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Abstract

We obtain a mod k analogue of the Erdős-Gallai theorem for the exis-
tence of a graph with a prescribed degree sequence. It is obtained as a
corollary of a theorem about degree sequences of graphs that are interval-
constrained.

1 Introduction

Two famous theorems in discrete mathematics are the Gale-Ryser theorem for the
existence of a (0, 1)-matrix with prescribed row sum vector R and column sum vector
S (bipartite graphs with prescribed degree sequences R and S for the two parts
of its bipartition) and the Erdős-Gallai theorem for the existence of a graph with
a prescribed degree sequence R (a symmetric (0, 1)-matrix with zero trace and a
prescribed row sum vector R). These results can be found in many publications
[1, 2, 5, 7]. In [4] we gave a mod k analogue (entries of R and S computed mod
k) of the Gale-Ryser theorem. In this note, we obtain a mod k analogue of the
Erdős-Gallai theorem.

The Erdős-Gallai theorem is the following.
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Theorem 1.1. Let R = (r1, r2, . . . , rn) be an integral vector with r1 ≥ r2 ≥ · · · ≥
rn ≥ 0. There is a graph with n vertices whose degree sequence is R if and only if

t∑

i=1

ri ≤ t(t− 1) +
n∑

i=t+1

min{t, ri} (1 ≤ t ≤ n) (1)

and
n∑

i=1

ri is even. (2)

Here by a graph we mean a graph without multiple edges or loops. That
∑n

i=1 ri
is required to be even is a consequence of the fact that each edge has two vertices.
If we allow loops (an edge joining a vertex to itself) where, contrary to the standard
convention in graph theory, a loop contributes 1 to the degree of its vertex, we have
the following corollary. See the explanation following its proof.

Corollary 1.2. Let R = (r1, r2, . . . , rn) be an integral vector with r1 ≥ r2 ≥ · · · ≥
rn ≥ 1. There is a graph with n vertices and exactly one loop whose degree sequence
is R if and only if

t∑

i=1

ri ≤ t(t− 1) + 1 +
n∑

i=t+1

min{t, ri} (1 ≤ t ≤ n) (3)

and
n∑

i=1

ri is odd. (4)

Proof. Let R′ = (r1, r2, . . . , rn, rn+1 = 1). Then R′ satisfies the Erdős and Gallai
conditions and hence there is a graph G′ of n + 1 vertices with degree sequence R′.
The vertex n + 1 has degree equal to 1 and is joined to vertex p for some p with
1 ≤ p ≤ n. Deleting vertex n + 1 and its incident edge and putting a loop at vertex
p gives the required graph. The converse is obvious.

The justification for loops contributing 1 to the degree of a vertex comes from
consideration of the adjacency matrix A. The Erdős-Gallai theorem gives necessary
and sufficient conditions for the existence of an n×n symmetric (0, 1)-matrix A with
all 0’s on the main diagonal and with row sum vector R. It is natural to allow 1’s
on the main diagonal of A and then to regard A as the adjacency matrix of a loopy
graph in which loops add 1 to the degree of its vertex. A general existence theorem
for a symmetric nonnegative integral matrix with entries at most some integer p (so
p = 1 corresponds to a loopy graph in which loops add 1 to the degree of its vertex)
is given in Theorem 6.3.2 of [3].

We recall the definition of majorization. Let X = (x1, x2, . . . , xn) and Y =
(y1, y2, . . . , yn) be two non-increasing sequences of nonnegative integers. Then X is
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majorized by Y , equivalently, Y majorizes X , provided that

k∑

i=1

xi ≤
k∑

i=1

yi (1 ≤ k ≤ n) with equality for k = n.

Majorization is denoted by X � Y .

Theorem 1.1 immediately implies the following corollary.

Corollary 1.3. Let S = (s1, s2, . . . , sn) and R = (r1, r2, . . . , rn) be non-increasing
nonnegative integral vectors where S � R. Then if R is the degree sequence of a
graph, that is, (1) and (2) hold, then S is also the degree sequence of a graph.

