no 7-cycles, N(y)∩{v1, v5, v6, v7, v8, v9, v10} = ∅. If yv4 �∈ E(G), then yv2 ∈ E(G)
and yv3 ∈ E(G) by (CF1), and so G[{y, v2, v3}∪{v4, v5, v6, v7, v8, v9}∪{v1}] = B(6, 1),
a contradiction. If yv4 ∈ E(G), then yv2 �∈ E(G) by (D2) and yv3 ∈ E(G) by (CF1),
therefore G[{y, v3, v4}∪{v5, v6, v7, v8, v9, v10}∪{v2}] = B(6, 1), a contradiction. This
implies yv3 ∈ E(G). By considering G[{v3, a2, y, v2}], we have yv2 ∈ E(G). By
(D2), yv4 �∈ E(G). As G has no 7-cycles, N(y) ∩ {v1, v5, v6, v7, v8, v9, v10} = ∅. Thus
G[{y, v2, v3}∪{v4, v5, v6, v7, v7, v9}∪{v1}] is a B(6, 1), a contradiction. Claim 2 holds.

Claim 3. Suppose that a1 ∈ N(v3) ∩ N(v4) and b1 ∈ N(v7) ∩ N(v8). If N(a1) ∩
V (P10) = {v3, v4, v10}, then N(b1) ∩ V (P10) �= {v1, v7, v8}.

Assume that N(b1)∩V (P10) = {v1, v7, v8}. If there is y ∈ N(v5)∩N(v6), since G
does not have 7-cycles, ya1, yb1 �∈ E(G). By (D1), N(y)∩V (P10) ⊆ {v4, v5, v6, v7}. If
N(y)∩V (P10) = {v5, v6}, then G has a B(6, 1) = G[{a1, v3, v4}∪{v10, v9, v8, v7, v6, y}∪
{v2}], a contradiction. By (D1), suppose that N(y)∩ V (P10) = {v4, v5, v6}. Let y′ ∈
N(v5) − {v4, v6, y}. By (D2) and (D3) and the same discussion as y, y′ �∈ N(v6). So
y′ ∈ N(v4)∩N(v5). By (D1) and (D3), N(y′)∩V (P10) = {v4, v5}. Since G has no 7-
cycles, y′a1, y′b1 �∈ E(G). Thus G[{y′, v4, v5}∪{v3, v2, v1, b1, v8, v9}∪{v6}] = B(6, 1),
a contradiction. So N(v5) ∩N(v6) = ∅. Therefore, there are a2, a3 ∈ N(v4) ∩N(v5).
By (D1), N(ai) ∩ V (P10) ⊆ {v3, v4, v5}(i = 2, 3). Since G does not have 7-cycles,
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a2b1, a3b1 �∈ E(G). By (D2), one of a2 and a3 has N(ai)∩V (P10) = {v4, v5}, resulting
a B(6, 1) = G[{ai, v4, v5}∪{v3, v2, v1, b1, v8, v9}∪{v6}] again, a contradiction. Claim
3 holds.

By Claims 2 and 3, since G is B(6, 1)-free, either v3 and v4 have exactly one
common neighbor, or v7 and v8 have exactly one common neighbor.

Claim 4. v3 and v4 have exactly one common neighbor, and v7 and v8 have exactly
one common neighbor.

By symmetry, we assume that v3 and v4 have exactly one common neighbor,
and v7 and v8 have two or more common neighbors. Let a1 ∈ N(v3) ∩ N(v4),
a3 ∈ N(v4) ∩ N(v5), and b1, b2 ∈ N(v7) ∩ N(v8). By Claim 2, we assume that
N(b1)∩ V (P10) = {v1, v7, v8}, and N(b2)∩ V (P10) = {v7, v8, v9}. By Claims 1(i) and
3, we have N(a1)∩ V (P10) = {v3, v4, v5}.By (D1), (D2) and (D3), N(a3)∩ V (P10) =
{v4, v5}. Since G has no 7-cycles, a3b1, a3b2 �∈ E(G). Thus G has a B(6, 1) =
G[{a3, v4, v5} ∪ {v3, v2, v1, b1, v8, v9} ∪ {v6}], a contradiction. Claim 4 holds.

By Claim 4, let a1 ∈ N(v3)∩N(v4), a2 ∈ N(v2)∩N(v3) and a3 ∈ N(v4)∩N(v5),
and let b1 ∈ N(v7) ∩ N(v8), b2 ∈ N(v8) ∩N(v9) and b3 ∈ N(v6) ∩ N(v7). By Claim
1(ii), N(a2) ∩ V (P10) = {v1, v2, v3} and N(b2) ∩ V (P10) = {v8, v9, v10}.

Claim 5. N(a1) ∩ V (P10) = {v3, v4, v5} and N(b1) ∩ V (P10) = {v6, v7, v8}.

Assume that N(a1) ∩ V (P10) �= {v3, v4, v5}. By Claim 1(i), N(a1) ∩ V (P10) =
{v3, v4, v10}. By Claims 1(i) and 3, N(b1) ∩ V (P10) = {v6, v7, v8}. By (D1), (D2)
and (D3), N(b3) ∩ V (P10) = {v6, v7}. Since G has no 7-cycles, a1b3 �∈ E(G). Thus
G[{b3, v6, v7}∪{v8, v9, v10, a1, v3, v2}∪{v5}] is a B(6, 1), a contradiction. So N(a1)∩
V (P10) = {v3, v4, v5}. By symmetry, N(b1) ∩ V (P10) = {v6, v7, v8}. Claim 5 holds.

Now we finish the proof of Case 3. Since G does not have 7-cycles, |N(a1)∪N(v4)−
{a1, v4, v3, v5, a3}| ≤ 1. Since G is 4-connected, |N(a1)∪N(v4)−{a1, v4, v3, v5, a3}| =
1. Let a4 ∈ N(a1) ∪N(v4) − {a1, v4, v3, v5, a3}. Since G has no 7-cycles, a4v2, a4v6 �∈
E(G). Thus a4v4 ∈ E(G) (if a1a4 ∈ E(G), then either a4v3 ∈ E(G) or a4v5 ∈ E(G).
By (CF1), a4v4 ∈ E(G)). By Claim 4, N(a4) ∩ V (P10) = {v4, v5}. Since G is claw-
free, G[{a1, a3, a4, v4, v5}] is a K5, and so N(a1) = {v3, v4, v5, a3, a4} and N(v4) =
{v3, v5, a1, a3, a4}. Similarly there is b4 ∈ N(b1) ∪ N(v7) − {v6, v8, b3} with N(b4) ∩
V (P10) = {v6, v7}, and N(b1) = {v6, v7, v8, b3, b4} and N(v7) = {v6, v8, b1, b3, b4}.
Since G has no 7-cycles, aibj �∈ E(G) for i, j = 1, 2, 3, 4.

