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Abstract

Assume σ is a face of a Gorenstein* simplicial complex D, and k is an
infinite field. We investigate the question of whether the Weak Lefschetz
Property of the Stanley–Reisner ring k[D] is equivalent to the same prop-
erty of the Stanley–Reisner ring k[Dσ] of the stellar subdivision Dσ. We
prove that this is the case if the dimension of σ is big compared to the
codimension.

1 Introduction

An important open question in algebraic combinatorics is whether for a simplicial
sphere, or more generally for a Gorenstein* simplicial complex D, the Stanley–
Reisner ring k[D] of D over an infinite field k satisfies the Weak Lefschetz Prop-
erty (WLP for short). This implies, in particular, that the f -vector of D satisfies
McMullen’s g-conjecture. For details see, for example, [25], [26] or [7, Section 5.6].
Actually, Stanley [23] proved, using the theory of toric varieties from algebraic geom-
etry, that in the special case that D is the boundary complex of a convex simplicial
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polytope it holds that R[D] satisfies the stronger Strong Lefschetz Property (SLP
for short).

Babson and Nevo [4] proved that if k is an infinite field of characteristic 0, D is a
homology sphere with k[D] satisfying SLP and σ is a face of D with k[L] satisfying
SLP (where L denotes the link of σ in D), then it follows that k[Dσ] has the SLP,
where Dσ denotes the stellar subdivision of D with respect to σ. We investigate
similar questions for D a Gorenstein* simplicial complex and SLP replaced by WLP.

The Stanley–Reisner rings k[D] and k[Dσ] are Gorenstein (see Lemma 3.4). Un-
fortunately, there is no structure theorem known for Gorenstein rings in codimension
≥ 4. Unprojection theory, which originated in commutative algebra [13] and alge-
braic geometry [20, 21] aims to (partially) fill this gap. In the present paper we
use constructions motivated by the interpretation of stellar subdivision in terms of
Kustin–Miller unprojections established in [1].

To state our main results we need the following terminology, which will be ex-
plained in more detail in Section 2 and Subsection 3.1. Assume k is an infinite field,
D is a Gorenstein* simplicial complex of dimension d − 1 and σ is a q-face of D.
Denote by L the link of σ in D. We define p1 to be the integral part of (d − 1)/2
and p2 to be the integral part of d/2. We say that k[L] satisfies the Mq,p1 property
if there exists a pair (B, ω), where B = ⊕i≥0Bi is an Artinian reduction of k[L] and
ω ∈ B1, with the property that the map Bp1−q → Bp1 given by multiplication with
ωq is injective. We now state our two main results:

Theorem 1 Assume that k[D] has the WLP. Then k[Dσ] has the WLP if any of
the following conditions hold: i) q > p1; ii) q = p1 and the field k has characteristic
0 or > d− q − 1; iii) k[L] satisfies the SLP; iv) k[L] satisfies property Mq,p1.

Theorem 2 Assume that k[Dσ] has the WLP. If q > p2, then k[D] has the WLP.

The proof of Theorem 1 is given in Subsection 4.1, while the proof of Theorem 2
is given in Subsection 4.2. An interesting corollary of the above theorems is the
following result, which will be proven in Subsection 4.3.

Corollary 3 Assume k is an infinite field, D is a Gorenstein* simplicial complex
and σ ∈ D is a face with 2(dim σ) > dimD+1. Then the Stanley–Reisner ring k[D]
has the WLP if and only if the Stanley–Reisner ring k[Dσ] of the stellar subdivision
Dσ has the WLP.

If this equivalence could be proven without any assumptions on the dimension of
σ, it would then have as corollary that the Stanley–Reisner ring k[D] has the WLP
for all PL-spheres D. This would imply, in particular, the g-conjecture for the class
of PL-spheres, cf. [4, Remark 1.3.2]. For some further considerations concerning this
question, see [2, Section 5]. Also note that a generalization of Corollary 3 has been
proven in [19] for the class of homology manifolds.

Section 2 introduces the basic notation. Section 3 studies a number of important
intermediate rings between k[D] and k[Dσ] and their Artinian reductions. Section 4
contains proofs of our main results. In Appendix A we collect a number of general
lemmas we use, while Appendix B contains a lemma that states that certain Artinian
reductions of a WLP k-algebra inherit the WLP property.
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2 Notation

2.1 Hilbert functions and Lefschetz properties

In the following k denotes an infinite field of arbitrary characteristic. All graded k-
algebras will be commutative, Noetherian and of the form G = ⊕i≥0Gi with G0 = k
and dimkGi <∞ for all i. The Hilbert function of G is the function HF(G) : Z → Z,
m �→ dimk Gm. For m ∈ Z we set HF(m,G) = dimkGm.

The k-algebra G is called standard graded if it is generated, as a k-algebra, by
G1. An element a ∈ G is called a linear form if a ∈ G1. For a polynomial ring we use
the notions of monomial order, initial term, initial ideal and reverse lexicographic
order as defined in [6, Section 15].

Assume G is a standard graded Cohen–Macaulay k-algebra with Krull dimension
dimG = d. In the present paper by Artinian reduction of G we mean a quotient
G/(f1, . . . , fd), where f1, . . . , fd ∈ G1 is a G-regular sequence. Assume t ≥ 1, and
H is a graded k-subalgebra of G. Generalizing the discussion in [3, before Theorem
4.2.12], we say that for general f1, . . . , ft ∈ H1 a property P holds if there exists a
non-empty Zariski open subset U of the irreducible affine k-variety (H1)

t such that
the property P holds for all f ∈ U .

We say that an Artinian standard graded algebra F has the Weak Lefschetz
Property (WLP for short) if for general ω ∈ F1 and all i the multiplication by ω map
Fi → Fi+1 is of maximal rank, which means that it is injective or surjective (or both).
It is well-known (see, for example, [4, Lemma 4.1]) that F has the WLP if and only
if there exists a ∈ F1 such that for all i the multiplication by a map Fi → Fi+1 is of
maximal rank.

We say that a standard graded k-algebra G with dimG ≥ 1 has the WLP if it
is Cohen–Macaulay and for general linear forms f1, . . . , fdimG of G we have that the
algebra G/(f1, . . . , fdimG), which is Artinian by Lemma A.2, has the WLP. Good
general references for the Weak and Strong Lefschetz Properties are [9, 16]. By [9,
Proposition 3.2], if F is an Artinian standard graded k-algebra with the WLP it
follows that HF(F ) is unimodal, which means that there is no triple j1 < j2 < j3
such that HF(j1, F ) > HF(j2, F ) and HF(j3, F ) > HF(j2, F ).

We say that an Artinian standard graded algebra F = ⊕r
i=0Fi with Fr 	= 0 has

the Strong Lefschetz Property (SLP for short) if dimFi = dimFr−i for all i with
0 ≤ i ≤ r and for a general linear form ω of F and all i with 0 ≤ 2i ≤ r, the
multiplication by ωr−2i map Fi → Fr−i is bijective. We say that a standard graded
k-algebra G with dimG ≥ 1 has the SLP if it is Cohen–Macaulay and for general
linear forms f1, . . . , fdimG of G we have that the algebra G/(f1, . . . , fdimG), which is
Artinian by Lemma A.2, has the SLP. If J ⊂ R is an ideal, we say that J has the
WLP (resp. the SLP) if R/J has the WLP (resp. the SLP).

