Pancyclicity of 4-connected claw-free bull-free graphs

Hong-Jian Lai
Department of Mathematics, West Virginia University
Morgantown, WV 26506
U.S.A.

Mingquan Zhan
Department of Mathematics, Millersville University of Pennsylvania
Millersville, PA 17551 U.S.A.

Taoye Zhang

Penn State Scranton
Dunmore, PA 18512
U.S.A.
tuz3@psu.edu

Ju Zhou
Department of Mathematics, Kutztown University of Pennsylvania Kutztown, PA 19530, U.S.A.

Abstract

A graph G is said to be pancyclic if G contains cycles of lengths from 3 to $|V(G)|$. The bull $B(i, j)$ is obtained by associating one endpoint of each of the path P_{i+1} and P_{j+1} with distinct vertices of a triangle. In [M. Ferrara et al., Discrete Math. 313 (2013), 460-467], it was shown that every 4-connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=6$ is pancyclic. In this paper we show that every 4 -connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=7$ is either pancyclic or it is the line graph of the Petersen graph.

1 Introduction

We use [1] for terminology and notation not defined here, and we only consider finite simple graphs. Let G be a graph. If $v \in V(G)$ and $S \subseteq V(G)$, we say that $G[S]$ is the subgraph induced in G by $S, N(v)$ is the neighborhood of v in $G, d(v)=|N(v)|$, and $N(S)=\bigcup_{v \in S} N(v)$. The path with n vertices is denoted by P_{n}. Given a family \mathcal{F} of graphs, G is said to be \mathcal{F}-free if G contains no member of \mathcal{F} as an induced subgraph. If $\mathcal{F}=\left\{K_{1,3}\right\}$, then G is said to be claw-free. A graph G is hamiltonian if it contains a spanning cycle and pancyclic if it contains cycles of lengths from 3 to $|V(G)|$. In 1984, Matthews and Sumner [6] conjectured that every 4-connected claw-free graph is hamiltonian. This conjecture is still open and it has also fostered a large body of research into other structural properties of cycles for claw-free graphs. In this paper we are specifically interested in the pancyclicity of claw-free net-free graphs.

Let £ denote the graph obtained by connecting two disjoint triangles with a single edge, and let $N(i, j, k)$ denote the net obtained by identifying each vertex of a triangle K_{3} with an endpoint of three disjoint paths $P_{i+1}, P_{j+1}, P_{k+1}$, respectively. We refer to $N(i, j, 0)$ as the generalized bull, and denote it by $B(i, j)$.

Theorem 1.1 (Gould, Luczak, Pfender [4]) Let X and Y be connected graphs on at least three vertices. If neither X nor Y is P_{3} and Y is not $K_{1,3}$, then every 3-connected $\{X, Y\}$-free graph G is pancyclic if and only if $X=K_{1,3}$ and Y is a subgraph of one of the graphs in the family

$$
\mathcal{F}=\left\{P_{7}, E, N(4,0,0), N(3,1,0), N(2,2,0), N(2,1,1)\right\} .
$$

Motivated by the Matthews-Sumner Conjecture and Theorem 1.1, Ron Gould came up with the following problem at the 2010 SIAM Discrete Math Meeting in Austin, TX.

Problem 1.2 Characterize the pairs of forbidden subgraphs that imply a 4-connected graph is pancyclic.

Theorem 1.3 (Ferrara, Morris, Wenger [3]) Every 4-connected $\left\{K_{1,3}, P_{10}\right\}$-free graph is either pancyclic or is the line graph of the Petersen graph.

Theorem 1.4 (Lai, Zhan, Zhang, and Zhou[5]) Every 4-connected $\left\{K_{1,3}, N(8,0,0)\right\}$ free graph is either pancyclic or is the line graph of the Petersen graph.

Theorem 1.5 (Ferrara, Gehrke, Gould, Magnant, and Powell [2]) Every 4-connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph, where $i+j=6$, is pancyclic.

The result of this paper is as follows.

Theorem 1.6 Every 4-connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=7$ is either pancyclic or is the line graph of the Petersen graph.

The line graph of the Petersen graph is 4-connected $\left\{K_{1,3}, B(i, j)\right\}$-free if $i+j=7$, but is not $\left\{K_{1,3}, B(i, j)\right\}$-free if $i+j=6$, and it contains no cycle of length 4 . So Theorem 1.6 implies Theorem 1.5.

Figure 1. The line graph of the Petersen graph is the unique 4-connected
$\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=7$ that is not pancyclic.
In Section 2, we will show that every 4-connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=7$ contains cycles of all lengths from 9 to $|V(G)|$ by showing that if G contains a t-cycle $(t \geq 10)$, then G also contains a $(t-1)$-cycle. The existence of a 3 -cycle follows immediately from the fact that G is claw-free. For t-cycles with $4 \leq t \leq 5$, we use arguments based on the induced graphs $N(8,0,0)$ or P_{10}. For t-cycles with $6 \leq t \leq 8$, we use similar arguments based on the induced graphs P_{10}. The proof of the existence of short cycles $(4 \leq t \leq 8)$ will be given in Section 3 .

2 Long Cycles

Before we proceed, we introduce some additional notation. For the remainder of the paper, we will let $G\left[\{x, y, z\} \cup\left\{x_{1}, \ldots, x_{i}\right\} \cup\left\{y_{1}, \ldots, y_{j}\right\} \cup\left\{z_{1}, \ldots, z_{k}\right\}\right]$ denote a copy of $N(i, j, k)$ with central triangle $x y z$ and appended paths $x x_{1} \ldots x_{i}, y y_{1} \ldots y_{j}$, and $z z_{1} \ldots z_{k}$. A copy of the bull $B(i, j)$ is denoted $G\left[\{x, y, z\} \cup\left\{x_{1}, \ldots, x_{i}\right\} \cup\right.$ $\left.\left\{y_{1}, \ldots, y_{j}\right\}\right]$ where $x y z$ is the central triangle with appended paths $x x_{1} \ldots x_{i}$ and $y y_{1} \ldots y_{j}$. The following result allows us to establish the hamiltonicity of the graphs under consideration.

Lemma 2.1 (Ferrara, Gehrke, Gould, Magnant, and Powell [2]) Let G be a 4connected $K_{1,3}$-free graph containing a cycle C of length $t \geq 4$. If C has a chord or if there is a vertex $w \in V(G)-V(C)$ with at least 4 neighbors on C, then G contains another cycle C^{\prime} of length $t-1$.

Lemma 2.2 Let G be a 4-connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph of order n with $i+j=$ 7 and $i, j \neq 0$ and let C be a cycle of length $t \geq 10$ in G. Then G contains another cycle C^{\prime} of length $t-1$.

Proof. Assume that G contains no $(t-1)$-cycles. By Lemma 2.1, C is chordless, and if $w \in V(G)-V(C)$ with $N(w) \cap V(C) \neq \emptyset$, then $|N(w) \cap V(C)| \leq 3$. Let $C=v_{1} v_{2} \ldots v_{t} v_{1}$.
Claim 1. Let $x \in V(G)-V(C)$. If $N(x) \cap V(C) \neq \emptyset$, then $|N(x) \cap V(C)|=3$. Moreover, these three neighbors of x are consecutive on C.

By contradiction, we assume that $|N(x) \cap V(C)| \neq 3$. Then $|N(x) \cap V(C)| \leq 2$. Since $N(x) \cap V(C) \neq \emptyset$, we assume that $x v_{i} \in E(G)$. As $v_{i+1} v_{i-1} \notin E(G)$, we have either $v_{i+1} x \in E(G)$ or $v_{i-1} x \in E(G)$. Without loss of generality, we assume that $x v_{i-1} \in E(G)$. As $|N(x) \cap V(C)| \leq 2, x w \notin E(G)$ for $w \in V(C)-\left\{v_{i}, v_{i-1}\right\}$. As $t \geq 10$, the subgraph induced by $\left\{x, v_{i}, v_{i-1}\right\} \cup\left(V(C)-\left\{v_{i}, v_{i-1}\right\}\right)$ contains a $B(i, j)(i+j=7)$, a contradiction. Claim 1 holds.

By Claim 1, every vertex with a neighbor on C has exactly three neighbors on C which are consecutive. For $1 \leq i \leq t$, let $V_{i}=N\left(v_{i-1}\right) \cap N\left(v_{i}\right) \cap N\left(v_{i+1}\right)$ where indices are taken modulo t. If there is a vertex $w \notin V(C) \cup \bigcup_{i=1}^{t} V_{i}$ that has a neighbor w_{i} in some V_{i}, then $\left\{w_{i}, v_{i-1}, v_{i+1}, w\right\}$ induces a claw. Thus the sets $\left\{V_{1}, V_{2}, \ldots, V_{t}\right\}$ is a partition of $V(G) \backslash V(C)$. If there is an edge joining V_{i} and V_{j} when $|i-j|>2(\bmod t)$, we assume that $w_{i} \in V_{i}, w_{j} \in V_{j}$ and $w_{i} w_{j} \in E(G)$. Since $G\left[\left\{w_{i}, w_{j}, v_{i-1}, v_{i+1}\right\}\right] \neq K_{1,3}$, we have either $w_{j} v_{i+1} \in E(G)$ or $w_{j} v_{i-1} \in E(G)$. Thus $\left|N\left(w_{j}\right) \cap V(C)\right| \geq 4$, a contradiction. If there is an edge $w_{i} w_{i+2}$ between V_{i} and V_{i+2}, then $v_{1} v_{2} \ldots v_{i-1} w_{i} w_{i+2} v_{i+3} \ldots v_{t} v_{1}$ is a cycle of length $t-1$, a contradiction. If there are two nonconsecutive values $i<j$ such that $V_{i}=\emptyset$ and $V_{j}=\emptyset$, then $\left\{v_{i}, v_{j}\right\}$ is a cut set, a contradiction. Therefore, the set $\left\{i \mid V_{i}=\emptyset, i=1,2, \ldots, t\right\}$ has at most two elements. If the set has two elements, the indices are adjacent. Without loss of generality, we assume that for $i \in\{1,2, \ldots, t-3\}, V_{i} \neq \emptyset$. Let $w_{i} \in V_{i}$. By Claim $1, w_{1}, w_{2}, \ldots, w_{t-3}$ are distinct vertices. Let $C_{3}=v_{1} v_{2} w_{1} v_{1}$ be the 3 -cycle. Then we can get the 4 -cycle C_{4} by inserting w_{2} into C_{3} as $C_{4}=v_{1} w_{2} v_{2} w_{1} v_{1}$. Inserting v_{3} into C_{4}, we can get the 5 -cycle $C_{5}=v_{1} w_{2} v_{3} v_{2} w_{1} v_{1}$. Using this method, we can get all cycles of lengths from 3 to $2 t-5$. As $t \geq 10, G$ has a $(t-1)$-cycle, a contradiction.

Theorem 2.3 (Lai et al. [7]) Every 3-connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+$ $j \leq 8$ is hamiltonian.

By Lemma 2.2 and Theorem 2.3, G contains cycles of length $|V(G)|$ through 9.

3 Short Cycles

In this section we will prove that if G is a 4 -connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=7$ and if G is not the line graph of the Petersen graph, then G has t-cycles, where $4 \leq t \leq 8$. Suppose that $P_{n}=v_{1} v_{2} \ldots v_{n}$ is an induced path in G. Since G is claw-free, the following property follows.
(CF1) If $x \in V(G) \backslash V\left(P_{n}\right)$ is adjacent to v_{i} for $i \in\{2,3, \ldots, n-1\}$, then x is adjacent to either v_{i+1} or v_{i-1}.
(CF2) If $x \in V(G) \backslash V\left(P_{n}\right)$, then $\left|N(x) \cap V\left(P_{n}\right)\right| \leq 4$. Furthermore, if $\mid N(x) \cap$ $V\left(P_{n}\right) \mid=4$, then $N(x) \cap V\left(P_{n}\right)=\left\{v_{i}, v_{i+1}, v_{j}, v_{j+1}\right\}$ for some $1 \leq i<j<n$.

Lemma 3.1 If G is a 4-connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=7$, then G is the line graph of the Petersen graph or G has a 4-cycle.

Proof. Suppose that G is a 4 -connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=7$ and that G does not have 4-cycles. Since G is claw-free, the neighborhood of any vertex is either connected or two cliques. Since G is 4 -connected, the minimum degree of G is at least 4. If the neighborhood of a vertex is connected, then it contains a path of length 3 , yielding a 4 -cycle. Thus the neighborhood of any vertex is two cliques. If a vertex has degree at least 5, then one of the cliques has at least three vertices, yielding a 4 -cycle. Thus
(A1) G is 4-regular and, for any $v \in V(G), G[N(v) \cup\{v\}]$ are two triangles identified at v.

Since G is $B(i, j)$-free with $i+j=7$, by Theorem 1.4, we have $i, j \geq 1$. We prove the lemma by considering the following three cases.
Case 1. $B(i, j)=B(6,1)$.
Since G is a 4-connected $K_{1,3}$-free graph and G does not have 4 -cycles, by Theorem 1.5, G has an induced subgraph $B(6,0)$. Let $B(6,0)$ be the graph obtained from $P_{8}=v_{1} v_{2} \ldots v_{8}$ by adding a vertex v and joining v to v_{1} and v_{2}. By (A1), let $a_{1}, a_{2} \in V(G)-V(B(6,0))$ be the other two adjacent neighbors of v, and let $b_{1}, b_{2} \in V(G)-V(B(6,0))$ be the other two adjacent neighbors of v_{1}.

Let $x \in\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$. Since G does not have 4 -cycles, $N(x) \cap\left\{v_{2}, v_{3}\right\}=\emptyset$. Furthermore, as $G\left[\left\{v, v_{1}, v_{2}\right\} \cup\left\{v_{3}, \ldots, v_{8}\right\} \cup\{x\}\right] \neq B(6,1), N(x) \cap\left\{v_{4}, v_{5}, \ldots, v_{8}\right\} \neq$ \emptyset. If $N\left(a_{1}\right) \cap V(B(6,0))=\left\{v, v_{6}, v_{7}\right\}$, then $v_{5}, v_{6}, v_{7}, v_{8} \notin N\left(a_{2}\right)$, since G has no 4cycles. By (CF1), $v_{4} \notin N\left(a_{2}\right)$, a contradiction. Therefore $N(x) \cap\left\{v_{4}, v_{5}, \ldots, v_{8}\right\} \neq$ $\left\{v, v_{6}, v_{7}\right\}$, and $N(x) \cap\left\{v_{4}, v_{5}, \ldots, v_{8}\right\} \in\left\{\left\{v_{4}, v_{5}\right\},\left\{v_{5}, v_{6}\right\},\left\{v_{7}, v_{8}\right\},\left\{v_{8}\right\}\right\}$. Without loss of generality, we may assume that $N\left(a_{1}\right) \cap V(B(6,0))=\left\{v, v_{4}, v_{5}\right\}, N\left(a_{2}\right) \cap$ $V(B(6,0))=\left\{v, v_{7}, v_{8}\right\}, N\left(b_{1}\right) \cap V(B(6,0))=\left\{v_{1}, v_{5}, v_{6}\right\}$ and $N\left(b_{2}\right) \cap V(B(6,0))=$ $\left\{v_{1}, v_{8}\right\}$.

Let $c_{1} \in N\left(b_{2}\right) \cap N\left(v_{8}\right)$. Since G does not have 4 -cycles, $v_{6}, v_{7}, v_{2} \notin N\left(c_{1}\right)$. Since $G\left[\left\{c_{1}, b_{2}, v_{8}\right\} \cup\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\} \cup\left\{a_{2}\right\}\right] \neq B(6,1)$, we have $N\left(c_{1}\right) \cap V(B(6,0))=$ $\left\{v_{8}, v_{3}, v_{4}\right\}$. By (A1), there is $c_{2} \in N\left(v_{6}\right) \cap N\left(v_{7}\right)$. If $N\left(c_{2}\right) \cap V(B(6,0))=\left\{v_{6}, v_{7}\right\}$, then $G\left[\left\{c_{2}, v_{6}, v_{7}\right\} \cup\left\{v_{5}, v_{4}, v_{3}, v_{2}, v_{1}, b_{2}\right\} \cup\left\{a_{2}\right\}\right]$ is a $B(6,1)$, a contradiction. So $N\left(c_{2}\right) \cap V(B(6,0))=\left\{v_{2}, v_{3}, v_{6}, v_{7}\right\}$. Then G is the line graph of the Petersen graph.
Case 2. $B(i, j)=B(5,2)$.
Since G is a 4-connected $K_{1,3}$-free graph and G does not have 4-cycles, by Theorem 1.5, G has an induced subgraph $B(5,1)$. Let $B(5,1)$ be the graph obtained from
$P_{8}=v_{1} v_{2} \ldots v_{8}$ by adding a vertex v and joining v to v_{2} and v_{3}. By (A1), let a_{1}, a_{2} be two adjacent neighbors of v_{1} and $a_{3} \in N\left(v_{1}\right) \cap N\left(v_{2}\right)$. Then $v, v_{3} \notin N\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)$.