Let N(v1) − {a2, v2} = {c1, c2, . . . , cs}(s ≥ 2), and let i ∈ {1, . . . , s}. Then
N(ci) ∩ {a1, v4, b1, v7} = ∅. Since G has no 7-cycles, N(ci) ∩ {v5, v6, a3, a4} = ∅. If
civ8 ∈ E(G), then, by (CF1), civ9 ∈ E(G). By Claim 1(ii), civ10 ∈ E(G), and so
{v1, v8, v9, v10} ⊆ N(ci)∩V (P10), contrary to (CF2). So civ8 �∈ E(G). If civ9 ∈ E(G),
then civ10 ∈ E(G). Since G[{ci, v9, v10}∪{v8, v7, v6, v5, v4, v3}∪{v1}] is not a B(6, 1),
we have civ3 ∈ E(G), contrary to (D2). So civ9 �∈ E(G). If civ10 ∈ E(G), by
symmetry, civ2, civ3 �∈ E(G). Thus G[{a3, v4, v5} ∪ {v6, v7, v8, v9, v10, ci} ∪ {v3}] is
a B(6, 1), a contradiction. So civ10 �∈ E(G). If cib3 ∈ E(G), as G has no 7-cycles,
civ2, civ3 �∈ E(G), so G[{b3, v6, v7}∪{ci, v1, v2, v3, v4, a3}∪{v8}] is a B(6, 1). So cib3 �∈
E(G). If civ2 �∈ E(G), then civ3 �∈ E(G), so G[{b3, v6, v7}∪{v5, v4, v3, v2, v1, ci}∪{v8}]
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is a B(6, 1). This shows that civ2 ∈ E(G). By (D2), civ3 �∈ E(G). Therefore,
N(ci) ∩ V (P10) = {v1, v2}, and G[{c1, c2, . . . , cs}] is a Ks. Since G has no 7-cycles,
s = 2.

Consider N(a2) and N(v2). Since G has no 7-cycles, we have N(v2) = {v1, v3, c1,
c2, a2} and N(a2) ⊆ {c1, c2, v1, v2, v3}. Thus {c1, c2, v3} is a 3-cut in G, a contradic-
tion. �

Lemma 3.5 If G is a 4-connected {K1,3, B(i, j)}-free graph with i + j = 7, then G
has an 8-cycle.

Proof. Suppose that G is a 4-connected {K1,3, B(i, j)}-free graph with i + j = 7
and that G does not have 8-cycles. By Theorem 1.4, i, j ≥ 1. By Theorem 1.3, G
has an induced subgraph P10 = v1v2 . . . v10.

(E1) If N(vi) ∩ N(vj) �= ∅ (1 ≤ i < j ≤ 10), then j − i �∈ {4, 5, 6}. Therefore, for
some x �∈ V (P10), if {vi, vi+2} ⊆ N(x)∩V (P10) (2 ≤ i ≤ 7), then xvi+1 ∈ E(G),
and if {vi, vi+3} ⊆ N(x) ∩ V (P10) (2 ≤ i ≤ 6), then xvi+1, xvi+2 ∈ E(G).

(E2) Let x ∈ N(vi)∩N(vi+2)−{vi+1} (1 ≤ i ≤ 7). Then N(vi+1)∩N(vi+3) ⊆ {x}.
Therefore, there do not exist x, y ∈ V (G)− V (P10) such that (N(x) ∪N(y))∩
V (P10) = {vi, vi+1, vi+2, vi+3} and min(|N(x) ∩ V (P10)|, |N(y) ∩ V (P10)|) ≥ 3,
where 1 ≤ i ≤ 7.

(E3) Assume that a1, a2 ∈ N(vi) ∩ N(vi+1) ∩ N(vi+2) (2 ≤ i ≤ 7), and let T =
N({a1, a2, vi+1}) − {a1, a2, vi+1, vi, vi+2}.
(i) For y ∈ T , yvi+1 ∈ E(G).
(ii) Let y ∈ T and w ∈ N(y) ∩ {vi, vi+2}, G[{a1, a2, y, vi+1, w}] is a complete
graph.
(iii) |T | = 2, and for any y ∈ T , |N(y) ∩ {vi, vi+2}| = 1. If T = {y1, y2}, then
N(a1) = {a2, vi+1, y1, y2, vi, vi+2}, N(a2) = {a1, vi+1, y1, y2, vi, vi+2}, N(vi+1) =
{a1, a2, y1, y2, vi, vi+2}.

vi vi+1 vi+2

a1 a2

y2y1

vi vi+1 vi+2

a1 a2

y2y1

Figure 2. Graph for (E3)

(E4) Assume that N(x) ∩ V (P10) = {vi, vi+1, vi+2}, and y ∈ N(x) − {vi, vi+1, vi+2}.
Then yvi+3 �∈ E(G) if i ≤ 7 and yvi−1 �∈ E(G) if i ≥ 2. Therefore, for 2 ≤ i ≤ 7,
yvi+1 ∈ E(G), and N({x, vi+1}) = N(vi+1) = N(x).
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Let x ∈ N(vi) ∩ N(vj). Since G has no 8-cycles, j − i �= 6. If j − i = 5,
then let w ∈ N(vi+1) − {vi, vi+2, x}. By (CF1), either wvi ∈ E(G) or wvi+2 ∈
E(G). Thus the 7-cycle xvi . . . vjx can be extended to an 8-cycle xviwvi+1 . . . vjx
or xvivi+1wvi+2 . . . vjx. So j − i �= 5. Assume that j − i = 4. Consider the set
S = (N({vi+1, vi+2, vi+3})−{vi+1, vi+2, vi+3})−{x, vi, vi+4}. Then |S| ≥ 1. If |S| = 1,
let S = {y}. Since G is 4-connected, we have x ∈ N(vi+l) for l = 1, 2, 3, therefore
|N(x) ∩ V (P10)| ≥ 5, contradicting (CF2). So |S| ≥ 2. Let w1, w2 ∈ S. Then, by
(CF1) and G is claw-free, the 6-cycle xvivi+1 . . . vjx can be extended to an 8-cycle
by inserting w1 and w2, a contradiction. So j − i �= 4. (E1) holds.