Assume a, b are integers. We say that a standard graded Cohen–Macaulay k-
algebra G satisfies the property Ma,b if there exists a pair (B, ω), where B is an
Artinian reduction of G and ω ∈ B1, with the property that the map Bb−a → Bb

given by multiplication with ωa is injective.
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For a function h : Z → Z we define

Δ(h) : Z → Z, m �→ h(m)− h(m− 1).

For q > 0 we inductively define Δq(h) : Z → Z by Δ1(h) = Δ(h) and Δq(h) =
Δq−1(Δ(h)) for q > 1. Assume G is a standard graded k-algebra and a1, a2, . . . , ap
is a regular sequence in G consisting of linear forms, then HF(G/(a1, . . . , ap)) =
Δp(HF(G)).

We also define

Δ+(h) : Z → Z, m �→ max(0, h(m)− h(m− 1)).

Assume F is a standard graded Artinian k-algebra. Then F has the WLP if and
only if for general ω ∈ F1 we have HF(F/(ω)) = Δ+(HF(F )).

Assume that h : Z → Z has the property that there exists m0 ∈ Z such that
h(m) = 0 when m < m0. We define

Γ(h) : Z → Z, m �→
m∑

i=−∞
h(i).

For q > 0 we inductively define Γq(h) : Z → Z by Γ1(h) = Γ(h) and Γq(h) =
Γq−1(Γ(h)) for q > 1. Assume G is a standard graded k-algebra and T1, . . . , Tp are
new variables of degree 1; then HF(G[T1, . . . , Tp]) = Γp(HF(G)).

For a graded k-algebra G we denote by depthG the depth of G. By [3, Theorem
1.2.8]

depthG = min{i : ExtiG(k,G) 	= 0}, (1)

where k is considered as a G-module via k = G/(⊕i≥1Gi). For an ideal I of a ring
R and u ∈ R we write (I : u) = {r ∈ R

∣∣ ru ∈ I} for the ideal quotient.

2.2 Simplicial complexes

Assume A is a finite set. We set 2A to be the simplex with vertex set A; by definition
it is the set of all subsets of A. A simplicial subcomplex D ⊂ 2A is a subset with the
property that if τ ∈ D and σ ⊂ τ then σ ∈ D. The elements of D are also called
faces of D, and the dimension of a face τ of D is one less than the cardinality of τ .
A facet of D is a maximal face of D with respect to (set-theoretic) inclusion. The
dimension of D is the maximum dimension of a facet of D. We define the support
of D by

suppD = {i ∈ A
∣∣ {i} ∈ D}.

We denote by RA the polynomial ring k[xa
∣∣ a ∈ A] with the degrees of all

variables xa equal to 1. For a simplicial subcomplex D ⊂ 2A we define the Stanley–
Reisner ideal ID,A ⊂ RA to be the ideal generated by the square-free monomials∏p

t=1 xit where {i1, i2, . . . , ip} is not a face of D. In particular, ID,A contains linear
polynomials if and only if suppD 	= A. The Stanley–Reisner ring k[D,A] is defined
by k[D,A] = RA/ID,A. For a non-empty face σ of D we set xσ =

∏
i∈σ xi ∈ RA. For
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a non-empty finite set A, we set ∂A = 2A \ {A} ⊂ 2A to be the boundary complex of
the simplex 2A. In the following, when the set A is clear we will simplify the notation
k[D,A] to k[D].

Assume that, for i = 1, 2, Di ⊂ 2Ai is a subcomplex and the finite sets A1, A2 are
disjoint. By the join D1∗D2 ofD1 and D2 we mean the subcomplex D1∗D2 ⊂ 2A1∪A2

defined by
D1 ∗D2 = {α1 ∪ α2

∣∣ α1 ∈ D1, α2 ∈ D2}.
If σ is a face of D ⊂ 2A we define the link of σ in D to be the subcomplex

lkD σ = {α ∈ D
∣∣ α ∩ σ = ∅ and α ∪ σ ∈ D} ⊂ 2A\σ.

It is clear that the Stanley–Reisner ideal of lkD σ is equal to the intersection of the
ideal (ID,A : xσ) with the subring RA\σ of RA. In other words, it is the ideal of RA\σ
generated by the minimal monomial generating set of (ID,A : xσ). Furthermore, we
define the (open) star of σ in D to be the subset

starD σ = {α ∈ D
∣∣ α ∪ σ ∈ D} ⊂ 2A.

If σ is a non-empty face of D ⊂ 2A and j /∈ A, we define the stellar subdivision
Dσ with new vertex j to be the subcomplex

Dσ = (D \ starD σ) ∪
(
2{j} ∗ lkD σ ∗ ∂σ) ⊂ 2A∪{j}.

Following [25, p. 67], we say that a subcomplex D ⊂ 2A is Gorenstein* over k if
A = suppD, k[D] is Gorenstein, and for every i ∈ A there exists σ ∈ D with σ ∪ {i}
not a face of D. The last condition combinatorially means that D is not a join of the
form 2{i} ∗ E, and algebraically that xi divides at least one element of the minimal
monomial generating set of ID,A.

Assume D ⊂ 2A is a Gorenstein* simplicial complex and σ is a face of D. Set
L = lkD σ. It is well known (cf. [25, Section II.5]) that the subcomplex L ⊂ 2suppL

is Gorenstein* with dimL = dimD − dim σ − 1.

3 Weak Lefschetz Property and stellar subdivisions

In this section we define intermediate rings relating the Stanley–Reisner rings k[D]
and k[Dσ] of a simplicial complex D and its stellar subdivision Dσ. We describe how
the Weak Lefschetz Property behaves under certain Artinian reductions of these
rings. We also study the reductions with regard to the Weak Lefschetz Property.

3.1 The main players

We fix an infinite field k of arbitrary characteristic and a pair (D, σ), where D is a
Gorenstein* simplicial complex with vertex set {1, . . . , n}, and σ = {1, 2, . . . , q+1} is
a q-face of D with q ≥ 1. We set d = dimD+1, R = k[x1, . . . , xn] with the degrees of
all variables equal to 1, xσ =

∏q+1
i=1 xi ∈ R. By I ⊂ R we denote the Stanley–Reisner
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ideal of D, hence k[D] = R/I and dimR/I = d. We set IL = (I : xσ) ⊂ R. We
denote by f1, . . . , fd a sequence of d linear forms of R.

Moreover, we denote by T a new variable of degree 1 and Jst = (I, xσ, T IL) ⊂
R[T ] denotes the Stanley–Reisner ideal of the stellar subdivision Dσ, hence k[Dσ] =
R[T ]/Jst. We set

IC = (I, T q+1, T IL) ⊂ R[T ], IG = (I, T q+1 − xσ, T IL) ⊂ R[T ],

A = R/(I + (f1, . . . , fd)), B = R/(IL + (f1, . . . , fd)),

C = R[T ]/(IC + (f1, . . . , fd)), G = R[T ]/(IG + (f1, . . . , fd)).

The rings R[T ]/IC and R[T ]/IG are closely related to the Kustin–Miller unpro-
jection ring S appearing in [1, Theorem 1.1] and we view them as intermediate rings
connecting k[Dσ] and k[D].