Suppose that $N\left(a_{3}\right) \cap V(B(5,1))=\left\{v_{1}, v_{2}\right\}$. Let $b_{1}, b_{2} \in V(G)-V(B(5,1))$ be two adjacent neighbors of a_{3}. Let $x \in\left\{a_{1}, a_{2}\right\}$ and $y \in\left\{b_{1}, b_{2}\right\}$. Then $N(x) \cap$ $\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\} \neq \emptyset$ and $N(y) \cap\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\} \neq \emptyset$ (otherwise, $G\left[\left\{v, v_{2}, v_{3}\right\} \cup\right.$ $\left.\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\} \cup\{s, t\}\right]$ is a $B(5,2)$, where $s=v_{1}$ if $t \in\left\{a_{1}, a_{2}\right\}$, or $s=a_{3}$ if $t \in\left\{b_{1}, b_{2}\right\}$, a contradiction). Furthermore, $v_{4} \in N\left(\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}\right)$ (otherwise, by symmetry of b_{1}, b_{2} and a_{1}, a_{2}, we have $N\left(a_{1}\right) \cap V(B(5,1))=\left\{v_{1}, v_{5}, v_{6}\right\}, N\left(a_{2}\right) \cap$ $V(B(5,1))=\left\{v_{1}, v_{8}\right\}, N\left(b_{1}\right) \cap V(B(5,1))=\left\{v_{5}, v_{6}\right\}$, and $N\left(b_{2}\right) \cap V(B(5,1))=\left\{v_{8}\right\}$. Thus $a_{1} v_{5} b_{1} v_{6} a_{1}$ is a 4 -cycle in G, a contradiction). Without loss of generality, we assume that $b_{1} v_{4} \in E(G)$. By (CF1), $b_{1} v_{5} \in E(G)$. Notice that G has no 4 -cycles. By symmetry of a_{1} and a_{2}, we may assume that $N\left(a_{1}\right) \cap V(B(5,1))=\left\{v_{1}, v_{5}, v_{6}\right\}$ and $N\left(a_{2}\right) \cap V(B(5,1))=\left\{v_{1}, v_{8}\right\}$. Thus $N\left(b_{2}\right) \cap V(B(5,1))=\left\{v_{7}, v_{8}\right\}$. Thus $G\left[\left\{v, v_{2}, v_{3}\right\} \cup\left\{v_{4}, v_{5}, v_{6}, v_{7}, b_{2}\right\} \cup\left\{v_{1}, a_{2}\right\}\right]$ is a $B(5,2)$, a contradiction. Therefore, $N\left(a_{3}\right) \cap V(B(5,1)) \neq\left\{v_{1}, v_{2}\right\}$.

Assume that $v_{4} \notin N\left(\left\{a_{1}, a_{2}\right\}\right)$. Then, without loss of generality, we assume that $N\left(a_{1}\right) \cap V(B(5,1))=\left\{v_{1}, v_{5}, v_{6}\right\}$ and $N\left(a_{2}\right) \cap V(B(5,1))=\left\{v_{1}, v_{8}\right\}$. Thus $N\left(a_{3}\right) \cap V(B(5,1))=\left\{v_{1}, v_{2}\right\}$, a contradiction. So $v_{4} \in N\left(\left\{a_{1}, a_{2}\right\}\right)$. We assume that $v_{4} \in N\left(a_{1}\right)$. Then $N\left(a_{1}\right) \cap V(B(5,1))=\left\{v_{1}, v_{4}, v_{5}\right\}$. Thus $N\left(a_{2}\right) \cap V(B(5,1))=$ $\left\{v_{1}, v_{8}\right\}$ and $N\left(a_{3}\right) \cap V(B(5,1))=\left\{v_{1}, v_{2}, v_{6}, v_{7}\right\}$.

Since $d(v)=4$, let $N(v)=\left\{v_{2}, v_{3}, b_{1}, b_{2}\right\}$. Then $b_{1} b_{2} \in E(G)$, and $N\left(b_{i}\right) \cap$ $\left\{v_{3}, v_{4}\right\}=\emptyset(i=1,2)$. Thus $N\left(b_{i}\right) \cap\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\} \neq \emptyset$ (otherwise, $a_{2} b_{i} \notin E(G)$ as $b_{i} v_{8} \notin E(G)$. Thus $G\left[\left\{a_{3}, v_{6}, v_{7}\right\} \cup\left\{v_{5}, v_{4}, v_{3}, v, b_{i}\right\} \cup\left\{v_{8}, a_{2}\right\}\right]$ is a $B(5,2)$, a contradiction). Since G has no 4 -cycles, we may assume that $N\left(b_{1}\right) \cap V(B(5,1))=\left\{v, v_{5}, v_{6}\right\}$ and $N\left(b_{2}\right) \cap V(B(5,1))=\left\{v, v_{8}\right\}$. Since $G\left[\left\{v_{8}, v_{7}, b_{2}, a_{2}\right\}\right] \neq K_{1,3}, a_{2} b_{2} \in E(G)$. Let $N\left(v_{8}\right)=\left\{b_{2}, v_{7}, a_{2}, x\right\}$. Then $x v_{3}, x v_{4} \in E(G)$ (Otherwise, $\left\{x, v_{3}, v_{4}\right\}$ is a 3-cut in $\left.G\right)$. By $(\mathrm{A} 1), x v_{7} \in E(G)$. Therefore, $V(G)=V(B(5,1)) \cup\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, x\right\}$ and G is the line graph of the Petersen graph.
Case 3. $B(i, j)=B(4,3)$.
By Theorem 1.3, G has an induced subgraph $P_{10}=v_{1} v_{2} \ldots v_{10}$. By (A1), suppose that $a_{1} \in N\left(v_{5}\right) \cap N\left(v_{6}\right), a_{2} \in N\left(v_{4}\right) \cap N\left(v_{5}\right)$ and $a_{3} \in N\left(v_{6}\right) \cap N\left(v_{7}\right)$. Since G does not have 4 -cycles, a_{1}, a_{2}, a_{3} are all distinct non-adjacent vertices.

Consider $N\left(a_{1}\right)$. Since G does not have 4-cycles, $N\left(a_{1}\right) \cap\left\{v_{3}, v_{4}, v_{7}, v_{8}\right\}=\emptyset$. Since G is $B(4,3)$-free, we have either $N\left(a_{1}\right) \cap\left\{v_{1}, v_{2}\right\} \neq \emptyset$ or $N\left(a_{1}\right) \cap\left\{v_{9}, v_{10}\right\} \neq$ \emptyset. Without loss of generality, we assume that $N\left(a_{1}\right) \cap\left\{v_{1}, v_{2}\right\} \neq \emptyset$. By (CF2), $N\left(a_{1}\right) \cap\left\{v_{9}, v_{10}\right\}=\emptyset$. Since $G\left[\left\{a_{1}, v_{5}, v_{6}\right\} \cup\left\{v_{7}, v_{8}, v_{9}, v_{10}\right\} \cup\left\{v_{4}, v_{3}, v_{2}\right\}\right]$ is not a $B(4,3), a_{1} v_{2} \in E(G)$. By (CF1), $N\left(a_{1}\right)=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$.

Consider $N\left(a_{2}\right)$. Since G has no 4 -cycles, $N\left(a_{2}\right) \cap\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{7}\right\}=\emptyset$. Since G is $B(4,3)$-free, $N\left(a_{2}\right) \cap\left\{v_{8}, v_{9}\right\} \neq \emptyset$. By (CF1), $a_{2} v_{9} \in E(G)$. If $a_{2} v_{8} \notin E(G)$, then $a_{2} v_{10} \in E(G)$. Thus $G\left[\left\{a_{2}, v_{9}, v_{10}\right\} \cup\left\{v_{4}, v_{3}, v_{2}, v_{1}\right\} \cup\left\{v_{8}, v_{7}, v_{6}\right\}\right]$ is a $B(4,3)$, a contradiction. So $a_{2} v_{8} \in E(G)$. Therefore, $N\left(a_{2}\right)=\left\{v_{8}, v_{9}, v_{4}, v_{5}\right\}$.

Consider $N\left(a_{3}\right)$. Since G has no 4-cycles and $v_{6} \in N\left(a_{1}\right) \cap N\left(a_{3}\right)$, it follows
that $N\left(a_{3}\right) \cap\left\{v_{1}, v_{2}, v_{8}, v_{9}, v_{4}, v_{5}, a_{1}, a_{2}\right\}=\emptyset . \quad$ By $(\mathrm{CF} 1), v_{3} a_{3} \notin E(G)$. Since $G\left[\left\{a_{3}, v_{6}, v_{7}\right\} \cup\left\{v_{5}, v_{4}, v_{3}, v_{2}\right\} \cup\left\{v_{8}, v_{9}, v_{10}\right]\right.$ is not a $B(4,3), a_{3} v_{10} \in E(G)$, and so $N\left(a_{3}\right) \cap\left(V\left(P_{10}\right) \cup\left\{a_{1}, a_{2}\right\}\right)=\left\{v_{6}, v_{7}, v_{10}\right\}$. Therefore, $G\left[\left\{a_{2}, v_{8}, v_{9}\right\} \cup\left\{v_{4}, v_{3}, v_{2}, v_{1}\right\} \cup\right.$ $\left.\left\{v_{10}, a_{3}, v_{6}\right\}\right]$ is a $B(4,3)$, a contradiction.

Lemma 3.2 If G is a 4-connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=7$, then G has a 5-cycle.

Proof. Suppose that G is a 4-connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=7$ and that G does not have 5 -cycles. By Theorem 1.4, $i, j \geq 1$. By Theorem 1.3, G has an induced subgraph $P_{10}=v_{1} v_{2} \ldots v_{10}$.
(B1) If $N\left(v_{i}\right) \cap N\left(v_{j}\right) \neq \emptyset(1 \leq i<j \leq 10)$, then $j-i \notin\{2,3\}$.
Let $x \in N\left(v_{i}\right) \cap N\left(v_{j}\right)$. Since G does not have 5 -cycles, $j-i \neq 3$. If $j-i=2$, then $w \in N\left(v_{i+1}\right)-\left\{x, v_{i}, v_{i+2}\right\}$. By (CF1), we have either $v_{i} w \in E(G)$ or $v_{i+2} w \in$ $E(G)$. Thus the 4 -cycle $x v_{i} v_{i+1} v_{i+2} x$ can be extended to 5 -cycle $x v_{i} w v_{i+1} v_{i+2} x$ or $x v_{i} v_{i+1} w v_{i+2} x$, a contradiction. (B1) holds.
Case 1. $B(i, j)=B(6,1)$
Assume that v_{3} and v_{4} have more than one common neighbor. Let a_{1} and a_{2} be two common neighbors of v_{3} and v_{4}. By (B1), for $i=1,2, N\left(a_{i}\right) \cap\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{7}\right\}=$ \emptyset. Since G is $B(6,1)$-free, $N\left(a_{i}\right) \cap\left\{v_{8}, v_{9}, v_{10}\right\} \neq \emptyset$. Since G has no 5 -cycle, $N\left(a_{1}\right) \cap$ $N\left(a_{2}\right) \cap\left\{v_{8}, v_{9}, v_{10}\right\}=\emptyset$. Thus, by symmetry and (CF1), we have $v_{8} a_{2}, v_{9} a_{2} \in E(G)$ and $a_{1} v_{10} \in E(G)$. Therefore, $a_{1} v_{3} a_{2} v_{9} v_{10} a_{1}$ is a 5 -cycle, a contradiction. So v_{3} and v_{4} have at most one common neighbor. Similarly, v_{2} and v_{3} have at most one common neighbor. Therefore, $d\left(v_{3}\right)=4$, and v_{3} and v_{4} have exactly one common neighbor. Similarly, $d\left(v_{8}\right)=4$, and v_{7} and v_{8} have exactly one common neighbor.

Let $N\left(v_{3}\right)=\left\{v_{2}, v_{4}, a_{1}, a_{2}\right\}$ and $N\left(v_{8}\right)=\left\{v_{7}, v_{9}, b_{1}, b_{2}\right\}$. By (CF1), we assume that $a_{1} \in N\left(v_{3}\right) \cap N\left(v_{4}\right), a_{2} \in N\left(v_{2}\right) \cap N\left(v_{3}\right), b_{1} \in N\left(v_{7}\right) \cap N\left(v_{8}\right)$, and $b_{2} \in N\left(v_{8}\right) \cap$ $N\left(v_{9}\right)$. Since G is $B(6,1)$-free, by (B1), $N\left(a_{1}\right) \cap V\left(P_{10}\right) \subseteq\left\{v_{3}, v_{4}, v_{8}, v_{9}, v_{10}\right\}$ and $N\left(a_{2}\right) \cap V\left(P_{10}\right) \subseteq\left\{v_{2}, v_{3}, v_{7}, v_{8}, v_{9}, v_{10}\right\}$. Since G has no 5 -cycles, $N\left(a_{1}\right) \cap V\left(P_{10}\right)=$ $\left\{v_{3}, v_{4}, v_{10}\right\}$ and $N\left(a_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{2}, v_{3}, v_{7}, v_{8}\right\}$. Similarly, $N\left(b_{1}\right) \cap V\left(P_{10}\right)=$ $\left\{v_{7}, v_{8}, v_{1}\right\}$ and $N\left(b_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{8}, v_{9}, v_{3}, v_{4}\right\}$. Thus, $a_{2} v_{7} v_{8} b_{2} v_{3} a_{2}$ is a 5 -cycle in G, a contradiction.
Case 2. $B(i, j)=B(5,2)$
Assume that v_{4} and v_{5} have more than one common neighbor. Let a_{1} and a_{2} be two common neighbors of v_{4} and v_{5}. $\left.\mathrm{By}(\mathrm{B} 1), N_{(} a_{i}\right) \cap\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{7}, v_{8}\right\}=\emptyset$ for $i=1,2$. Since G is $B(5,2)$-free, $N\left(a_{i}\right) \cap\left\{v_{9}, v_{10}\right\} \neq \emptyset$. By (CF1), $v_{10} a_{1}, v_{10} a_{2} \in E(G)$. Thus $a_{1} v_{10} a_{2} v_{5} v_{4} a_{1}$ is a 5 -cycle, a contradiction. So v_{4} and v_{5} have at most one common neighbor. Similarly, v_{3} and v_{4} have at most one common neighbor. Thus, $d\left(v_{4}\right)=4$, and v_{4} and v_{5} have exactly one common neighbor.

Let $N\left(v_{4}\right)=\left\{v_{3}, v_{5}, a_{1}, a_{2}\right\}$. By (CF1), we assume that $a_{1} \in N\left(v_{4}\right) \cap N\left(v_{5}\right)$ and $a_{2} \in N\left(v_{3}\right) \cap N\left(v_{4}\right)$. Since G is $B(5,2)$-free, by (B1), $N\left(a_{1}\right) \cap V\left(P_{10}\right) \subseteq\left\{v_{4}, v_{5}, v_{9}, v_{10}\right\}$
and $N\left(a_{2}\right) \cap V\left(P_{10}\right) \subseteq\left\{v_{3}, v_{4}, v_{8}, v_{9}, v_{10}\right\}$. Since G has no 5-cycles, $N\left(a_{1}\right) \cap N\left(a_{2}\right) \cap$ $\left\{v_{8}, v_{9}, v_{10}\right\}=\emptyset$. By (CF1), $N\left(a_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{4}, v_{5}, v_{10}\right\}$ and $N\left(a_{2}\right) \cap V\left(P_{10}\right)=$ $\left\{v_{3}, v_{4}, v_{8}, v_{9}\right\}$. Thus, $a_{2} v_{9} v_{10} a_{1} v_{4} a_{2}$ is a 5 -cycle in G, a contradiction.
Case 3. $B(i, j)=B(4,3)$
Assume that v_{5} and v_{6} have a common neighbor. Let a_{1} be a common neighbor of v_{5} and v_{6}. By (B1), $N\left(a_{1}\right) \cap\left\{v_{2}, v_{3}, v_{4}, v_{7}, v_{8}, v_{9}\right\}=\emptyset$. Since G is $B(4,3)$ free, $a_{1} v_{1}, a_{1} v_{10} \in E(G)$, contrary to (CF2). Thus v_{5} and v_{6} have no common neighbors. Let $a_{1}, a_{2} \in N\left(v_{5}\right)-\left\{v_{4}, v_{6}\right\}$; then $a_{1} a_{2}, a_{1} v_{4}, a_{2} v_{4} \in E(G)$. By (B1), $N\left(a_{i}\right) \cap\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{7}, v_{8}\right\}=\emptyset$ for $i=1,2$. Since G is $B(4,3)$-free, $v_{9} a_{1}, v_{9} a_{2} \in$ $E(G)$. Thus $a_{1} v_{9} a_{2} v_{4} v_{5} a_{1}$ is a 5 -cycle, a contradiction.

Lemma 3.3 If G is a 4-connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=7$, then G has a 6-cycle.

Proof. Suppose that G is a 4-connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=7$ and that G does not have 6 -cycles. By Theorem 1.4, $i, j \geq 1$. By Theorem 1.3, G has an induced subgraph $P_{10}=v_{1} v_{2} \ldots v_{10}$.
(C1) If $N\left(v_{i}\right) \cap N\left(v_{j}\right) \neq \emptyset(1 \leq i<j \leq 10)$, then $j-i \notin\{2,3,4\}$.
Let $x \in N\left(v_{i}\right) \cap N\left(v_{j}\right)$. Since G does not have 6-cycles, $j-i \neq 4$. If $j-i=3$, let $w \in N\left(v_{i+1}\right)-\left\{x, v_{i}, v_{i+2}\right\}$. By (CF1), we have either $v_{i} w \in E(G)$ or $v_{i+2} w \in E(G)$. Thus the 5 -cycle $x v_{i} v_{i+1} v_{i+2} v_{i+3} x$ can be extended to a 6 -cycle $x v_{i} w v_{i+1} v_{i+2} v_{i+3} x$ or $x v_{i} v_{i+1} w v_{i+2} v_{i+3} x$, a contradiction. So $j-i \neq 3$.