Assume that y ∈ N(vi+1) ∩ N(vi+3) and y �= x. Let S = (N({x, y, vi+1, vi+2}) −
{x, y, vi+1, vi+2}) − {vi, vi+3}. Since G is 4-connected, |S| ≥ 2. Let w1, w2 ∈ S. If
w1, w2 ∈ N(x)∪N(y)∪(N(vi)∩N(vi+1))∪(N(vi+2)∩N(vi+3)), then we can insert w1

and w2 into the 6-cycle vivi+1yvi+3vi+2xvi to have an 8-cycle. Otherwise, by (CF1),
we may assume that w1 ∈ N(vi+1) ∩ N(vi+2). Since w1vi, w1vi+3, w1x, w1y �∈ E(G),
xy, xvi+3, yvi ∈ E(G). Then we can insert w1 and w2 into either vivi+1vi+2vi+3yxvi,
yvi+1vi+2vi+3xviy, or xvi+2vi+1viyvi+3x to have an 8-cycle, a contradiction. (E2)
holds.

By (E2), a1vi−1, a1vi+3, a2vi−1, a2vi+3 �∈ E(G). Thus a1a2 ∈ E(G). Since G
is 4-connected, |T | ≥ 2. Let y ∈ T and assume that yvi+1 �∈ E(G). Without
of loss of generality, we assume that ya2 ∈ E(G). Since G is claw-free, we have
either yvi ∈ E(G) or yvi+2 ∈ E(G). We assume that yvi+2 ∈ E(G). By (CF1),
yvi+3 ∈ E(G). Since |T | ≥ 2, let z ∈ T − {y}. If z ∈ N(a1), then we can insert
z into the cyle via1vi+2vi+3ya2vi+1vi to have an 8-cycle; if z ∈ N(vi+1), we can
insert z into the cycle vivi+1vi+2vi+3ya2a1vi to have an 8-cycle. We may assume
that z ∈ N(a2) − (N(a1) ∪ N(vi+1)). If zvi ∈ E(G), then we have an 8-cycle
viza2yvi+3vi+2vi+1a1vi; if zvi �∈ E(G), then zvi+2 ∈ E(G). Since G is claw-free,
yz ∈ E(G). Then we have an 8-cycle vivi+1vi+2vi+3yza2a1vi, a contradiction. So
yvi+1 ∈ E(G). By (CF1), we assume that yvi ∈ E(G). By (E2), yvi−1 �∈ E(G).
Since G is claw-free, ya1, ya2 ∈ E(G). Thus G[{a1, a2, y, vi+1, vi}] is a complete
graph, so (E3)(ii) holds. Notice that G has no 8-cycles and is claw-free, |T | = 2, and
N(a1) = {a2, vi+1, y1, y2, vi, vi+2}, N(a2) = {a1, vi+1, y1, y2, vi, vi+2}, and N(vi+1) =
{a1, a2, y1, y2, vi, vi+2}. Let T = {y1, y2}. If y1vi, y1vi+2 ∈ E(G), then N(y1) =
{y2, vi, vi+1, vi+2, a1, a2} and so {y2, vi, vi+2} is a 3-cut in G, a contradiction. So
|N(y1) ∩ {vi, vi+2}| = 1. Similarly, |N(y2) ∩ {vi, vi+2}| = 1. (E3) holds.

Assume that yvi+3 ∈ E(G). By (E2), yvi+1 �∈ E(G). Since d(vi+1) ≥ 4, let
z ∈ N(vi+1) − {vi, vi+2, x}. Then we have either zvi ∈ E(G) or zvi+2 ∈ E(G).
Let C = xvizvi+1vi+2vi+3yx if zvi ∈ E(G), or C = xvivi+1zvi+2vi+3yx if zvi+2 ∈
E(G). Then C is a 7-cycle in G. Notice that G has no 8-cycles, N({x, vi+1, vi+2} −
{x, vi+1, vi+2} ⊆ {y, z, vi, vi+3}. Thus {y, z, vi, vi+3} is a 4-cut in G. Therefore,
N(y) − {x, z, vi, vi+1, vi+2, vi+3} �= ∅. Since C is a 7-cycle in G and G does not have
8-cycles, xvi+3 ∈ E(G), a contradiction. So yvi+3 �∈ E(G). Similarly, yvi−1 �∈ E(G).
Since G is claw-free, by (CF1), yvi+1 ∈ E(G). So (E4) holds.

We will prove the lemma by considering the following three cases.
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Case 1. B(i, j) = B(4, 3).

Assume that v5 and v6 have more than one common neighbor. Let a1, a2 ∈ N(v5)∩
N(v6). By (E1), N(ai) ∩ {v1, v2, v9, v10} = ∅. If v3a1 ∈ E(G), by (E1), v4a1 ∈ E(G).
By (E1) and (E2), a2v3, a2v4, a2v7, a2v8 �∈ E(G). So G[{a2, v5, v6}∪{{v7, v8, v9, v10}∪
{v4, v3, v2}] is a B(4, 3), a contradiction. So v3a1 �∈ E(G). Similarly, a2v3, a1v8, a2v8 �∈
E(G). Since G is B(4, 3)-free, ai ∩ {v4, v7} �= ∅. By (E2), we may assume that
N(a1) ∩ V (P10) = N(a2) ∩ V (P10) = {v4, v5, v6}. By (E3), let T = N({a1, a2, v5}) −
{a1, a2, v5, v4, v6} = {y1, y2}. Then |N(y1) ∩ {v4, v6}| = 1. By symmetry, we assume
that y1v4 ∈ E(G). By (E1) and (E2), N(y1)∩{v1, v3, v7, v8, v9} = ∅. By (CF1), y1v2 �∈
E(G). So G[{y1, v4, v5} ∪ {v6, v7, v8, v9} ∪ {v3, v2, v1}] is a B(4, 3), a contradiction.

Assume that v5 and v6 have one common neighbor. Let a1 ∈ N(v5) ∩ N(v6),
a2 ∈ N(v4) ∩N(v5) and a3 ∈ N(v6) ∩N(v7). Then a2v6, a3v5 �∈ E(G). By (E1) and
(CF1), N(a2)∩V (P10) ⊆ {v2, v3, v4, v5} and N(a1)∩V (P10) ⊆ {v3, v4, v5, v6, v7, v8}. If
v3 ∈ N(a1), then by (CF1), v4 ∈ N(a1). By (CF2), N(a1)∩V (P10) = {v3, v4, v5, v6},
and so G[{a1, v5, v6} ∪ {v7, v8, v9, v10} ∪ {v3, v2, v1}] is a B(4, 3), a contradiction. So
a1v3 �∈ E(G). Similarly, a1v8 �∈ E(G). Notice that N(a1) ∩ {v4, v7} �= ∅. By
symmetry, we assume that a1v4 ∈ E(G). Consider N(a2). By (E2), a2v3 �∈ E(G).
By (CF1), v2a2 �∈ E(G). Thus N(a2) ∩ V (P10) = {v4, v5}, and so G[{a2, v4, v5} ∪
{v6, v7, v8, v9} ∪ {v3, v2, v1}] is a B(4, 3), a contradiction. So v5 and v6 do not have
common neighbors.

