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Via Branze 38, I-25123 Brescia

Italy
simone.costa@unibs.it

Marco Dalai
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Via Branze 43, I-25123 Brescia

Italy
anita.pasotti@unibs.it

Abstract

In this paper we study a tour problem that we came across while study-
ing biembeddings and Heffter arrays; see [D.S. Archdeacon, Electron. J.
Combin. 22 (2015) #P1.74]. Let A be an n×m toroidal array consisting of
filled cells and empty cells. Assume that an orientation R = (r1, . . . , rn)
of the cells in each row and an orientation C = (c1, . . . , cm) of the cells
in each column of A are fixed. Given an initial filled cell (i1, j1), consider
the list LR,C = ((i1, j1), (i2, j2), . . . , (ik, jk), (ik+1, jk+1), . . .), where jk+1 is
the column index of the filled cell (ik, jk+1) of the row Rik next to (ik, jk)
in the orientation rik , and where ik+1 is the row index of the filled cell of
the column Cjk+1

next to (ik, jk+1) in the orientation cjk+1
. We propose

the following.

Crazy Knight’s Tour Problem. Do there exist R and C such that the
list LR,C covers all the filled cells of A?

Here we provide a complete solution for the case with no empty cells,
and we obtain partial results for square arrays where the filled cells follow
some specific regular patterns.
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1 Introduction

Chessboards have been a classical setting for many challenging problems starting
from very ancient times up to the most recent ones, for a survey see [19, 24]. Most
of these problems are not only interesting per se, but have many applications and
often arise from a mathematical context. For example classical problems of covering
chessboards with the minimum number of chess pieces are related to the study of
dominating sets in graphs, see for instance [9, 10]. As well as domination problems,
even tour problems are much studied. The most famous problem of this type is the
Knight’s tour problem (see for instance [11]), whose goal is to determine a series
of moves made by a knight so that it visits every square on a chessboard exactly
once. Then several variations of the original statement have been proposed and
investigated, see [4, 8, 17, 20, 21, 22] and the references therein.

Our aim is to find out how to obtain a closed tour on an n ×m board wrapped
onto a torus so that the n rows and the m columns go around the torus. Hence,
in the following we will consider all the row indices modulo n and all the column
indices modulo m. Also, the general board we consider might have some squares
removed, and we thus represent it as a matrix A with some empty and some filled
cells, naming it a partially filled array. The tour has to visit every filled cell exactly
once. Since we are only interested in which cells are empty and which filled, but not
in the elements of A, we will denote the filled positions simply with a •.

In order to state our problem we introduce a move function which defines the
rules for the considered tour on the board. Given two positive integers a and b with
a ≤ b, by [a, b] we will mean the set {a, a + 1, . . . , b}. Let us consider a partially
filled n × m array A; we denote by F (A) the subset of [1, n] × [1, m] given by the
filled positions of A. Given (i, j) ∈ F (A), we define the row successor sr((i, j)) to be
(i, j + k) where k ≥ 1 is the minimum value such that (i, j + k) ∈ F (A). Similarly
we define the column successor sc((i, j)) to be (i+ k, j) where k ≥ 1 is the minimum
value such that (i + k, j) ∈ F (A). Given two vectors R := (r1, . . . , rn) ∈ {−1, 1}n
and C := (c1, . . . , cm) ∈ {−1, 1}m, we denote SR,C : F (A) → F (A) to be the move
function, defined as follows:

SR,C((i, j)) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sc(sr((i, j))) if ri = 1 and cj′ = 1 where sr((i, j)) = (i, j′);

sc(s
−1
r ((i, j))) if ri = −1 and cj′ = 1 where s−1

r ((i, j)) = (i, j′);

s−1
c (sr((i, j))) if ri = 1 and cj′ = −1 where sr((i, j)) = (i, j′);

s−1
c (s−1

r ((i, j))) if ri = −1 and cj′ = −1 where s−1
r ((i, j)) = (i, j′).

We can see the vector R as a choice of the direction of each row: from left to right
if ri = 1 and from right to left if ri = −1. Similarly the vector C can be seen as
a choice of the direction of each column: from top to bottom if ci = 1 and in the
reverse way if ci = −1. Moreover, we can give the following interpretation to the
move SR,C((i, j)): from the position (i, j) we move first in the i-th row following the
direction of ri and then, from the arrival position (i, j′) we move in the j′-th column
in direction of cj′ arriving in the position SR,C((i, j)). For any (i, j) ∈ F (A), we set

L(i, j) := ((i, j), SR,C((i, j)), S
2
R,C((i, j)), . . . , S

p
R,C((i, j))),
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where p is the minimum positive integer such that Sp+1
R,C ((i, j)) = (i, j), namely L(i, j)

is the tour that we obtain starting from the cell (i, j). It is natural to ask whether,
in this way, we can cover all the filled positions or not.