Assume that $j-i=2$. Let $N\left(v_{i+1}\right)-\left\{x, v_{i}, v_{i+2}\right\}=\left\{w_{1}, \ldots, w_{t}\right\}$. By (CF1), either $w_{s} v_{i} \in E(G)$ or $w_{s} v_{i+2} \in E(G)$ for $s=1, \ldots, t$. Assume that $t \geq 2$. If $w_{1} v_{i}, w_{2} v_{i+2} \in E(G)$, then $x v_{i} w_{1} v_{i+1} w_{2} v_{i+2} x$ is a 6 -cycle in G, a contradiction. So we may assume that $w_{1} v_{i}, w_{2} v_{i} \in E(G)$ and $w_{1} v_{i+2}, w_{2} v_{i+2} \notin E(G)$. Since G is claw-free, $w_{1} w_{2} \in E(G)$. Thus $x v_{i} w_{1} w_{2} v_{i+1} v_{i+2} x$ is a 6 -cycle in G, a contradiction. So $t=1$. As G is 4 -connected, $N\left(v_{i+1}\right)=\left\{w_{1}, v_{i}, v_{i+2}, x\right\}$. Consider $T=N(x)-$ $\left\{v_{i}, v_{i+1}, v_{i+2}, w_{1}\right\}$. If $T \neq \emptyset$, let $y \in T$. Then either $y v_{i} \in E(G)$ or $y v_{i+2} \in E(G)$. Thus $G\left[\left\{x, v_{i}, v_{i+1}, w_{1}, v_{i+2}, y\right\}\right]$ must contain a 6 -cycle, a contradiction. So $T=\emptyset$ and $N(x)=\left\{v_{i}, v_{i+1}, v_{i+2}, w_{1}\right\}$. Therefore, $\left\{w_{1}, v_{i}, v_{i+2}\right\}$ is a 3 -cut in G, a contradiction. So $j-i \neq 2$. (C1) holds.
Case 1. $B(i, j)=B(4,3)$.
Assume that v_{5} and v_{6} have a common neighbor. Let $a_{1} \in N\left(v_{5}\right) \cap N\left(v_{6}\right)$. By $(\mathrm{C} 1), N\left(a_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{5}, v_{6}\right\}$. Thus $G\left[\left\{a_{1}, v_{5}, v_{6}\right\} \cup\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \cup\left\{v_{7}, v_{8}, v_{9}\right\}\right]$ is a $B(4,3)$, a contradiction. So v_{5} and v_{6} do not have common neighbors. Let $a_{1} \in$ $N\left(v_{4}\right) \cap N\left(v_{5}\right)$. By $(\mathrm{C} 1), N\left(a_{1}\right) \cap\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{7}, v_{8}, v_{9}\right\}=\emptyset$. Thus $G\left[\left\{a_{1}, v_{4}, v_{5}\right\} \cup\right.$ $\left.\left\{v_{6}, v_{7}, v_{8}, v_{9}\right\} \cup\left\{v_{1}, v_{2}, v_{3}\right\}\right]$ is a $B(4,3)$, a contradiction.
Case 2. $B(i, j)=B(5,2)$.
Let $x \in N\left(v_{4}\right) \cap N\left(v_{5}\right)$. By (C1), $N(x) \cap\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{7}, v_{8}, v_{9}\right\}=\emptyset$. As G is $B(5,2)$-free, $x v_{10} \in E(G)$. Similarly, $y v_{9} \in E(G)$ for any $y \in N\left(v_{3}\right) \cap N\left(v_{4}\right)$.

Assume that v_{4} and v_{5} have more than one common neighbor. Let $a_{1}, a_{2} \in$ $N\left(v_{4}\right) \cap N\left(v_{5}\right)$. Then $a_{1} a_{2}, v_{10} a_{1}, v_{10} a_{2} \in E(G)$. As G has no 6 -cycles, $N\left(a_{1}\right) \cup$ $N\left(a_{2}\right)-\left\{a_{1}, a_{2}\right\}=\left\{v_{4}, v_{5}, v_{10}\right\}$, and so $\left\{v_{4}, v_{5}, v_{10}\right\}$ is a 3 -cut in G, a contradiction. So v_{4} and v_{5} have at most one common neighbor. Similarly, v_{3} and v_{4} have at most one common neighbor.

Consider $N\left(v_{4}\right)$, and let $\left\{v_{3}, v_{5}, a_{1}, a_{2}\right\} \subseteq N\left(v_{4}\right)$. Then we may assume that $a_{1} \in N\left(v_{4}\right) \cap N\left(v_{5}\right)$ and $a_{2} \in N\left(v_{3}\right) \cap N\left(v_{4}\right)$. Then $a_{1} v_{10}, a_{2} v_{9} \in E(G)$. Thus $a_{1} v_{10} v_{9} a_{2} v_{4} v_{5} a_{1}$ is a 6 -cycle, a contradiction.
Case 3. $B(i, j)=B(6,1)$.
Let $x \in N\left(v_{3}\right) \cap N\left(v_{4}\right)$. By (C1), $N(x) \cap\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{7}, v_{8}\right\}=\emptyset$. As G is $B(6,1)$-free, $N(x) \cap\left\{v_{9}, v_{10}\right\} \neq \emptyset$. By (CF1), $x v_{10} \in E(G)$. Similarly, $y v_{9} \in E(G)$ for any $y \in N\left(v_{2}\right) \cap N\left(v_{3}\right)$.

Assume that v_{3} and v_{4} have more than one common neighbor. Let $a_{1}, a_{2} \in$ $N\left(v_{3}\right) \cap N\left(v_{4}\right)$. Then $a_{1} a_{2}, v_{10} a_{1}, v_{10} a_{2} \in E(G)$. As G has no 6-cycles, $N\left(a_{1}\right) \cup$ $N\left(a_{2}\right)-\left\{a_{1}, a_{2}\right\}=\left\{v_{3}, v_{4}, v_{10}\right\}$, and so $\left\{v_{3}, v_{4}, v_{10}\right\}$ is a 3 -cut in G, a contradiction. So v_{3} and v_{4} have at most one common neighbor. Similarly, v_{2} and v_{3} have at most one common neighbor.

Consider $N\left(v_{3}\right)$, and let $\left\{v_{2}, v_{4}, a_{1}, a_{2}\right\} \subseteq N\left(v_{3}\right)$. Then we may assume that $a_{1} \in N\left(v_{3}\right) \cap N\left(v_{4}\right)$ and $a_{2} \in N\left(v_{2}\right) \cap N\left(v_{3}\right)$. Then $a_{1} v_{10}, a_{2} v_{9} \in E(G)$. Thus $a_{1} v_{10} v_{9} a_{2} v_{3} v_{4} a_{1}$ is a 6 -cycle, a contradiction.

Lemma 3.4 If G is a 4-connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=7$, then G has a 7-cycle.

Proof. Suppose that G is a 4-connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=7$ and that G does not have 7 -cycles. By Theorem 1.4, $i, j \geq 1$. By Theorem 1.3, G has an induced subgraph $P_{10}=v_{1} v_{2} \ldots v_{10}$.
(D1) If $N\left(v_{i}\right) \cap N\left(v_{j}\right) \neq \emptyset(1 \leq i<j \leq 10)$, then $j-i \neq\{3,4,5\}$.
(D2) For $1 \leq i \leq 8,\left|N\left(v_{i}\right) \cap N\left(v_{i+2}\right)\right| \leq 1$.
(D3) For $1 \leq i \leq 7$, if $N\left(v_{i}\right) \cap N\left(v_{i+2}\right) \neq \emptyset$, then $N\left(v_{i+1}\right) \cap N\left(v_{i+3}\right)=\emptyset$.
Let $x \in N\left(v_{i}\right) \cap N\left(v_{j}\right)$. Since G does not have 7 -cycles, $j-i \neq 5$. If $j-i=4$, let $w \in N\left(v_{i+1}\right)-\left\{v_{i}, v_{i+2}\right\}$. By (CF1), we have either $w v_{i} \in E(G)$ or $w v_{i+2} \in$ $E(G)$. Thus the 6 -cycle $x v_{i} \ldots v_{j} x$ can be extended to a 7 -cycle $x v_{i} w v_{i+1} \ldots v_{j} x$ or $x v_{i} v_{i+1} w v_{i+2} \ldots v_{j} x$, a contradiction. So $j-i \neq 4$. Assume that $j=i+3$. Let $T=N\left(v_{i+1}\right) \cup N\left(v_{i+2}\right)-\left\{x, v_{i}, v_{i+3}\right\}$. Since G is 4-connected, $|T| \geq 1$. If $|T| \geq 2$, let $y_{1}, y_{2} \in T$. By (CF1) and the fact that G is claw-free, $G\left[\left\{v_{i}, v_{i+1}, v_{i+2}, v_{i+3}, x, y_{1}, y_{2}\right\}\right]$ must contain a 7 -cycle, a contradiction. So $|T|=1$. Assume that $T=\{y\}$. Since G is 4 -connected, $N\left(v_{i+1}\right)=\left\{v_{i}, v_{i+2}, y, x\right\}$ and $N\left(v_{i+2}\right)=\left\{v_{i+1}, v_{i+3}, y, x\right\}$. Since G is claw-free and G does not have 7 -cycles, $N(x) \subseteq\left\{v_{i}, v_{i+1}, v_{i+2}, v_{i+3}, y\right\}$, and so $\left\{v_{i}, v_{i+3}, y\right\}$ is a 3 -cut of G, a contradiction. Therefore, $j-i \neq 3$. (D1) follows.

Suppose that $x, y \in N\left(v_{i}\right) \cap N\left(v_{i+2}\right)$. By (D1) and (CF1), $x, y \in N\left(v_{i+1}\right)$ and $x y \in$ $E(G)$. Then G has the 5 -cycle $x v_{i} v_{i+1} v_{i+2} y x$. Since G is claw-free and G does not have 7 -cycles, $\mid\left(N\left(\left\{x, y, v_{i+1}\right\}\right)-\left\{v_{i}, v_{i+2}, x, y, v_{i+1}\right\} \mid \leq 1\right.$ and then $N\left(\left\{x, y, v_{i+1}\right\}\right)-$ $\left\{x, y, v_{i+1}\right\}$ is a 2 -cut or 3 -cut, a contradiction. So (D2) follows.

Suppose that $x \in N\left(v_{i}\right) \cap N\left(v_{i+2}\right)$ and $y \in N\left(v_{i+1}\right) \cap N\left(v_{i+3}\right)$. By (D1) and (CF1), $x v_{i+1}, y v_{i+2} \in E(G)$. Since G is claw-free and G does not have 7 -cycles, $N\left(\left\{x, y, v_{i+1}, v_{i+2}\right\}\right)-\left\{x, y, v_{i}, v_{i+1}, v_{i+2}, v_{i+3}\right\}=\emptyset$, which implies that $\left\{v_{i}, v_{i+3}\right\}$ is a 2 -cut of G, a contradiction. So (D3) follows.
Case 1. $B(i, j)=B(4,3)$.
Assume that v_{5} and v_{6} have more than one common neighbor. Let $a_{1}, a_{2} \in$ $N\left(v_{5}\right) \cap N\left(v_{6}\right)$. For $i=1,2$, by (D1), $N\left(a_{i}\right) \cap V\left(P_{10}\right) \subseteq\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$. Since G is $B(4,3)$-free, $N\left(a_{i}\right) \cap\left\{v_{4}, v_{7}\right\} \neq \emptyset$, contradicting (D2) or (D3). So v_{5} and v_{6} have at most one common neighbor. Similarly, v_{4} and v_{5} have at most one common neighbor, and v_{6} and v_{7} have at most one common neighbor. Thus $d\left(v_{5}\right)=d\left(v_{6}\right)=4$. Let $N\left(v_{5}\right)=\left\{v_{4}, v_{6}, a_{1}, a_{2}\right\}$ and $N\left(v_{6}\right)=\left\{v_{5}, v_{7}, a_{1}, a_{3}\right\}$. By (D1), $N\left(a_{1}\right) \cap V\left(P_{10}\right)=$ $\left\{v_{5}, v_{6}\right\}$, and $G\left[\left\{a_{1}, v_{5}, v_{6}\right\} \cup\left\{v_{7}, v_{8}, v_{9}, v_{10}\right\} \cup\left\{v_{4}, v_{3}, v_{2}\right\}\right]$ is a $B(4,3)$, a contradiction.
Case 2. $B(i, j)=B(5,2)$.
Assume that v_{4} and v_{5} have more than one common neighbor. Let $a_{1}, a_{2} \in$ $N\left(v_{4}\right) \cap N\left(v_{5}\right)$. For $i=1,2$, by (D1), $N\left(a_{i}\right) \cap\left\{v_{1}, v_{2}, v_{7}, v_{8}, v_{9}, v_{10}\right\}=\emptyset$. Since G is $B(5,2)$-free, $N\left(a_{i}\right) \cap\left\{v_{3}, v_{6}\right\} \neq \emptyset$, contradicting (D2) or (D3). So v_{4} and v_{5} have at most one common neighbor. Similarly, v_{3} and v_{4} have at most one common neighbor. Thus $d\left(v_{4}\right)=4$. Let $N\left(v_{4}\right)=\left\{v_{3}, v_{5}, a_{1}, a_{2}\right\}$. Without loss of generality, we assume that $a_{1} \in N\left(v_{4}\right) \cap N\left(v_{5}\right), a_{2} \in N\left(v_{3}\right) \cap N\left(v_{4}\right)$. Similarly, let $N\left(v_{7}\right)=\left\{v_{6}, v_{8}, b_{1}, b_{2}\right\}$, where $b_{1} \in N\left(v_{6}\right) \cap N\left(v_{7}\right), b_{2} \in N\left(v_{7}\right) \cap N\left(v_{8}\right)$.

By (D1), $N\left(a_{1}\right) \cap\left\{v_{1}, v_{2}, v_{7}, v_{8}, v_{9}, v_{10}\right\}=\emptyset$. Since G is $B(5,2)$-free, $N\left(a_{1}\right) \cap$ $\left\{v_{3}, v_{6}\right\} \neq \emptyset$. Similarly, $N\left(a_{2}\right) \cap\left\{v_{2}, v_{5}\right\} \neq \emptyset$. By (D2) and (D3), we have $a_{1} v_{6}, a_{2} v_{2} \in$ $E(G)$. Similarly, $b_{1} v_{5}, b_{2} v_{9} \in E(G)$, contradicting (D3).
Case 3. $B(i, j)=B(6,1)$.
Assume that v_{3} and v_{4} do not have common neighbors. Since G is 4 -connected, let $a_{1}, a_{2} \in N\left(v_{2}\right) \cap N\left(v_{3}\right)$ and $b_{1}, b_{2} \in N\left(v_{4}\right) \cap N\left(v_{5}\right)$. Then $a_{1} a_{2}, b_{1} b_{2} \in E(G)$, $v_{4} \notin N\left(a_{1}\right) \cup N\left(a_{2}\right)$ and $v_{3} \notin N\left(b_{1}\right) \cup N\left(b_{2}\right)$. Since G has no 7-cycles, $a_{i} b_{j} \notin E(G)$ for $i, j \in\{1,2\}$. For $i=1,2$, by (D1), $N\left(a_{i}\right) \cap\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}=\emptyset$ and $N\left(b_{i}\right) \cap$ $\left\{v_{1}, v_{2}, v_{7}, v_{8}, v_{9}, v_{10}\right\}=\emptyset$. By (D2), we may assume that $v_{1} a_{1}, v_{6} b_{1} \notin E(G)$. Since G is $B(6,1)$-free, we have $a_{1} v_{9} \in E(G)$. Thus $G\left[\left\{a_{1}, v_{2}, v_{3}\right\} \cup\left\{v_{1}\right\} \cup\left\{v_{9}, v_{8}, v_{7}, v_{6}, v_{5}, b_{1}\right\}\right]$ is a $B(6,1)$, a contradiction. So v_{3} and v_{4} have a common neighbor. Similarly, v_{7} and v_{8} have a common neighbor.
Claim 1. Assume that v_{3} and v_{4} have exactly one common neighbor. Let $a_{1} \in$ $N\left(v_{3}\right) \cap N\left(v_{4}\right), a_{2} \in N\left(v_{2}\right) \cap N\left(v_{3}\right)$ and $a_{3} \in N\left(v_{4}\right) \cap N\left(v_{5}\right)$. Then
(i) $N\left(a_{1}\right) \cap\left\{v_{1}, v_{2}, v_{6}, v_{7}, v_{8}, v_{9}\right\}=\emptyset$. Therefore, either $N\left(a_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{3}, v_{4}, v_{5}\right\}$ or $N\left(a_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{3}, v_{4}, v_{10}\right\}$.
(ii) $N\left(a_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$.