We will see that for general f1, . . . , fd ∈ R1, the rings A,B,C and G are Artinian
reductions of k[D], R/IL, R[T ]/IC and R[T ]/IG respectively. Note that the linear
forms f1, . . . , fd in the reductions only involve the variables xi, that is, they do not
involve the variable T . The basic properties of A,B and R/IL are contained in
Lemma 3.4, of C are contained in Lemma 3.5, of R[T ]/IG and G are contained in
Lemma 3.8 and of R[T ]/IC are contained in Lemma 3.9.

We denote by L ⊂ 2{q+2,q+3,...,n} the link of σ in D and set k[L] = k[L, {q +
2, q + 3, . . . , n}]. Using that

R/IL ∼= (k[L])[x1, . . . , xq+1] (2)

it follows that for general f1, . . . , fd ∈ R1 the k-algebra B is isomorphic to an Artinian
reduction of k[L].

Remark 3.1 We will use the well-known fact, see for example [14, Proposition 3.3]
or [9, Theorem 2.79], that if F = ⊕r

i=0Fi with Fr 	= 0 is a standard graded Gorenstein
Artinian k-algebra, then Fr is 1-dimensional, and for all i with 0 ≤ i ≤ r the
multiplication map Fi × Fr−i → Fr

∼= k is a perfect pairing. We will refer to Fr−i

as the Poincaré dual of Fi. As a consequence, given i, j with 0 ≤ i ≤ j ≤ r and
0 	= e ∈ Fi there exists e′ ∈ Fj−i such that ee′ 	= 0 in Fj.

Recall from the Introduction that if d is even we have p1 = d/2 − 1, p2 = d/2,
while if d is odd we have p1 = p2 = (d− 1)/2.

Remark 3.2 For general f1, . . . , fd ∈ R1 the following hold. Since, by Lemma 3.4,
B is Artinian Gorenstein with Bi = 0 for i ≥ d − q and Bd−q−1 	= 0, by Gorenstein
duality k[L] has the property Mq,p1 if and only if for a general element ω ∈ B1 the
multiplication map by ωq : Bd−q−1−p1 → Bd−q−1−(p1−q) is surjective. If d is even, then
d = 2p1 + 2, hence d − q − 1 − p1 = p1 + 1 − q = p2 − q, while, if d is odd, then
d = 2p1 +1, hence d− q− 1− p1 = p2 − q. Hence no matter if d is even or odd, k[L]
has the property Mq,p1 if and only if for a general element ω ∈ B1 the multiplication
by ωq map Bp2−q → Bp2 is surjective.
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Remark 3.3 For general f1, . . . , fd ∈ R1 the following hold. Assume d is odd. Since
d = 2p1+1, we have d−q−1−(p1−q) = d−p1−1 = p1, hence the multiplication by ωq

map in the definition of property Mq,p1 is between Poincaré dual graded components
of B. Assume d is even. We have d = 2p1+2 and d−q−1−(p1−q) = d−p1−1 = p1+1,
hence the multiplication by ωq map in the definition of the property Mq,p1 factors as
f ◦g, where g is the multiplication by ω map Bp1−q → Bp1−q+1 and f is multiplication
by ωq−1 map between the Poincaré duals Bp1−q+1 and Bp1. As a consequence, no
matter if d is even or odd, if B has the SLP, then it follows that property Mq,p1 holds
for B.

3.2 Weak Lefschetz Property under Artinian reduction

In this subsection, we prove that our assumptions D Gorenstein* and k infinite
imply that the rings k[D], R/IL, R[T ]/IG are Gorenstein, and the ring R[T ]/IC
is Cohen–Macaulay. Consequently, for general f1, . . . , fd ∈ R1 the corresponding
Artinian reductions A, B, G are Gorenstein. We also derive relations between the
Hilbert functions of these rings. We prove that k[D] (respectively R/IL, R[T ]/IC ,
R[T ]/IG) has the Weak Lefschetz Property if and only if for general f1, . . . , fd ∈ R1

the k-algebra A (respectively B, C, G) does.

Lemma 3.4 For general f1, . . . , fd ∈ R1 the following hold. The rings k[D], k[Dσ], A
and B are Gorenstein. We have A = ⊕d

i=0Ai with Ad 1-dimensional. The ring
R/IL is Gorenstein with dimR/IL = d. We have B = ⊕d−q−1

i=0 Bi and Bd−q−1 is
1-dimensional. Moreover, for all m ≥ 0 we have

HF(m, k[Dσ]) = HF(m, k[D]) +

q∑

i=1

HF(m− i, R/IL).

Proof: Since, by assumption, D is Gorenstein*, it follows that k[D] is Gorenstein.
By definition, A is an Artinian reduction of k[D], hence it is also Gorenstein. Since
dim k[D] = d, by Lemma A.6, we get A = ⊕d

i=0Ai with Ad 1-dimensional.

By [24, p. 188], Gorenstein* is a topological property. Hence a stellar subdivision of
a Gorenstein* simplicial complex is again Gorenstein*. As a consequence k[Dσ] is
Gorenstein.

Recall that L is Gorenstein*, with dim k[L] = d − q − 1, hence by Equation (2),
R/IL is Gorenstein of dimension d. Since B is isomorphic to an Artinian reduction
of k[L], it follows that B is Gorenstein. Moreover, by Lemma A.6, B = ⊕d−q−1

i=0 Bi

and Bd−q−1 is 1-dimensional.

The equation between the Hilbert functions follows from [1, Remark 5]. �

Lemma 3.5 (Recall σ is a q-face, with q ≥ 1) For general f1, . . . , fd ∈ R1 the
following hold. There is a well-defined bijective k-linear map φ of vector spaces

φ : A⊕ Bq → C, ([a], [b1], . . . , [bq]) �→ [a+

q∑

i=1

biT
i]
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for a, bi ∈ R. As a corollary, C is Artinian and for all m ≥ 0

HF(m,C) = HF(m,A) +

q∑

i=1

HF(m− i, B). (3)

Hence, HF(C) is equal to the Hilbert function of an Artinian reduction of k[Dσ]. In
particular, Cd is 1-dimensional, Ci = 0 for i ≥ d + 1 and dimCd−i = dimCi for all
0 ≤ i ≤ d.

Proof: φ is well-defined: Assume a, a′, bi, b′i ∈ R with [a] = [a′] in A and [bi] = [b′i]
in B for all i. Then a − a′ ∈ (I, f1, . . . , fd) and bi − b′i ∈ (IL, f1, . . . , fd), hence
T (bi − b′i) ∈ (TIL, f1, . . . , fd). As a consequence

[a+

q∑

i=1

biT
i] = [a′ +

q∑

i=1

b′iT
i]

in C.

φ is surjective: Obvious from the definitions of φ and C.

φ is injective: Assume a, bi ∈ R with [a+
∑q

i=1 biT
i] = 0 in C. This implies that there

exist ea,1, . . . , ea,r1 ∈ I, eb,1, . . . , eb,r2 ∈ IL, ga,1, . . . , ga,r1 ∈ R[T ], gb,1, . . . , gb,r2 ∈ R[T ],
gc ∈ R[T ], ge,1, . . . , ge,d ∈ R[T ] such that

a+

q∑

i=1

biT
i =

r1∑

j=1

ga,jea,j + T

r2∑

j=1

gb,jeb,j + gcT
q+1 +

d∑

j=1

ge,jfj

with equality in R[T ]. Looking at the coefficients of the powers of T we get a ∈
(I, f1, . . . , fd) and bi ∈ (IL, f1, . . . , fd) for all 1 ≤ i ≤ q. Hence φ is injective.