In the next section, we show that if the proposed degrees of a graph with n
vertices belong to a certain interval, then the inequalities (1) of Theorem 1.1 are
automatically satisfied. This result is then used in the last section to give a mod
k analogue of the Erdős-Gallai theorem which mirrors the mod k analogue of the
Gale-Ryser theorem given in [4].

2 Interval-constrained Degree Sequences

First we consider the following question: Given positive integers a, b, and n, what
conditions on those integers guarantee that every integral vector R of size n whose
entries are in the closed interval [a, a+ b] and have even sum is the degree sequence
of a graph.

Theorem 2.1. Let a, b and n be positive integers with n > a + b, and let R =
(r1, r2, . . . , rn) be a non-increasing integral vector of size n with entries in the interval

[a, a + b]. If n ≥ a + b+ 1 + (b+1)2

4a
, then R satisfies (1).

Proof. This theorem is equivalent to a result of Zverovich and Zverovich [7] by making
the substitutions b← a, a← a + b in their Theorem 6.

Corollary 2.2. Assume that the hypotheses of Theorem 2.1 are satisfied. Then

(i) If the sum of the components of R is even, then there exists a graph with degree
sequence R.

(ii) If the sum of the components of R is odd, then there exists a loopy graph with
degree sequence R and exactly one loop.

Proof. The corollary is an immediate consequence of Theorem 1.1, Theorem 2.1, and
Corollary 1.2.
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By Theorem 2.1, if the components of R lie in the interval [a, a + b] and n ≥
a+ b+1+ (b+1)2

4a
, then all of the Erdős-Gallai inequalities are satisfied. We show this

lower bound on n is within 1 of the best possible, provided one is required to check
all the inequalities (1). But note that, in general not all of the inequalities (1) need
to be checked to know that all the inequalities are satisfied ([1, 5, 7]).

Suppose n < a+b+1+ (b+1)2

4a
. This is equivalent to 4an < 4a2+4ab+4a+(b+1)2.

Consider the quadratic in t given by f(t) = t2+(−1− b−2a)t+na. Its discriminant
is (−1− b− 2a)2 − 4na = 4a2+4ab+4a+(b+1)2− 4na and so f has real solutions.
In particular, if t is an integer with f(t) < 0, then the vector R formed by t entries
of a+ b and n− t entries of a does not satisfy the tth Erdős-Gallai inequality. Thus
the bound given in the theorem is sharp up to the existence of integral solutions. In
[5], Cairns, Mendan, and Nikolayevsky determined exactly when this differs from the
integrally obtainable values and thus solved the sharpness condition exactly. To see
this for specific numbers, consider the following example.

Example 2.3. Suppose that we consider all integral vectors of size 8 with entries
in the range [4, 7]. This corresponds to a = 4, b = 3, and n = 8 above. Then

n is less than a + b + 1 + (b+1)2

4a
= 4 + 3 + 1 + 42

4×4
= 9. Notice that the vertex

in f(t) = t2 + (−1 − b − 2a)t + na = t2 − 12t + 32 occurs at (6,−4). Consider
the specific integral vector R = (7, 7, 7, 7, 7, 7, 4, 4) (6 entries of maximum size and
n − 6 entries of minimum size). To satisfy the 6th Erdős-Gallai inequality, we need∑6

i=1 ri ≤ 6(6 − 1) +
∑8

i=7min(ri, 6), but
∑6

i=1 ri = 6 × 7 = 42 while 6(6 − 1) +∑8
i=7min(ri, 6) = 30+2×4 = 38. Notice that this fails by exactly the value of f(6),

which follows from the derivation used in the proof. Thus, not all integral vectors of
the given type are graphical.