Let a1, a2 ∈ N(v4) ∩ N(v5). By (E1), N(ai) ∩ {v1, v8, v9, v10} = ∅. Since
v6 �∈ N(a1) ∪ N(a2), by (CF1), v7 �∈ N(a1) ∪ N(a2). Thus a1a2 ∈ E(G). If v2a1 ∈
E(G), by (CF1), v3a1 ∈ E(G). By (E2), a2v2, a2v3 �∈ E(G). Thus G[{a2, v4, v5} ∪
{v6, v7, v8, v9} ∪ {v1, v2, v3}] is a B(4, 3), a contradiction. So a1v2 �∈ E(G). Simi-
larly, a2v2 �∈ E(G). Since G is B(4, 3)-free, N(a1) ∩ V (P10) = N(a2) ∩ V (P10) =
{v3, v4, v5}. By (E3), let S = (N({a1, a2, v4}) − {a1, a2, v4}) − {v3, v5} = {y1, y2}.
Then y1v4, y2v4 ∈ E(G). For i = 1, 2, if N(yi) ∩ {v3, v4, v5} = {v4, v5}, then,
by (E1) and (E2), G[{yi, v4, v5} ∪ {v6, v7, v8, v9} ∪ {v3, v2, v1}] = B(4, 3), a con-
tradiction. So N(yi) ∩ {v3, v4, v5} = {v3, v4}. By (E1), (E2) and (E3), N(yi) ∩
V (P10) = {v3, v4}, N(a1) = {a2, v3, v4, v5, y1, y2}, N(a2) = {a1, v3, v4, v5, y1, y2},
and N(v4) = {a1, a2, v3, v5, y1, y2}. Since v5 and v6 do not have common neigh-
bors, N(v5) = {a1, a2, v4, v6}. Similarly, let b1, b2 ∈ N(v6) ∩ N(v7). Let T =
(N(b1) ∪N(b2) ∪N(v7) − {b1, b2, v7}) − {v6, v8} = {z1, z2}. Then N(z1) ∩ V (P10) =
N(z2)∩V (P10) = {v7, v8}, G[{b1, b2, z1, z2, v7, v8}] is a K6, and N(v6) = {b1, b2, v5, v7},
N(v7) = {b1, b2, z1, z2, v6, v8}, N(b1) = {b2, z1, z2, v6, v7, v8} and N(b2) = {b1, z1, z2,
v6, v7, v8} (see Figure 3).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

a1 a2 b1 b2

y1 y2 z1 z2

Figure 3.
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Now let us consider N(v1). Let x ∈ N(v1) − {v2}. Then N(x) ∩ {a1, a2, b1, b2, v4,
v5, v6, v7} = ∅. Since G has no 8-cycles, xy1, xy2 �∈ E(G). If x �∈ N(v2), then, by
(CF1), xv3 �∈ E(G). Since G[{y1, v3, v4} ∪ {v5, v6, v7, v8} ∪ {v2, v1, x}] �= B(4, 3),
we have xv8 ∈ E(G). Similarly, xz1, xz2 ∈ E(G). This would result in the 8-
cycle v6v7v8xz2z1b1b2v6. So x ∈ N(v2), and N(x) ∩ V (P10) ⊆ {v1, v2, v3, v9, v10} and
xz1, xz2 �∈ E(G).

Let W = N({v1, v2, v3}) − {v1, v2, v3, a1, a2, v4, y1, y2}, W1 = {x | x ∈ N(v1) ∩
N(v2) ∩N(v3)}, W2 = {x | x ∈ N(v1) ∩N(v2) −N(v3)} and W3 = {x | x ∈ N(v2) ∩
N(v3) −N(v1)}. Then N(v2) = W1 ∪W2 ∪W3 ∪ {v1, v3}, N(v1) = W1 ∪W2 ∪ {v2}.
Also, G[W2 ∪ {v1, v2}], G[W1 ∪ W3 ∪ {v2, v3}] are complete subgraphs in G, and
N(W1) − W1 = W2 ∪ W3 ∪ {v1, v2, v3}. Thus W1 ∪ W2 ∪ {v2} is a cut in G. For
i = 1, 2, 3, let wi = |Wi|. Since G is 4-connected, we have w1 + w2 ≥ 3.

Since G is 4-connected, |N(W2)− (W2 ∪ {v1, v2})| ≥ 2. Consider W ′
2 = N(W2)−

(W1 ∪ W3 ∪ {v1, v2, v3}). If W ′
2 = ∅, then W3 ∪ {v3} is a cut in G, and so w3 ≥ 3.

Thus w1 + w2 + w3 ≥ 6. Therefore, G[W ∪ {v1, v2, v3}] must contain an 8-cycle, a
contradiction. So W ′

2 �= ∅. Let d ∈ W ′
2 and c ∈ W2 with cd ∈ E(G). Then dv2, dv3 �∈

E(G). Clearly, N(d) ∩ {v4, v5, v6, v7} = ∅. Since G has no 8-cycles, cy1, dy1 �∈ E(G).
Since G[{y1, v3, v4} ∪ {v5, v6, v7, v8} ∪ {v2, c, d}] �= B(4, 3), dv8 ∈ E(G). Similarly,
dz1, dz2 ∈ E(G). Thus v6b1b2v8dz2z1v7v6 is an 8-cycle in G, a contradiction.

Case 2. B(i, j) = B(5, 2).

Assume that v5 and v6 do not have common neighbors. Let a1, a2 ∈ N(v4) ∩
N(v5). By (E1), N(ai) ∩ {v1, v8, v9, v10} = ∅. Since v6 �∈ N(a1) ∪ N(a2), by
(CF1), v7 �∈ N(a1) ∪ N(a2). If v2a1 ∈ E(G), by (CF1), v3a1 ∈ E(G). Then
G[{a1, v4, v5} ∪ {v6, v7, v8, v9, v10} ∪ {v2, v1}] is a B(5, 2), a contradiction. So a1v2 �∈
E(G). Similarly, a2v2 �∈ E(G). Since G is B(5, 2)-free, N(a1) ∩ V (P10) = N(a2) ∩
V (P10) = {v3, v4, v5}. By (E3), let S = (N({a1, a2, v4}) − {a1, a2, v4}) − {v3, v5} =
{y1, y2}, N(a1) = {v3, v4, v5, y1, y2, a2}, N(a2) = {v3, v4, v5, y1, y2, a1}, and N(v4) =
{v3, v5, a1, a2, y1, y2}. Also, |N(y1) ∩ {v3, v5}| = 1. Notice that G has no 8-cycles. If
y1v3 ∈ E(G), then, by (E1), (E2), N(y1) ∩ V (P10) = {v3, v4}, and so G[{y1, v3, v4} ∪
{v5, v6, v7, v8, v9} ∪ {v2, v1}] = B(5, 2); if y1v5 ∈ E(G), then, by (E1), (E2), N(y1) ∩
V (P10) = {v4, v5}, and so G[{y1, v4, v5} ∪ {v6, v7, v8, v9, v10} ∪ {v3, v2}] = B(5, 2), a
contradiction.