By (D1), $N\left(a_{1}\right) \cap\left\{v_{1}, v_{6}, v_{7}, v_{8}, v_{9}\right\}=\emptyset$. Assume that $a_{1} v_{2} \in E(G)$. By (D1), (D2) and (D3), $N\left(a_{2}\right) \cap\left\{v_{1}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}=\emptyset$. Since G is $B(6,1)$-free, $a_{2} v_{9} \in E(G)$. By (CF1), $a_{2} v_{10} \in E(G)$. Since G has no 7 -cycles, $a_{1} v_{5}, a_{1} v_{10} \notin E(G)$. If there is $y \in N\left(a_{1}\right)-\left\{a_{2}, v_{2}, v_{3}, v_{4}\right\}$, then $y v_{2} \in E(G)$ or $y v_{4} \in E(G)$. If $y v_{4} \in E(G)$, since v_{3} and v_{4} have exactly one common neighbor, by (CF1), $y v_{5} \in E(G)$. This implies a 7 -cycle $y v_{5} a_{3} v_{4} v_{3} v_{2} a_{1} y$, a contradiction. So $y v_{4} \notin E(G)$ and $y v_{2} \in E(G)$. Since G has no 7 -cycles, $y v_{1} \notin E(G)$ and so $y v_{3} \in E(G)$. By (D1), (D2) and (D3), $N(y) \cap$ $\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}=\emptyset$. As G is $B(6,1)$-free, $y v_{9} \in E(G)$. By (CF1), $y v_{10} \in E(G)$. Thus $y v_{9} v_{10} a_{2} v_{2} v_{3} a_{1} y$ is a 7 -cycle in G, a contradiction. So $N\left(a_{1}\right) \subseteq\left\{a_{2}, v_{2}, v_{3}, v_{4}\right\}$. By the symmetry of a_{1} and $v_{3}, N\left(v_{3}\right) \subseteq\left\{a_{1}, a_{2}, v_{2}, v_{4}\right\}$, and so $\left\{a_{2}, v_{2}, v_{4}\right\}$ is a 3 -cut of G, a contradiction. Claim 1(i) holds.

Assume that $a_{2} v_{1} \notin E(G)$. Since G is $B(6,1)$-free, $a_{2} v_{9} \in E(G)$, and so $a_{2} v_{10} \in$ $E(G)$. Thus $N\left(a_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{2}, v_{3}, v_{9}, v_{10}\right\}$. Since G has no 7 -cycles, $v_{10} \notin N\left(a_{1}\right)$. By Claim 1(i), $N\left(a_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{3}, v_{4}, v_{5}\right\}$. By (D3), $a_{3} v_{6} \notin E(G)$. By (D1) and (D2), $N\left(a_{3}\right) \cap V\left(P_{10}\right)=\left\{v_{4}, v_{5}\right\}$. Since G has no 7 -cycles, $a_{2} a_{3} \notin E(G)$. Thus $G\left[\left\{a_{2}, v_{2}, v_{3}\right\} \cup\left\{v_{9}, v_{8}, v_{7}, v_{6}, v_{5}, a_{3}\right\} \cup\left\{v_{1}\right\}\right]$ is a $B(6,1)$, a contradiction. So $a_{2} v_{1} \in$ $E(G)$. By (CF2), $N\left(a_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$. So Claim 1(ii) holds.
Claim 2. Assume that v_{3} and v_{4} have more than one common neighbor. Let $a_{1}, a_{2} \in$ $N\left(v_{3}\right) \cap N\left(v_{4}\right)$. Then, for $i=1,2, N\left(a_{i}\right) \cap\left\{v_{1}, v_{2}, v_{6}, v_{7}, v_{8}, v_{9}\right\}=\emptyset$. Therefore, by symmetry, $N\left(a_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{3}, v_{4}, v_{5}\right\}$ and $N\left(a_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{3}, v_{4}, v_{10}\right\}$.

By (D1), $N\left(a_{i}\right) \cap\left\{v_{1}, v_{6}, v_{7}, v_{8}, v_{9}\right\}=\emptyset$. Without loss of generality, we assume that $a_{1} v_{2} \in E(G)$. By (D2) and (D3), $a_{2} v_{2}, a_{2} v_{5} \notin E(G)$. Since G is $B(6,1)$-free, $a_{2} v_{10} \in E(G)$. Since $G\left[\left\{v_{4}, a_{1}, a_{2}, v_{5}\right\}\right]$ is not a claw, $a_{1} a_{2} \in E(G)$. Since G is 4 -connected, there is a vertex $y \in\left(N\left(\left\{a_{1}, v_{3}\right\}\right)-\left\{a_{1}, v_{3}\right\}\right)-\left\{v_{2}, a_{2}, v_{4}\right\}$.

If $y a_{1} \in E(G)$, by considering $G\left[\left\{a_{1}, y, v_{2}, v_{4}\right\}\right]$, we have $N(y) \cap\left\{v_{2}, v_{4}\right\} \neq \emptyset$. As G has no 7 -cycles, $N(y) \cap\left\{v_{1}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\}=\emptyset$. If $y v_{4} \notin E(G)$, then $y v_{2} \in E(G)$ and $y v_{3} \in E(G)$ by (CF1), and so $G\left[\left\{y, v_{2}, v_{3}\right\} \cup\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\} \cup\left\{v_{1}\right\}\right]=B(6,1)$, a contradiction. If $y v_{4} \in E(G)$, then $y v_{2} \notin E(G)$ by (D2) and $y v_{3} \in E(G)$ by (CF1), therefore $G\left[\left\{y, v_{3}, v_{4}\right\} \cup\left\{v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\} \cup\left\{v_{2}\right\}\right]=B(6,1)$, a contradiction. This implies $y v_{3} \in E(G)$. By considering $G\left[\left\{v_{3}, a_{2}, y, v_{2}\right\}\right]$, we have $y v_{2} \in E(G)$. By (D2), $y v_{4} \notin E(G)$. As G has no 7 -cycles, $N(y) \cap\left\{v_{1}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\}=\emptyset$. Thus $G\left[\left\{y, v_{2}, v_{3}\right\} \cup\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{7}, v_{9}\right\} \cup\left\{v_{1}\right\}\right]$ is a $B(6,1)$, a contradiction. Claim 2 holds.
Claim 3. Suppose that $a_{1} \in N\left(v_{3}\right) \cap N\left(v_{4}\right)$ and $b_{1} \in N\left(v_{7}\right) \cap N\left(v_{8}\right)$. If $N\left(a_{1}\right) \cap$ $V\left(P_{10}\right)=\left\{v_{3}, v_{4}, v_{10}\right\}$, then $N\left(b_{1}\right) \cap V\left(P_{10}\right) \neq\left\{v_{1}, v_{7}, v_{8}\right\}$.

Assume that $N\left(b_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{1}, v_{7}, v_{8}\right\}$. If there is $y \in N\left(v_{5}\right) \cap N\left(v_{6}\right)$, since G does not have 7 -cycles, $y a_{1}, y b_{1} \notin E(G)$. By (D1), $N(y) \cap V\left(P_{10}\right) \subseteq\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$. If $N(y) \cap V\left(P_{10}\right)=\left\{v_{5}, v_{6}\right\}$, then G has a $B(6,1)=G\left[\left\{a_{1}, v_{3}, v_{4}\right\} \cup\left\{v_{10}, v_{9}, v_{8}, v_{7}, v_{6}, y\right\} \cup\right.$ $\left.\left\{v_{2}\right\}\right]$, a contradiction. By (D1), suppose that $N(y) \cap V\left(P_{10}\right)=\left\{v_{4}, v_{5}, v_{6}\right\}$. Let $y^{\prime} \in$ $N\left(v_{5}\right)-\left\{v_{4}, v_{6}, y\right\}$. By (D2) and (D3) and the same discussion as $y, y^{\prime} \notin N\left(v_{6}\right)$. So $y^{\prime} \in N\left(v_{4}\right) \cap N\left(v_{5}\right)$. By (D1) and (D3), $N\left(y^{\prime}\right) \cap V\left(P_{10}\right)=\left\{v_{4}, v_{5}\right\}$. Since G has no 7cycles, $y^{\prime} a_{1}, y^{\prime} b_{1} \notin E(G)$. Thus $G\left[\left\{y^{\prime}, v_{4}, v_{5}\right\} \cup\left\{v_{3}, v_{2}, v_{1}, b_{1}, v_{8}, v_{9}\right\} \cup\left\{v_{6}\right\}\right]=B(6,1)$, a contradiction. So $N\left(v_{5}\right) \cap N\left(v_{6}\right)=\emptyset$. Therefore, there are $a_{2}, a_{3} \in N\left(v_{4}\right) \cap N\left(v_{5}\right)$. By (D1), $N\left(a_{i}\right) \cap V\left(P_{10}\right) \subseteq\left\{v_{3}, v_{4}, v_{5}\right\}(i=2,3)$. Since G does not have 7 -cycles,
$a_{2} b_{1}, a_{3} b_{1} \notin E(G)$. By (D2), one of a_{2} and a_{3} has $N\left(a_{i}\right) \cap V\left(P_{10}\right)=\left\{v_{4}, v_{5}\right\}$, resulting a $B(6,1)=G\left[\left\{a_{i}, v_{4}, v_{5}\right\} \cup\left\{v_{3}, v_{2}, v_{1}, b_{1}, v_{8}, v_{9}\right\} \cup\left\{v_{6}\right\}\right]$ again, a contradiction. Claim 3 holds.

By Claims 2 and 3 , since G is $B(6,1)$-free, either v_{3} and v_{4} have exactly one common neighbor, or v_{7} and v_{8} have exactly one common neighbor.
Claim 4. v_{3} and v_{4} have exactly one common neighbor, and v_{7} and v_{8} have exactly one common neighbor.

By symmetry, we assume that v_{3} and v_{4} have exactly one common neighbor, and v_{7} and v_{8} have two or more common neighbors. Let $a_{1} \in N\left(v_{3}\right) \cap N\left(v_{4}\right)$, $a_{3} \in N\left(v_{4}\right) \cap N\left(v_{5}\right)$, and $b_{1}, b_{2} \in N\left(v_{7}\right) \cap N\left(v_{8}\right)$. By Claim 2, we assume that $N\left(b_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{1}, v_{7}, v_{8}\right\}$, and $N\left(b_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{7}, v_{8}, v_{9}\right\}$. By Claims 1(i) and 3, we have $N\left(a_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{3}, v_{4}, v_{5}\right\}$.By (D1), (D2) and (D3), $N\left(a_{3}\right) \cap V\left(P_{10}\right)=$ $\left\{v_{4}, v_{5}\right\}$. Since G has no 7 -cycles, $a_{3} b_{1}, a_{3} b_{2} \notin E(G)$. Thus G has a $B(6,1)=$ $G\left[\left\{a_{3}, v_{4}, v_{5}\right\} \cup\left\{v_{3}, v_{2}, v_{1}, b_{1}, v_{8}, v_{9}\right\} \cup\left\{v_{6}\right\}\right]$, a contradiction. Claim 4 holds.

By Claim 4, let $a_{1} \in N\left(v_{3}\right) \cap N\left(v_{4}\right), a_{2} \in N\left(v_{2}\right) \cap N\left(v_{3}\right)$ and $a_{3} \in N\left(v_{4}\right) \cap N\left(v_{5}\right)$, and let $b_{1} \in N\left(v_{7}\right) \cap N\left(v_{8}\right), b_{2} \in N\left(v_{8}\right) \cap N\left(v_{9}\right)$ and $b_{3} \in N\left(v_{6}\right) \cap N\left(v_{7}\right)$. By Claim 1(ii), $N\left(a_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $N\left(b_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{8}, v_{9}, v_{10}\right\}$.
Claim 5. $N\left(a_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{3}, v_{4}, v_{5}\right\}$ and $N\left(b_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{6}, v_{7}, v_{8}\right\}$.
Assume that $N\left(a_{1}\right) \cap V\left(P_{10}\right) \neq\left\{v_{3}, v_{4}, v_{5}\right\}$. By Claim 1(i), $N\left(a_{1}\right) \cap V\left(P_{10}\right)=$ $\left\{v_{3}, v_{4}, v_{10}\right\}$. By Claims 1(i) and 3, $N\left(b_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{6}, v_{7}, v_{8}\right\}$. By (D1), (D2) and (D3), $N\left(b_{3}\right) \cap V\left(P_{10}\right)=\left\{v_{6}, v_{7}\right\}$. Since G has no 7 -cycles, $a_{1} b_{3} \notin E(G)$. Thus $G\left[\left\{b_{3}, v_{6}, v_{7}\right\} \cup\left\{v_{8}, v_{9}, v_{10}, a_{1}, v_{3}, v_{2}\right\} \cup\left\{v_{5}\right\}\right]$ is a $B(6,1)$, a contradiction. So $N\left(a_{1}\right) \cap$ $V\left(P_{10}\right)=\left\{v_{3}, v_{4}, v_{5}\right\}$. By symmetry, $N\left(b_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{6}, v_{7}, v_{8}\right\}$. Claim 5 holds.

Now we finish the proof of Case 3. Since G does not have 7-cycles, $\mid N\left(a_{1}\right) \cup N\left(v_{4}\right)-$ $\left\{a_{1}, v_{4}, v_{3}, v_{5}, a_{3}\right\} \mid \leq 1$. Since G is 4-connected, $\left|N\left(a_{1}\right) \cup N\left(v_{4}\right)-\left\{a_{1}, v_{4}, v_{3}, v_{5}, a_{3}\right\}\right|=$ 1. Let $a_{4} \in N\left(a_{1}\right) \cup N\left(v_{4}\right)-\left\{a_{1}, v_{4}, v_{3}, v_{5}, a_{3}\right\}$. Since G has no 7 -cycles, $a_{4} v_{2}, a_{4} v_{6} \notin$ $E(G)$. Thus $a_{4} v_{4} \in E(G)$ (if $a_{1} a_{4} \in E(G)$, then either $a_{4} v_{3} \in E(G)$ or $a_{4} v_{5} \in E(G)$. By (CF1), $a_{4} v_{4} \in E(G)$). By Claim $4, N\left(a_{4}\right) \cap V\left(P_{10}\right)=\left\{v_{4}, v_{5}\right\}$. Since G is clawfree, $G\left[\left\{a_{1}, a_{3}, a_{4}, v_{4}, v_{5}\right\}\right]$ is a K_{5}, and so $N\left(a_{1}\right)=\left\{v_{3}, v_{4}, v_{5}, a_{3}, a_{4}\right\}$ and $N\left(v_{4}\right)=$ $\left\{v_{3}, v_{5}, a_{1}, a_{3}, a_{4}\right\}$. Similarly there is $b_{4} \in N\left(b_{1}\right) \cup N\left(v_{7}\right)-\left\{v_{6}, v_{8}, b_{3}\right\}$ with $N\left(b_{4}\right) \cap$ $V\left(P_{10}\right)=\left\{v_{6}, v_{7}\right\}$, and $N\left(b_{1}\right)=\left\{v_{6}, v_{7}, v_{8}, b_{3}, b_{4}\right\}$ and $N\left(v_{7}\right)=\left\{v_{6}, v_{8}, b_{1}, b_{3}, b_{4}\right\}$. Since G has no 7 -cycles, $a_{i} b_{j} \notin E(G)$ for $i, j=1,2,3,4$.

Let $N\left(v_{1}\right)-\left\{a_{2}, v_{2}\right\}=\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}(s \geq 2)$, and let $i \in\{1, \ldots, s\}$. Then $N\left(c_{i}\right) \cap\left\{a_{1}, v_{4}, b_{1}, v_{7}\right\}=\emptyset$. Since G has no 7 -cycles, $N\left(c_{i}\right) \cap\left\{v_{5}, v_{6}, a_{3}, a_{4}\right\}=\emptyset$. If $c_{i} v_{8} \in E(G)$, then, by (CF1), $c_{i} v_{9} \in E(G)$. By Claim 1(ii), $c_{i} v_{10} \in E(G)$, and so $\left\{v_{1}, v_{8}, v_{9}, v_{10}\right\} \subseteq N\left(c_{i}\right) \cap V\left(P_{10}\right)$, contrary to (CF2). So $c_{i} v_{8} \notin E(G)$. If $c_{i} v_{9} \in E(G)$, then $c_{i} v_{10} \in E(G)$. Since $G\left[\left\{c_{i}, v_{9}, v_{10}\right\} \cup\left\{v_{8}, v_{7}, v_{6}, v_{5}, v_{4}, v_{3}\right\} \cup\left\{v_{1}\right\}\right]$ is not a $B(6,1)$, we have $c_{i} v_{3} \in E(G)$, contrary to (D2). So $c_{i} v_{9} \notin E(G)$. If $c_{i} v_{10} \in E(G)$, by symmetry, $c_{i} v_{2}, c_{i} v_{3} \notin E(G)$. Thus $G\left[\left\{a_{3}, v_{4}, v_{5}\right\} \cup\left\{v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, c_{i}\right\} \cup\left\{v_{3}\right\}\right]$ is a $B(6,1)$, a contradiction. So $c_{i} v_{10} \notin E(G)$. If $c_{i} b_{3} \in E(G)$, as G has no 7 -cycles, $c_{i} v_{2}, c_{i} v_{3} \notin E(G)$, so $G\left[\left\{b_{3}, v_{6}, v_{7}\right\} \cup\left\{c_{i}, v_{1}, v_{2}, v_{3}, v_{4}, a_{3}\right\} \cup\left\{v_{8}\right\}\right]$ is a $B(6,1)$. So $c_{i} b_{3} \notin$ $E(G)$. If $c_{i} v_{2} \notin E(G)$, then $c_{i} v_{3} \notin E(G)$, so $G\left[\left\{b_{3}, v_{6}, v_{7}\right\} \cup\left\{v_{5}, v_{4}, v_{3}, v_{2}, v_{1}, c_{i}\right\} \cup\left\{v_{8}\right\}\right]$
is a $B(6,1)$. This shows that $c_{i} v_{2} \in E(G)$. By (D2), $c_{i} v_{3} \notin E(G)$. Therefore, $N\left(c_{i}\right) \cap V\left(P_{10}\right)=\left\{v_{1}, v_{2}\right\}$, and $G\left[\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}\right]$ is a K_{s}. Since G has no 7 -cycles, $s=2$.