Since A,B are Artinian, they are finite dimensional k-vector spaces. Since φ is
surjective C is finite dimensional as a k-vector space which implies that C is Artinian.

Equation 3 immediately follows from the bijectivity of φ.

Using [1, Remark 5] and Lemma 3.4, it follows that HF(C) is equal to the Hilbert
function of an Artinian reduction of k[Dσ]. As a consequence, the statements Cd is
1-dimensional, Ci = 0 for i ≥ d + 1 and dimCd−i = dimCi for all 0 ≤ i ≤ d, follow
from Lemma A.6 applied to the Gorenstein* simplicial complex Dσ. �

Remark 3.6 For general f1, . . . , fd ∈ R1 the following hold. Taking graded compo-
nents, Lemma 3.5 immediately implies that, for i ≥ 0, there exists a k-vector space
decomposition

Ci = Ai ⊕ (

q⊕

j=1

T jBi−j) (4)

Hence, if c ∈ Ci, there exist unique a ∈ Ai and bj ∈ Bj such that

c = a+ bi−1T + bi−2T
2 + · · ·+ bi−qT

q.
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Corollary 3.7 For general f1, . . . , fd ∈ R1 and for general h1, . . . , hd ∈ (R[T ])1 the
following hold. Assume that the Hilbert function of a general linear section of C is
equal to the Hilbert function of a general linear section of k[Dσ]/(h1, . . . , hd). Then
C has the WLP if and only if k[Dσ] has the WLP.

Proof: By Lemma 3.5, HF(C) is equal to the Hilbert function of an Artinian
reduction of k[Dσ]. Hence Δ

+(HF(C)) = Δ+(HF(k[Dσ]/(h1, . . . , hd))), and the result
follows. �

Recall IG = (I, T q+1 − xσ, T IL) and G = R[T ]/(IG + (f1, . . . , fd)).

Lemma 3.8 For general f1, . . . , fd ∈ R1 the following hold.
i) The k-algebra R[T ]/IG is Gorenstein, dimR[T ]/IG = d and HF(R[T ]/IG) =

HF(k[Dσ]).
ii) The ring G is Artinian Gorenstein, and HF(G) = HF(C), which, by

Lemma 3.5, is equal to the Hilbert Function of an Artinian reduction of k[Dσ].
iii) Assume k[Dσ] has the WLP. Then both R[T ]/IG and G have the WLP.

Proof: Let z, z′ be two new variables and c ∈ k. We set IV = (I, T IL, T z − xσ) ⊂
R[T, z] where deg T = 1, deg z = q. We set M = R[T, z, z′]/(IV ), where (IV ) is the
ideal of R[T, z, z′] generated by IV and deg T = deg z′ = 1, deg z = q. We also set
Q = M/(z − T q−1z′) and

Hc = Q/(z′ − cq+1T ) ∼= R[T ]/(I, T IL, c
q+1T q+1 − xσ).

By [1, Theorem 1.1], R[T, z]/IV is Gorenstein and dimR[T, z]/IV = d+1. It follows
thatM is Gorenstein and dimM = d+2. Hence dimQ ≥ d+1. SinceQ/(z′) = k[Dσ]
which has dimension d, it follows that dimQ ≤ d + 1. Hence dimQ = d + 1. Using
that M is Gorenstein, hence Cohen–Macaulay, it follows that z − T q−1z′ is an M-
regular element, hence Q is Gorenstein.

Clearly
Q = R[T, z′]/(I, T IL, T qz′ − xσ),

hence Q is standard graded. We have H0 = k[Dσ], hence dimQ/(z′) = dimQ −
1. Since Q is Gorenstein, hence Cohen–Macaulay, it follows that z′ is a Q-regular
element.

Hence Lemma A.4 implies that for general c ∈ k we have that z′−cq+1T is aQ-regular
element, since the property is true for c = 0. As a consequence, for general c ∈ k the
ring Hc is Gorenstein of dimension d and HF(Hc) = HF(k[Dσ]). For nonzero c, using
the linear change of coordinates T �→ cT , we have Hc

∼= H1
∼= R[T ]/IG. It follows

that R[T ]/IG is Gorenstein, dimR[T ]/IG = d and HF(R[T ]/IG) = HF(k[Dσ]).

We now prove ii) We first prove that G is Artinian. The arguments used in the proof
of Lemma 3.5 also give that there exists a well-defined surjective k-linear map of
vector spaces

ψ : A⊕Bq → G, ([a], [b1], . . . , [bq]) �→ [a +

q∑

i=1

biT
i]
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for a, bi ∈ R, hence G is Artinian. Since we proved that R[T ]/IG is Gorenstein,
hence Cohen–Macaulay, and of dimension d, and since G is Artinian it follows that
f1, . . . , fd is a regular sequence for R[T ]/IG. Since HF(R[T ]/IG) = HF(k[Dσ]), it
follows that

HF(G) = Δd(HF(R[T ]/IG)) = Δd(HF(k[Dσ]) = HF(C)

with the last equality by Lemma 3.5. Hence dimkG = dimk C. By Lemma 3.5,
dimk C = (dimk A) + q(dimk B), hence dimk G = (dimk A) + q(dimk B). Since ψ is
surjective it follows that ψ is bijective.

We now prove iii). Assume k[Dσ] has the WLP. By Lemma A.4, we have that for
general c ∈ k the algebra Hc has the WLP, since the property is true for c = 0.
For nonzero c, using the linear change of coordinates T �→ cT , we have Hc

∼= H1
∼=

R[T ]/IG. Hence R[T ]/IG has the WLP. Since, by ii), G is Artinian, Lemma B.1
implies that G has the WLP. �

Lemma 3.9 The ring R[T ]/IC is Cohen–Macaulay with the properties dimR[T ]/IC
= d and HF(R[T ]/IC) = HF(k[Dσ]). Moreover, IC is the initial ideal of IG with
respect to any monomial order in R[T ] such that T > xi for all 1 ≤ i ≤ n.

For the proof of Lemma 3.9 we need the following proposition.

Proposition 3.10 Set H = k[x1, . . . , xn, T, z]/(I, T z, T IL). Then H is Cohen–
Macaulay and dimH = d+ 1.

Proof: Recall that ∗ denotes the join of simplicial complexes and for a finite set S we
denote by 2S the simplex with vertex set S. We set deg xi = deg T = deg z = 1. By
definition, H is the quotient of the polynomial ring k[x1, . . . , xn, T, z] by a square-
free monomial ideal. We denote by DH the simplicial complex on the vertex set
{1, 2, . . . , n, T, z} that corresponds to the monomial ideal. The set of facets of DH is
equal to the union

{{z, u} : u facet of D} ∪ {{T, 1, 2, . . . , q + 1, w} : w facet of L}.
As a consequence, we have the following decomposition

DH = E1 ∪ E2

where E1 = 2{z} ∗D, E2 = 2{T,1,2,...,q+1} ∗ L.
Since D is Cohen–Macaulay over k with dimension d− 1 we have that E1 is Cohen–
Macaulay over k with dimension equal to d. Since L is Cohen–Macaulay over k with
dimension d−q−2 we have that E2 is Cohen–Macaulay over k with dimension equal
to d.

