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Abstract

Let k, r, n ≥ 1 be integers, and let Sn,k,r be the family of r-signed k-
sets on [n] = {1, . . . , n} given by Sn,k,r =

{{(x1, a1), . . . , (xk, ak)} :

{x1, . . . , xk} ∈ (
[n]
k

)
, a1, . . . , ak ∈ [r]

}
. A family A ⊆ Sn,k,r is intersect-

ing if A,B ∈ A implies A ∩ B �= ∅. A well-known result (first stated
by Meyer and proved using different methods by Deza and Frankl, and
Bollobás and Leader) states that if A ⊆ Sn,k,r is intersecting, r ≥ 2 and
1 ≤ k ≤ n, then |A| ≤ rk−1

(
n−1
k−1

)
. We provide a proof of this result by

injection (in the same spirit as Frankl and Füredi’s and Hurlbert and
Kamat’s injective proofs of the Erdős–Ko–Rado Theorem, and Frankl’s
and Hurlbert and Kamat’s injective proofs of the Hilton–Milner Theo-
rem) whenever r ≥ 2 and 1 ≤ k ≤ n/2, leaving open only some cases
when k ≤ n.

1 Introduction

Let [n] = {1, . . . , n} and let
(
[n]
k

)
denote the collection of all k-subsets of [n]. Sets

of sets are called families. A family F ⊆ 2[n] is intersecting if F, F ′ ∈ F implies
F ∩ F ′ �= ∅. How large can an intersecting family F ⊆ (

[n]
k

)
be? If 2k > n then

|F| =
(
n
k

)
is obvious, while if 2k ≤ n then the answer is given by the classical

Erdős–Ko–Rado Theorem [10].

Definition 1.1. Let

S =
{
F ∈

(
[n]

k

)
: 1 ∈ F

}
.

Erdős–Ko–Rado Theorem (Erdős, Ko and Rado [10]). Let n, k ≥ 0 be integers,
n ≥ 2k. Let F ⊆ (

[n]
k

)
be intersecting. Then

|F| ≤
(
n− 1

k − 1

)
= |S|. (1.1)
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When n = 2k, the proof of the Erdős–Ko–Rado Theorem is easy. Simply partition(
[2k]
k

)
into complementary pairs. Then, since F can contain at most one set from each

pair, |F| ≤ 1
2

(
2k
k

)
=

(
2k−1
k−1

)
. To deal with the case n > 2k Erdős, Ko and Rado [10]

introduced an important operation on families called shifting.

A family is called non-trivial if there is no element common to all its members.
Hilton and Milner [15] showed that for n > 2k, S is the unique maximal intersecting
family.

Definition 1.2. Let G ∈ (
[n]
k

)
, 1 �∈ G and

N = {G} ∪
{
F ∈

(
[n]

k

)
: 1 ∈ F, F ∩G �= ∅}.

Hilton–Milner Theorem (Hilton and Milner [15]). Suppose that n ≥ 2k ≥ 4 and
F ⊆ (

[n]
k

)
is non-trivial. Then

|F| ≤
(
n− 1

k − 1

)
−

(
n− k − 1

k − 1

)
+ 1 = |N |. (1.2)

There are various proofs of the Erdős–Ko–Rado Theorem (cf. [7, 13, 16, 18]) and
the Hilton–Milner Theorem (cf. [11,12,16]). To keep this paper short, let us highlight
those which are particularly relevant to us: Frankl and Füredi’s [13] and Hurlbert and
Kamat’s [16] injective proofs of (1.1), and Frankl’s [11] and Hurlbert and Kamat’s [16]
injective proofs of (1.2).

We should mention that by “injective proof” we mean an explicit or implicit injec-
tion from F into a given intersecting family (usually a family whose members contain
a prescribed element). We believe that such proofs are of interest, particularly in
yielding further insight for the cases when the size of intersecting families cannot
be determined a priori ; as an example of such a case see [4, Conjecture 1.4]. For
further results in extremal set theory, we refer the reader to the excellent monograph
by Gerbner and Patkos [14].

We now define signed sets. Let k, r, n ≥ 1 be integers, and let Sn,k,r be the family
of r-signed k-sets on [n] given by

Sn,k,r =
{
{(x1, a1), . . . , (xk, ak)} : {x1, . . . , xk} ∈

(
[n]

k

)
, a1, . . . , ak ∈ [r]

}
.

A well-known analogue of the Erdős–Ko–Rado Theorem for signed sets was first
stated by Meyer [20], and later proved by Deza and Frankl [8] using the shifting
technique, and by Bollobás and Leader [3] using Katona’s elegant cycle method [18].

Definition 1.3. Let
W =

{
W ∈ Sn,k,r : (1, 1) ∈ W

}
.
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Theorem 1.1 (Deza and Frankl [8]; Bollobás and Leader [3]). Let n, k, r ≥ 1 be
integers, n ≥ k. Let F ⊆ Sn,k,r be intersecting. Then

|F| ≤ rk−1

(
n− 1

k − 1

)
= |W|. (1.3)

We should mention that there are several generalisations, extensions and varia-
tions of Theorem 1.1; see for example [1, 2, 4–6, 9, 19].

Motivated by the afore-mentioned results we consider the following problem.

Problem 1. Find an injective proof of (1.3).

The object of this paper is to present the following theorem that provides exten-
sive solutions to Problem 1 leaving open only some cases when k ≤ n.