Crazy Knight’s Tour Problem. Given a partially filled n×m array A, determine
whether there exist vectors R ∈ {−1, 1}n and C ∈ {−1, 1}m such that, given a filled
position (i, j), the list L(i, j) covers all the filled positions of A.

By P (A) we will denote the Crazy Knight’s Tour Problem for a given array A.
Also, given a filled cell (i, j), if L(i, j) covers all the filled positions of A we will say
that the vectors R and C are a solution of P (A).

In this paper, firstly, we will present some necessary conditions for the existence
of a solution of P (A) where A is a given array, see Section 2. Then, in Section 3, we
present a complete solution when A is a totally filled rectangular array. We focus
also on square arrays with some empty cells. In particular in Section 4 and in Section
5 we obtain partial results when A has exactly k filled cells in each row and in each
column and when A has exactly k filled cells in each row and in each column except
for one row and column which have k + 1 filled positions, respectively. Finally, in
Section 6, we present a recursive construction which allows us to obtain other infinite
classes of arrays A such that P (A) has a solution.

1.1 Motivation

In [1], Archdeacon introduced the concept of a Heffter array as a useful tool for
determining biembeddings of complete graphs, that is 2-colorable embeddings. In
particular, in that paper the author investigated the case in which the face boundaries
of the two colour classes form two cycle systems, for a survey see [18]. Heffter
arrays which give rise to biembeddings have been constructed in [7, 12, 14, 15]. In
particular, in [12] the authors introduced the class of globally simple Heffter arrays
and, implicitly, studied the Crazy Knight’s Tour Problem in some special instances
(see [12, Propositions 3.4 and 3.6]) obtaining in such a way new biembeddings (see
[12, Theorem 1.11]). The relationship between globally simple Heffter arrays, Crazy
Knight’s Tour Problem and biembeddings is explained in the following result, that
is a reformulation of [1, Theorem 1.1], in the case of square globally simple Heffter
arrays, in terms of P (A). Clearly, a similar theorem holds in the rectangular case.

Theorem 1.1. Let A be a globally simple Heffter array n×n such that each row and
each column has exactly k filled cells. If there exists a solution of P (A), then there
exists a biembedding of the complete graph of order 2nk + 1 on orientable surface
whose face boundaries are k-cycles.

We point out that Heffter arrays are considered interesting as combinatorial ob-
jects on their own and not only in view of their relationship with biembeddings.
For instance, in [2, 3, 5, 6, 13, 16, 23] the authors construct new infinite classes of
Heffter arrays without investigating biembeddings. Analogously, we believe that also
the Crazy Knight’s Tour Problem is interesting per se, as many other tour problems
which have been largely studied.
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2 Preliminary considerations

Clearly, we can suppose that each row and each column of A has at least one filled
position. We note that if the i-th row Ri or the j-th column Cj has exactly just
one filled position (i, j) then sr((i, j)) = (i, j) or sc((i, j)) = (i, j), respectively. Also
if there exist a row Ri and a column Cj such that Ri ∪ Cj has exactly one filled
position, then this position is (i, j), since we have assumed that we have no empty
row or empty column. In this case, since SR,C((i, j)) = (i, j), it is immediate that the
Crazy Knight’s Tour Problem has no solution, except for the trivial case in which A
is a square array of size 1.

Remark 2.1. Given an array A and a filled position (i, j), the list L(i, j) covers all
the filled positions of A if and only if the list L(i′, j′) covers all the filled positions
of A, for any (i′, j′) ∈ F (A). Since we are dealing with toroidal boards, without loss
of generality we may assume that (1, 1) ∈ F (A), namely that the cell (1, 1) of the
given array A is filled.

Example 2.2. Let A be
• •
• •
• • •

• •
Choosing R := (−1, 1, 1,−1) and C := (1,−1, 1, 1) we can cover all the filled posi-
tions of A, as shown in the table below where in each filled position we write j if
we reach that position after having applied SR,C to (1, 1) exactly j times. Here we
represent the elements of R and C by an arrow.

