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Abstract

The graph G with list assignment L satisfies Hall’s condition (“is Hall”,
for short) if for each subgraph H of G, the inequality |V (H)| ≤∑

σ∈C α(H(σ, L)) is satisfied, where C is the set of colors and α(H(σ, L))
is the independence number of the subgraph of H induced by the set of
vertices having color σ in their lists. This idea is a generalization of Hall’s
Marriage Theorem and provides a necessary (but not sufficient) condition
for a graph to admit a proper list coloring. This paper affirmatively an-
swers a question posed by Bobga et al. in 2011: If G is a graph that is not
Hall k-extendible for some k ≥ χ(G) but is Hall (k + 1)-extendible, is it
possible that G could fail to be Hall (k+m)-extendible for some m ≥ 2?
We also explore extending Hall precolorings with extra colors. We show
that any Hall k-precoloring of a graph G is (k + χ(G) − 1)-extendible.
However, we show that for each k ≥ 3, there exists a k-colorable graph
with a Hall k-precoloring that cannot be extended with k + 1 colors.

1 Introduction

Throughout this paper, G is a finite, simple graph with vertex set V (G) and edge
set E(G). For U ⊆ V (G), we shall use G[U ] to denote the subgraph of G induced
by U . Additionally α(G), δ(G), ∆(G), χ(G), shall denote the independence number,
minimum degree, maximum degree, and chromatic number of G respectively. Let
degG(v) denote the degree of the vertex v in the graph G. For any U ⊆ V (G) and
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any subgraph H of G, let NH(U) denote the set of vertices in H that are adjacent
in G to at least one vertex in U . Let [m] denote the set {1, . . . ,m}. We refer the
reader to West [18] for any notation not defined here.

A k-precoloring of G is a proper k-coloring of G[U ] where U ⊆ V (G). The col-
oring, say φ, can be extended (or is extendible) if there exists a proper k-coloring
θ : V (G) → [k] where θ(v) = φ(v) for all v ∈ U . Conditions under which a pre-
coloring of the vertices of a graph extends to a proper coloring have been studied
extensively (see for example [1, 2, 3, 4, 13, 16]), with much of the literature focused
on minimum distance requirements between precolored vertices. In this paper, we
investigate conditions under which precolorings of graphs satisfying an obvious nec-
essary condition called Hall’s condition can be extended. This continues the work
of Holliday et al. [11, 12] and answers the final question in a set of three raised by
Bobga et al. [5].

To state these questions, we first need several definitions. If C is an infinite set
of colors (the palette) and L is a set of finite subsets of C, then a list assignment
to G is a function L : V (G) → L. The list assignment L is a k-assignment to G
if |L(v)| ≥ k for all v ∈ V (G). Given a list assignment L of G with palette C, an
L-coloring of G is a function φ : V (G) → C such that φ(v) ∈ L(v) for every vertex
v. An L-coloring φ is proper if each color class induces an independent set. If G has
a proper L-coloring, we say G is L-colorable.

The following generalization of Philip Hall’s 1935 Marriage Theorem ([8]) ap-
plied to list assignments of graphs was first introduced in a 1990 paper by Hilton
and Johnson [9] (see also [5]). Suppose that φ is an L-coloring of G for some list
assignment L with a palette C and let H be any subgraph of G. For each σ ∈ C,
consider φ−1(σ) ∩ V (H), the set of all vertices in H given color σ under φ, and let
H(σ, L) be the subgraph of H induced by all vertices of H having σ in their lists.
Then φ−1(σ)∩ V (H) is an independent set of vertices in H(σ, L), which leads to the
following observation and related definitions:

Observation 1.1. If G is L-colorable, then for every subgraph H of G, we have

|V (H)| ≤
∑
σ∈C

α(H(σ, L)). (∗)

We will refer to
∑

σ∈C α(H(σ, L)) as the Hall sum for (H,L) (or just H, when
the list assignment is clear).

Definition 1.2 (Hilton and Johnson, 1990 [9]). The graph G with list assignment L
satisfies Hall’s condition if, for each subgraph H of G, the inequality (∗) is satisfied.
For brevity, we say that (G,L) satisfies Hall’s condition. When (G,L) satisfies Hall’s
condition, we call L a Hall assignment. If H is a subgraph of G, then (H,L) will
denote the natural restriction of L to V (H).

Note that satisfying Hall’s condition is not sufficient for a graph to have a proper
list coloring. A well-known example is a cycle C4 = v1, v2, v3, v4, v1 with L(v1) = {1},
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L(v2) = {1, 3} , L(v3) = {2, 3}, and L(v4) = {1, 2}. Clearly (C4, L) satisfies Hall’s
condition but C4 is not L-colorable.

In 2011, Bobga et al. [5] began investigating Hall’s condition in the context of
precoloring extensions using the natural relationship between precoloring extensions
and list coloring.

Definition 1.3. For V0 ⊆ V (G), a k-precoloring φ : V0 → [k] of a graph G is a Hall
k-precoloring if Lφ is a Hall assignment (meaning (G,Lφ) satisfies Hall’s condition),
where Lφ is the natural list assignment associated with φ:

Lφ(x) =

{
{φ(x)} if x ∈ V0
[k] \ {φ(y) : y ∈ NG(x) ∩ V0} if x /∈ V0.

A graph G is Hall k-extendible if every Hall k-precoloring is extendible. Furthermore,
G is Hall chromatic extendible if G is Hall χ(G)-extendible and G is total Hall
extendible if G is Hall k-extendible for all k ≥ χ(G).

A fundamental result is the following:

Theorem 1.4 (Bobga et al., 2011 [5]). Let G be a graph.

1. G is Hall k-extendible for all k ≥ ∆(G) + 1.

2. G is Hall k-extendible if and only if every component of G is Hall k-extendible.

3. Let φ : V0 → [k] be a k-precoloring of G, and let G′ = G[V \ V0]. Then (G,Lφ)
satisfies Hall’s condition if and only if (G′, Lφ) satisfies Hall’s condition.

The issue of Hall extendibility is nuanced, as shown by the following result:

Theorem 1.5 (Bobga et al., 2011 [5]). All bipartite graphs are Hall chromatic ex-
tendible, but for all k ≥ 3, there exists a bipartite graph that is not Hall k-extendible.

Also, a graph may fail to be Hall k-extendible for k < χ(G). In Figure 1, the
empty 3-precoloring is a Hall 3-precoloring, but the chromatic number of the graph
is 4. This is the reason that total Hall extendibility only refers to Hall k-extendibility
for k ≥ χ(G).

The authors of [5] suggested three important questions for further study:

Question 1 Are there examples of graphs that are Hall k-extendible but not Hall
(k + 1)-extendible for some k ≥ 3?

Question 2: Let G be a connected graph that is neither complete nor an odd cycle.
Is it true that G is Hall ∆(G)-extendible?

Question 3: If G is a graph that is not Hall k-extendible for some k ≥ χ(G), but
is Hall (k + 1)-extendible, is it possible that G could fail to be Hall (k + m)-
extendible for some m ≥ 2?
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Figure 1: This graph is 4-chromatic, but the empty 3-precoloring φ is a Hall 3-
precoloring.