Assume that v5 and v6 have one common neighbor. Let a1 ∈ N(v5) ∩ N(v6),
a2 ∈ N(v4)∩N(v5) and a3 ∈ N(v6)∩N(v7). Then a2v6 �∈ E(G). By (E1) and (CF1),
N(a2)∩V (P10) ⊆ {v2, v3, v4, v5}. Since G[{a2, v4, v5}∪{v6, v7, v8, v9, v10}∪{v1, v2}] =
B(5, 2) if a2v2 ∈ E(G) and G[{a2, v4, v5} ∪ {v6, v7, v8, v9, v10} ∪ {v2, v3}] = B(5, 2) if
a2v3 �∈ E(G), we have N(a2) ∩ V (P10) = {v3, v4, v5}. Consider S = N({a2, v4}) −
{a2, v3, v4, v5}. Let y ∈ S. By (E4), yv4 ∈ E(G). We want to prove that y ∈
N(v3) ∩ N(v4) ∩ N(v5). Otherwise, we have yv4, yv3 ∈ E(G), but yv5 �∈ E(G). By
(E1) and (E2), N(y)∩{v2, v7, v8, v9, v10} = ∅, and so yv6 �∈ E(G) by (CF1). Since G is
B(5, 2)-free, v1y ∈ E(G). Let w ∈ N(v2). Thus we have an 8-cycle v1wv2v3a2v5v4yv1
or v1v2wv3a2v5v4yv1, a contradiction. So, for any y ∈ S, y ∈ N(v3)∩N(v4)∩N(v5).
Therefore, {v3, v5} is a 2-cut in G, a contradiction.
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Therefore, v5 and v6 have more than one common neighbor. Let a1, a2 ∈ N(v5)∩
N(v6). For i = 1, 2, by (E1), N(ai) ∩ V (P10) ⊆ {v3, v4, v5, v6, v7, v8}. If v3 ∈ N(ai),
then by (CF1), v4 ∈ N(ai). Thus G[{ai, v3, v4} ∪ {v6, v7, v8, v9, v10} ∪ {v1, v2}] is a
B(5, 2), a contradiction. So v3ai �∈ E(G). Similarly, v8ai �∈ E(G). So, for i ∈ {1, 2},
N(ai) ∩ V (P10) ⊆ {v4, v5, v6, v7}.

Claim 2.1. Both |N(a1) ∩ V (P10)| ≤ 3 and |N(a2) ∩ V (P10)| ≤ 3.

Assume that N(a1) ∩ V (P10) = {v4, v5, v6, v7}. By (E2), N(a2) ∩ V (P10) =
{v5, v6}. Let a3 ∈ N(v4). Then a3v5 �∈ E(G) (otherwise, by (E1) and (E2),
N(a3) ∩ {v3, v6, v7, v8, v9, v10} = ∅. Since G is B(5, 2)-free, v2a3 ∈ E(G). This would
result in the 8-cycle v2a3v5v6v7a1v4v3v2, a contradiction). By (CF1), a3v3 ∈ E(G).
By (E1) and (E2), N(a3) ∩ {v5, v6, v7, v8, v9, v10} = ∅. Since G is B(5, 2)-free,
N(a3)∩{v1, v2} �= ∅. Let x ∈ N(v1)−{v2}. By (E1), N(x)∩{v5, v6, v7} = ∅. Since G
has no 8-cycles, N(x)∩{v8, a1, a2} = ∅. Thus N(x)∩V (P10) ⊆ {v1, v2, v3, v4, v9, v10}.

We claim that v1a3 ∈ E(G). Otherwise, N(a3) ∩ V (P10) = {v2, v3, v4}. Consider
N(v1) = {v2, c1, c2, . . . ,ct}(t ≥ 3). By (E1), civ3 �∈ E(G). By (CF1), civ4 �∈ E(G).
Since G[{a2, v5, v6} ∪ {v4, v3, v2, v1, ci} ∪ {v7, v8}] �= B(5, 2), civ2 ∈ E(G). Thus
N(ci) ∩ V (P10) = {v1, v2} and so G[N(v1) ∪ {v1}] is a complete subgraph in G.
Since G is 4-connected, there is a vertex z such that zci ∈ E(G) but zv2 �∈ E(G)
for some ci. Since G has no 8-cycles, N(z) ∩ {a1, a2, v3, v4, v5, v6, v7, v8} = ∅. So
G[{a2, v5, v6}∪{v4, v3, v2, ci, z}∪{v7, v8}] = B(5, 2), a contradiction. So v1a3 ∈ E(G).

Let N(v1) = {v2, a3, d1, . . . , ds}(s ≥ 2). Since G has no 8-cycles, N(di) ∩
{v5, v6, v7, v8} = ∅. Since G[{a2, v5, v6} ∪ {v4, v3, v2, v1, di} ∪ {v7, v8}] �= B(5, 2), we
have N(di) ∩ {v2, v3, v4} �= ∅. If div4 ∈ E(G), as div5 �∈ E(G), we have div3 ∈ E(G).
By (E2), a3v2, div2 �∈ E(G). Thus the 6-cycle v1div4a3v3v2v1 can be extended to an 8-
cycle by considering the two neighbors of v2 which are not in V (P10), a contradiction.
So div4 �∈ E(G). By (CF1), div2 ∈ E(G). By (E2), div3 �∈ E(G). Thus G[N(v1)] is a
complete subgraph in G. The 7-cycle v1d1d2v2v3v4a3v1 can be extended to an 8-cycle
by considering a neighbors of v3 which are not in {v2, v4, a3}, a contradiction.

Claim 2.2. |N(a1) ∩ V (P10)| = 2 and |N(a2) ∩ V (P10)| = 2.