Consider $N\left(a_{2}\right)$ and $N\left(v_{2}\right)$. Since G has no 7-cycles, we have $N\left(v_{2}\right)=\left\{v_{1}, v_{3}, c_{1}\right.$, $\left.c_{2}, a_{2}\right\}$ and $N\left(a_{2}\right) \subseteq\left\{c_{1}, c_{2}, v_{1}, v_{2}, v_{3}\right\}$. Thus $\left\{c_{1}, c_{2}, v_{3}\right\}$ is a 3 -cut in G, a contradiction.

Lemma 3.5 If G is a 4-connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=7$, then G has an 8-cycle.

Proof. Suppose that G is a 4-connected $\left\{K_{1,3}, B(i, j)\right\}$-free graph with $i+j=7$ and that G does not have 8 -cycles. By Theorem 1.4, $i, j \geq 1$. By Theorem 1.3, G has an induced subgraph $P_{10}=v_{1} v_{2} \ldots v_{10}$.
(E1) If $N\left(v_{i}\right) \cap N\left(v_{j}\right) \neq \emptyset(1 \leq i<j \leq 10)$, then $j-i \notin\{4,5,6\}$. Therefore, for some $x \notin V\left(P_{10}\right)$, if $\left\{v_{i}, v_{i+2}\right\} \subseteq N(x) \cap V\left(P_{10}\right)(2 \leq i \leq 7)$, then $x v_{i+1} \in E(G)$, and if $\left\{v_{i}, v_{i+3}\right\} \subseteq N(x) \cap V\left(P_{10}\right)(2 \leq i \leq 6)$, then $x v_{i+1}, x v_{i+2} \in E(G)$.
(E2) Let $x \in N\left(v_{i}\right) \cap N\left(v_{i+2}\right)-\left\{v_{i+1}\right\}(1 \leq i \leq 7)$. Then $N\left(v_{i+1}\right) \cap N\left(v_{i+3}\right) \subseteq\{x\}$. Therefore, there do not exist $x, y \in V(G)-V\left(P_{10}\right)$ such that $(N(x) \cup N(y)) \cap$ $V\left(P_{10}\right)=\left\{v_{i}, v_{i+1}, v_{i+2}, v_{i+3}\right\}$ and $\min \left(\left|N(x) \cap V\left(P_{10}\right)\right|,\left|N(y) \cap V\left(P_{10}\right)\right|\right) \geq 3$, where $1 \leq i \leq 7$.
(E3) Assume that $a_{1}, a_{2} \in N\left(v_{i}\right) \cap N\left(v_{i+1}\right) \cap N\left(v_{i+2}\right)(2 \leq i \leq 7)$, and let $T=$ $N\left(\left\{a_{1}, a_{2}, v_{i+1}\right\}\right)-\left\{a_{1}, a_{2}, v_{i+1}, v_{i}, v_{i+2}\right\}$.
(i) For $y \in T, y v_{i+1} \in E(G)$.
(ii) Let $y \in T$ and $w \in N(y) \cap\left\{v_{i}, v_{i+2}\right\}, G\left[\left\{a_{1}, a_{2}, y, v_{i+1}, w\right\}\right]$ is a complete graph.
(iii) $|T|=2$, and for any $y \in T,\left|N(y) \cap\left\{v_{i}, v_{i+2}\right\}\right|=1$. If $T=\left\{y_{1}, y_{2}\right\}$, then $N\left(a_{1}\right)=\left\{a_{2}, v_{i+1}, y_{1}, y_{2}, v_{i}, v_{i+2}\right\}, N\left(a_{2}\right)=\left\{a_{1}, v_{i+1}, y_{1}, y_{2}, v_{i}, v_{i+2}\right\}, N\left(v_{i+1}\right)=$ $\left\{a_{1}, a_{2}, y_{1}, y_{2}, v_{i}, v_{i+2}\right\}$.

Figure 2. Graph for (E3)
(E4) Assume that $N(x) \cap V\left(P_{10}\right)=\left\{v_{i}, v_{i+1}, v_{i+2}\right\}$, and $y \in N(x)-\left\{v_{i}, v_{i+1}, v_{i+2}\right\}$. Then $y v_{i+3} \notin E(G)$ if $i \leq 7$ and $y v_{i-1} \notin E(G)$ if $i \geq 2$. Therefore, for $2 \leq i \leq 7$, $y v_{i+1} \in E(G)$, and $N\left(\left\{x, v_{i+1}\right\}\right)=N\left(v_{i+1}\right)=N(x)$.

Let $x \in N\left(v_{i}\right) \cap N\left(v_{j}\right)$. Since G has no 8 -cycles, $j-i \neq 6$. If $j-i=5$, then let $w \in N\left(v_{i+1}\right)-\left\{v_{i}, v_{i+2}, x\right\}$. By (CF1), either $w v_{i} \in E(G)$ or $w v_{i+2} \in$ $E(G)$. Thus the 7 -cycle $x v_{i} \ldots v_{j} x$ can be extended to an 8 -cycle $x v_{i} w v_{i+1} \ldots v_{j} x$ or $x v_{i} v_{i+1} w v_{i+2} \ldots v_{j} x$. So $j-i \neq 5$. Assume that $j-i=4$. Consider the set $S=\left(N\left(\left\{v_{i+1}, v_{i+2}, v_{i+3}\right\}\right)-\left\{v_{i+1}, v_{i+2}, v_{i+3}\right\}\right)-\left\{x, v_{i}, v_{i+4}\right\}$. Then $|S| \geq 1$. If $|S|=1$, let $S=\{y\}$. Since G is 4 -connected, we have $x \in N\left(v_{i+l}\right)$ for $l=1,2,3$, therefore $\left|N(x) \cap V\left(P_{10}\right)\right| \geq 5$, contradicting (CF2). So $|S| \geq 2$. Let $w_{1}, w_{2} \in S$. Then, by (CF1) and G is claw-free, the 6 -cycle $x v_{i} v_{i+1} \ldots v_{j} x$ can be extended to an 8 -cycle by inserting w_{1} and w_{2}, a contradiction. So $j-i \neq 4$. (E1) holds.

Assume that $y \in N\left(v_{i+1}\right) \cap N\left(v_{i+3}\right)$ and $y \neq x$. Let $S=\left(N\left(\left\{x, y, v_{i+1}, v_{i+2}\right\}\right)-\right.$ $\left.\left\{x, y, v_{i+1}, v_{i+2}\right\}\right)-\left\{v_{i}, v_{i+3}\right\}$. Since G is 4 -connected, $|S| \geq 2$. Let $w_{1}, w_{2} \in S$. If $w_{1}, w_{2} \in N(x) \cup N(y) \cup\left(N\left(v_{i}\right) \cap N\left(v_{i+1}\right)\right) \cup\left(N\left(v_{i+2}\right) \cap N\left(v_{i+3}\right)\right)$, then we can insert w_{1} and w_{2} into the 6 -cycle $v_{i} v_{i+1} y v_{i+3} v_{i+2} x v_{i}$ to have an 8 -cycle. Otherwise, by (CF1), we may assume that $w_{1} \in N\left(v_{i+1}\right) \cap N\left(v_{i+2}\right)$. Since $w_{1} v_{i}, w_{1} v_{i+3}, w_{1} x, w_{1} y \notin E(G)$, $x y, x v_{i+3}, y v_{i} \in E(G)$. Then we can insert w_{1} and w_{2} into either $v_{i} v_{i+1} v_{i+2} v_{i+3} y x v_{i}$, $y v_{i+1} v_{i+2} v_{i+3} x v_{i} y$, or $x v_{i+2} v_{i+1} v_{i} y v_{i+3} x$ to have an 8 -cycle, a contradiction. (E2) holds.

By (E2), $a_{1} v_{i-1}, a_{1} v_{i+3}, a_{2} v_{i-1}, a_{2} v_{i+3} \notin E(G)$. Thus $a_{1} a_{2} \in E(G)$. Since G is 4-connected, $|T| \geq 2$. Let $y \in T$ and assume that $y v_{i+1} \notin E(G)$. Without of loss of generality, we assume that $y a_{2} \in E(G)$. Since G is claw-free, we have either $y v_{i} \in E(G)$ or $y v_{i+2} \in E(G)$. We assume that $y v_{i+2} \in E(G)$. By (CF1), $y v_{i+3} \in E(G)$. Since $|T| \geq 2$, let $z \in T-\{y\}$. If $z \in N\left(a_{1}\right)$, then we can insert z into the cyle $v_{i} a_{1} v_{i+2} v_{i+3} y a_{2} v_{i+1} v_{i}$ to have an 8 -cycle; if $z \in N\left(v_{i+1}\right)$, we can insert z into the cycle $v_{i} v_{i+1} v_{i+2} v_{i+3} y a_{2} a_{1} v_{i}$ to have an 8 -cycle. We may assume that $z \in N\left(a_{2}\right)-\left(N\left(a_{1}\right) \cup N\left(v_{i+1}\right)\right)$. If $z v_{i} \in E(G)$, then we have an 8 -cycle $v_{i} z a_{2} y v_{i+3} v_{i+2} v_{i+1} a_{1} v_{i}$; if $z v_{i} \notin E(G)$, then $z v_{i+2} \in E(G)$. Since G is claw-free, $y z \in E(G)$. Then we have an 8 -cycle $v_{i} v_{i+1} v_{i+2} v_{i+3} y z a_{2} a_{1} v_{i}$, a contradiction. So $y v_{i+1} \in E(G)$. By (CF1), we assume that $y v_{i} \in E(G)$. By (E2), $y v_{i-1} \notin E(G)$. Since G is claw-free, $y a_{1}, y a_{2} \in E(G)$. Thus $G\left[\left\{a_{1}, a_{2}, y, v_{i+1}, v_{i}\right\}\right]$ is a complete graph, so (E3)(ii) holds. Notice that G has no 8 -cycles and is claw-free, $|T|=2$, and $N\left(a_{1}\right)=\left\{a_{2}, v_{i+1}, y_{1}, y_{2}, v_{i}, v_{i+2}\right\}, N\left(a_{2}\right)=\left\{a_{1}, v_{i+1}, y_{1}, y_{2}, v_{i}, v_{i+2}\right\}$, and $N\left(v_{i+1}\right)=$ $\left\{a_{1}, a_{2}, y_{1}, y_{2}, v_{i}, v_{i+2}\right\}$. Let $T=\left\{y_{1}, y_{2}\right\}$. If $y_{1} v_{i}, y_{1} v_{i+2} \in E(G)$, then $N\left(y_{1}\right)=$ $\left\{y_{2}, v_{i}, v_{i+1}, v_{i+2}, a_{1}, a_{2}\right\}$ and so $\left\{y_{2}, v_{i}, v_{i+2}\right\}$ is a 3 -cut in G, a contradiction. So $\left|N\left(y_{1}\right) \cap\left\{v_{i}, v_{i+2}\right\}\right|=1$. Similarly, $\left|N\left(y_{2}\right) \cap\left\{v_{i}, v_{i+2}\right\}\right|=1$. (E3) holds.

Assume that $y v_{i+3} \in E(G)$. By (E2), $y v_{i+1} \notin E(G)$. Since $d\left(v_{i+1}\right) \geq 4$, let $z \in N\left(v_{i+1}\right)-\left\{v_{i}, v_{i+2}, x\right\}$. Then we have either $z v_{i} \in E(G)$ or $z v_{i+2} \in E(G)$. Let $C=x v_{i} z v_{i+1} v_{i+2} v_{i+3} y x$ if $z v_{i} \in E(G)$, or $C=x v_{i} v_{i+1} z v_{i+2} v_{i+3} y x$ if $z v_{i+2} \in$ $E(G)$. Then C is a 7 -cycle in G. Notice that G has no 8 -cycles, $N\left(\left\{x, v_{i+1}, v_{i+2}\right\}-\right.$ $\left\{x, v_{i+1}, v_{i+2}\right\} \subseteq\left\{y, z, v_{i}, v_{i+3}\right\}$. Thus $\left\{y, z, v_{i}, v_{i+3}\right\}$ is a 4 -cut in G. Therefore, $N(y)-\left\{x, z, v_{i}, v_{i+1}, v_{i+2}, v_{i+3}\right\} \neq \emptyset$. Since C is a 7 -cycle in G and G does not have 8 -cycles, $x v_{i+3} \in E(G)$, a contradiction. So $y v_{i+3} \notin E(G)$. Similarly, $y v_{i-1} \notin E(G)$. Since G is claw-free, by (CF1), $y v_{i+1} \in E(G)$. So (E4) holds.

We will prove the lemma by considering the following three cases.

Case 1. $B(i, j)=B(4,3)$.
Assume that v_{5} and v_{6} have more than one common neighbor. Let $a_{1}, a_{2} \in N\left(v_{5}\right) \cap$ $N\left(v_{6}\right)$. By (E1), $N\left(a_{i}\right) \cap\left\{v_{1}, v_{2}, v_{9}, v_{10}\right\}=\emptyset$. If $v_{3} a_{1} \in E(G)$, by (E1), $v_{4} a_{1} \in E(G)$. $\mathrm{By}(\mathrm{E} 1)$ and (E2), $a_{2} v_{3}, a_{2} v_{4}, a_{2} v_{7}, a_{2} v_{8} \notin E(G)$. So $G\left[\left\{a_{2}, v_{5}, v_{6}\right\} \cup\left\{\left\{v_{7}, v_{8}, v_{9}, v_{10}\right\} \cup\right.\right.$ $\left.\left\{v_{4}, v_{3}, v_{2}\right\}\right]$ is a $B(4,3)$, a contradiction. So $v_{3} a_{1} \notin E(G)$. Similarly, $a_{2} v_{3}, a_{1} v_{8}, a_{2} v_{8} \notin$ $E(G)$. Since G is $B(4,3)$-free, $a_{i} \cap\left\{v_{4}, v_{7}\right\} \neq \emptyset$. By (E2), we may assume that $N\left(a_{1}\right) \cap V\left(P_{10}\right)=N\left(a_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{4}, v_{5}, v_{6}\right\}$. By (E3), let $T=N\left(\left\{a_{1}, a_{2}, v_{5}\right\}\right)-$ $\left\{a_{1}, a_{2}, v_{5}, v_{4}, v_{6}\right\}=\left\{y_{1}, y_{2}\right\}$. Then $\left|N\left(y_{1}\right) \cap\left\{v_{4}, v_{6}\right\}\right|=1$. By symmetry, we assume that $y_{1} v_{4} \in E(G)$. By (E1) and (E2), $N\left(y_{1}\right) \cap\left\{v_{1}, v_{3}, v_{7}, v_{8}, v_{9}\right\}=\emptyset$. By (CF1), $y_{1} v_{2} \notin$ $E(G)$. So $G\left[\left\{y_{1}, v_{4}, v_{5}\right\} \cup\left\{v_{6}, v_{7}, v_{8}, v_{9}\right\} \cup\left\{v_{3}, v_{2}, v_{1}\right\}\right]$ is a $B(4,3)$, a contradiction.

Assume that v_{5} and v_{6} have one common neighbor. Let $a_{1} \in N\left(v_{5}\right) \cap N\left(v_{6}\right)$, $a_{2} \in N\left(v_{4}\right) \cap N\left(v_{5}\right)$ and $a_{3} \in N\left(v_{6}\right) \cap N\left(v_{7}\right)$. Then $a_{2} v_{6}, a_{3} v_{5} \notin E(G)$. By (E1) and (CF1), $N\left(a_{2}\right) \cap V\left(P_{10}\right) \subseteq\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and $N\left(a_{1}\right) \cap V\left(P_{10}\right) \subseteq\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$. If $v_{3} \in N\left(a_{1}\right)$, then by (CF1), $v_{4} \in N\left(a_{1}\right)$. By (CF2), $N\left(a_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$, and so $G\left[\left\{a_{1}, v_{5}, v_{6}\right\} \cup\left\{v_{7}, v_{8}, v_{9}, v_{10}\right\} \cup\left\{v_{3}, v_{2}, v_{1}\right\}\right]$ is a $B(4,3)$, a contradiction. So $a_{1} v_{3} \notin E(G)$. Similarly, $a_{1} v_{8} \notin E(G)$. Notice that $N\left(a_{1}\right) \cap\left\{v_{4}, v_{7}\right\} \neq \emptyset$. By symmetry, we assume that $a_{1} v_{4} \in E(G)$. Consider $N\left(a_{2}\right)$. By (E2), $a_{2} v_{3} \notin E(G)$. By (CF1), $v_{2} a_{2} \notin E(G)$. Thus $N\left(a_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{4}, v_{5}\right\}$, and so $G\left[\left\{a_{2}, v_{4}, v_{5}\right\} \cup\right.$ $\left.\left\{v_{6}, v_{7}, v_{8}, v_{9}\right\} \cup\left\{v_{3}, v_{2}, v_{1}\right\}\right]$ is a $B(4,3)$, a contradiction. So v_{5} and v_{6} do not have common neighbors.