Questions 1 and 2 have been answered affirmatively; see [11, 12]. In Section 2 of
this paper, we prove the following theorem, which affirmatively answers Question 3.

Theorem 1.6 (Main Result 1). For every k ≥ 3, there exists a connected k-chromatic
graph that is Hall (k+1)-extendible, but is neither Hall k-extendible nor Hall (k+2)-
extendible.

Inspired by precoloring extension results in which k-precolorings are extended
with k + r colors for small values of r (see for example [13]), Section 3 investigates
extending Hall k-precolorings with small numbers of “extra” colors. The results in
this area are primarily negative; it seems that requiring Hall’s condition be satisfied
has little effect on the number of extra colors that may be needed. In particular, we
prove the following:

Theorem 1.7 (Main Result 2). For each k ≥ 3, there exists a k-colorable graph
having a Hall k-precoloring that cannot be extended with k + 1 colors.

2 The Hall spectrum

Since graphs may be Hall k-extendible but not Hall (k+ 1)-extendible, the following
definition was introduced:

Definition 2.1 (Holliday et al., 2016 [12]). Let G be a graph such that χ(G) ≤
∆(G). The Hall spectrum of G is the binary vector h(G) = [h0, . . . , hβ] where
β = ∆(G)− χ(G) and for each i ∈ {0, . . . , β},

hi =

{
1 if G is Hall (χ(G) + i)-extendible

0 otherwise.

Questions 1–3 mentioned in the introduction can be rephrased in terms of Hall
spectra.
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Question 1: Are there examples of non-bipartite graphs whose Hall spectra contain
a one followed by a zero?

Question 2: Does the Hall spectrum of every graph end in a one?

Question 3: Does there exist a graph whose Hall spectrum has non-consecutive
zeros?

As mentioned previously, the answer to the first two questions was shown to be
“yes”. The main result in this section provides an affirmative answer to Question 3
as well; we will prove several smaller results along the way. We first present some
background definitions and results which will be used throughout the paper.

Theorem 2.2 (Hilton and Johnson, 1990 [9]). If L is a χ(G)-assignment to G, then
(G,L) is a Hall assignment.

Theorem 2.3 (Hilton and Johnson, 1990 [9]). A graph G with list assignment L
satisfies Hall’s condition if and only if (∗) holds for each connected induced subgraph
H of G.

Thus if (G,L) does not satisfy (i.e., fails) Hall’s condition, then there exists some
connected induced subgraph H of G such that (H,L) does not satisfy the inequality
(∗).

Definition 2.4 (Hilton and Johnson, 1990 [9]). The Hall number of a graph G is the
smallest positive integer k such that whenever L is a k-assignment to G and (G,L)
satisfies Hall’s condition, G is L-colorable. The Hall number of G is denoted h(G).

In other words, h(G) is the smallest positive integer such that Hall’s condition on
k-assignments is both necessary and sufficient for the existence of a proper L-coloring
of G. (We use the notation h(G) for the Hall spectrum of G to distinguish it from the
notation h(G), which is the Hall number of G.) The following result characterizes
graphs with Hall number equal to one.

Theorem 2.5 (Hilton and Johnson, 1990; Hilton et al., 1996 [9, 10]). The following
statements are equivalent:

1. h(G) = 1.

2. Every block (maximal 2-connected subgraph) of G is a clique.

3. G contains no induced cycle Cn, n ≥ 4, nor an induced copy of K4 − e (that
is, K4 with an edge deleted).

Definition 2.6 (Holliday et al., 2016 [12]). Let L be a Hall assignment to a graph
G and let σ ∈ C. A vertex v ∈ G(σ, L) is called a mandatory witness for color σ for
the list L if the list assignment L′ created from L by removing σ from L(v) is not a
Hall assignment to G.
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Theorem 2.7 (Holliday et al., 2016 [12]). If any vertex is a mandatory witness for
a color in a Hall assignment L to G, then (∗) is satisfied with equality on (G,L).
Furthermore, for any Hall assignment to a graph, a vertex can be a mandatory witness
for at most one color.

We also use the following well-known result:

Theorem 2.8 (Erdős et al., 1980 [7]). If L is any 2-assignment to a path P , then
P is L-colorable.

Our first results leading to Question 3 involve how a graph’s Hall spectrum is
related to that of its connected components.

Recall that if G1 and G2 are disjoint graphs, then the union of G1 and G2 is the
graph denoted by G1 ∪G2, where V (G1 ∪G2) = V (G1) ∪ V (G2) and E(G1 ∪G2) =
E(G2)∪E(G2). When χ(G1) = χ(G2) ≤ ∆(G1) = ∆(G2), we shall use h(G1)◦h(G2)
to denote the component-wise product (or Hadamard product) of the Hall spectra
h(G1) = [f0, . . . , fα] and h(G2) = [g0, . . . , gα]. That is, h(G1) ◦ h(G2) = [h0, . . . , hα],
where hi = fi · gi for all i ∈ {0, . . . , α}.

The following simple observation follows immediately from Definition 2.1 and
Theorem 1.4 (statement 2).

Observation 2.9. If G1 and G2 are graphs satisfying χ(G1) = χ(G2) ≤ ∆(G1) =
∆(G2), then

h(G1 ∪G2) = h(G1) ◦ h(G2).

Connecting two components with a sufficiently long path preserves this property:

Definition 2.10. Let G1 and G2 be graphs, v1 ∈ V (G1) and v2 ∈ V (G2) be fixed
vertices, and P = x0, . . . , xt be a path of length t. Let G be the graph formed from
G1 ∪G2 ∪ P by adding two edges, v1x0 and v2xt. We shall say that G is formed by
tethering G1 and G2 with P at v1 and v2. If the choice of v1 and v2 is irrelevant, we
shall simply say that G is formed by tethering G1 and G2 with P .

Proposition 2.11. Suppose G1 and G2 are graphs that are not regular, with ∆(G1) =
∆(G2) and χ(G1) = χ(G2) ≥ 3. Let v1 ∈ V (G1) be a vertex with deg(v1) 6= ∆(G1)
and v2 ∈ V (G2) be a vertex with deg(v2) 6= ∆(G2). If G is a graph obtained by
tethering G1 and G2 with a path P = x0, . . . , xt at v1 and v2 and t ≥ 1, then
h(G) = h(G1) ◦ h(G2).

Proof. It suffices to show that G is Hall k-extendible if and only if both G1 and G2

are Hall k-extendible for all χ(G1) ≤ k ≤ ∆(G1).