Moreover, E1 ∩ E2 = 2{1,2,...,q+1} ∗ L is also Cohen–Macaulay over k with dimension
equal to d−1. Hence, using [10, Lemma 23.6], it follows that DH is Cohen–Macaulay
over k with dimension d. Hence H is a Cohen–Macaulay ring with dimension equal
to d+ 1. �
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We now prove Lemma 3.9:

Proof: We denote by Ha the ring H but with deg xi = deg T = 1 and deg z = q.
Since the dimension and the Cohen–Macaulay property is independent of the grading,
Proposition 3.10 implies that Ha is Cohen–Macaulay and dimHa = d+ 1.

The element z − T q ∈ Ha is homogeneous and Ha/(z − T q) ∼= R[T ]/IC as graded
k-algebras. Hence dimR[T ]/IC ≥ d + 1 − 1 = d. By Lemma 3.5, C is Artinian.
Since C = R[T ]/(IC, f1, . . . , fd) it follows that dimR[T ]/IC ≤ d. As a conse-
quence dimR[T ]/IC = d. Since z − T q is homogeneous, Ha is Cohen–Macaulay
and dimHa/(z − T q) = dimHa − 1, it follows that z − T q is Ha-regular. Hence
R[T ]/IC is Cohen–Macaulay. As a consequence, f1, . . . , fd is an R[T ]/IC-regular
sequence. Hence HF(R[T ]/IC) = Γd(HF(C)).

Since IG = (I, T IL, T
q+1−xσ), it is clear that IC is a subset of the initial ideal of the

IG with respect to any monomial order in R[T ] such that T > xi for all 1 ≤ i ≤ n.
Since, by Lemma 3.5, HF(C) is equal to the Hilbert function of an Artinian reduction
of k[Dσ] and since, by Lemma 3.4, k[Dσ] is Gorenstein of dimension d, it follows that

HF(R[T ]/IC) = Γd(HF(C)) = HF(k[Dσ]) = HF(R[T ]/IG),

with the last equality by Lemma 3.8. Consequently, IC is the initial ideal of the IG.
�

Remark 3.11 In general, the ring R[T ]/IC is not Gorenstein. For example, as-
sume D is the boundary complex of the 3-gon and σ = {1, 2} ∈ D. We have that
IC = (x1x2x3, Tx3, T

2) ⊂ k[x1, x2, x3, T ] which is a codimension 2 ideal that needs 3
generators. Hence R[T ]/IC is not Gorenstein by [6, Corollary 21.20].

Lemma 3.12 For general f1, . . . , fd ∈ R1 the following hold. The k-algebra k[D]
(respectively k[L], R[T ]/IC) has the WLP if and only if A (respectively B, C) has
the WLP.

Proof: Since f1, . . . , fd ∈ R1 are general it is immediate that A has the WLP if and
only if k[D] has the WLP. Since B is an Artinian reduction of the Gorenstein k[L]
and f1, . . . , fd ∈ R1 are general it is immediate that B has the WLP if and only if
k[L] has the WLP.

By Lemma 3.9, R[T ]/IC is Cohen–Macaulay of dimension d. Since, by Lemma 3.5, C
is Artinian, it follows that f1, . . . , fd is an R[T ]/IC-regular sequence. Hence the WLP
holds for C implies the WLP holds for R[T ]/IC . Conversely, assume that R[T ]/IC
has the WLP. The result that C has the WLP follows from Lemma B.1. �

3.3 Weak Lefschetz Property relations between the Artinian reductions

The main result of this subsection is that for general f1, . . . , fd ∈ R1 the k-algebra
C has the WLP if and only if A has the WLP and property Mq,p1 holds for B.

The following lemma will be used in the proof of Lemma 3.15. Note that, since,
by Remark 3.11, C is not always Gorenstein, the lemma does not follow from Re-
mark 3.1.
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Lemma 3.13 For general f1, . . . , fd ∈ R1 the following hold. Assume 1 ≤ i < p1
and 0 	= c ∈ Ci. Then there exists c′ ∈ Cp1−i such that cc′ 	= 0 in Cp1. As a corollary,
assume ω ∈ C1 is any element. If the multiplication by ω map Cp1 → Cp1+1 is
injective, it follows that for all r with 1 ≤ r ≤ p1 the multiplication by ω map
Cr → Cr+1 is injective.

Proof: Using Remark 3.6, write

c = ai +

q∑

j=1

bi−jT
j

(equality in C) with ai ∈ Ai and bi−j ∈ Bi−j for all 1 ≤ j ≤ q. Since c 	= 0, we have
ai 	= 0 or bi−e 	= 0 for some e with 1 ≤ e ≤ min{i, q}.
Assume first that ai 	= 0. By Lemma 3.4, A is Artinian Gorenstein with Ad 	= 0.
Hence, by Remark 3.1, there exists a ∈ Ap1−i such that aia 	= 0 ∈ Ap1 . Hence cc

′ 	= 0
in Cp1, where c

′ = a.

For the rest of the argument we assume that there exists e with 1 ≤ e ≤ min{i, q}
such that bi−e 	= 0 in B. We have two cases:

First Case: We assume p1 ≤ d−q−1. By Lemma 3.4, B is Artinian Gorenstein with
Bd−q−1 	= 0. By Remark 3.1, there exists b ∈ Rp1−i such that bi−eb 	= 0 in Bp1−e.
Hence cc′ 	= 0 in Cp1, where c

′ = b.

Second Case: We assume d − q − 1 < p1. Hence d − p1 − 1 < q. If d is even, since
d = 2p1 +2 we get p1 +1 < q. If d is odd, since d = 2p1 +1 we get p1 < q. Hence no
matter if d is even or odd we have p1 < q. Since e ≤ i and i < p1 we get 0 < p1−i < q
and 0 < p1 + e − i < q. As a consequence 0 	= bi−eT

eT p1−i in Cp1. Hence cc′ 	= 0 in
Cp1, where c

′ = T p1−i.

We now prove the corollary. We assume 1 ≤ r < p1, that the multiplication by
ω map Cp1 → Cp1+1 is injective and that the multiplication by ω map Cr → Cr+1

is not injective and we will get a contradiction. By the assumptions, there exists
0 	= c ∈ Cr such that ωc = 0 in Cr+1. By the first part of the present lemma, there
exists c′ ∈ Cp1−r such that cc′ 	= 0 in Cp1. Hence by the assumptions, ωcc′ 	= 0 in
Cp1+1, which contradicts ωc = 0 in Cr+1. �

The ring C is not always Gorenstein, hence we cannot use Lemma A.3. The
following lemma is a substitute.

Lemma 3.14 For general f1, . . . , fd ∈ R1 the following are equivalent:
i) C has the WLP.
ii) For general ω ∈ R1 the multiplication by ω + T map Cp1 → Cp1+1 is injective

and the multiplication by ω + T map Cp2 → Cp2+1 is surjective.