Theorem 1.2. There is an injective proof of (1.3) whenever r ≥ 2 and k ≤ n/2.

2 The proof

One of the main tools in our proof is Katona’s Intersection Shadow Theorem. For
integers k > s ≥ 0 and a family F ⊆ (

[n]
k

)
, define its s-shadow ∂s(F) by

∂s(F) :=
{
G ∈

(
[n]

s

)
: ∃F ∈ F , G ⊂ F

}
.

Suppose that F ⊆ (
[n]
s

)
such that |F ∩ F ′| ≥ t ≥ 0 for all F, F ′ ∈ F . Katona [17]

then showed that
|∂s−t(F)| ≥ |F|. (2.1)

Let mod∗ be the usual modulo operation except that for integers x and y,
(xy) mod∗y is y instead of 0. Following Borg [4], for a signed sets A and integers q
and r, let θqr(A) be the shifting operation given by

θqr(A) = {(x, (a+ q) mod∗r) : (x, a) ∈ A},
and, for a family A of signed sets,

θqr(A) = {θqr(A) : A ∈ A}.
Proof of Theorem 1.2. The proof is an adaptation of the proof in [13], with more
or less simple changes. Let A ⊆ Sn,k,r be intersecting, let A0 = {A ∈ A : A ∩
{(1, 1), . . . , (1, r)} = ∅} and Ai = {A ∈ A : (1, i) ∈ A} for 1 ≤ i ≤ r. Note that
A0, . . . ,Ar partition A. Let A′

0 = A0 and A′
i = {A \ {(1, i)} : A ∈ Ai} for 1 ≤ i ≤ r.

Let A′ =
⋃r

i=0A′
r. For A ∈ A′, let MA = {x : (x, a) ∈ A}. We say that

MA represents A. Let M0 = {MA : A ∈ A′
0}, M1 = {MA : A ∈ A′ \ A′

0},
N = {[2, n] \M : M ∈ M0} and

B =
{
(x1, a1), . . . , (xk−1, ak−1) : {x1, . . . , xk−1} ∈ ∂k−1(N ), a1, . . . , ak−1 ∈ [r]

}
.
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Claim 1. |A′
0| ≤ |B|.

Proof. Since A′
0 is intersecting,

each set in M0 can represent at most rk−1 sets in A′
0. (2.2)

Let N,N ′ ∈ N . Since 1 ≤ k ≤ n/2, we infer

|N ∩N ′| = |([2, n] \M) ∩ ([2, n] \M ′)| = n− 1− 2k + |M ∩M ′| ≥ n− 2k ≥ 0,

so that applying (2.1) with s = n− 1− k and t = n− 2k gives us

|M0| = |N | ≤ |∂k−1(N )|. (2.3)

Then (2.2) and (2.3) yield

|A′
0| ≤ rk−1|M0| ≤ rk−1|∂k−1(N )| = |B|.

Claim 2. The families A′
1, θ

1
r(A′

2), . . . , θ
r−1
r (A′

r),B are pairwise disjoint.

Proof. Since A is intersecting,

for i, j ∈ {0} ∪ [r] with i �= j each set in A′
i intersects each set in A′

j. (2.4)

Suppose there exists B ∈ θi−1
r (A′

i) ∩ θj−1
r (A′

j) for some distinct i, j ∈ [2, r]. Let

Ai = θ
−(i−1)
r (B) ∈ A′

i and Aj = θ
−(j−1)
r (B) ∈ A′

j. Then Ai ∩ Aj = ∅, which
contradicts (2.4). Similarly, if we suppose B ∈ A′

1 ∩ θi−1
r (A′

i) for some i ∈ [2, r],
then we get a contradiction to (2.4). Therefore, families A′

1, θ
1
r(A′

2), . . . , θ
r−1
r (A′

r) are
pairwise disjoint. By (2.4), each set in M0 intersects each set in M1. Therefore
M1 ∩ ∂k−1(N ) = ∅, which is to say

B ∩
(
A′

1 ∪
r⋃

i=2

θi−1
r (A′

i)

)
= ∅

and the claim is proved.

Let A∗
0 = {B∪{(1, 1)} : B ∈ B}, A∗

1 = A1 and A∗
i = {A∪{(1, 1)} : A ∈ θi−1

r (A′
i)}

for 2 ≤ i ≤ r. For 0 ≤ i ≤ r, A∗
i ⊆ W. By Claim 2,

∑p
i=0 |A∗

i | ≤ |W|. By Claim 1,
|A0| ≤ |A∗

0|. We have

|A| =
r∑

i=0

|Ai| = |A0|+
r∑

i=1

|A∗
i | ≤

r∑
i=0

|A∗
i | ≤ |W|,

and the theorem is proved.
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[12] P. Frankl and Z. Füredi, Non-trivial intersecting families, J. Combin. Theory
Ser. A 41 (1986), 150–153.
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Hilton–Milner theorems, Discrete Math. 341 (2018), 1749–1754.

[17] G. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad.
Sci. Hungar. 15 (1964), 329–337.

[18] G.O. Katona, A simple proof of the Erdös-Chao Ko-Rado theorem, J. Combin.
Theory Ser. B 13 (1972), 183–184.

[19] M. Livingston, An ordered version of the Erdős-Ko-Rado theorem, J. Combin.
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