3 Degree sequences modulo k

Let k be an integer with k ≥ 2, and let (Zk,+k) be the additive group of integers
modulo k. The set of elements of Zk is taken to be {0, 1, . . . , k − 1}. For a graph
G, define its mod k degree sequence to be its degree sequence R calculated mod k
then sorted to be non-increasing. Because of this sorting, we say two integral vectors
R = (r1, r2, . . . , rn) and S = (s1, s2, . . . , sn) of length n are congruent mod k, written
R ≡ S mod k, if there is a permutation of their entries so that ri ≡ si mod k for
all 1 ≤ i ≤ n. This is easily checked by counting the number of entries of R and
S in the same congruence class modulo k. We consider the question of whether or
not a graph exists with a prescribed mod k degree sequence, that is, a mod k Erdős-
Gallai theorem. Mod k consideration of some graphical concepts have previously
been considered, e.g. [6].

Let G(R) be the set of all graphs with degree sequence R = (r1, r2, . . . , rn). For a
vector S = (s1, s2, . . . , sn) with entries in Zk, let Gk(S) be the set of all graphs whose
degree sequence modulo k is S. If G(R) �= ∅ and S ≡ R mod k, then Gk(S) �= ∅. In
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this note we consider the inverse question of determining when Gk(S) �= ∅ for a given
S. We shall use Theorem 2.1 to show that if n is large enough relative to k (a linear
bound), then there always exists an R such that R ≡ S mod k with G(R) �= ∅, and
thus Gk(S) �= ∅. In some instances we may require a loop at one vertex.

We first give an algorithm on which our subsequent discussion is based.

EGk(S): Algorithm for the Existence of a Matrix in Gk(S)

Let n and k ≥ 2 be positive integers. The algorithm takes a non-increasing vector
S = (s1, s2, . . . , sn) with entries in Zk as input and either returns an integral vector
R̂ with S ≡ R̂ mod k and G(R̂) �= ∅, or returns failure.

(i) Initialize by setting R = (r1, r2, . . . , rn) equal to S.

(ii) If R satisfies both (1) and (2), then go to (v).

(iii) Otherwise, compute rn + k; if rn + k ≥ n, then go to (iv). Otherwise update
R as the non-increasing vector (rn + k, r1, . . . , rn−1), and go back to (ii).

(iv) Terminate the algorithm with Failure.

(v) Output R̂ = R (satisfying (1) and (2)).

Theorem 3.1. Let n ≥ 1 and k ≥ 2 be integers, and let S = (s1, s2, . . . , sn) be a
non-increasing vector with entries in Zk. The EGk(S) algorithm outputs a vector
R̂ = (r̂1, r̂2, . . . , r̂n) satisfing both (1) and (2) if and only if Gk(S) �= ∅.

Proof. Suppose the algorithm returns an R̂ satisfing both (1) and (2). Thus, G(R̂) �=
∅. Since R̂ is obtained from S by successively adding k’s to its components, R̂ ≡ S
mod k, and so any graph in G(R̂) is also a graph in Gk(S). Hence Gk(S) �= ∅.

Now suppose that Gk(S) �= ∅. We need to show that the algorithm does not
terminate with Failure. Since Gk(S) �= ∅, after reordering components if necessary,
there exists a non-increasing vector R′ = (r′1, r

′
2, . . . , r

′
n) with R′ ≡ S mod k such

that G(R′) �= ∅, where therefore r′1 ≤ n − 1. Since R′ ≡ S mod k, there exists
an integer t with tk +

∑n
i=1 si =

∑n
i=1 r

′
i. Since the algorithm sequentially adds k

to the smallest component of the current R and since r′1 ≤ n − 1, the algorithm
cannot fail when t iterations of step (iii) are completed. Since in constructing R, k
is always added to the smallest component, after t iterations, the current vector R
is necessarily majorized by R′. Since G(R′) �= ∅, R′ satisfies (1) and (2) so R also
satisfies (1) by Corollary 1.3. Since

∑n
i=1 r

′
i =

∑n
i=1 ri, R also satisfies (2). Thus,

the algorithm does not return Failure (although it could have returned a “smaller”
R̂ vector earlier).