Suppose first that both G1 and G2 are Hall k-extendible for some k ≥ χ(G1), and
fix a Hall k-precoloring φ of G. Since (G1, Lφ) and (G2, Lφ) satisfy Hall’s condition,
φ can be extended to G1 and to G2. Since t ≥ 1, each vertex of the new path P has
at most two colored neighbors, and k ≥ 3 implies that the coloring can be extended
greedily to V (P ).
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Now suppose G1 (or symmetrically G2) is not Hall k-extendible for some k ≥
χ(G1), and let φ : V0 → [k] be a Hall k-precoloring of G1 that does not extend.
Consider φ as a k-precoloring of G. Clearly φ does not extend to G. It remains to
show that φ is a Hall precoloring of G, and we do so by verifying (∗) for all subgraphs
of G.

Delete x0, the vertex of P adjacent to v1 ∈ V (G1). Each component of G − x0
satisfies Hall’s condition: G1 by hypothesis, and G2 ∪ P − x0 because all lists are
[k] and G2 ∪ P is k-colorable. Hence any subgraph of these components satisfies
(∗). Let H be a subgraph of G containing x0; we show that H satisfies (∗). By the
previous observation, φ is a Hall precoloring of H−x0, and thus H−x0 satisfies (∗).
Further, we claim x0 can contribute at least one more to the Hall sum for H. If v1
is precolored, then |Lφ(x0)| ≥ 2, and since by Theorem 2.7, x1 can be a mandatory
witness for at most one color when φ is viewed as a Hall precoloring of H − x0, the
vertex x0 can contribute to the independence number of at least one color σ ∈ Lφ(x0).
If v1 is not precolored, then |Lφ(x0)| ≥ 3, and similarly, v1 and x1 are mandatory
witnesses for at most one color when φ is viewed as a Hall precoloring of H − x0,
leaving at least one color to which x0 can contribute. Hence, (H,Lφ) satisfies (∗)
and thus (G,Lφ) satisfies Hall’s condition.

Note 2.12. When χ(G1) 6= χ(G2) or ∆(G1) 6= ∆(G2), results similar to Obser-
vation 2.9 hold for G1 ∪ G2 and Proposition 2.11 for G (with some restrictions),
respectively, but the length of the Hall spectrum of the resulting graph must be ad-
justed to accommodate its maximum degree and chromatic number. For example,
suppose h(G1) = [f0, f1, f2] and h(G2) = [g0, g1, g2, g3, g4]. If it were the case that
χ(G1) = χ(G2) (so ∆(G1) < ∆(G2)), then h(G1 ∪G2) = [f0g0, f1g1, f2g2, g3, g4]. On
the other hand, if it were the case that ∆(G1) = ∆(G2) (so χ(G2) < χ(G1)), then
h(G1 ∪ G2) = [f0g2, f1g3, f2g4]. We omit the details of this natural extension of the
proof of Proposition 2.11.

For the remainder of this section, we will let Gk denote the graph in Figure 2, k ≥
3. We will show Gk is a k-chromatic graph with Hall spectrum h(Gk) = [h0, 1, 0, . . . ],
where h0 is currently unknown. (We conjecture it to be 1, but the second and third
positions are the only ones of interest for our purposes, so we have not verified the
conjecture.) We should mention that the results of Theorem 2.15 and Lemmas 2.13–
2.22 all hold in the case k = 2, though some proofs require additional care, and as
the focus in answering Question 3 will be on k ≥ 3, they are omitted.

Lemma 2.13. For each k ≥ 3, χ(Gk) = k.

Proof. Since Gk contains a k-clique, it is not k − 1 colorable; we provide a proper
k-coloring φ. Let φ(x4) = φ(z) = 3 and φ(x1) = φ(x2) = φ(x3) = φ(u1) = φ(u2) =
1. The vertices {v1, v2, w1, . . . , wk−1, y1, . . . , yk} form an independent set which are
collectively only adjacent to vertices colored 1 or 3, so they can all be given color 2.
Finally, NGk

(u1) can be colored with colors 2 through k.

Note 2.14. For the remainder of this section we define X = {x1, . . . , xk+3}. The
graph family in [11] that provided an affirmative answer to Question 1 is exactly the
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Figure 2: The graph family G = {Gk : k ≥ 3}. The shaded sectors indicate that
each of the vertices u1, u2, x1, x2, and x3 dominate the clique Kk−1. In the proofs,
we use NGk

(u1) = V (Kk−1) = {x5, . . . , xk+3} and X = {x1, . . . , xk+3}.

subgraph of Gk from Figure 2 induced by the vertices in X with lists produced by
the following (k + 2)-precoloring ψ: ψ(u1) = 1, ψ(u2) = k + 2, ψ(v1) = 3, ψ(v2) = 2,
ψ(yj) = j+ 1 for each j ∈ {1, . . . , k}, and ψ(wi) = i+ 3 for each i ∈ {1, 2, . . . , k−1}.

The following theorem from [11] (rephrased in context of Gk from Figure 2) and
proof of Lemma 2.16 refer to the specific (k+2)-precoloring ψ described in Note 2.14
above.

Theorem 2.15 (Holliday et al., 2015 [11]). Let H be the subgraph of Gk induced
by the vertices in X and Lψ be the corresponding list-assignment resulting from the
(k+ 2)-precoloring ψ of Gk from Note 2.14. Then (H,Lψ) satisfies Hall’s condition,
but Gk − {z, x3} is not Lψ-colorable.

Lemma 2.16. For each k ≥ 3, the graph Gk is not Hall (k + 2)-extendible.

Proof. Let ψ be the (k+2)-precoloring ofGk from Note 2.14 and Lψ the corresponding
list assignment. Let G′k denote the subgraph of Gk induced by the set of uncolored
vertices: X ∪ {z}. Consider the restriction of Lψ to G′k. Let H be any connected
induced subgraph of G′k. If any of x1, x2, or x4 is not in V (H), then H is Lψ-
colorable, so (H,Lψ) satisfies (∗). Hence we can assume that x1x4 ∈ E(H), and let
V (H) = A ∪ B, where A ⊆ {x5, . . . , xk+3} and {x1, x4} ⊆ B ⊆ {x1, x2, x3, x4, z}.
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Note Lψ(xi) = {2, . . . , k + 1} for all 5 ≤ i ≤ k + 3 so the vertices of H in A can
collectively contribute k to the Hall sum. Since 1 ∈ Lψ(v) for all v ∈ B, k+2 ∈ Lψ(z),
and {x1, x2, x3} is an independent set, one can check that the vertices of H in B can
collectively contribute an additional |B| − 1 to the Hall sum. Hence,∑

σ∈[k+2]

α(H(σ, Lφ)) ≥ k + |B| − 1 ≥ |A|+ |B| = |V (H)|.

Therefore, (G′k, Lψ) and thus (Gk, Lψ) satisfies Hall’s condition. Finally, by Theo-
rem 2.15, G′k is not Lψ-colorable, so ψ cannot be extended.

Lemma 2.17. Suppose that k ≥ 3 and φ is a Hall (k + 1)-precoloring of Gk. If φ
extends to the subgraph of Gk induced by X ∪{z}, then φ extends to a proper (k+1)-
coloring of Gk. Furthermore, it is sufficient to extend the coloring to the subgraph
of Gk induced by X unless the vertices in {y1, . . . , yk} are precolored with k different
colors.