Proof: Assume that i) holds. Since for nonzero c ∈ k the map C → C, with xi �→ xi
and T �→ cT is well-defined and an automorphism, it follows that for general ω ∈ R1

we have that ω+T is a general element of C1. Since C is assumed to have the WLP
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to prove ii) it is enough to prove dimCp1 ≤ dimCp1+1 and dimCp2+1 ≤ dimCp2. We
assume it is not the case and we will get a contradiction.

By [9, Proposition 3.2], HF(C) is unimodal. By Lemma 3.5, dimCi = dimCd−i for
all i ∈ Z. First we assume that dimCp1 > dimCp1+1. If d is odd, then dimCp1 =
dimCp1+1 which is a contradiction. Hence d is even. Since d− p1 = p1 + 2 it follows
that dimCp1+2 = dimCp1 > dimCp1+1, which contradicts the unimodality of HF(C).

We now assume that dimCp2+1 > dimCp2. If d is odd, then d − p2 = p2 + 1, and
hence dimCp2 = dimCp2+1, which is a contradiction. If d is even, then p2 = p1 + 1
and d − (p2 + 1) = p1. Hence dimCp1 > dimCp1+1 which we proved above that
cannot happen.

Conversely assume that ii) holds. Then, by Lemma 3.13, for all 0 ≤ i ≤ p1 the
multiplication by ω+T map Ci → Ci+1 is injective. Since C is standard graded, the
assumption that the multiplication by ω + T map Cp2 → Cp2+1 is surjective implies
that for all j ≥ p2 the multiplication by ω + T map Cj → Cj+1 is surjective.

Indeed, assume h ∈ Cj+1. Since C is standard graded, there exist N > 0 and, for

1 ≤ t ≤ N , at ∈ Cp2+1, bt ∈ Cj−p2 such that h =
∑N

t=1(atbt). Hence, for 1 ≤ t ≤ N ,

there exists et ∈ Cp2 such that at = (ω+T )et. Consequently, h = (ω+T )
∑N

t=1(btet).
For an alternative argument, see [15, Proposition 2.1].

Since p2 = p1 if d is odd, and p2 = p1 + 1 if d is even, we get that for all j ∈ Z

multiplication by ω + T as a map Cj → Cj+1 is injective or surjective (or both),
hence C has the WLP. �

Lemma 3.15 For general f1, . . . , fd ∈ R1 the following are equivalent:
i) C has the WLP.
ii) A has the WLP and property Mq,p1 holds for B.

Proof: By Lemma 3.4, A = ⊕d
i=0Ai with Ad 1-dimensional and B = ⊕d−q−1

i=0 Bi with
Bd−q−1 1-dimensional. By Lemma 3.5, Cd is 1-dimensional, Ci = 0 for i ≥ d+ 1 and
dimCd−i = dimCi for all 0 ≤ i ≤ d.

Let ω ∈ R1 be a general linear form. By Lemma 3.14, C has the WLP if and only if
the multiplication by ω + T map Cp1 → Cp1+1 is injective and the multiplication by
ω + T map Cp2 → Cp2+1 is surjective.

We assume that A has the WLP and B satisfies property Mq,p1 and we will show
that C has the WLP. For that we first show that the multiplication by ω + T map
Cp1 → Cp1+1 is injective. Assume it is not. Then there exists 0 	= c ∈ Cp1 such that

(ω + T )c = 0 (5)

in Cp1+1. By Equation (4), there exist (unique) ap1 ∈ Ap1 and, for 1 ≤ j ≤ q,
bp1−j ∈ Bp1−j such that

c = ap1 +

q∑

j=1

bp1−jT
j .
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Since A is assumed to have the WLP, if ap1 	= 0, we have ωap1 	= 0 which implies (ω+
T )c 	= 0, which contradicts Equation (5). Hence we have ap1 = 0 in A. Equation (5)
then implies that for j = 1, 2, . . . , q − 1

ωbp1−1 = 0, bp1−j + ωbp1−(j+1) = 0,

with all equations in B. Combining these equations we get ωqbp1−q = 0 in B. Using
the assumption that B satisfies property Mq,p1, it follows that bp1−q = 0 in B, which,
using the above equations, implies that bp1−j = 0 for all 1 ≤ j ≤ q, hence c = 0, a
contradiction.

If d is odd, then since p1 = p2 and dimCp1 = dimCp1+1 the multiplication by ω + T
map Cp2 → Cp2+1 is also surjective, hence C has the WLP. If d is even, then we use
the following argument:

Assume c′ ∈ Cp2+1 with

c′ = ap2+1 +

q∑

j=1

bp2+1−jT
j

where ap2+1 ∈ Ap2+1 and bp2+1−j ∈ Bp2+1−j for all 1 ≤ j ≤ q. We will find

c = ap2 +

q∑

j=1

ep2−jT
j ∈ Cp2

where ap2 ∈ Ap2 and ep2−j ∈ Bp2−j for all 1 ≤ j ≤ q, such that (ω + T )c = c′. Hence
we need to have (with the first equation in A and the remaining q equations in B)

ap2+1 = ωap2
bp2+1−1 = ap2 + ωep2−1

bp2+1−2 = ep2−1 + ωep2−2

...

bp2+1−q = ep2−q+1 + ωep2−q

Since A is assumed to have the WLP, the multiplication by ω map Ap2 → Ap2+1 is
surjective, hence there exists ap2 ∈ Ap2 such that ap2+1 = ωap2 in A. We fix such ap2.
Given ep2−q ∈ Bp2−q, the last q − 1 equations in B inductively determine (unique)
ep2−q+1, . . . , ep2−1 that satisfy them. What we need is to choose ep2−q in such a way
that we have compatibility with the second equation

bp2 = ap2 + ωep2−1.

If we express ep2−q+1, . . . , ep2−1 in terms of ep2−q, the compatibility equation becomes

ωqep2−q = (−1)qap2 +

q−1∑

i=0

(−1)q+1−iωibp2−i
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(equation in B). Using the assumption that B satisfies property Mq,p1, Remark 3.2
implies that there exists ep2−q ∈ Bp2−q that satisfies the compatibility equation.

We now prove the converse. We assume that C has the WLP and we prove that A
has the WLP and B satisfies the Mq,p1 property.

Let a ∈ Ap2+1 ⊂ Cp2+1. By Lemma 3.14, there exists c ∈ Cp2 such that a = (ω+T )c.
Write

c = ap2 +

q∑

j=1

ep2−jT
j ∈ Cp2

with equality in C, where ap2 ∈ Ap2 and ep2−j ∈ Bp2−j for all 1 ≤ j ≤ q. It follows
that a = ωap2, hence the multiplication by ω map Ap2 → Ap2+1 is surjective. Using
Lemma 3.4 and Lemma A.3, it follows that A has the WLP.

We will now prove that B has the propertyMq,p1. Suppose on the contrary that there
exists 0 	= b ∈ Bp1−q such that ωqb = 0 in B. We set c =

∑q
i=1(−1)q−iωq−ibT i ∈ Cp1.