↓ ↑ ↓ ↓
← 0 4
→ 2 6
→ 7 3 1
← 5 8

Remark 2.3. Given a partially filled n ×m array A, let R := (r1, r2, . . . , rn) and
C := (c1, c2, . . . , cm) be a solution of P (A). Note that this does not imply that
Ri := (ri, . . . , rn, r1, . . . , ri−1) and Cj := (cj, . . . , cm, c1, . . . , cj−1) are a solution of
P (A) too, where i = 2, . . . , n and j = 2, . . . , m.

Example 2.4. Let A be the array of Example 2.2. If instead of R = (−1, 1, 1,−1)
and C = (1,−1, 1, 1) we take R2 = (1, 1,−1,−1) and C2 = (−1, 1, 1, 1) it is easy to
see that we do not cover all the filled cells of A.

In order to determine the necessary conditions for the existence of a solution of
the Crazy Knight’s Tour Problem, we introduce the notion of closed subarray.

Definition 2.5. Let A be an n ×m toroidal array with no empty row or column.
Let R be a list of rows of A and let C be a list of columns of A. We say that the
subarray R∩C of A is closed if F (R∩C) = F (R∪C). We say that a closed subarray
is minimal if it is minimal with respect to the inclusion.
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Example 2.6. Let A be the following 7× 9 array.

•
• • • • • •

• •
• • • • • • •
• • • • •

• •
• •

Consider the lists R = (R2, R4, R5) and C = (C1, C2, C3, C5, C7, C8, C9). Then it is
easy to see that R ∩ C is a closed subarray of A.

Theorem 2.7. Let A be an n×m array with |F (A)| filled cells. Necessary conditions
for the existence of a solution of P (A) are:

1) the array A is a minimal closed subarray;

2) |F (A)| ≡ m+ n− 1 (mod 2).

Proof. 1) Let R ∩ C be a closed subarray of A such that R ∩ C �= A. Since A has
no empty row and no empty column, F (R∩ C) ⊂ F (A). It is immediate to see that
for any (i, j) ∈ F (R ∩ C), L(i, j) ⊆ F (R ∩ C), hence it does not cover all the filled
positions of A.

2) The function SR,C defines a permutation ω on F (A). Let ωr and ωc be the
permutations on the rows and on the columns, respectively, obtained from the move
function. By definition of SR,C , we have ω = ωc ◦ ωr. Hence the parity of ω, that
is |F (A)| − 1, has to be equal to the parity of ωc ◦ ωr, that is

∑n
i=1(|F (Ri)| − 1) +∑m

j=1(|F (Cj)| − 1) =
∑n

i=1 |F (Ri)| +
∑m

j=1 |F (Cj)| − n −m = 2|F (A)| − n −m. It
follows that |F (A)| ≡ n+m− 1 (mod 2).

Corollary 2.8. Let A be a square array with |F (A)| filled cells. If there exists a
solution of P (A) then |F (A)| is odd.

3 Totally filled arrays

In this section, we solve Problem P (A) when A is a totally filled n ×m array (i.e.
|F (A)| = mn). In this case the move function is simply given by:

SR,C((i, j)) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i+ 1, j + 1) if ri = 1 and cj+1 = 1;

(i+ 1, j − 1) if ri = −1 and cj−1 = 1;

(i− 1, j + 1) if ri = 1 and cj+1 = −1;
(i− 1, j − 1) if ri = −1 and cj−1 = −1.

We first introduce a useful lemma.
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Lemma 3.1. Let A be a totally filled n × m array. Let R := (1, 1, . . . , 1) and
C := (1, . . . , cm−l = 1, cm−l+1 = −1, . . . ,−1), where 0 ≤ l ≤ m. Then R and C are
a solution of P (A) if and only if gcd(m− 2l, n) = 1.

Proof. Note that, for i = 1, . . . , n, the first m cells of L(i, 1) form the list

Γi := ((i, 1), (i+ 1, 2), . . . , (i+m− l − 1, m− l),

(i+m− l − 2, m− l + 1), (i+m− l − 3, m− l + 2), . . . , (i+m− 2l − 1, m)) .
(3.1)

Since the Γi’s contain one element in each column and are vertical shift of one another,
it is clear that

n⋃
i=1

Γi = F (A) .

Now, since c1 = 1, L(1, 1) = (Γ1,Γ1+(m−2l),Γ1+2(m−2l), . . .), where the indices are
taken modulo n. The indices cover all the values 1, 2, . . . , n if and only if gcd(m −
2l, n) = 1, so this is equivalent to the condition L(1, 1) = F (A).