Let $a_{1}, a_{2} \in N\left(v_{4}\right) \cap N\left(v_{5}\right)$. By (E1), $N\left(a_{i}\right) \cap\left\{v_{1}, v_{8}, v_{9}, v_{10}\right\}=\emptyset . \quad$ Since $v_{6} \notin N\left(a_{1}\right) \cup N\left(a_{2}\right)$, by (CF1), $v_{7} \notin N\left(a_{1}\right) \cup N\left(a_{2}\right)$. Thus $a_{1} a_{2} \in E(G)$. If $v_{2} a_{1} \in$ $E(G)$, by (CF1), $v_{3} a_{1} \in E(G)$. By (E2), $a_{2} v_{2}, a_{2} v_{3} \notin E(G)$. Thus $G\left[\left\{a_{2}, v_{4}, v_{5}\right\} \cup\right.$ $\left.\left\{v_{6}, v_{7}, v_{8}, v_{9}\right\} \cup\left\{v_{1}, v_{2}, v_{3}\right\}\right]$ is a $B(4,3)$, a contradiction. So $a_{1} v_{2} \notin E(G)$. Similarly, $a_{2} v_{2} \notin E(G)$. Since G is $B(4,3)$-free, $N\left(a_{1}\right) \cap V\left(P_{10}\right)=N\left(a_{2}\right) \cap V\left(P_{10}\right)=$ $\left\{v_{3}, v_{4}, v_{5}\right\}$. By (E3), let $S=\left(N\left(\left\{a_{1}, a_{2}, v_{4}\right\}\right)-\left\{a_{1}, a_{2}, v_{4}\right\}\right)-\left\{v_{3}, v_{5}\right\}=\left\{y_{1}, y_{2}\right\}$. Then $y_{1} v_{4}, y_{2} v_{4} \in E(G)$. For $i=1,2$, if $N\left(y_{i}\right) \cap\left\{v_{3}, v_{4}, v_{5}\right\}=\left\{v_{4}, v_{5}\right\}$, then, by (E1) and (E2), $G\left[\left\{y_{i}, v_{4}, v_{5}\right\} \cup\left\{v_{6}, v_{7}, v_{8}, v_{9}\right\} \cup\left\{v_{3}, v_{2}, v_{1}\right\}\right]=B(4,3)$, a contradiction. So $N\left(y_{i}\right) \cap\left\{v_{3}, v_{4}, v_{5}\right\}=\left\{v_{3}, v_{4}\right\}$. By (E1), (E2) and (E3), $N\left(y_{i}\right) \cap$ $V\left(P_{10}\right)=\left\{v_{3}, v_{4}\right\}, N\left(a_{1}\right)=\left\{a_{2}, v_{3}, v_{4}, v_{5}, y_{1}, y_{2}\right\}, N\left(a_{2}\right)=\left\{a_{1}, v_{3}, v_{4}, v_{5}, y_{1}, y_{2}\right\}$, and $N\left(v_{4}\right)=\left\{a_{1}, a_{2}, v_{3}, v_{5}, y_{1}, y_{2}\right\}$. Since v_{5} and v_{6} do not have common neighbors, $N\left(v_{5}\right)=\left\{a_{1}, a_{2}, v_{4}, v_{6}\right\}$. Similarly, let $b_{1}, b_{2} \in N\left(v_{6}\right) \cap N\left(v_{7}\right)$. Let $T=$ $\left(N\left(b_{1}\right) \cup N\left(b_{2}\right) \cup N\left(v_{7}\right)-\left\{b_{1}, b_{2}, v_{7}\right\}\right)-\left\{v_{6}, v_{8}\right\}=\left\{z_{1}, z_{2}\right\}$. Then $N\left(z_{1}\right) \cap V\left(P_{10}\right)=$ $N\left(z_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{7}, v_{8}\right\}, G\left[\left\{b_{1}, b_{2}, z_{1}, z_{2}, v_{7}, v_{8}\right\}\right]$ is a K_{6}, and $N\left(v_{6}\right)=\left\{b_{1}, b_{2}, v_{5}, v_{7}\right\}$, $N\left(v_{7}\right)=\left\{b_{1}, b_{2}, z_{1}, z_{2}, v_{6}, v_{8}\right\}, N\left(b_{1}\right)=\left\{b_{2}, z_{1}, z_{2}, v_{6}, v_{7}, v_{8}\right\}$ and $N\left(b_{2}\right)=\left\{b_{1}, z_{1}, z_{2}\right.$, $\left.v_{6}, v_{7}, v_{8}\right\}$ (see Figure 3).

Figure 3.

Now let us consider $N\left(v_{1}\right)$. Let $x \in N\left(v_{1}\right)-\left\{v_{2}\right\}$. Then $N(x) \cap\left\{a_{1}, a_{2}, b_{1}, b_{2}, v_{4}\right.$, $\left.v_{5}, v_{6}, v_{7}\right\}=\emptyset$. Since G has no 8-cycles, $x y_{1}, x y_{2} \notin E(G)$. If $x \notin N\left(v_{2}\right)$, then, by $(\mathrm{CF} 1), x v_{3} \notin E(G)$. Since $G\left[\left\{y_{1}, v_{3}, v_{4}\right\} \cup\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\} \cup\left\{v_{2}, v_{1}, x\right\}\right] \neq B(4,3)$, we have $x v_{8} \in E(G)$. Similarly, $x z_{1}, x z_{2} \in E(G)$. This would result in the 8cycle $v_{6} v_{7} v_{8} x z_{2} z_{1} b_{1} b_{2} v_{6}$. So $x \in N\left(v_{2}\right)$, and $N(x) \cap V\left(P_{10}\right) \subseteq\left\{v_{1}, v_{2}, v_{3}, v_{9}, v_{10}\right\}$ and $x z_{1}, x z_{2} \notin E(G)$.

Let $W=N\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)-\left\{v_{1}, v_{2}, v_{3}, a_{1}, a_{2}, v_{4}, y_{1}, y_{2}\right\}, W_{1}=\left\{x \mid x \in N\left(v_{1}\right) \cap\right.$ $\left.N\left(v_{2}\right) \cap N\left(v_{3}\right)\right\}, W_{2}=\left\{x \mid x \in N\left(v_{1}\right) \cap N\left(v_{2}\right)-N\left(v_{3}\right)\right\}$ and $W_{3}=\left\{x \mid x \in N\left(v_{2}\right) \cap\right.$ $\left.N\left(v_{3}\right)-N\left(v_{1}\right)\right\}$. Then $N\left(v_{2}\right)=W_{1} \cup W_{2} \cup W_{3} \cup\left\{v_{1}, v_{3}\right\}, N\left(v_{1}\right)=W_{1} \cup W_{2} \cup\left\{v_{2}\right\}$. Also, $G\left[W_{2} \cup\left\{v_{1}, v_{2}\right\}\right], G\left[W_{1} \cup W_{3} \cup\left\{v_{2}, v_{3}\right\}\right]$ are complete subgraphs in G, and $N\left(W_{1}\right)-W_{1}=W_{2} \cup W_{3} \cup\left\{v_{1}, v_{2}, v_{3}\right\}$. Thus $W_{1} \cup W_{2} \cup\left\{v_{2}\right\}$ is a cut in G. For $i=1,2,3$, let $w_{i}=\left|W_{i}\right|$. Since G is 4-connected, we have $w_{1}+w_{2} \geq 3$.

Since G is 4 -connected, $\left|N\left(W_{2}\right)-\left(W_{2} \cup\left\{v_{1}, v_{2}\right\}\right)\right| \geq 2$. Consider $W_{2}^{\prime}=N\left(W_{2}\right)-$ $\left(W_{1} \cup W_{3} \cup\left\{v_{1}, v_{2}, v_{3}\right\}\right)$. If $W_{2}^{\prime}=\emptyset$, then $W_{3} \cup\left\{v_{3}\right\}$ is a cut in G, and so $w_{3} \geq 3$. Thus $w_{1}+w_{2}+w_{3} \geq 6$. Therefore, $G\left[W \cup\left\{v_{1}, v_{2}, v_{3}\right\}\right]$ must contain an 8 -cycle, a contradiction. So $W_{2}^{\prime} \neq \emptyset$. Let $d \in W_{2}^{\prime}$ and $c \in W_{2}$ with $c d \in E(G)$. Then $d v_{2}, d v_{3} \notin$ $E(G)$. Clearly, $N(d) \cap\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}=\emptyset$. Since G has no 8-cycles, $c y_{1}, d y_{1} \notin E(G)$. Since $G\left[\left\{y_{1}, v_{3}, v_{4}\right\} \cup\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\} \cup\left\{v_{2}, c, d\right\}\right] \neq B(4,3), d v_{8} \in E(G)$. Similarly, $d z_{1}, d z_{2} \in E(G)$. Thus $v_{6} b_{1} b_{2} v_{8} d z_{2} z_{1} v_{7} v_{6}$ is an 8 -cycle in G, a contradiction.
Case 2. $B(i, j)=B(5,2)$.
Assume that v_{5} and v_{6} do not have common neighbors. Let $a_{1}, a_{2} \in N\left(v_{4}\right) \cap$ $N\left(v_{5}\right)$. By (E1), $N\left(a_{i}\right) \cap\left\{v_{1}, v_{8}, v_{9}, v_{10}\right\}=\emptyset$. Since $v_{6} \notin N\left(a_{1}\right) \cup N\left(a_{2}\right)$, by (CF1), $v_{7} \notin N\left(a_{1}\right) \cup N\left(a_{2}\right)$. If $v_{2} a_{1} \in E(G)$, by (CF1), $v_{3} a_{1} \in E(G)$. Then $G\left[\left\{a_{1}, v_{4}, v_{5}\right\} \cup\left\{v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\} \cup\left\{v_{2}, v_{1}\right\}\right]$ is a $B(5,2)$, a contradiction. So $a_{1} v_{2} \notin$ $E(G)$. Similarly, $a_{2} v_{2} \notin E(G)$. Since G is $B(5,2)$-free, $N\left(a_{1}\right) \cap V\left(P_{10}\right)=N\left(a_{2}\right) \cap$ $V\left(P_{10}\right)=\left\{v_{3}, v_{4}, v_{5}\right\}$. By (E3), let $S=\left(N\left(\left\{a_{1}, a_{2}, v_{4}\right\}\right)-\left\{a_{1}, a_{2}, v_{4}\right\}\right)-\left\{v_{3}, v_{5}\right\}=$ $\left\{y_{1}, y_{2}\right\}, N\left(a_{1}\right)=\left\{v_{3}, v_{4}, v_{5}, y_{1}, y_{2}, a_{2}\right\}, N\left(a_{2}\right)=\left\{v_{3}, v_{4}, v_{5}, y_{1}, y_{2}, a_{1}\right\}$, and $N\left(v_{4}\right)=$ $\left\{v_{3}, v_{5}, a_{1}, a_{2}, y_{1}, y_{2}\right\}$. Also, $\left|N\left(y_{1}\right) \cap\left\{v_{3}, v_{5}\right\}\right|=1$. Notice that G has no 8-cycles. If $y_{1} v_{3} \in E(G)$, then, by (E1), (E2), $N\left(y_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{3}, v_{4}\right\}$, and so $G\left[\left\{y_{1}, v_{3}, v_{4}\right\} \cup\right.$ $\left.\left\{v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\} \cup\left\{v_{2}, v_{1}\right\}\right]=B(5,2)$; if $y_{1} v_{5} \in E(G)$, then, by (E1), (E2), $N\left(y_{1}\right) \cap$ $V\left(P_{10}\right)=\left\{v_{4}, v_{5}\right\}$, and so $G\left[\left\{y_{1}, v_{4}, v_{5}\right\} \cup\left\{v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\} \cup\left\{v_{3}, v_{2}\right\}\right]=B(5,2)$, a contradiction.

Assume that v_{5} and v_{6} have one common neighbor. Let $a_{1} \in N\left(v_{5}\right) \cap N\left(v_{6}\right)$, $a_{2} \in N\left(v_{4}\right) \cap N\left(v_{5}\right)$ and $a_{3} \in N\left(v_{6}\right) \cap N\left(v_{7}\right)$. Then $a_{2} v_{6} \notin E(G)$. By (E1) and (CF1), $N\left(a_{2}\right) \cap V\left(P_{10}\right) \subseteq\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Since $G\left[\left\{a_{2}, v_{4}, v_{5}\right\} \cup\left\{v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\} \cup\left\{v_{1}, v_{2}\right\}\right]=$ $B(5,2)$ if $a_{2} v_{2} \in E(G)$ and $G\left[\left\{a_{2}, v_{4}, v_{5}\right\} \cup\left\{v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\} \cup\left\{v_{2}, v_{3}\right\}\right]=B(5,2)$ if $a_{2} v_{3} \notin E(G)$, we have $N\left(a_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{3}, v_{4}, v_{5}\right\}$. Consider $S=N\left(\left\{a_{2}, v_{4}\right\}\right)-$ $\left\{a_{2}, v_{3}, v_{4}, v_{5}\right\}$. Let $y \in S$. By (E4), $y v_{4} \in E(G)$. We want to prove that $y \in$ $N\left(v_{3}\right) \cap N\left(v_{4}\right) \cap N\left(v_{5}\right)$. Otherwise, we have $y v_{4}, y v_{3} \in E(G)$, but $y v_{5} \notin E(G)$. By (E1) and (E2), $N(y) \cap\left\{v_{2}, v_{7}, v_{8}, v_{9}, v_{10}\right\}=\emptyset$, and so $y v_{6} \notin E(G)$ by (CF1). Since G is $B(5,2)$-free, $v_{1} y \in E(G)$. Let $w \in N\left(v_{2}\right)$. Thus we have an 8 -cycle $v_{1} w v_{2} v_{3} a_{2} v_{5} v_{4} y v_{1}$ or $v_{1} v_{2} w v_{3} a_{2} v_{5} v_{4} y v_{1}$, a contradiction. So, for any $y \in S, y \in N\left(v_{3}\right) \cap N\left(v_{4}\right) \cap N\left(v_{5}\right)$. Therefore, $\left\{v_{3}, v_{5}\right\}$ is a 2 -cut in G, a contradiction.

Therefore, v_{5} and v_{6} have more than one common neighbor. Let $a_{1}, a_{2} \in N\left(v_{5}\right) \cap$ $N\left(v_{6}\right)$. For $i=1,2$, by (E1), $N\left(a_{i}\right) \cap V\left(P_{10}\right) \subseteq\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$. If $v_{3} \in N\left(a_{i}\right)$, then by (CF1), $v_{4} \in N\left(a_{i}\right)$. Thus $G\left[\left\{a_{i}, v_{3}, v_{4}\right\} \cup\left\{v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\} \cup\left\{v_{1}, v_{2}\right\}\right]$ is a $B(5,2)$, a contradiction. So $v_{3} a_{i} \notin E(G)$. Similarly, $v_{8} a_{i} \notin E(G)$. So, for $i \in\{1,2\}$, $N\left(a_{i}\right) \cap V\left(P_{10}\right) \subseteq\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$.
Claim 2.1. Both $\left|N\left(a_{1}\right) \cap V\left(P_{10}\right)\right| \leq 3$ and $\left|N\left(a_{2}\right) \cap V\left(P_{10}\right)\right| \leq 3$.
Assume that $N\left(a_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$. By (E2), $N\left(a_{2}\right) \cap V\left(P_{10}\right)=$ $\left\{v_{5}, v_{6}\right\}$. Let $a_{3} \in N\left(v_{4}\right)$. Then $a_{3} v_{5} \notin E(G)$ (otherwise, by (E1) and (E2), $N\left(a_{3}\right) \cap\left\{v_{3}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\}=\emptyset$. Since G is $B(5,2)$-free, $v_{2} a_{3} \in E(G)$. This would result in the 8 -cycle $v_{2} a_{3} v_{5} v_{6} v_{7} a_{1} v_{4} v_{3} v_{2}$, a contradiction). By (CF1), $a_{3} v_{3} \in E(G)$. By (E1) and (E2), $N\left(a_{3}\right) \cap\left\{v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\}=\emptyset$. Since G is $B(5,2)$-free, $N\left(a_{3}\right) \cap\left\{v_{1}, v_{2}\right\} \neq \emptyset$. Let $x \in N\left(v_{1}\right)-\left\{v_{2}\right\}$. By (E1), $N(x) \cap\left\{v_{5}, v_{6}, v_{7}\right\}=\emptyset$. Since G has no 8-cycles, $N(x) \cap\left\{v_{8}, a_{1}, a_{2}\right\}=\emptyset$. Thus $N(x) \cap V\left(P_{10}\right) \subseteq\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{9}, v_{10}\right\}$.

We claim that $v_{1} a_{3} \in E(G)$. Otherwise, $N\left(a_{3}\right) \cap V\left(P_{10}\right)=\left\{v_{2}, v_{3}, v_{4}\right\}$. Consider $N\left(v_{1}\right)=\left\{v_{2}, c_{1}, c_{2}, \ldots, c_{t}\right\}(t \geq 3)$. By (E1), $c_{i} v_{3} \notin E(G)$. By (CF1), $c_{i} v_{4} \notin E(G)$. Since $G\left[\left\{a_{2}, v_{5}, v_{6}\right\} \cup\left\{v_{4}, v_{3}, v_{2}, v_{1}, c_{i}\right\} \cup\left\{v_{7}, v_{8}\right\}\right] \neq B(5,2), c_{i} v_{2} \in E(G)$. Thus $N\left(c_{i}\right) \cap V\left(P_{10}\right)=\left\{v_{1}, v_{2}\right\}$ and so $G\left[N\left(v_{1}\right) \cup\left\{v_{1}\right\}\right]$ is a complete subgraph in G. Since G is 4 -connected, there is a vertex z such that $z c_{i} \in E(G)$ but $z v_{2} \notin E(G)$ for some c_{i}. Since G has no 8 -cycles, $N(z) \cap\left\{a_{1}, a_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}=\emptyset$. So $G\left[\left\{a_{2}, v_{5}, v_{6}\right\} \cup\left\{v_{4}, v_{3}, v_{2}, c_{i}, z\right\} \cup\left\{v_{7}, v_{8}\right\}\right]=B(5,2)$, a contradiction. So $v_{1} a_{3} \in E(G)$.