Proof. Suppose φ has been extended to X. Call this extension φ′, and consider
Lφ′ . To avoid considering cases, we view the lists on colored vertices as singleton
sets. Since degGk

(z) = k + 1, z can be colored from Lφ′(z) unless all k + 1 colors
appear in NGk

(z), which implies that the vertices in {y1, . . . , yk} were all precolored
different colors. The remaining vertices in V (Gk)− (X ∪ {z}) form an independent
set. None of their lists can be empty, since each vertex in this set has degree at most
k. Therefore φ can be extended to a proper (k + 1)-coloring of Gk.

Lemma 2.18. If every Hall (k + 1)-precoloring of Gk that precolors z extends to a
proper (k+ 1)-coloring of Gk, then every Hall (k+ 1)-precoloring of Gk extends to a
proper (k + 1)-coloring.

Proof. Let φ be a Hall (k + 1)-precoloring that does not precolor z and Lφ the
corresponding list-assignment. By Theorem 2.7, x3 is a mandatory witness for at
most one color.

Case 1: If |Lφ(z)| > 1, then color z with any color from its list for which x3
is not a mandatory witness (say σ) and update the lists on all vertices in NGk

(z).
Call this new coloring φ′. Suppose that (Gk, Lφ′) does not satisfy (∗) and let H be
the subgraph on the smallest number of vertices for which (∗) fails. Note that if H
contains a vertex y′ ∈ {y1, . . . , yk}, then by minimality H − {y′} satisfies (∗). As
x4 is a mandatory witness for at most one color and |Lφ′(y′)| ≥ 2, (H,Lφ′) satisfies
(∗). This contradiction implies that V (H) ∩ NGk

(z) ⊆ {x3}. Further, because x3
is not a mandatory witness for σ, it is also not in H. But then H fails (∗) for the
precoloring φ. Therefore (Gk, Lφ′) is a Hall (k + 1)-precoloring and thus extends to
a proper coloring.

Case 2: If |Lφ(z)| = 1, then without loss of generality, suppose Lφ(z) = {1}.
Therefore, all but one of the neighbors of z (we call this vertex a) is precolored. If
we replace Lφ(a) with Lφ(a) − {1}, then α(H(1, Lφ)) cannot change because a and
z cannot both contribute to that value. Thus a is not a mandatory witness for color
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1, so z can be precolored with 1, and (∗) is still satisfied. Therefore the coloring
extends by hypothesis.

Lemma 2.19. Suppose φ is a Hall (k + 1)-precoloring of Gk that precolors z, and
σ ∈ Lφ(x1) ∩ Lφ(x2) (including if φ(x1) = σ or φ(x2) = σ). If φ(z) = σ or u2
is uncolored with Lφ(x4) = {σ}, then there is some color τ 6= σ such that either
τ ∈ Lφ(x1) ∩ Lφ(x2) ∩ Lφ(x3), or Lφ(x3) = {τ} and φ(x4) = τ .

Proof. Let φ be as stated. We may assume φ(z) = σ, since if Lφ(x4) = {σ} and u2 is
not precolored, then the vertices in {y1, . . . , yk} must be precolored and use all colors
in [k + 1] − {σ}, implying φ(z) = σ. Now σ /∈ Lφ(x3), but since (Gk, Lφ) satisfies
Hall’s condition, Lφ(x3) 6= ∅. Hence there is some τ 6= σ ∈ Lφ(x3). (Note that
perhaps φ(x3) = τ .) Since (NGk

(x1) ∪ NGk
(x2)) − NGk

(x3) = {x4}, τ also appears
on Lφ(x1) ∩ Lφ(x2), unless φ(x4) = τ . Then either there is some τ ′ 6= τ such that
τ ′ ∈ Lφ(x1) ∩ Lφ(x2) ∩ Lφ(x3), or Lφ(x3) = {τ}.

Lemma 2.20. If φ is a Hall (k+1)-precoloring of Gk, then there is some σ ∈ [k+1]
that appears in at least two of the elements in {Lφ(x1), Lφ(x2), Lφ(x3)}. Further-
more, if there is exactly one such σ and it appears in exactly two of the elements in
{Lφ(x1), Lφ(x2), Lφ(x3)} (say on Lφ(x1) and Lφ(x2)), then all k+ 1 colors appear on
the union of the lists in X − {x1, x4} and X − {x2, x4}.

Proof. The subgraph induced by X − {x4} contains k + 2 vertices, so in order to
satisfy (∗), α(H(σ, Lφ)) ≥ 2 for some σ ∈ [k + 1]. Since {x1, x2, x3} are the only
independent vertices in X − {x4}, σ appears in at least two of the elements in
{Lφ(x1), Lφ(x2), Lφ(x3)}. If σ appears only in Lφ(x1) and Lφ(x2) and there are no
other colors shared by the elements of {Lφ(x1), Lφ(x2), Lφ(x3)}, then (∗) is satisfied
on the subgraphs induced by X−{x1, x4} and by X−{x2, x4} only if all k+1 colors
contribute to the Hall sum.

Lemma 2.21. If φ is a Hall (k + 1)-precoloring of Gk that precolors neither x1 nor
x2, then Lφ(x1) ∩ Lφ(x2) 6= ∅.

Proof. If Lφ(x1) ∩ Lφ(x2) = ∅, since NGk
(x1) and NGk

(x2) differ only at v1 and v2,
Lφ(x1) = {σ} and Lφ(x2) = {σ′} for σ 6= σ′; further, φ(v1) = σ′ and φ(v2) = σ. But
now {σ, σ′} ∩ Lφ(x3) = ∅, violating Lemma 2.20.

Lemma 2.22. For k ≥ 3, the graph Gk is Hall (k + 1)-extendible.

Proof. By Lemmas 2.17 and 2.18, we need only show that any Hall (k+1)-precoloring
of Gk that precolors z can be extended to Gk[X]. Therefore, let φ be a Hall (k+ 1)-
precoloring of Gk that precolors z and let Lφ be the corresponding list-assignment.
Suppose that A is the (possibly empty) set of t precolored vertices in NGk

(u1) (with-
out loss of generality, suppose they are colored 1, . . . , t) and B = NGk

(u1)− A. Ob-
serve that the vertices in B have identical lists. Let LB denote this common list and
let ` = |LB|. Because (Gk, Lφ) satisfies Hall’s condition, ` ∈ {k−1−t, k−t, k+1−t}.
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Observation 1: If φ extends to {x1, x2, x3, x4} so that at most `− |B| colors from
LB appear on {x1, x2, x3}, then φ extends to Gk[X].