Example 3.2. Consider the totally filled array A of size n × m with n = 5 and
m = 14. Also let l = 3. In the table below, cells in Γi are flagged with γi.

γ1 γ5 γ4 γ3 γ2 γ1 γ5 γ4 γ3 γ2 γ1 γ2 γ3 γ4
γ2 γ1 γ5 γ4 γ3 γ2 γ1 γ5 γ4 γ3 γ2 γ3 γ4 γ5
γ3 γ2 γ1 γ5 γ4 γ3 γ2 γ1 γ5 γ4 γ3 γ4 γ5 γ1
γ4 γ3 γ2 γ1 γ5 γ4 γ3 γ2 γ1 γ5 γ4 γ5 γ1 γ2
γ5 γ4 γ3 γ2 γ1 γ5 γ4 γ3 γ2 γ1 γ5 γ1 γ2 γ3

Since gcd(m− 2l, n) = gcd(8, 5) = 1 we can apply Lemma 3.1. So we start from the
position (1, 1) and apply SR,C until we arrive again in the position (1, 1) of A. In
the following table in each position we write j if we reach that position after having
applied SR,C to (1, 1) exactly j times.

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑
→ 0 43 16 59 32 5 48 21 64 37 10 39 68 27
→ 28 1 44 17 60 33 6 49 22 65 38 67 26 55
→ 56 29 2 45 18 61 34 7 50 23 66 25 54 13
→ 14 57 30 3 46 19 62 35 8 51 24 53 12 41
→ 42 15 58 31 4 47 20 63 36 9 52 11 40 69

It is easy to see that we obtain L(1, 1) = (Γ1,Γ4,Γ2,Γ5,Γ3).

Theorem 3.3. Let us consider a totally filled n ×m array A. Then there exists a
solution of P (A) if and only if n and m are not both even.

Proof. If m and n are both even, the second necessary condition of Theorem 2.7 is
not satisfied, hence P (A) has no solution. So suppose that m and n are not both
even.

Firstly suppose m odd. Let l be such that m − 2l = 1. Because of Lemma 3.1
we have that R := (1, 1, . . . , 1) and C := (1, . . . , cm−l = 1, cm−l+1 = −1, . . . ,−1) are
a solution of P (A).
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Suppose now m even, which implies that n is odd. Let l be such that m−2l = 2.
Because of Lemma 3.1 we have that R := (1, 1, . . . , 1) and C := (1, . . . , cm−l =
1, cm−l+1 = −1, . . . ,−1) are a solution of P (A).

We point out that the same result of the above theorem, stated in terms of
biembeddings, was already obtained in [15, Theorem 2.3].

4 Square arrays with k filled diagonals

In this section we focus on partially filled square arrays having the same number of
filled cells in each row and column. Let A be a square array of size n, for i = 1, . . . , n
we define the i-th diagonal Di to be the set of cells

Di := {(i, 1), (i+ 1, 2), . . . , (i− 1, n)}

where all the arithmetic is performed in Zn using the reduced residues {1, 2, . . . , n}.
We will say that Di, Di+1, . . . , Di+k−1 are k consecutive diagonals.

Definition 4.1. Let k ≥ 1 be an integer. We will say that a square array A of
size n ≥ k is k-diagonal if the non-empty cells of A are exactly those of k diagonals
Di1 , Di2 , . . . , Dik , where i1 < i2 < . . . < ik.

Obviously, if n = k, A is a totally filled array which has already considered in
previous section. So, let A be a k-diagonal array of size n > k. In order to find
solutions of P (A) we assume that R = (1, . . . , 1), even if this is not a necessary
condition as shown in the following example.

Example 4.2. Let A be a 3-diagonal array of size 7 whose filled diagonals are
D1, D2, D3. We note that R := (−1, 1, 1, 1, 1, 1, 1) and C := (−1,−1, 1, 1, 1,−1,−1)
are a solution of P (A) even though that R is not (1, . . . , 1). In the following figure
we show this graphically by labeling the filled cells as done in previous examples.

A :=

↑ ↑ ↓ ↓ ↓ ↑ ↑
← 0 15 18
→ 4 17 20
→ 16 11 3
→ 5 12 10
→ 6 13 2
→ 7 14 9
→ 8 19 1

The motivation of this choice for R is explained in the following remark that we
state in the case of square arrays, but it holds also for the rectangular ones.
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Remark 4.3. Let A be an array of size n such that the cells (i, j), (i, j + 1), (i +
1, j), (i+ 1, j + 1) are filled

. . . j j + 1 . . .
...