Since the summand of c corresponding to i = q is bT q, we get from Equation (4) that
c 	= 0. Using that T q+1 = 0 in C, we have

(ω + T )c =

q∑

i=1

(−1)q−iωq−i+1bT i +

q∑

i=1

(−1)q−iωq−ibT i+1

= (−1)q−1ωqbT +

q∑

i=2

(−1)q−iωq−i+1bT i +

q−1∑

i=1

(−1)q−iωq−ibT i+1

= 0

which is a contradiction, since, by Lemma 3.14, the multiplication by ω + T map
Cp1 → Cp1+1 is injective. This contradiction finishes the proof of Lemma 3.15. �

4 The main results

The present section contains our main results on the Weak Lefschetz Property under
stellar subdivisions and their inverses. We continue to use the notation introduced
in Section 3.

4.1 Weak Lefschetz Property under a stellar subdivision

Lemma 4.1 If (q > p1) or (q = p1 and the field k has characteristic 0 or a prime
number > d− q − 1), then property Mq,p1 holds for k[L].

Proof: If q > p1, then Bp1−q = 0 and the result is obvious.

Assume q = p1. Since B0 = k, property Mq,p1 for k[L] is equivalent to ωp1 	= 0
in B for general ω ∈ B1. Suppose on the contrary that bp1 = 0 for all b ∈ B1.
This, together with the assumptions on the characteristic of the field k imply, by
Lemma A.5, that Bp1 = 0. Since d − q − 1 = d − p1 − 1 ≥ p1, and B is standard
graded, we get Bd−q−1 = 0 which contradicts Lemma 3.4. �
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Lemma 4.2 Assume R[T ]/IC has the WLP. Then k[Dσ] has the WLP.

Proof: We argue in a very similar way to [18, Proposition 2.2]. Consider the k-
algebra automorphism φ of R[T ] defined by T �→ T, xi �→ xi + T for 1 ≤ i ≤ q + 1
and xi �→ xi for q + 2 ≤ i ≤ n. We claim that IC is the initial ideal of φ(Jst) with
respect to any monomial order in R[T ] such that T > xi for all 1 ≤ i ≤ n.

Indeed, it is clear that IC is a subset of the initial ideal of φ(Jst) and, by Lemma 3.9,
HF(R[T ]/IC) = HF(k[Dσ]). It follows from Lemma A.1 that R[T ]/φ(Jst) has the
WLP, hence also R[T ]/Jst = k[Dσ] has the WLP. �

We now prove Theorem 1:

Proof: We first prove Part iv). By Lemma 3.12, A has the WLP for general
f1, . . . , fd ∈ R1. Hence, by Lemma 3.15, C has the WLP for general f1, . . . , fd ∈ R1.
As a consequence, by Lemma 3.12, R[T ]/IC has the WLP. Using Lemma 4.2, Part
iv) of Theorem 1 follows.

Part iii) follows from Part iv), since, by Remark 3.3, k[L] SLP implies that the
property Mq,p1 holds for k[L].

We finally prove Parts i) and Parts ii) of Theorem 1. Using Lemma 4.1, property
Mq,p1 holds for k[L]. Hence k[Dσ] has the WLP by Part iii). �

4.2 Weak Lefschetz Property under the inverse of a stellar subdivision

In the following we prove Theorem 2:

Proof:

We assume q > p2 and k[Dσ] has the WLP.

The assumption that k[Dσ] has the WLP implies, by Lemma 3.8, that for general
f1, . . . , fd, G is Artinian Gorenstein with the WLP, and that HF(G) = HF(C). As
a consequence, Lemma 3.5 implies that Gd is 1-dimensional and, Gj = 0 for j > d.
Hence, for general ω ∈ R1 the multiplication by ω+T map Gp2 → Gp2+1 is surjective.

Using that the map ψ in the proof of Lemma 3.8 is bijective, it follows that the natural
map A → G, with [a] �→ [a] for a ∈ R, is injective. Assume a ∈ Ap2+1 ⊂ Gp2+1.
Then there exists g ∈ Gp2 such that

(ω + T )g = a (6)

Using again that the map ψ in the proof of Lemma 3.8 is bijective, there exists
e ∈ Ap2 and, for 1 ≤ j ≤ q, bp2−j ∈ Bp2−j such that

g = e+

q∑

i=1

bp2−iT
i,
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with equality in G. The assumption q > p2 implies that p2 − q < 0, hence bp2−q = 0
in B. As a consequence

a = (ω + T )g = ωe+ eT +

q−1∑

i=1

bp2−iT
i +

q−1∑

i=1

bp2−iT
i+1

(equality in G), which imply that a = ωe (equality in A ⊂ G). It follows that
the multiplication by ω map Ap2 → Ap2+1 is surjective. Using Lemma 3.4 and
Lemma A.3, it follows that A has the WLP. Hence, Lemma 3.12 implies that k[D]
has the WLP. �

4.3 Proof of Corollary 3

Proof: We first prove that the statement 2(dimσ) > dimD + 1 is equivalent to
q > p2. Indeed, by the definitions, q = dim σ, d = dimD + 1. Assume d is even.
Then p2 = d/2. Hence q > p2 is equivalent to dimσ > d/2 which is equivalent to
2(dim σ) > d = dimD+1. Assume now d is odd. Then p2 = (d− 1)/2, hence q > p2
is equivalent to dimσ > (d−1)/2 which is equivalent to 2(dimσ) > d−1. But d odd
implies d−1 even, hence since 2(dim σ) is always even 2(dim σ) > d−1 is equivalent
to 2(dim σ) > d = dimD + 1.

Assume 2(dim σ) > dimD + 1 and k[D] has the WLP. As we said above q > p2.
Since p2 ≥ p1, we have q > p1, hence Part i) of Theorem 1 implies that k[Dσ] has
the WLP.

Assume now 2(dim σ) > dimD+1 and k[Dσ] has the WLP. As we said above q > p2.
By Theorem 2, k[D] has the WLP. �

4.4 Final remarks

In the following remarks we keep assuming thatD is a Gorenstein* simplicial complex
and k is an infinite field.

Remark 4.3 Suppose
D0 = D,D1, . . . , Dm

is a finite sequence of simplicial complexes such that, for all 0 ≤ i ≤ m − 1, the
complex Di+1 is obtained from Di by a stellar subdivision with respect to a face σi of
Di with 2(dim σi) > dimD+1. Then, by Corollary 3, the Stanley–Reisner ring k[D]
has the WLP if and only if k[Dm] has the WLP. Is it possible to prove that starting
from D there exists a sequence of stellar subdivisions as above with k[Dm] WLP?
Then it would follow that k[D] has the WLP. Compare also [12, Conjecture 4.12].

Remark 4.4 Recall IC = (I, T q+1, T IL). Assume that k[Dσ] has the WLP. Is it
possible to prove that R[T ]/IC has the WLP? If so, combining Lemmas 3.12 and
3.15 it would then follow that k[D] has the WLP.
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A Some general lemmas

In the present section we put together a number of general lemmas we use. The
following lemma is the analogue for the WLP of [18, Lemma 3.3] which is stated for
the SLP and can be proven by the same arguments.

Lemma A.1 (Wiebe) Assume R is a polynomial ring over an infinite field with all
variables of degree 1, τ is a monomial order on R and J ⊂ R is a homogeneous ideal
with R/J Cohen–Macaulay. Denote by inτ (J) the initial ideal of J with respect to
τ . We assume that R/inτ (J) is Cohen–Macaulay and has the WLP. Then R/J has
the WLP.