Case 1: Suppose that ` = k − 1 − t, and without loss of generality, LB =
{t + 1, . . . , k − 1}. By Observation 1, it suffices to show that φ can be extended to
{x1, x2, x3, x4} so that the colors on {x1, x2, x3} are elements of the set {k, k + 1}.
Since Lφ satisfies (∗), each of x1, x2, and x3 have color k or k + 1 in their list (if any
are precolored, the list is {k} or {k+ 1}). They are independent of each other, so we
simultaneously color any uncolored vertices in {x1, x2, x3} with colors from {k, k+1},
giving x1 and x2 the same color if possible. Let φ′ be this extension of φ, and let Lφ′
be its associated list assignment. If x4 was precolored by φ, we are done. Otherwise,
all that remains is to color x4. Suppose that Lφ′(x4) = ∅. As (Gk, Lφ) satisfies Hall’s
condition, Lφ(x4) 6= ∅, so either φ′(x1) = φ′(x2) = k and Lφ(x4) = {k} (or k + 1,
symmetrically), or φ′(x1) = k, φ′(x2) = k+ 1 and Lφ(x4) ⊆ {k, k+ 1}. In the former
case, neither the subgraph of Gk induced by X − {x1, x3} nor the subgraph of Gk

induced by X − {x2, x3} will satisfy (∗) unless k + 1 ∈ Lφ(x1) ∩ Lφ(x2). Therefore
we can color x1 and x2 with color k + 1 instead, and now x4 can be colored k. In
the latter case, without loss of generality we can assume that k + 1 /∈ Lφ(x1) and
k /∈ Lφ(x2), for otherwise we would have colored x1 and x2 the same. However, this
forces φ(v1) = k + 1 and φ(v2) = k and so {k, k + 1} ∩ Lφ(x3) = ∅, a contradiction.
Hence φ extends to {x1, x2, x3, x4} in the required manner, and by Observation 1, φ
extends to Gk[X].

Case 2: Suppose that ` = k + 1− t. This implies that none of {u1, u2, x1, x2, x3}
are precolored. By Lemma 2.21, Lφ(x1) ∩ Lφ(x2) 6= ∅. Extend φ by coloring x1
and x2 with the same color (say σ), and coloring x3 with any color from Lφ(x3).
Now either x4 is precolored or x4 can be colored, unless Lφ(x4) = {σ}. If so, by
Lemma 2.19, there is some τ ∈ Lφ(x1) ∩ Lφ(x2) ∩ Lφ(x3); thus x1, x2, and x3 can be
recolored with τ , and x4 can be colored with σ. In either case, by Observation 1, φ
extends to Gk[X].

Case 3: Suppose that ` = k − t, and assume without loss of generality that
LB = {t + 1, . . . , k}. At least one vertex in {u1, u2, x1, x2, x3} has been precolored,
and any such vertex must have been precolored with k+1. Let Y = {x1, x2, x3}. Since
` = k− t, by Observation 1, it suffices to show that the vertices in {x1, x2, x3, x4} can
be colored in such a way that at most one color from LB is used on Y . We consider
two possibilities:

(a) The vertex x1 (or symmetrically x2) is precolored with k + 1. If k + 1 ∈ Lφ(x2)
(if φ(x2) = k + 1, then Lφ(x2) = {k + 1}), then coloring x2 with k + 1 leaves a
color available for x4. Coloring x3 with any available color then ensures that at
most one color from LB is used on Y . Hence we may assume k + 1 /∈ Lφ(x2).
This implies φ(v2) = k + 1, so k + 1 /∈ Lφ(x3). By Lemma 2.20, there is some
σ ∈ Lφ(x2) ∩ Lφ(x3). If Lφ(x4) 6= {σ}, then we can extend φ to {x1, x2, x3, x4}
such that σ is the only color in LB that appears on {x1, x2, x3}. If Lφ(x4) = {σ},
then at least k − 1 vertices in {y1, . . . , yk} must have been precolored, using
all colors in [k] − {σ}, implying φ(z) = k + 1 (since φ(x3) 6= σ). Since the
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neighborhoods of x2 and x3 differ only at x4 and z, Lφ(x2) = Lφ(x3). Now there
must be some σ′ ∈ Lφ(x3) ∩ Lφ(x2), where σ′ 6= σ, with which to color x2 and
x3 instead, otherwise (∗) fails on the subgraph of Gk induced by X − {x1}. In
either case, by Observation 1, φ extends to Gk[X].

(b) Neither x1 nor x2 is precolored. By Lemma 2.21, there exists σ ∈ Lφ(x1)∩Lφ(x2).

i. Suppose that σ /∈ Lφ(x3). Then the overlapping neighborhoods of x1, x2,
and x3 guarantee that φ(z) = σ. Now Lemma 2.19 implies that for some
τ 6= σ, either τ ∈ Lφ(x1)∩Lφ(x2)∩Lφ(x3), or Lφ(x3) = {τ} and φ(x4) = τ .
In the former case, color the vertices of Y with τ and x4 with σ, unless
σ /∈ Lφ(x4), in which case we must have φ(u2) = σ, hence σ = k + 1. Color
x1 and x2 with σ = k + 1 and x3 and x4 (if uncolored) with any available
color. In the latter case, due to the overlapping neighborhoods of x1, x2, and
x3, the color σ is the only color appearing more than once in the elements of
{Lφ(x1), Lφ(x2), Lφ(x3)}, and it appears exactly twice. Hence Lemma 2.20
implies that either τ = k + 1 or σ = k + 1. Color x1 and x2 with σ and x3
with τ . In either case, at most one color from LB appears on Y .

ii. Suppose that σ ∈ Lφ(x3). Then we color the vertices of Y with σ unless
L(x4) = {σ}. In this situation we note that φ(z) 6= σ, and φ(u2) = k + 1
(for otherwise, if u2 is uncolored, then all vertices in {y1, . . . , yk} must be
precolored different colors from [k + 1]− {σ}, forcing φ(z) = σ and thereby
σ /∈ Lφ(x3), a contradiction). Even further, φ(z) = k + 1 because at least
k − 1 of the vertices in y1, . . . , yk must be precolored and cover all colors in
[k]−{σ}, leaving only colors σ (impossible) or k+1 for the precolored vertex
z. If k+1 ∈ Lφ(x1)∩Lφ(x2), then we may color x1 and x2 with k+1 and color
x3 and x4 with σ. If there exists τ 6= σ such that τ ∈ Lφ(x1)∩Lφ(x2)∩Lφ(x3),
then we may color the vertices in Y with τ and x4 with σ. Finally, if (without
loss of generality) k+ 1 /∈ Lφ(x1) and Lφ(x1)∩Lφ(x2)∩Lφ(x3) = {σ}, then
Lφ(x1) = {σ} and so (∗) fails on the subgraph induced by {x1, x4}. To see
why x1 would have a singleton list, note that if there exists γ ∈ Lφ(x1)−{σ},
then γ ∈ Lφ(x3) for otherwise, the overlapping neighborhoods of x1 and x3
would force φ(z) = γ = k + 1, a contradiction to k + 1 /∈ Lφ(x1). Finally,
again by the overlapping neighborhoods of x1, x2, and x3 we must have
γ ∈ Lφ(x2). Hence, {σ, γ} ⊆ Lφ(x1) ∩ Lφ(x3) ∩ Lφ(x2), a contradiction.

Therefore, in all possible cases, at most one color from LB appears on Y .