Assume that N(a1)∩V (P10) = {v4, v5, v6}. By (E2), a2v7 �∈ E(G). Thus N(a2)∩
V (P10) ⊆ {v4, v5, v6}. Consider N(v7). Let y ∈ N(v7)− (V (P10)∪ {a1, a2}). Assume
that yv6 ∈ E(G). By (E1) and (E2), N(y) ∩ {v5, v3, v2, v1, v10} = ∅. Thus yv4 �∈
E(G). Since G[{y, v6, v7} ∪ {v5, v4, v3, v2, v1} ∪ {v8, v9}] is not a B(5, 2), N(y) ∩
{v8, v9} �= ∅. If yv9 ∈ E(G), then G[{y, v6, v7} ∪ {v5, v4, v3, v2, v1} ∪ {v9, v10}] is a
B(5, 2), a contradiction. So N(y) ∩ V (P10) = {v6, v7, v8}. Let S = N(y) ∪ N(v7) −
{v6, v8}, and let w ∈ S. By (E4), wv7 ∈ E(G). Then w ∈ N(v6) ∩ N(v7) ∩ N(v8)
(Otherwise, we have wv6 �∈ E(G) by considering the method we just used above for
y ∈ N(v7). By (CF1), wv8 ∈ E(G). Since G has no 8-cycles, by (E1) and (E2),
N(w) ∩ {v1, v2, v3, v4, v5, v9} = ∅. Since G is B(5, 2)-free, wv10 ∈ E(G). Thus the
7-cycle v6yv8v9v10wv7v6 can be extended to an 8-cycle by considering a neighbor of
v9, a contradiction). Hence, {v6, v8} is a 2-cut in G, a contradiction. So, for any
y ∈ N(v7), yv6 �∈ E(G).

Let a3, a4 ∈ N(v7) − {v6, v8}. Then, for i = 3, 4, aiv8 ∈ E(G), and N(ai) ∩
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{v1, v2, v3, v4, v5} = ∅ by (E1) and (E2). Since G is B(5, 2)-free, N(ai)∩{v9, v10} �= ∅
(i = 3, 4). Assume that a3v9 �∈ E(G). Then a3v10 ∈ E(G). By (E2), a4v9 �∈ E(G),
and so a4v10 ∈ E(G). Thus the 6-cycle v7v8v9v10a3a4v7 can be extended to an 8-
cycle by considering two neighbors of v9, a contradiction. So a3v9 ∈ E(G). Similarly,
a4v9 ∈ E(G). By (E1) and (E2), N(ai) ∩ V (P10) = {v7, v8, v9}. Then a3a4 ∈ E(G).

Let S = N({a3, a4, v8}) − {a3, a4, v8, v7, v9}. Since G is 4-connected, let S =
{c1, c2, . . . , ct}(t ≥ 2). For i = 1, 2, . . . , t, by (E4), civ8 ∈ E(G). By (CF1), we have
either civ7 ∈ E(G) or civ9 ∈ E(G), and so t = 2. Furthermore, civ7 �∈ E(G) (oth-
erwise, N(ci) ∩ V (P10) = {v7, v8, v9} and so {c1, c2, v7, v9} − {ci} is a 3-cut in G, a
contradiction). Thus G[{a3, a4, v8, v9, c1, c2}] is a complete subgraph in G, N(a3) =
{v7, v8, v9, a4, c1, c2}, N(a4) = {v7, v8, v9, a3, c1, c2}, N(v8) = {v7, v9, a3, a4, c1, c2}.
Since G has no 8-cycles, by (E1) and (E2), N(ci) ∩ {v2, v3, v4, v5, v6, v7, v10} = ∅
(i = 1, 2).

For i = 1, 2, consider Ci = N(ci) − {v8, v9, a3, a4, c1, c2}. Since G is 4-connected,
Ci �= ∅. Let di ∈ Ci. Since G has no 8-cycles, C1 ∩ C2 = ∅, and there are no
edges between C1 and C2. Thus d1d2 �∈ E(G). Let ei ∈ N(di) − {ci}. Since G
has no 8-cycles, e1 and e2 are different vertices, e1e2 �∈ E(G), N(e1) ∩ N(e2) = ∅,
N(di) ∩ {v3, v4, . . . , v9} = ∅ and N(ei) ∩ {v4, v5, . . . , v9} = ∅. Since G[{ci, v8, v9} ∪
{v7, v6, v5, v4, v3} ∪ {di, ei}] is not a B(5, 2), eiv3 ∈ E(G), a contradiction. So Claim
2.2 holds.

By Claim 2.2, we have N(a1) ∩ V (P10) = N(a2) ∩ V (P10) = {v5, v6}. Actually,
for any x ∈ N(v5) ∩ N(v6), N(x) ∩ V (P10) = {v5, v6}. Let y ∈ N(v4). Assume
that yv5 ∈ E(G). Then yv6 �∈ E(G) by Claim 2.2. By (E1) and (E2), N(y) ∩
{v1, v8, v9, v10} = ∅. Thus yv7 �∈ E(G). Since G[{y, v4, v5}∪{v6, . . . , v10}∪{v2, v3}] �=
B(5, 2), N(y) ∩ {v2, v3} �= ∅. Notice that G[{y, v4, v5} ∪ {v6, . . . , v10} ∪ {v1, v2}]
would be a B(5, 2) if yv2 ∈ E(G). So yv2 �∈ E(G) and then yv3 ∈ E(G). Consider
S = N(y) ∪ N(v4) − {v3, v5}, and let z ∈ S. By (E4), z ∈ N(v4). Next we
want to prove that z ∈ N(v3) ∩N(v4) ∩N(v5). Otherwise, we have zv5 �∈ E(G) and
zv3 ∈ E(G). By (E1) and (E2), N(z)∩{v2, v6, v7, v8, v9, v10} = ∅. If zv1 ∈ E(G), then
the 7-cycle v1v2v3yv5v4zv1 can be extended to an 8-cycle by considering a neighbor
of v2. This tells us that zv1 �∈ E(G). Thus G[{z, v3, v4} ∪ {v5, . . . , v9} ∪ {v1, v2}] is a
B(5, 2), a contradiction. Thus z ∈ N(v3) ∩N(v4) ∩N(v5), and so {v3, v5} is a 2-cut
in G, a contradiction. So, for any y ∈ N(v4), yv5 �∈ E(G).