Remark 3.2. By (ii) the output vector R̂ in the EGk(S) algorithm has the property
that the sum of its components is even. Without such an assumption we would not
be able to conclude the existence of a simple graph in G(R̂) from the algorithm.
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In the algorithm we make no such assumption on the sum of the components of
S = (s1, s2, . . . , sn).

For example, if k is even and
∑n

i=1 si is not even, the algorithm will terminate
with Failure as the sum of the components of each R produced is odd. When k is
odd, adding k to one component of the vector S changes the parity of the sum of its
entries and so it is possible for there to exist simple graphs and loopy graphs with
one loop which have S as their mod k degree sequence. Because of Corollary 1.2, if
we change step (ii) in the algorithm so that we go to step (v) when either (1) and (2)
or (3) and (4) hold, and change step (iii) to go to step (iv) only when rn+k > n (now
there could be a vertex with degree n if it has a loop), then the proof of Theorem
3.1 follows except that the algorithm may output an integral vector R̂ which admits
either a simple graph or a loopy graph with one loop (depending on the parity of the
sum of the entries of R̂), and will only return Failure when neither is possible. �

We now derive a mod k analogue of the Erdős-Gallai theorem by combining
Algorithm EGk(S) with Theorem 2.1. First, we notice that using the algorithm
produces a vector at each stage whose entries differ by at most k. If we agree to add
k to each component of smallest size, then the entries can be made to differ by at
most k − 1. Thus, we can maximize the usefulness of Theorem 2.1 by finding the a

value which minimizes the value of a + b+ 1 + (b+1)2

4a
for a fixed value of b = k − 1.

Lemma 3.3. For a fixed value of b, let f(a) = a+ b+1+ (b+1)2

4a
for positive integers

a. The function f is minimized when a = b+1
2

and its minimum value is 2(b + 1).
When only integer inputs are considered, the smallest integer greater than or equal
to the minimum output is 2b+ 2 when b is odd, and 2b+ 3 when b is even.

Proof. This is a simple optimization problem from calculus. The only critical point
for a ≥ 0 is a = b+1

2
, which is a minimum, and f( b+1

2
) = 2(b + 1). When b is even,

checking the points a = b
2
and a = b

2
+1 gives that the minimum output is 2b+2+ 1

2b
.

So the minimum integers are as stated.

Combining this with the previous discussion gives the following theorem.

Theorem 3.4. Let n ≥ 1 and k ≥ 2 be integers, and let R = (r1, r2, . . . , rn) be a
non-increasing vector where 0 ≤ ri ≤ k − 1. If k is odd and n ≥ 2k + 1 or if k is
even and n ≥ 2k, then there exists a simple graph with mod k degree sequence R or
there exists a loopy graph with one loop1 with mod k degree sequence R.

Proof. We begin by adding k to every component of R smaller than k
2
to create a

new vector R′ with R′ ≡ R mod k. Notice that the components of R′ now fall in the
interval [k

2
, 3k

2
− 1] when k is even and [k+1

2
, 3k−1

2
] when k is odd. In the notation of

Theorem 2.1, this corresponds to b = k − 1 and a = k
2
or a = k+1

2
. Thus, by Lemma

3.3 and Theorem 2.1, we have that (1) is satisfied for R′ when n ≥ 2b+2 = 2k when

1Recall we are considering here that a loop contributes 1, not 2, to its vertex.
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k is even or n ≥ 2b + 3 = 2k + 1 when k is odd. The statement about simple and
loopy graphs for R follows from Remark 3.2.

We end by noting that computer simulation suggests that the bound given in
Theorem 3.4 is not the best possible result. For example, when k = 6, every possible
vector S with at least n = 9 components with entries from Z6 satisfies G6(S) �= ∅.
The smallest bound seems to be roughly n ≥ 3

2
k. However, for n values between 3

2
k

and 2k, giving different S vectors as input to the EGk(S) algorithm returns output
vectors whose entries are not in a consistent range, so an approach following Theorem
2.1 does not seem possible.
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