Before we prove our main result in this section, we require the following theorem
and generalization:

Theorem 2.23 (Holliday et al., 2016 [12]). The Hall spectrum of the wheel graph Wn

having order n+ 1 is either h(Wn) = [1, 1, . . . , 1] if n is odd or h(Wn) = [0, 1, . . . , 1]
if n is even and n ≥ 10.
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Recall that if G1 and G2 are graphs, then the join of G1 and G2 is the graph
denoted by G1 +G2, where V (G1 +G2) = V (G1) ∪ V (G2) and

E(G1 +G2) = {uv : u ∈ V (G1) and v ∈ V (G2)} ∪ E(G1) ∪ E(G2).

Lemma 2.24. If G1 is a q-chromatic graph and G2 is not Hall k-extendible, then
G1 +G2 is not Hall (q + k)-extendible.

Proof. Let φG1 be a q-coloring of G1 using colors {1, . . . , q}, and let φG2 be a Hall
k-precoloring of G2 from {q + 1, q + 2, . . . , q + k} that does not extend to G2. Now
φG1∪φG2 is a Hall (q+k)-precoloring of G1+G2, since the only uncolored vertices are
in G2 and φG1 ∪ φG2 restricts to the Hall precoloring φG2 on G2. Further, φG1 ∪ φG2

is not extendible, since otherwise φG2 would be extendible to G2.

Note that Wn is simply the graph join K1+Cn. The following theorem generalizes
Theorem 2.23 for the first two positions of the Hall spectrum.

Theorem 2.25. For any q ≥ 1 and any even n ≥ 10, the graph join Kq + Cn has
Hall spectrum h(Kq + Cn) beginning [0, 1, . . . ].

Proof. Let G = Kq + Cn; note that χ(G) = q + 2. First we show that G is not
Hall (q + 2)-extendible. Observe that G can also be represented as G1 + G2, where
G1 = Kq−1 and G2 = Wn. Since G1 has chromatic number q − 1 and G2 is not Hall
3-extendible by Theorem 2.23, Lemma 2.24 implies that G is not (q+ 2)-extendible.

Next we show that G is Hall (q + 3)-extendible by induction on q, with The-
orem 2.23 establishing the case q = 1. Suppose that q > 1, and consider a Hall
(q + 3)-precoloring φ : V0 → [q + 3] of G = Kq + Cn.

Case 1: φ precolors at least one vertex u of Kq. Without loss of generality,
suppose φ(u) = q+3. Then Lφ(v) ⊆ {1, . . . , q+2} for every v ∈ V (G)\{u}. Since φ
is a Hall (q+3)-precoloring of G, φ is a Hall (q+2)-precoloring of G−u = Kq−1+Cn,
and φ extends to G− u by induction.

Case 2: φ precolors no vertex of Kq. Since (Kq, Lφ) satisfies Hall’s condition,
the cardinality of the image φ(V0) is at most three. Extend φ to Kq using colors
[q+ 3] \ φ(V0). Now any uncolored vertex in Cn has at most q+ 2 colored neighbors,
with equality if and only if the entire neighborhood of the vertex is colored. Hence,
what remains is a 2-assignment to a disjoint collection of paths and a 1-assignment
to isolated vertices. By Theorem 2.8, φ may be extended to a proper (q+3)-coloring
of G.

Hence, G is Hall (q + 3)-extendible.

We now present the proof of Theorem 1.6, the main result of this section, pro-
viding an infinite family of graphs whose Hall spectra contain non-consecutive zeros.

Proof of Theorem 1.6. By Lemma 2.13, Theorem 2.15, and Lemmas 2.16-2.22,
the graph Gk shown in Figure 2 has Hall spectrum h(Gk) = [h0, 1, 0, . . . ]. By The-
orem 2.25, when n is even and n ≥ 10, the graph Kk−2 + Cn has Hall spectrum
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h(Kk−2 + Cn) = [0, 1, . . . ]. Then, since χ(Gk) = χ(Kk−2 + Cn), it is immediate
that the Hall spectrum of their disjoint union is h(Gk ∪ (Kk−2 +Cn)) = [0, 1, 0, . . . ].
Moreover, we can form a connected graph by tethering Gk to Kk−2 + Cn with a
path on 2 vertices at vertices of minimum degree in Gk and Kk−2 + Cn. Because
these graphs have the same chromatic number and neither are regular, we can use
Proposition 2.11 to form a connected graph with Hall spectrum [0, 1, 0, . . .]. This
may require adding pendent vertices to one graph so that the maximum degrees
match, but it is easy to verify that this does not affect the chromatic number, Hall’s
condition, or extendibility of any precoloring.

3 Extending with extra colors

Definition 3.1. Given a graph G and V0 ⊆ V (G), a k-precoloring φ : V0 → [k] of G
is `-extendible for some ` ≥ k if there exists an `-coloring γ : V (G) → [`] of G such
that γ(v) = φ(v) for all v ∈ V0.

Recall h(G) is the Hall number of G. We begin with an elementary result that
allows Hall precolorings of some graphs to be extended with few extra colors. It
relies on the following:

Theorem 3.2 (Hilton et al., 1996 [10]). If H is an induced subgraph of G then
h(H) ≤ h(G).

Theorem 3.3. Any Hall k-precoloring of G is (k+ h(G)− 1)-extendible. Moreover,
if G is k-colorable, then any Hall k-precoloring of G is (k + χ(G)− 1)-extendible.

Proof. Let φ be a Hall k-precoloring of G and let G′ be the subgraph of G induced on
the uncolored vertices. For each v ∈ V (G′), if we define L(v) = Lφ(v)∪{k+1, . . . , k+
h(G) − 1}, we obtain an h(G)-assignment of G′ which satisfies Hall’s condition,
because each Lφ(v) contains at least one color. By Theorem 3.2, h(G′) ≤ h(G), so
G′ has an L-coloring.

For the second statement, suppose G is k-colorable. Then V (G′) may be parti-
tioned into χ(G) = χ independent sets V1, . . . , Vχ. As φ is Hall, |Lφ(v)| ≥ 1 for all
v ∈ V (G′). Coloring each v ∈ V1 with a color from its list, Lφ(v), and each v ∈ Vi
for i > 1 with color k + i− 1 yields an extension of φ with k + χ(G)− 1 colors.

It is natural to ask whether the Hall number statement or the chromatic number
statement in Theorem 3.3 is stronger. In fact, the answer depends on the family
of graphs under consideration. Recall from Theorem 1.5 that Hall k-precolorings of
bipartite graphs do not necessarily extend with k colors when k > 2. The following
corollary of Theorem 3.3 ensures any such colorings can be extended with only one
additional color.

Corollary 3.4. Any Hall k-precoloring of a bipartite graph is (k + 1)-extendible.
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Moreover, the two results below produce bipartite graphs with arbitrarily large
Hall number for which Hall k-precolorings extend with only one additional color.
Recall, given a graph G, the choice number or (list-chromatic number) of G, denoted
χ`(G), is the smallest positive integer k such that G is L-colorable for every k-
assignment L to G.