Let N(v4) − {v3, v5} = {c1, c2, . . . , ct}(t ≥ 2). Then civ5 �∈ E(G), civ3 ∈ E(G)
for i = 1, 2, . . . , t, and cicj ∈ E(G) for 1 ≤ i < j ≤ t. By (E1) and (E2), N(ci) ∩
{v7, v8, v9, v10} = ∅. By (CF1), civ6 �∈ E(G). If civ1 ∈ E(G) for some i, then the
cycle v1cici+1 . . . ctc1 . . . ci−1v4v3v2v1 can be extended to an 8-cycle by considering
neighbors of v2. So, for i = 1, 2, . . . , t, civ1 �∈ E(G). Thus civ2 ∈ E(G) since
G[{ci, v3, v4}∪{v5, . . . , v10}∪{v1, v2}] �= B(5, 2). Similarly, |N(v7)∩N(v8)∩N(v9)| ≥
2. Let d1, d2 ∈ N(v7) ∩N(v8) ∩N(v9). Then d1d2 ∈ E(G).

Consider S = N({c1, c2, . . . , ct, v3}) − {c1, c2, . . . , ct, v2, v3, v4}, and let w ∈ S.
Then wv4 �∈ E(G). By (E4), wv3 ∈ E(G). By (CF1), wv2 ∈ E(G). By (E1) and
(E2), N(w)∩{v1, v5, v6, v7, v8, v9} = ∅. Let V1 = N(v1)−{v2} = {e1, e2, . . . , es} (s ≥
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3). Since G has no 8-cycles, N(ei) ∩ {c1, . . . , ct, w, v3, v4, . . . , v7} = ∅. Considering
G[{w, v2, v3} ∪ {v4, v5, v6, v7, v8} ∪ {v1, ei}], we have N(ei) ∩ {v2, v8} �= ∅. Since G
has no 8-cycles, |{ei | eiv8 ∈ E(G)}| ≤ 1. (Otherwise, assume that e1v8, e2v8 ∈
E(G). By (CF1), e1v9, e2v9 ∈ E(G). Thus v7v8e1v1e2v9d2d1v7 is an 8-cycle in G, a
contradiction.) So we assume that, for i = 2, 3, . . . , s, we have eiv8 �∈ E(G), and so
eiv2 ∈ E(G).

Let V2 = N({e2, . . . , es}) − {e1, e2, . . . , es, v1, v2}. Since G is 4-connected, |V2| ≥
2. Furthermore, there are two vertices in V2 adjacent to two different vertices in
{e2, . . . , es}. Without loss of generality, we assume that f2, f3 ∈ V2 such that
e2f2, e3f3 ∈ E(G). Then f2v1, f3v1 �∈ E(G). For i = 2, 3, if fiv2 ∈ E(G), then
fiv3 ∈ E(G). Thus v1eifiv3v4c2c1v2v1 is an 8-cycle in G, a contradiction. So
f2v2, f3v2 �∈ E(G). Since G has no 8-cycles, N(fi) ∩ {w, v3, v4, v5, v6, v7} = ∅(i =
2, 3). Notice that G[{w, v2, v3} ∪ {v4, v5, v6, v7, v8} ∪ {ei, fi} �= B(5, 2) for i = 2, 3,
fiv8 ∈ E(G) and so fiv9 ∈ E(G). This would result in an 8-cycle v1e2f2v8v9f3e3v2v1,
a contradiction. This finishes the proof of Case 2.

Case 3. B(i, j) = B(6, 1).

Claim 3.1. Let x ∈ (N(v3) − {v2, v4}) − N(v4), and let y ∈ (N(v8) − {v7, v9}) −
N(v7). Then N(x) ∩ V (P10) = {v1, v2, v3} and N(y) ∩ V (P10) = {v8, v9, v10}.

Since xv4 �∈ E(G), by (CF1), xv2 ∈ E(G). By (E1), N(x)∩{v6, v7, v8, v9} = ∅. By
(CF1), xv5 �∈ E(G). Since G is B(6, 1)-free, xv1 ∈ E(G). By (CF2), N(x)∩V (P10) =
{v1, v2, v3}. Similarly, N(y) ∩ V (P10) = {v8, v9, v10}. Claim 3.1 holds.

Claim 3.2. Let W3 = (N(v3)−{v2, v4})−N(v4) and V3 = (N(v8)−{v7, v9})−N(v7).
Then W3 = V3 = ∅.

Assume that x ∈ W3. By Claim 3.1, N(x) ∩ V (P10) = {v1, v2, v3}. Further-
more, if x′ ∈ N(v1) ∩ N(v2) ∩ N(v3), then x′v4 �∈ E(G) (otherwise, G[{x′, v3, v4} ∪
{v5, v6, v7, v8, v9, v10} ∪ {v1}] = B(6, 1), a contradiction). So W3 = N(v1) ∩ N(v2) ∩
N(v3). Let W2 = N(v2) ∩ N(v1) − N(v3) and W1 = (N(v1) − {v2}) − N(v2),
and let wi = |Wi| (i = 1, 2, 3). Then N(v2) = W2 ∪ W3 ∪ {v1, v3}, and N(v1) =
W1 ∪W2 ∪W3 ∪ {v2}. Clearly, G[W1 ∪ {v1}], G[W2 ∪ {v1, v2}], and G[W3] are com-
plete graphs.

Let y ∈ N(W3) − {v1, v2, v3}. By (E4), yv4 �∈ E(G). If yv3 ∈ E(G), then
y ∈ W3; if yv3 �∈ E(G), then yv1 ∈ E(G), and so y ∈ W1 ∪ W2. This imples that
N(W3) ⊆ W3 ∪W1 ∪W2 ∪ {v1, v2, v3}, and W1 ∪W2 ∪ {v3} is a cut in G. So we have
w1 +w2 ≥ 3. As N(v2) = W2 ∪W3 ∪ {v1, v3}, it follows that w2 +w3 ≥ 2. If w2 = 0,
then w3 ≥ 2 and w1 ≥ 3. i As N(W3) − (W3 ∪ {v1, v2, v3}) ⊆ W1 ∪W2 = W1, there
is an edge joining W1 and W3. Thus G[W1 ∪W3 ∪ {v1, v2, v3}] contains an 8-cycle, a
contradiction. So w2 ≥ 1.

Consider S = N(W2) − (W1 ∪W2 ∪W3 ∪ {v1, v2, v3}. If S = ∅, then W1 ∪ {v3} is
a cut in G. Thus w1 ≥ 3. It is clear that there is an edge joining W1 and W2 ∪W3

(otherwise, {v1, v2, v3} is a cut in G, a contradiction). So G[W1∪W2∪W3∪{v1, v2, v3}]
contains an 8-cycle, a contradiction. So S �= ∅. Let y1 ∈ W2. Also, let z1 ∈ S.
Then y1v3, z1v1, z1v2 �∈ E(G). By (E1), N(y1) ∩ {v5, v6, v7, v8} = ∅. By (CF1),
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y1v4 �∈ E(G). Since G has no 8-cycles, N(z1) ∩ {v5, v6, v7} = ∅. If z1v3 ∈ E(G),
since z1v2 �∈ E(G), we have z1v4 ∈ E(G). By (E1), N(z1) ∩ {v8, v9, v10} = ∅. Thus
G[{z1, v3, v4} ∪ {v5, v6, v7, v8, v9, v10} ∪ {v2}] = B(6, 1), a contradiction. So z1v3 �∈
E(G). By (CF1), z1v4 �∈ E(G). Since G[{y1, v1, v2} ∪ {v3, v4, v5, v6, v7, v8} ∪ {z1}] �=
B(6, 1), z1v8 ∈ E(G). By Claim 3.1, N(z1) ∩ V (P10) = {v8, v9, v10}.