We remark that R/inτ (J) is automatically Cohen–Macaulay if R/J is Cohen–
Macaulay and τ is the reverse lexicographic order (induced by any linear order of
the variables); see [6, Theorem 15.13]. For a proof of the following lemma see [3,
Proposition 1.5.12].

Lemma A.2 Assume k is an infinite field, R = k[x1, . . . , xn] with all variables of
degree 1, J ⊂ R is a homogeneous ideal and t is a positive integer with t ≤ depthR/J .
Then, there exists a non-empty Zariski open subset U ⊂ (R1)

t such that f1, . . . , ft is
an R/J-regular sequence for all (f1, . . . , ft) ∈ U .

Lemma A.3 Assume k is an infinite field and F = ⊕d
i=0Fi is an Artinian standard

graded Gorenstein k-algebra with Fd 	= 0. If d is even, we set p1 = d/2−1, p2 = d/2,
if d is odd, we set p1 = p2 = (d − 1)/2. Denote by ω ∈ F1 a general linear form.
Then the following are equivalent.

i) F has the WLP.
ii) The multiplication by ω map Fp1 → Fp1+1 is injective
iii) The multiplication by ω map Fp2 → Fp2+1 is surjective.

Proof: It follows from [17, Remark 2.4] �

Lemma A.4 Assume k is an infinite field, R = k[x1, . . . , xn] with all variables of
degree 1. Assume J ⊂ R is a homogeneous ideal such that R/J is Cohen–Macaulay
and g1, g2 ∈ R are two nonzero linear forms. We define

S1 = {c ∈ k : g1 − cg2 /∈ J} ⊂ A
1,

S2 = {c ∈ S1 : g1 − cg2 is R/J-regular} ⊂ A
1

and
S3 = {c ∈ S2 : R/(J + (g1 − cg2)) has the WLP } ⊂ A

1.

Then, for all 1 ≤ i ≤ 3, the subset Si ⊂ A
1 is Zariski open (but perhaps empty).
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Proof: Denote by B the finite dimensional vector space R1 considered as an affine
variety. Consider the morphism φ : A1 → B, c �→ g1 − cg2. It is clear that the image
of φ is an affine subspace of B, and hence Zariski closed. As a consequence, it is
enough to prove that, for 1 ≤ i ≤ 3, the three subsets

W1 = {f ∈ B : f /∈ J} ⊂ B,

W2 = {f ∈ B : f is R/J-regular}
and

W3 = {f ∈ B : f is R/J-regular and R/(J + (f)) has the WLP} ⊂ B

are Zariski open. For W1 it is obvious. For W2 it follows from [6, Theorem 3.1]. The
case of W3 is also well-known, see for example [4, Lemma 4.1]. �

Lemma A.5 Assume e ≥ 1 is an integer and k is a field of characteristic 0 or of
prime characteristic > e. Consider the polynomial ring R = k[x1, . . . , xn] with all
variables of degree 1 and assume V ⊂ R is a k-vector subspace. If ae ∈ V for all
a ∈ R1, then it follows that Re ⊂ V .

Proof: According to [11, Section 3.2, Exercise 2], the linear span of the set {ae : a ∈
R1} is equal to Re. The result follows. �

Lemma A.6 Assume D is a Gorenstein* simplicial complex. Denote by k[D] the
Stanley–Reisner ring of D over an infinite field k and by F an Artinian reduction of
k[D]. We have

F = ⊕dim k[D]
i=0 Fi

and Fdim k[D] is 1-dimensional.

Proof: This follows from [25, Theorems I.12.4-I.12.6]. �

B A lemma on the WPL property of an Artinian reduction

It is well-known that it can happen that an Artinian reduction of a k-algebra sat-
isfying the WLP does not satisfy the WLP; see, for example, [5]. The following
Lemma B.1 states a condition that guarantees that certain Artinian reductions of a
WLP k-algebra inherit the WLP property.

Lemma B.1 Assume k is an infinite field, R = k[x1, . . . , xn] is a polynomial ring
with all variables of degree 1 and S = R[T ], where T is a new variable of degree 1.
Assume J ⊂ S is a homogeneous ideal with dimS/J = d ≥ 1. Assume S/J has
the WLP, and that there exists f̃ ∈ (R1)

d with dimS/(J + (f̃)) = 0. Then there
exists a non-empty Zariski open subset U ⊂ (R1)

d such that dimS/(J+(f)) = 0 and
S/(J + (f)) has the WLP for all f ∈ U .
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Proof:

STEP 1. Since S/J has the WLP, it is Cohen–Macaulay. It is well-known (see [18,
Lemma 3.1]) that there exists a non-empty Zariski open subset U1 ⊂ (S1)

d+1 such
that dimS/(J + (h)) = 0 and

HF(S/(J + (h))) = Δ+(Δd(HF(S/J)))

for all h ∈ U1.

STEP 2. Denote by φ : (S1)
d+1 → (S1)

d the morphism of varieties given by

φ(h1, . . . , hd, hd+1) = (h1, . . . , hd).

It is well-known (see, for example, [22, Tag 037G]) that φ is an open morphism. We
claim that

φ(U1) ∩ (R1)
d 	= ∅.

Indeed, U1 is non-empty, so there exists (h1, . . . , hd+1) ∈ U1. By Gauss elimina-
tion there exist f1, . . . , fd ∈ R1 and fd+1 ∈ S1 such that the ideals (f1, . . . , fd+1)
and (h1, . . . , hd+1) of S are equal. Hence (f1, . . . , fd+1) ∈ U1. As a consequence
(f1, . . . , fd) ∈ φ(U1) ∩ (R1)

d.

STEP 3. We claim that there exists a non-empty Zariski open subset U2 ⊂ (R1)
d

such that dimS/(J + (f)) = 0 for all f ∈ U2. Indeed, this follows from the openness
of the condition and the hypothesis that there exists f̃ ∈ (R1)

d with the property.

STEP 4. We set
U = φ(U1) ∩ (R1)

d ∩ U2.

The set U is the intersection of the non-empty Zariski open subsets U2 and φ(U1) ∩
(R1)

d of (R1)
d. Since the field k is infinite, the affine vartiety (R1)

d is irreducible.
Hence U is a non-empty Zariski open subset of (R1)

d.

Assume f = (f1, . . . , fd) ∈ U . Since U ⊂ U2, we have that dimS/(J + (f)) = 0. We
claim that S/(J + (f)) has the WLP. Indeed, since f ∈ φ(U1) there exists fd+1 ∈ S1

such that (f1, . . . , fd+1) ∈ U1. Hence

HF(S/(J + (f1, . . . , fd+1))) = Δ+(Δd(HF(S/J))).

Using that S/J is Cohen–Macaulay of dimension d, we get that dimS/(J +(f)) = 0
implies that f1, . . . , fd is a regular sequence for S/J . Hence

HF(S/(J + (f1, . . . , fd))) = Δd(HF(S/J)).

As a consequence, S/(J + (f)) has the WLP. �

Remark B.2 The existence of f̃ ∈ (R1)
d with dimS/(J+(f̃)) = 0 in the statement

of Lemma B.1 does not follow from the other assumptions since the fi do not involve
the variable T . For example, if R = k[x1] and J = (Tx1) ⊂ S = R[T ], then such f̃
does not exist.

Question B.3 Is there a statement similar to Lemma B.1 for the SLP?
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