Theorem 3.5 (Johnson, 2002 [14]). If χ(G) < χ`(G), then h(G) = χ`(G).

Theorem 3.6 (Erdős et al., 1980 [7]). If m =
(
2k−1
k

)
and k ≥ 1, then χ`(Km,m) > k.

For those graphs having Hall number 2, we have the following:

Corollary 3.7. Any Hall k-precoloring of a graph with Hall number 2 is (k + 1)-
extendible.

Graphs with Hall number 2 have been characterized (see [6, 15] for a complete
description), but notable 2-connected examples are cycles with at least 4 vertices,
K4 − e with one edge subdivided (which we will call (K4 − e)∗), and K2,3 with one
of the vertices of degree two replaced by a path of arbitrary length. In addition, [15]
describes the block structure of any graph G with κ(G) = 1 and h(G) = 2.

Theorem 3.8 (Johnson and Wantland, 2002 [15]). Suppose h(G) = 2. For each
m ≥ 0, define G(m) to be the graph obtained by tethering a clique and G with a path
of length m. If h(G(0)) = 2, then h(G(m)) = 2 for all m ≥ 0.

The result above yields graphs with arbitrarily large chromatic number for which
Hall χ(G)-precolorings extend with only one additional color. As an example, let G
be the graph obtained by tethering a clique of size n to one of the vertices of degree
2 in (K4− e)∗ by a path, possibly of length 0. Since h(G) = 2, by Corollary 3.7, any
Hall k-precoloring of G is (k + 1)-extendible.

In light of Corollary 3.4, a natural question to ask is whether Hall 3-precolorings
of 3-chromatic graphs extend with 4 colors. Theorem 1.7 indicates that sometimes 5
colors are needed. We complete this section by proving several results that establish
Theorem 1.7.

Definition 3.9. Let G be a graph with list assignment L and let H be a subgraph
of G. The Hall slack of H with respect to L is

s(H,L) =

∑
σ∈[k]

α(H(σ, L))

− |V (H)|.

If s(H,L) = 0, then H is called tight with respect to L. G is called loose with respect
to L if G has no nonempty subgraph that is tight with respect to L. Further, if G has
a precoloring φ which colors vertex set V0, then we say that G is loose with respect
to φ if the graph G− V0 is loose with respect to Lφ.
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Clearly, (G,L) satisfies Hall’s condition if and only if s(H,L) ≥ 0 for every
H ≤ G, and if G is loose with respect to L, then necessarily (G,L) satisfies Hall’s
condition. To simplify terminology, when it is not ambiguous, we shall say a graph
G is loose if there exists a list-assignment L such that G is loose with respect to L.

Proposition 3.10. Suppose H1 and H2 are loose graphs with respect to list assign-
ments L1 and L2 respectively. Then the graph G formed by adding an edge between
a vertex v1 ∈ V (H1) and a vertex v2 ∈ V (H2) is also loose with respect to the list
assignment L = L1 ∪ L2.

Proof. Let F be a subgraph of G and let F1 and F2 be subgraphs of F such that
V (F ) = V (F1) ∪ V (F2), F1 ⊆ H1, and F2 ⊆ H2. By hypothesis s(Fi, Li) > 0,
and by extension s(Fi, L) > 0, for each i ∈ {1, 2}. If v1v2 /∈ E(F ) then clearly
s(F,L) = s(F1, L1) + s(F2, L2) > 0. Hence we may assume v1v2 ∈ E(F ). Because
v1v2 is the only edge between vertices in F1 and vertices in F2, we have∑
σ∈[k]

α(F (σ, L)) ≥
∑
σ∈[k]

α((F − v1)(σ, L)) =
∑
σ∈[k]

α((F1 − v1)(σ, L)) +
∑
σ∈[k]

α(F2(σ, L)).

Now since both F1 − v1 and F2 are loose with respect to L,∑
σ∈[k]

α((F1 − v1)(σ, L)) +
∑
σ∈[k]

α(F2(σ, L)) ≥

(|V (F1 − v1)|+ 1) + (|V (F2)|+ 1) = |V (F )|+ 1.

and hence F is also loose. As F was an arbitrary subgraph of G, we conclude that
G is loose with respect to L.

Lemma 3.11. For each k ≥ 2, there exists a k-colorable graph that is loose with
respect to a non-extendible (k + 1)-precoloring.

Proof. Let k ≥ 2 and define Hk to be a graph with V (Hk) = {x0, . . . , x3k} ∪
{y0, . . . , y3k} and E(Hk) as follows (see Figure 3): Let NHk

(x0) = {x1, xk+1, x2k+1}.
The vertices in the set {x2, . . . , xk} form a clique X0 and are also adjacent to x1
and xk+1; the vertices in {xk+2, . . . , x2k} form a clique X1 and are also adjacent to
xk+1 and x2k+1; the vertices in {x2k+2, . . . , x3k} form a clique X2 and are also adja-
cent to x2k+1 and x1. Let yiyj ∈ E(Hk) if and only if xixj ∈ E(Hk). Finally, let
x3ky3k ∈ E(Hk). It is straightforward to verify χ(Hk) = k.

We now modify Hk using pendant vertices to obtain a k-colorable graph H ′k that
is loose with respect to a (k+1)-precoloring φ, and we verify that φ is not extendible
with k + 1 colors.

Let H ′k be the graph obtained from Hk by adding an independent set V0 of
pendant vertices (each adjacent to exactly one vertex in Hk) as follows: each vertex
in V (X0) ∪ V (X1) ∪ (V (X2) \ {x3k}) is adjacent to one pendant; each vertex in
{x1, xk+1, x2k+1} is adjacent to k − 1 pendant vertices; and x0 is adjacent to k − 2
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Figure 3: The k-chromatic graph Hk from Lemma 3.11. The grey circles labeled
X0, X1, X2, Y0, Y1, and Y2 are each (k − 1)-cliques. The shaded regions emanating
from vertex x1 indicate it dominates all vertices in X0 and X2 (similar for vertices
xk+1, x2k+1, y1, yk+1, and y2k+1). Pendant vertices can be attached to create the loose
k-colorable graph H ′k.

pendant vertices. Now define a (k + 1)-precoloring φ : V0 → C of H ′k, where C =
{0, 1, . . . , k}, to produce the following lists: Lφ(x0) = {0, 1, 2}, Lφ(x1) = {0, 2},
Lφ(xk+1) = {0, 1}, Lφ(x2k+1) = {1, 2}, Lφ(x) = C \ {0} for all x ∈ V (X0), Lφ(x) =
C \ {1} for all x ∈ V (X1), Lφ(x) = C \ {2} for all x ∈ V (X2) \ {x3k}. Add pendant
vertices to each yi in a similar fashion and extend φ to the pendant vertices so that
Lφ(yi) = Lφ(xi) for all i ∈ {0, . . . , 3k}. Clearly χ(H ′k) = χ(Hk).