Let V2 = N(v9) ∩N(v10) −N(v8) and V1 = (N(v10) − {v9}) −N(v9). As for the
discussion on W1,W2 and W3, there are y2 ∈ V2 and z2 ∈ N(V2) − (V1 ∪ V2 ∪ V3 ∪
{v8, v9, v10}) such that y2z2 ∈ E(G) and N(z2)∩ V (P10) = {v1, v2, v3}. Now we have
an 8-cycle y1z1v8v9v10y2z2v2y1, a contradiction. So W3 = ∅. Similarly, V3 = ∅. Claim
3.2 holds.

By Claim 3.2, v3 and v4 have more than one common neighbor, and v7 and
v8 have more than one common neighbor. Let a1, a2 ∈ N(v3) ∩ N(v4), and let
b1, b2 ∈ N(v7)∩N(v8). By (E1), N(ai)∩{v7, v8, v9, v10} = ∅ (i = 1, 2). If v1 ∈ N(a1),
then N(a1) ∩ V (P10) ⊆ {v1, v2, v3, v4} and then G has a B(6, 1) = G[{a1, v3, v4} ∪
{v1} ∪ {v5, v6, v7, v8, v9, v10}], a contradiction. So v1 �∈ N(a1). If v6 ∈ N(a1), by
(E2), a2v5, a2v6, a2v2 �∈ E(G). Thus G[{a2, v3, v4} ∪ {v5, v6, v7, v8, v9, v10} ∪ {v2}}] is
a B(6, 1), a contradiction. So a1v6 �∈ E(G), and N(a1) ∩ V (P10) ⊆ {v2, v3, v4, v5}.
Similarly, N(a2) ∩ V (P10) ⊆ {v2, v3, v4, v5}. Since G is B(6, 1)-free, by (E2), we
have either N(a1) ∩ V (P10) = N(a2) ∩ V (P10) = {v2, v3, v4} or N(a1) ∩ V (P10) =
N(a2) ∩ V (P10) = {v3, v4, v5}.

Suppose that N(a1) ∩ V (P10) = N(a2) ∩ V (P10) = {v2, v3, v4}. By (E3), let T1 =
(N({a1, a2, v3}) − {a1, a2, v3}) − {v2, v4} = {y1, y2}, N(a1) = {v2, v3, v4, y1, y2, a2},
N(a2) = {v2, v3, v4, y1, y2, a1}, and N(v3) = {v2, v4, a1, a2, y1, y2}. Also, |N(y1) ∩
{v2, v4}| = 1. If y1v4 ∈ E(G), then G[{y1, v3, v4} ∪ {v5, v6, v7, v8, v9, v10} ∪ {v2}] =
B(6, 1); if y1v2 ∈ E(G), then G[{y1, v2, v3} ∪ {v4, v5, v6, v7, v8, v9} ∪ {v1}] = B(6, 1),
a contradiction. So N(a1) ∩ V (P10) = N(a2) ∩ V (P10) = {v3, v4, v5}. Similarly,
N(b1) ∩ V (P10) = N(b2) ∩ V (P10) = {v6, v7, v8}.

By (E3) again, let T2 = (N({a1, a2, v4}) − {a1, a2, v4}) − {v3, v5} = {z1, z2},
N(a1) = {v3, v4, v5, z1, z2, a2}, N(a2) = {v3, v4, v5, z1, z2, a1}, and N(v4) = {v3, v5,
a1, a2, z1, z2}. Also, |N(zi) ∩ {v3, v5}| = 1 (i = 1, 2). If ziv3 ∈ E(G), then

G[{zi, v3, v4} ∪ {v5, v6, v7, v8, v9, v10} ∪ {v2}] = B(6, 1),

a contradiction. So for i = 1, 2, ziv5 ∈ E(G). Since G has no 8-cycles, N(v3) =
{a1, a2, v2, v4}. Similarly, by (E3), let T3 = (N({b1, b2, v7})−{b1, b2, v7})−{v6, v8} =
{w1, w2}, N(b1) = {v6, v7, v8, w1, w2, b2}, N(b2) = {v6, v7, v8, w1, w2, b1}, and N(v7) =
{v6, v8, b1, b2, w1, w2}. Also, for i = 1, 2, N(wi) ∩ {v6, v8} = {v6}. By (E1) and (E2),
for i = 1, 2, N(zi)∩ V (P10) = {v4, v5} and N(wi)∩ V (P10) = {v6, v7}. Also, we have
N(v8) = {v7, v9, b1, b2}. Since G is 4-connected, let c1 ∈ N(z1) − {v4, v5, a1, a2} and
c2 ∈ N(z2) − {v4, v5, a1, a2}. Then N(ci) ∩ V (P10) = ∅ (i = 1, 2).

Consider N(v10). Let x ∈ N(v10) − {v9}. Then N(x) ∩ {v3, v4, v7, v8} = ∅.
Since G has no 8-cycles, N(x) ∩ {v5, v6, z1, z2} = ∅, and |N(x) ∩ {v3, c1, c2}| ≤
1. Without loss of generality, we assume that c1x �∈ E(G). Since G[{z1, v4, v5} ∪
{v6, v7, v8, v9, v10, x} ∪ {c1}] �= B(6, 1), xv9 ∈ E(G). Since xv8 �∈ E(G), it follows
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that G[N(v10)] is a complete graph. Since G is 4-connected, let d ∈ N(N(v10)) −
{v8, v9, v10}. Also, we assume that dx ∈ E(G), where x ∈ N(v10). Since G has no
8-cycles, |N(d) ∩ {c1, c2, v3}| ≤ 1. Hence |(N(d)∪N(x))∩{c1, c2, v3}| ≤ 2. There is a
vertex u ∈ {c1, c2, v3} with u �∈ N(d)∪N(x). Thus G[{z1, v4, v5}∪{v6, v7, v8, v9, x, d}∪
{u}] = B(6, 1), a contradiction. �
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