Let $N\left(v_{1}\right)=\left\{v_{2}, a_{3}, d_{1}, \ldots, d_{s}\right\}(s \geq 2)$. Since G has no 8-cycles, $N\left(d_{i}\right) \cap$ $\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}=\emptyset$. Since $G\left[\left\{a_{2}, v_{5}, v_{6}\right\} \cup\left\{v_{4}, v_{3}, v_{2}, v_{1}, d_{i}\right\} \cup\left\{v_{7}, v_{8}\right\}\right] \neq B(5,2)$, we have $N\left(d_{i}\right) \cap\left\{v_{2}, v_{3}, v_{4}\right\} \neq \emptyset$. If $d_{i} v_{4} \in E(G)$, as $d_{i} v_{5} \notin E(G)$, we have $d_{i} v_{3} \in E(G)$. By (E2), $a_{3} v_{2}, d_{i} v_{2} \notin E(G)$. Thus the 6 -cycle $v_{1} d_{i} v_{4} a_{3} v_{3} v_{2} v_{1}$ can be extended to an 8cycle by considering the two neighbors of v_{2} which are not in $V\left(P_{10}\right)$, a contradiction. So $d_{i} v_{4} \notin E(G)$. By (CF1), $d_{i} v_{2} \in E(G)$. By (E2), $d_{i} v_{3} \notin E(G)$. Thus $G\left[N\left(v_{1}\right)\right]$ is a complete subgraph in G. The 7 -cycle $v_{1} d_{1} d_{2} v_{2} v_{3} v_{4} a_{3} v_{1}$ can be extended to an 8 -cycle by considering a neighbors of v_{3} which are not in $\left\{v_{2}, v_{4}, a_{3}\right\}$, a contradiction.
Claim 2.2. $\left|N\left(a_{1}\right) \cap V\left(P_{10}\right)\right|=2$ and $\left|N\left(a_{2}\right) \cap V\left(P_{10}\right)\right|=2$.
Assume that $N\left(a_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{4}, v_{5}, v_{6}\right\}$. By (E2), $a_{2} v_{7} \notin E(G)$. Thus $N\left(a_{2}\right) \cap$ $V\left(P_{10}\right) \subseteq\left\{v_{4}, v_{5}, v_{6}\right\}$. Consider $N\left(v_{7}\right)$. Let $y \in N\left(v_{7}\right)-\left(V\left(P_{10}\right) \cup\left\{a_{1}, a_{2}\right\}\right)$. Assume that $y v_{6} \in E(G)$. By (E1) and (E2), $N(y) \cap\left\{v_{5}, v_{3}, v_{2}, v_{1}, v_{10}\right\}=\emptyset$. Thus $y v_{4} \notin$ $E(G)$. Since $G\left[\left\{y, v_{6}, v_{7}\right\} \cup\left\{v_{5}, v_{4}, v_{3}, v_{2}, v_{1}\right\} \cup\left\{v_{8}, v_{9}\right\}\right]$ is not a $B(5,2), N(y) \cap$ $\left\{v_{8}, v_{9}\right\} \neq \emptyset$. If $y v_{9} \in E(G)$, then $G\left[\left\{y, v_{6}, v_{7}\right\} \cup\left\{v_{5}, v_{4}, v_{3}, v_{2}, v_{1}\right\} \cup\left\{v_{9}, v_{10}\right\}\right]$ is a $B(5,2)$, a contradiction. So $N(y) \cap V\left(P_{10}\right)=\left\{v_{6}, v_{7}, v_{8}\right\}$. Let $S=N(y) \cup N\left(v_{7}\right)-$ $\left\{v_{6}, v_{8}\right\}$, and let $w \in S$. By (E4), $w v_{7} \in E(G)$. Then $w \in N\left(v_{6}\right) \cap N\left(v_{7}\right) \cap N\left(v_{8}\right)$ (Otherwise, we have $w v_{6} \notin E(G)$ by considering the method we just used above for $y \in N\left(v_{7}\right)$. By (CF1), $w v_{8} \in E(G)$. Since G has no 8 -cycles, by (E1) and (E2), $N(w) \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{9}\right\}=\emptyset$. Since G is $B(5,2)$-free, $w v_{10} \in E(G)$. Thus the 7 -cycle $v_{6} y v_{8} v_{9} v_{10} w v_{7} v_{6}$ can be extended to an 8 -cycle by considering a neighbor of v_{9}, a contradiction). Hence, $\left\{v_{6}, v_{8}\right\}$ is a 2 -cut in G, a contradiction. So, for any $y \in N\left(v_{7}\right), y v_{6} \notin E(G)$.

Let $a_{3}, a_{4} \in N\left(v_{7}\right)-\left\{v_{6}, v_{8}\right\}$. Then, for $i=3,4, a_{i} v_{8} \in E(G)$, and $N\left(a_{i}\right) \cap$
$\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}=\emptyset$ by (E1) and (E2). Since G is $B(5,2)$-free, $N\left(a_{i}\right) \cap\left\{v_{9}, v_{10}\right\} \neq \emptyset$ $(i=3,4)$. Assume that $a_{3} v_{9} \notin E(G)$. Then $a_{3} v_{10} \in E(G)$. By (E2), $a_{4} v_{9} \notin E(G)$, and so $a_{4} v_{10} \in E(G)$. Thus the 6 -cycle $v_{7} v_{8} v_{9} v_{10} a_{3} a_{4} v_{7}$ can be extended to an 8 cycle by considering two neighbors of v_{9}, a contradiction. So $a_{3} v_{9} \in E(G)$. Similarly, $a_{4} v_{9} \in E(G)$. By (E1) and (E2), $N\left(a_{i}\right) \cap V\left(P_{10}\right)=\left\{v_{7}, v_{8}, v_{9}\right\}$. Then $a_{3} a_{4} \in E(G)$.

Let $S=N\left(\left\{a_{3}, a_{4}, v_{8}\right\}\right)-\left\{a_{3}, a_{4}, v_{8}, v_{7}, v_{9}\right\}$. Since G is 4 -connected, let $S=$ $\left\{c_{1}, c_{2}, \ldots, c_{t}\right\}(t \geq 2)$. For $i=1,2, \ldots, t$, by (E4), $c_{i} v_{8} \in E(G)$. By (CF1), we have either $c_{i} v_{7} \in E(G)$ or $c_{i} v_{9} \in E(G)$, and so $t=2$. Furthermore, $c_{i} v_{7} \notin E(G)$ (otherwise, $N\left(c_{i}\right) \cap V\left(P_{10}\right)=\left\{v_{7}, v_{8}, v_{9}\right\}$ and so $\left\{c_{1}, c_{2}, v_{7}, v_{9}\right\}-\left\{c_{i}\right\}$ is a 3 -cut in G, a contradiction). Thus $G\left[\left\{a_{3}, a_{4}, v_{8}, v_{9}, c_{1}, c_{2}\right\}\right]$ is a complete subgraph in $G, N\left(a_{3}\right)=$ $\left\{v_{7}, v_{8}, v_{9}, a_{4}, c_{1}, c_{2}\right\}, N\left(a_{4}\right)=\left\{v_{7}, v_{8}, v_{9}, a_{3}, c_{1}, c_{2}\right\}, N\left(v_{8}\right)=\left\{v_{7}, v_{9}, a_{3}, a_{4}, c_{1}, c_{2}\right\}$. Since G has no 8 -cycles, by (E1) and (E2), $N\left(c_{i}\right) \cap\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{10}\right\}=\emptyset$ ($i=1,2$).

For $i=1,2$, consider $C_{i}=N\left(c_{i}\right)-\left\{v_{8}, v_{9}, a_{3}, a_{4}, c_{1}, c_{2}\right\}$. Since G is 4-connected, $C_{i} \neq \emptyset$. Let $d_{i} \in C_{i}$. Since G has no 8 -cycles, $C_{1} \cap C_{2}=\emptyset$, and there are no edges between C_{1} and C_{2}. Thus $d_{1} d_{2} \notin E(G)$. Let $e_{i} \in N\left(d_{i}\right)-\left\{c_{i}\right\}$. Since G has no 8 -cycles, e_{1} and e_{2} are different vertices, $e_{1} e_{2} \notin E(G), N\left(e_{1}\right) \cap N\left(e_{2}\right)=\emptyset$, $N\left(d_{i}\right) \cap\left\{v_{3}, v_{4}, \ldots, v_{9}\right\}=\emptyset$ and $N\left(e_{i}\right) \cap\left\{v_{4}, v_{5}, \ldots, v_{9}\right\}=\emptyset$. Since $G\left[\left\{c_{i}, v_{8}, v_{9}\right\} \cup\right.$ $\left.\left\{v_{7}, v_{6}, v_{5}, v_{4}, v_{3}\right\} \cup\left\{d_{i}, e_{i}\right\}\right]$ is not a $B(5,2), e_{i} v_{3} \in E(G)$, a contradiction. So Claim 2.2 holds.

By Claim 2.2, we have $N\left(a_{1}\right) \cap V\left(P_{10}\right)=N\left(a_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{5}, v_{6}\right\}$. Actually, for any $x \in N\left(v_{5}\right) \cap N\left(v_{6}\right), N(x) \cap V\left(P_{10}\right)=\left\{v_{5}, v_{6}\right\}$. Let $y \in N\left(v_{4}\right)$. Assume that $y v_{5} \in E(G)$. Then $y v_{6} \notin E(G)$ by Claim 2.2. By (E1) and (E2), $N(y) \cap$ $\left\{v_{1}, v_{8}, v_{9}, v_{10}\right\}=\emptyset$. Thus $y v_{7} \notin E(G)$. Since $G\left[\left\{y, v_{4}, v_{5}\right\} \cup\left\{v_{6}, \ldots, v_{10}\right\} \cup\left\{v_{2}, v_{3}\right\}\right] \neq$ $B(5,2), N(y) \cap\left\{v_{2}, v_{3}\right\} \neq \emptyset$. Notice that $G\left[\left\{y, v_{4}, v_{5}\right\} \cup\left\{v_{6}, \ldots, v_{10}\right\} \cup\left\{v_{1}, v_{2}\right\}\right]$ would be a $B(5,2)$ if $y v_{2} \in E(G)$. So $y v_{2} \notin E(G)$ and then $y v_{3} \in E(G)$. Consider $S=N(y) \cup N\left(v_{4}\right)-\left\{v_{3}, v_{5}\right\}$, and let $z \in S$. By (E4), $z \in N\left(v_{4}\right)$. Next we want to prove that $z \in N\left(v_{3}\right) \cap N\left(v_{4}\right) \cap N\left(v_{5}\right)$. Otherwise, we have $z v_{5} \notin E(G)$ and $z v_{3} \in E(G)$. By (E1) and (E2), $N(z) \cap\left\{v_{2}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\}=\emptyset$. If $z v_{1} \in E(G)$, then the 7 -cycle $v_{1} v_{2} v_{3} y v_{5} v_{4} z v_{1}$ can be extended to an 8 -cycle by considering a neighbor of v_{2}. This tells us that $z v_{1} \notin E(G)$. Thus $G\left[\left\{z, v_{3}, v_{4}\right\} \cup\left\{v_{5}, \ldots, v_{9}\right\} \cup\left\{v_{1}, v_{2}\right\}\right]$ is a $B(5,2)$, a contradiction. Thus $z \in N\left(v_{3}\right) \cap N\left(v_{4}\right) \cap N\left(v_{5}\right)$, and so $\left\{v_{3}, v_{5}\right\}$ is a 2-cut in G, a contradiction. So, for any $y \in N\left(v_{4}\right), y v_{5} \notin E(G)$.

Let $N\left(v_{4}\right)-\left\{v_{3}, v_{5}\right\}=\left\{c_{1}, c_{2}, \ldots, c_{t}\right\}(t \geq 2)$. Then $c_{i} v_{5} \notin E(G), c_{i} v_{3} \in E(G)$ for $i=1,2, \ldots, t$, and $c_{i} c_{j} \in E(G)$ for $1 \leq i<j \leq t$. By (E1) and (E2), $N\left(c_{i}\right) \cap$ $\left\{v_{7}, v_{8}, v_{9}, v_{10}\right\}=\emptyset$. By (CF1), $c_{i} v_{6} \notin E(G)$. If $c_{i} v_{1} \in E(G)$ for some i, then the cycle $v_{1} c_{i} c_{i+1} \ldots c_{t} c_{1} \ldots c_{i-1} v_{4} v_{3} v_{2} v_{1}$ can be extended to an 8 -cycle by considering neighbors of v_{2}. So, for $i=1,2, \ldots, t, c_{i} v_{1} \notin E(G)$. Thus $c_{i} v_{2} \in E(G)$ since $G\left[\left\{c_{i}, v_{3}, v_{4}\right\} \cup\left\{v_{5}, \ldots, v_{10}\right\} \cup\left\{v_{1}, v_{2}\right\}\right] \neq B(5,2)$. Similarly, $\left|N\left(v_{7}\right) \cap N\left(v_{8}\right) \cap N\left(v_{9}\right)\right| \geq$ 2. Let $d_{1}, d_{2} \in N\left(v_{7}\right) \cap N\left(v_{8}\right) \cap N\left(v_{9}\right)$. Then $d_{1} d_{2} \in E(G)$.

Consider $S=N\left(\left\{c_{1}, c_{2}, \ldots, c_{t}, v_{3}\right\}\right)-\left\{c_{1}, c_{2}, \ldots, c_{t}, v_{2}, v_{3}, v_{4}\right\}$, and let $w \in S$. Then $w v_{4} \notin E(G)$. By (E4), $w v_{3} \in E(G)$. By (CF1), $w v_{2} \in E(G)$. By (E1) and (E2), $N(w) \cap\left\{v_{1}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}=\emptyset$. Let $V_{1}=N\left(v_{1}\right)-\left\{v_{2}\right\}=\left\{e_{1}, e_{2}, \ldots, e_{s}\right\}(s \geq$
3). Since G has no 8 -cycles, $N\left(e_{i}\right) \cap\left\{c_{1}, \ldots, c_{t}, w, v_{3}, v_{4}, \ldots, v_{7}\right\}=\emptyset$. Considering $G\left[\left\{w, v_{2}, v_{3}\right\} \cup\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\} \cup\left\{v_{1}, e_{i}\right\}\right]$, we have $N\left(e_{i}\right) \cap\left\{v_{2}, v_{8}\right\} \neq \emptyset$. Since G has no 8-cycles, $\left|\left\{e_{i} \mid e_{i} v_{8} \in E(G)\right\}\right| \leq 1$. (Otherwise, assume that $e_{1} v_{8}, e_{2} v_{8} \in$ $E(G)$. By (CF1), $e_{1} v_{9}, e_{2} v_{9} \in E(G)$. Thus $v_{7} v_{8} e_{1} v_{1} e_{2} v_{9} d_{2} d_{1} v_{7}$ is an 8 -cycle in G, a contradiction.) So we assume that, for $i=2,3, \ldots, s$, we have $e_{i} v_{8} \notin E(G)$, and so $e_{i} v_{2} \in E(G)$.

Let $V_{2}=N\left(\left\{e_{2}, \ldots, e_{s}\right\}\right)-\left\{e_{1}, e_{2}, \ldots, e_{s}, v_{1}, v_{2}\right\}$. Since G is 4-connected, $\left|V_{2}\right| \geq$ 2. Furthermore, there are two vertices in V_{2} adjacent to two different vertices in $\left\{e_{2}, \ldots, e_{s}\right\}$. Without loss of generality, we assume that $f_{2}, f_{3} \in V_{2}$ such that $e_{2} f_{2}, e_{3} f_{3} \in E(G)$. Then $f_{2} v_{1}, f_{3} v_{1} \notin E(G)$. For $i=2,3$, if $f_{i} v_{2} \in E(G)$, then $f_{i} v_{3} \in E(G)$. Thus $v_{1} e_{i} f_{i} v_{3} v_{4} c_{2} c_{1} v_{2} v_{1}$ is an 8 -cycle in G, a contradiction. So $f_{2} v_{2}, f_{3} v_{2} \notin E(G)$. Since G has no 8 -cycles, $N\left(f_{i}\right) \cap\left\{w, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}=\emptyset(i=$ 2,3). Notice that $G\left[\left\{w, v_{2}, v_{3}\right\} \cup\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\} \cup\left\{e_{i}, f_{i}\right\} \neq B(5,2)\right.$ for $i=2,3$, $f_{i} v_{8} \in E(G)$ and so $f_{i} v_{9} \in E(G)$. This would result in an 8 -cycle $v_{1} e_{2} f_{2} v_{8} v_{9} f_{3} e_{3} v_{2} v_{1}$, a contradiction. This finishes the proof of Case 2.
Case 3. $B(i, j)=B(6,1)$.
Claim 3.1. Let $x \in\left(N\left(v_{3}\right)-\left\{v_{2}, v_{4}\right\}\right)-N\left(v_{4}\right)$, and let $y \in\left(N\left(v_{8}\right)-\left\{v_{7}, v_{9}\right\}\right)-$ $N\left(v_{7}\right)$. Then $N(x) \cap V\left(P_{10}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $N(y) \cap V\left(P_{10}\right)=\left\{v_{8}, v_{9}, v_{10}\right\}$.