The precoloring φ extends to a (k+ 1)-coloring of H ′k if and only if the subgraph
Hk is Lφ-colorable. If x0 is given color 0, then x1 and xk+1 must be colored with 2
and 1 respectively. The k− 1 vertices of X0 now only have k− 2 available colors, so
φ cannot be extended this way. Similarly, we cannot extend φ to H ′k[{x0, . . . , x3k}]
by letting φ(x0) = 1. To extend φ to H ′k[{x0, . . . , x3k}] we must have φ(x0) =
φ(x3k) = 2. By the same argument, to extend φ to H ′k[{y0, . . . , y3k}] we must have
φ(y0) = φ(y3k) = 2. As x3ky3k ∈ E(H ′k), φ cannot be extended.

It remains to verify that no subgraph of H ′k is tight with respect to Lφ. By
Theorem 2.3 and Proposition 3.10, it suffices to show that any connected subgraph
F induced by vertices that are a subset of {x0, x1, . . . , x3k} satisfies s(F,Lφ) > 0. Let
F be such a subgraph, and suppose V (F ) intersects r of the cliques {X0, X1, X2}.
Let a =

∑
σ∈C α(F (σ, Lφ)); our goal is to show that a > |V (F )|. We consider four

cases. For simplicity of argument, we will artificially remove the color 2 from Lφ(x3k)
in cases 2 and 3 (this restriction can only decrease a). This extra color is, however,
important for case 4.

Case 1: r = 0. Then V (F ) ⊆ {x0, x1, xk+1, x2k+1} and it is routine to check
a > |V (F )|.

Case 2: r = 1. Without loss of generality, suppose p ∈ V (X0) ∩ V (F ). We seek



V. LARSEN ET AL. /AUSTRALAS. J. COMBIN. 76 (3) (2020), 346–365 363

vertices that can contribute at least |V (F )| + 1 to a. As Lφ(p) = {1, . . . , k}, the
vertex p can contribute k to a. Then each vertex in {x0, x1, xk+1, x2k+1} ∩ V (F ) can
contribute one to a (x1 and xk+1 could contribute to α(F (0, Lφ)), x0 could contribute
to α(F (1, Lφ)), and x2k+1 could contribute to α(F (2, Lφ))). Because k > |X0|, it
follows that a > |V (F )|.

Case 3: r = 2. Without loss of generality, we may assume that p1 ∈ V (X1) ∩
V (F ) and p2 ∈ V (X2) ∩ V (F ). As Lφ(p1) = C \ {1}, Lφ(p2) = C \ {2}, and p1
and p2 are not adjacent, the vertices p1 and p2 can each contribute k to a. If
V (F ) ⊆ V (X1) ∪ V (X2) ∪ {x2k+1}, then a ≥ 2k > |V (F )|. Otherwise, each vertex
in {x0, x1, xk+1}∩V (F ) can contribute one to a (x0 could contribute to α(F (0, Lφ)),
x1 could contribute to α(F (2, Lφ)), and xk+1 could contribute to α(F (1, Lφ))). If
follows that a > |V (F )|.

Case 4: r = 3. For each i ∈ {0, 1, 2} let pi ∈ V (Xi) ∩ V (F ). Each pi contributes
at least k to a (in fact k + 1 if p2 = x3k), so a ≥ 3k. If x0 ∈ V (F ), then because
Lφ(x0) = {0, 1, 2} and x0 is not adjacent to any pi, x0 can contribute three to a.
Thus a ≥ 3k + 3 > |V (F )|. Thus we assume x0 /∈ V (F ), so |V (F )| ≤ 3k. But now
a > |V (F )| unless V (F ) = {x1, x2, . . . , x3k}. In this case, because Lφ(x3k) = C, we
can let p2 = x3k which contributes k + 1 to a. Hence, a = 3k + 1 > |V (F )|.

We now present the proof of Theorem 1.7, the main result of this section.

Proof of Theorem 1.7. By Lemma 3.11 there exists a graph, say H, that is (k−
1)-colorable and loose with respect to a k-precoloring φH where φH is not extendible.
Let {v1, v2, . . . , vn} be the vertices in H that are uncolored by φH . Create a graph G
from H by adding n copies of H, labeled H1, H2, . . . , Hn, and adding an edge from
vi ∈ V (H) to each vertex of Hi for 1 ≤ i ≤ n. Let φG be the k-precoloring formed by
coloring H according to φH , and copying the coloring φH onto Hi for all 1 ≤ i ≤ n.
Finally, for all 1 ≤ i ≤ n, delete any edges from vi to a colored vertex in Hi. We
must verify that G is k-colorable, that φG satisfies Hall’s condition, and that φG does
not extend with k + 1 colors.

First we show that G is k-colorable. Let c : V (H)→ [k− 1] be a (k− 1)-coloring
of H. For each Hi, color Hi with the colors {1, . . . , k} \ {c(vi)}. Since each Hi is
(k − 1)-colorable, this is a k-coloring of G.

Next we verify that (G,LφG) satisfies Hall’s condition. Consider any subgraph
F of G. Let Fi be the subgraph of F contained in Hi for 1 ≤ i ≤ n, let F0 be
the (possibly empty) subgraph of F induced by the vertices in V (H) that have no
neighbors in any Fi for 1 ≤ i ≤ n, and let S be the set of vertices in F contained in
H that have a neighbor in some Fi. Observe that V (F ) =

⋃n
i=0 V (Fi) ∪ S. Since H

is loose with respect to LφH and each Fi is isomorphic to a subgraph of H, for each
Fi with 1 ≤ i ≤ n we have∑

j∈[k]

α(Fi(j, LφG)) ≥ |V (Fi)|+ 1.
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Since there are no edges between Fr and Fs for 0 ≤ r < s ≤ n and because |S| ≤ n,

∑
j∈[k]

α(F (j, LφG)) ≥ |V (F0)|+
n∑
i=1

(|V (Fi)|+ 1) ≥

∣∣∣∣∣
(

n⋃
i=0

V (Fi)

)
∪ S

∣∣∣∣∣ = |V (F )|.

Since F was arbitrary, Hall’s condition is satisfied.

Finally, we show that φG does not extend with k+1 colors. Suppose instead that
φG does extend with k + 1 colors. Since φH is not extendible with k colors, each Hi

must use color (k + 1) on an uncolored vertex. Thus, no uncolored vertex in H has
received color (k + 1). This implies that H was colored with only k colors, which
contradicts the fact that φH is not k-extendible. Therefore φG cannot be extended
to all of G using k + 1 colors.

4 Future Work

It is currently unknown whether all Hall 4-precolorings of 4-chromatic graphs are
6-extendible. However, we make the following conjecture:

Conjecture 4.1. For all k ≥ 3, there exists a graph G with χ(G) ≥ k which has a
Hall k-precoloring that is not extendible with fewer than k + χ(G)− 1 colors.

Such a result could potentially be proven by generalizing the idea of loose graphs.
With regards to Hall spectra, we make the following conjecture.

Conjecture 4.2. For all n ≥ 1, every {0, 1}-vector of length n ending in a 1 is the
Hall spectrum of some graph.
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