Since $x v_{4} \notin E(G)$, by (CF1), $x v_{2} \in E(G)$. By (E1), $N(x) \cap\left\{v_{6}, v_{7}, v_{8}, v_{9}\right\}=\emptyset$. By (CF1), $x v_{5} \notin E(G)$. Since G is $B(6,1)$-free, $x v_{1} \in E(G)$. By (CF2), $N(x) \cap V\left(P_{10}\right)=$ $\left\{v_{1}, v_{2}, v_{3}\right\}$. Similarly, $N(y) \cap V\left(P_{10}\right)=\left\{v_{8}, v_{9}, v_{10}\right\}$. Claim 3.1 holds.
Claim 3.2. Let $W_{3}=\left(N\left(v_{3}\right)-\left\{v_{2}, v_{4}\right\}\right)-N\left(v_{4}\right)$ and $V_{3}=\left(N\left(v_{8}\right)-\left\{v_{7}, v_{9}\right\}\right)-N\left(v_{7}\right)$. Then $W_{3}=V_{3}=\emptyset$.

Assume that $x \in W_{3}$. By Claim 3.1, $N(x) \cap V\left(P_{10}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$. Furthermore, if $x^{\prime} \in N\left(v_{1}\right) \cap N\left(v_{2}\right) \cap N\left(v_{3}\right)$, then $x^{\prime} v_{4} \notin E(G)$ (otherwise, $G\left[\left\{x^{\prime}, v_{3}, v_{4}\right\} \cup\right.$ $\left.\left\{v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\} \cup\left\{v_{1}\right\}\right]=B(6,1)$, a contradiction). So $W_{3}=N\left(v_{1}\right) \cap N\left(v_{2}\right) \cap$ $N\left(v_{3}\right)$. Let $W_{2}=N\left(v_{2}\right) \cap N\left(v_{1}\right)-N\left(v_{3}\right)$ and $W_{1}=\left(N\left(v_{1}\right)-\left\{v_{2}\right\}\right)-N\left(v_{2}\right)$, and let $w_{i}=\left|W_{i}\right|(i=1,2,3)$. Then $N\left(v_{2}\right)=W_{2} \cup W_{3} \cup\left\{v_{1}, v_{3}\right\}$, and $N\left(v_{1}\right)=$ $W_{1} \cup W_{2} \cup W_{3} \cup\left\{v_{2}\right\}$. Clearly, $G\left[W_{1} \cup\left\{v_{1}\right\}\right], G\left[W_{2} \cup\left\{v_{1}, v_{2}\right\}\right]$, and $G\left[W_{3}\right]$ are complete graphs.

Let $y \in N\left(W_{3}\right)-\left\{v_{1}, v_{2}, v_{3}\right\}$. By (E4), $y v_{4} \notin E(G)$. If $y v_{3} \in E(G)$, then $y \in W_{3}$; if $y v_{3} \notin E(G)$, then $y v_{1} \in E(G)$, and so $y \in W_{1} \cup W_{2}$. This imples that $N\left(W_{3}\right) \subseteq W_{3} \cup W_{1} \cup W_{2} \cup\left\{v_{1}, v_{2}, v_{3}\right\}$, and $W_{1} \cup W_{2} \cup\left\{v_{3}\right\}$ is a cut in G. So we have $w_{1}+w_{2} \geq 3$. As $N\left(v_{2}\right)=W_{2} \cup W_{3} \cup\left\{v_{1}, v_{3}\right\}$, it follows that $w_{2}+w_{3} \geq 2$. If $w_{2}=0$, then $w_{3} \geq 2$ and $w_{1} \geq 3$. i As $N\left(W_{3}\right)-\left(W_{3} \cup\left\{v_{1}, v_{2}, v_{3}\right\}\right) \subseteq W_{1} \cup W_{2}=W_{1}$, there is an edge joining W_{1} and W_{3}. Thus $G\left[W_{1} \cup W_{3} \cup\left\{v_{1}, v_{2}, v_{3}\right\}\right]$ contains an 8-cycle, a contradiction. So $w_{2} \geq 1$.

Consider $S=N\left(W_{2}\right)-\left(W_{1} \cup W_{2} \cup W_{3} \cup\left\{v_{1}, v_{2}, v_{3}\right\}\right.$. If $S=\emptyset$, then $W_{1} \cup\left\{v_{3}\right\}$ is a cut in G. Thus $w_{1} \geq 3$. It is clear that there is an edge joining W_{1} and $W_{2} \cup W_{3}$ (otherwise, $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a cut in G, a contradiction). So $G\left[W_{1} \cup W_{2} \cup W_{3} \cup\left\{v_{1}, v_{2}, v_{3}\right\}\right]$ contains an 8 -cycle, a contradiction. So $S \neq \emptyset$. Let $y_{1} \in W_{2}$. Also, let $z_{1} \in S$. Then $y_{1} v_{3}, z_{1} v_{1}, z_{1} v_{2} \notin E(G)$. By (E1), $N\left(y_{1}\right) \cap\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}=\emptyset$. By (CF1),
$y_{1} v_{4} \notin E(G)$. Since G has no 8-cycles, $N\left(z_{1}\right) \cap\left\{v_{5}, v_{6}, v_{7}\right\}=\emptyset$. If $z_{1} v_{3} \in E(G)$, since $z_{1} v_{2} \notin E(G)$, we have $z_{1} v_{4} \in E(G)$. By (E1), $N\left(z_{1}\right) \cap\left\{v_{8}, v_{9}, v_{10}\right\}=\emptyset$. Thus $G\left[\left\{z_{1}, v_{3}, v_{4}\right\} \cup\left\{v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\} \cup\left\{v_{2}\right\}\right]=B(6,1)$, a contradiction. So $z_{1} v_{3} \notin$ $E(G)$. By $(\mathrm{CF} 1), z_{1} v_{4} \notin E(G)$. Since $G\left[\left\{y_{1}, v_{1}, v_{2}\right\} \cup\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\} \cup\left\{z_{1}\right\}\right] \neq$ $B(6,1), z_{1} v_{8} \in E(G)$. By Claim 3.1, $N\left(z_{1}\right) \cap V\left(P_{10}\right)=\left\{v_{8}, v_{9}, v_{10}\right\}$.

Let $V_{2}=N\left(v_{9}\right) \cap N\left(v_{10}\right)-N\left(v_{8}\right)$ and $V_{1}=\left(N\left(v_{10}\right)-\left\{v_{9}\right\}\right)-N\left(v_{9}\right)$. As for the discussion on W_{1}, W_{2} and W_{3}, there are $y_{2} \in V_{2}$ and $z_{2} \in N\left(V_{2}\right)-\left(V_{1} \cup V_{2} \cup V_{3} \cup\right.$ $\left.\left\{v_{8}, v_{9}, v_{10}\right\}\right)$ such that $y_{2} z_{2} \in E(G)$ and $N\left(z_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$. Now we have an 8 -cycle $y_{1} z_{1} v_{8} v_{9} v_{10} y_{2} z_{2} v_{2} y_{1}$, a contradiction. So $W_{3}=\emptyset$. Similarly, $V_{3}=\emptyset$. Claim 3.2 holds.

By Claim 3.2, v_{3} and v_{4} have more than one common neighbor, and v_{7} and v_{8} have more than one common neighbor. Let $a_{1}, a_{2} \in N\left(v_{3}\right) \cap N\left(v_{4}\right)$, and let $b_{1}, b_{2} \in N\left(v_{7}\right) \cap N\left(v_{8}\right)$. By (E1), $N\left(a_{i}\right) \cap\left\{v_{7}, v_{8}, v_{9}, v_{10}\right\}=\emptyset(i=1,2)$. If $v_{1} \in N\left(a_{1}\right)$, then $N\left(a_{1}\right) \cap V\left(P_{10}\right) \subseteq\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and then G has a $B(6,1)=G\left[\left\{a_{1}, v_{3}, v_{4}\right\} \cup\right.$ $\left.\left\{v_{1}\right\} \cup\left\{v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\}\right]$, a contradiction. So $v_{1} \notin N\left(a_{1}\right)$. If $v_{6} \in N\left(a_{1}\right)$, by (E2), $a_{2} v_{5}, a_{2} v_{6}, a_{2} v_{2} \notin E(G)$. Thus $\left.G\left[\left\{a_{2}, v_{3}, v_{4}\right\} \cup\left\{v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\} \cup\left\{v_{2}\right\}\right\}\right]$ is a $B(6,1)$, a contradiction. So $a_{1} v_{6} \notin E(G)$, and $N\left(a_{1}\right) \cap V\left(P_{10}\right) \subseteq\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Similarly, $N\left(a_{2}\right) \cap V\left(P_{10}\right) \subseteq\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Since G is $B(6,1)$-free, by (E2), we have either $N\left(a_{1}\right) \cap V\left(P_{10}\right)=N\left(a_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{2}, v_{3}, v_{4}\right\}$ or $N\left(a_{1}\right) \cap V\left(P_{10}\right)=$ $N\left(a_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{3}, v_{4}, v_{5}\right\}$.

Suppose that $N\left(a_{1}\right) \cap V\left(P_{10}\right)=N\left(a_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{2}, v_{3}, v_{4}\right\}$. By (E3), let $T_{1}=$ $\left(N\left(\left\{a_{1}, a_{2}, v_{3}\right\}\right)-\left\{a_{1}, a_{2}, v_{3}\right\}\right)-\left\{v_{2}, v_{4}\right\}=\left\{y_{1}, y_{2}\right\}, N\left(a_{1}\right)=\left\{v_{2}, v_{3}, v_{4}, y_{1}, y_{2}, a_{2}\right\}$, $N\left(a_{2}\right)=\left\{v_{2}, v_{3}, v_{4}, y_{1}, y_{2}, a_{1}\right\}$, and $N\left(v_{3}\right)=\left\{v_{2}, v_{4}, a_{1}, a_{2}, y_{1}, y_{2}\right\}$. Also, $\mid N\left(y_{1}\right) \cap$ $\left\{v_{2}, v_{4}\right\} \mid=1$. If $y_{1} v_{4} \in E(G)$, then $G\left[\left\{y_{1}, v_{3}, v_{4}\right\} \cup\left\{v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\} \cup\left\{v_{2}\right\}\right]=$ $B(6,1)$; if $y_{1} v_{2} \in E(G)$, then $G\left[\left\{y_{1}, v_{2}, v_{3}\right\} \cup\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\} \cup\left\{v_{1}\right\}\right]=B(6,1)$, a contradiction. So $N\left(a_{1}\right) \cap V\left(P_{10}\right)=N\left(a_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{3}, v_{4}, v_{5}\right\}$. Similarly, $N\left(b_{1}\right) \cap V\left(P_{10}\right)=N\left(b_{2}\right) \cap V\left(P_{10}\right)=\left\{v_{6}, v_{7}, v_{8}\right\}$.

By (E3) again, let $T_{2}=\left(N\left(\left\{a_{1}, a_{2}, v_{4}\right\}\right)-\left\{a_{1}, a_{2}, v_{4}\right\}\right)-\left\{v_{3}, v_{5}\right\}=\left\{z_{1}, z_{2}\right\}$, $N\left(a_{1}\right)=\left\{v_{3}, v_{4}, v_{5}, z_{1}, z_{2}, a_{2}\right\}, N\left(a_{2}\right)=\left\{v_{3}, v_{4}, v_{5}, z_{1}, z_{2}, a_{1}\right\}$, and $N\left(v_{4}\right)=\left\{v_{3}, v_{5}\right.$, $\left.a_{1}, a_{2}, z_{1}, z_{2}\right\}$. Also, $\left|N\left(z_{i}\right) \cap\left\{v_{3}, v_{5}\right\}\right|=1(i=1,2)$. If $z_{i} v_{3} \in E(G)$, then

$$
G\left[\left\{z_{i}, v_{3}, v_{4}\right\} \cup\left\{v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\} \cup\left\{v_{2}\right\}\right]=B(6,1),
$$

a contradiction. So for $i=1,2, z_{i} v_{5} \in E(G)$. Since G has no 8 -cycles, $N\left(v_{3}\right)=$ $\left\{a_{1}, a_{2}, v_{2}, v_{4}\right\}$. Similarly, by (E3), let $T_{3}=\left(N\left(\left\{b_{1}, b_{2}, v_{7}\right\}\right)-\left\{b_{1}, b_{2}, v_{7}\right\}\right)-\left\{v_{6}, v_{8}\right\}=$ $\left\{w_{1}, w_{2}\right\}, N\left(b_{1}\right)=\left\{v_{6}, v_{7}, v_{8}, w_{1}, w_{2}, b_{2}\right\}, N\left(b_{2}\right)=\left\{v_{6}, v_{7}, v_{8}, w_{1}, w_{2}, b_{1}\right\}$, and $N\left(v_{7}\right)=$ $\left\{v_{6}, v_{8}, b_{1}, b_{2}, w_{1}, w_{2}\right\}$. Also, for $i=1,2, N\left(w_{i}\right) \cap\left\{v_{6}, v_{8}\right\}=\left\{v_{6}\right\}$. By (E1) and (E2), for $i=1,2, N\left(z_{i}\right) \cap V\left(P_{10}\right)=\left\{v_{4}, v_{5}\right\}$ and $N\left(w_{i}\right) \cap V\left(P_{10}\right)=\left\{v_{6}, v_{7}\right\}$. Also, we have $N\left(v_{8}\right)=\left\{v_{7}, v_{9}, b_{1}, b_{2}\right\}$. Since G is 4 -connected, let $c_{1} \in N\left(z_{1}\right)-\left\{v_{4}, v_{5}, a_{1}, a_{2}\right\}$ and $c_{2} \in N\left(z_{2}\right)-\left\{v_{4}, v_{5}, a_{1}, a_{2}\right\}$. Then $N\left(c_{i}\right) \cap V\left(P_{10}\right)=\emptyset(i=1,2)$.

Consider $N\left(v_{10}\right)$. Let $x \in N\left(v_{10}\right)-\left\{v_{9}\right\}$. Then $N(x) \cap\left\{v_{3}, v_{4}, v_{7}, v_{8}\right\}=\emptyset$. Since G has no 8 -cycles, $N(x) \cap\left\{v_{5}, v_{6}, z_{1}, z_{2}\right\}=\emptyset$, and $\left|N(x) \cap\left\{v_{3}, c_{1}, c_{2}\right\}\right| \leq$ 1. Without loss of generality, we assume that $c_{1} x \notin E(G)$. Since $G\left[\left\{z_{1}, v_{4}, v_{5}\right\} \cup\right.$ $\left.\left\{v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, x\right\} \cup\left\{c_{1}\right\}\right] \neq B(6,1), x v_{9} \in E(G)$. Since $x v_{8} \notin E(G)$, it follows
that $G\left[N\left(v_{10}\right)\right]$ is a complete graph. Since G is 4 -connected, let $d \in N\left(N\left(v_{10}\right)\right)-$ $\left\{v_{8}, v_{9}, v_{10}\right\}$. Also, we assume that $d x \in E(G)$, where $x \in N\left(v_{10}\right)$. Since G has no 8 -cycles, $\left|N(d) \cap\left\{c_{1}, c_{2}, v_{3}\right\}\right| \leq 1$. Hence $\left|(N(d) \cup N(x)) \cap\left\{c_{1}, c_{2}, v_{3}\right\}\right| \leq 2$. There is a vertex $u \in\left\{c_{1}, c_{2}, v_{3}\right\}$ with $u \notin N(d) \cup N(x)$. Thus $G\left[\left\{z_{1}, v_{4}, v_{5}\right\} \cup\left\{v_{6}, v_{7}, v_{8}, v_{9}, x, d\right\} \cup\right.$ $\{u\}]=B(6,1)$, a contradiction.

References

[1] J. A. Bondy and U.S. R. Murty, Graph Theory with Applications, Elsevier, New York, (1976).
[2] M. Ferrara, R. Gould, S. Gehrke, C. Magnant and F. Pfender, Pancyclicity of 4-connected \{claw, generalized net \}-free graphs, Discrete Math. 313 (2013), 460467.
[3] M. Ferrara, T. Morris and P. Wenger, Pancyclicity of 4-connected, claw-free, P_{10}-free graphs, J. Graph Theory 71 (2012), 435-447.
[4] R. Gould, T. Łuczak and F. Pfender, Pancyclicity of 3-connected graphs: pairs of forbidden subgraphs, J. Graph Theory 47 (2004), 183-202.
[5] H.-J. Lai, M. Zhan, T. Zhang and J. Zhou, Pancyclicity of 4-connected $\left\{K_{1,3}, Z_{8}\right\}$ free graphs, Graphs Combin. 35 (2019), 67-89.
[6] M. M. Matthews and D.P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, J. Graph Theory 8 (1984), 139-146.
[7] W. Xiong, H.-J Lai, X. Ma, K. Wang and M. Zhang, Hamilton cycles in 3connected claw-free and net-free graphs, Discrete Math. 313 (2013), 784-795.
(Received 30 Nov 2018; revised 10 Jan 2020)