. . .
...

...
. . .

i · · · • • · · ·
i+ 1 · · · • • · · ·
...

. . .
...

...
. . .

Then we have that

• R := (r1, . . . , ri−1, ri = 1, ri+1 = −1, ri+2, . . . , rn) and C := (c1, . . . , cj−1, cj =
−1, cj+1 = 1, cj+2, . . . , cn) are not a solution of P (A) since S2

R,C((i, j)) = (i, j);

• R := (r1, . . . , ri−1, ri = −1, ri+1 = 1, ri+2, . . . , rn) and C := (c1, . . . , cj−1, cj =
1, cj+1 = −1, cj+2, . . . , cn) are not a solution of P (A) since S2

R,C((i + 1, j)) =
(i+ 1, j).

So, sign changes in both rows and columns can create very short paths on the
board whenever there are a relevant number of adjacent filled positions. For this
reason, from now on we look for solutions with R = (1, . . . , 1). Obviously, since
A is a k-diagonal array of size n > k, this implies that C �= (1, . . . , 1). We define
E = (e1, . . . , et), where e1 < e2 < . . . < et, to be the list of the positions of −1’s in
C. For instance if C = (1,−1, 1, 1,−1,−1) we have E = (2, 5, 6).

4.1 Cyclically k-diagonal square arrays

In this subsection we investigate the case in which the k filled diagonals Di1 , Di2 , . . . ,
Dik of A are consecutive.

Definition 4.4. Let k be an integer. A square array A of size n > k is said to be
cyclically k-diagonal if it is k-diagonal and the non-empty diagonals are consecutive
(modulo n).

Example 4.5. The following is a cyclically 5-diagonal array of size 9 whose filled
diagonals are D8, D9, D1, D2, D3.

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • •
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Given a cyclically k-diagonal array A, we will say that A is written in the standard
form if its nonempty diagonals are D1, . . . , Dk. Note that the array of Example 4.2 is
in standard form, while the array in Example 4.5 is not. In the following, by Remark
2.1, we can assume without loss of generality that a cyclically k-diagonal array A is
written in the standard form.

We start, determining a necessary condition for the existence of a solution.

Proposition 4.6. Let A be a cyclically k-diagonal array of size n > k. If P (A)
admits a solution then n and k are both odd and k �= 1.

Proof. Since |F (A)| = kn, from Corollary 2.8 we have n and k odd. Also, note that
if k = 1, then every cell of the filled diagonal of A is a closed subarray. Therefore
the thesis follows from Theorem 2.7.

Hence, in the following let k ≥ 3 be an odd integer.

Lemma 4.7. Let k ≥ 3 be an odd integer and let A be a cyclically k-diagonal array of
size n > k. Then the vectors R := (1, . . . , 1) and C ∈ {−1, 1}n, where the positions
of each −1 in C are described by E, are a solution of P (A) if and only if:

1) the list E covers all the congruence classes modulo d, where d = gcd(n, k− 1);

2) the list L(1, 1) covers all the positions of {(e, e) | e ∈ E}.
Proof. If R and C are a solution, the list L(1, 1) covers all the positions of F (A)
and hence all the positions of {(e, e) | e ∈ E} ⊆ D1. Let us suppose, for the sake of
contradiction, that R and C are a solution and that there exists a congruence class [f ]
modulo d that is not covered by E. We note that, for (i, i) ∈ D1 and i− (k−1) �∈ E,
we have SR,C((i, i)) = (i− (k − 1), i− (k − 1)) ∈ D1 where i− (k − 1) ≡ i (mod d).
Therefore the list L(f, f) is contained in D1, which is a contradiction.

Conversely, let us suppose, for the sake of contradiction, that the hypotheses 1)
and 2) of the statement are satisfied, but L(1, 1) does not cover F (A). Let (f, g) ∈
F (A) \ L(1, 1) and consider the list L(f, g). Obviously L(1, 1) ∩ L(f, g) = ∅, hence,
by hypothesis 2)

{(e, e)|e ∈ E} ∩ L(f, g) = ∅. (∗)
We note that, given a position (i, j), SR,C((i, j)) ∈ D1 only in the following two cases:

A) (i, j) ∈ D1 and i �∈ {e+ (k − 1) | e ∈ E};
B) (i, j) ∈ D3 and SR,C((i, j)) = (e, e) for some e ∈ E.

Since from A) for (i, i) ∈ D1 \ {(e + (k − 1), e + (k − 1)) | e ∈ E} we have
SR,C((i, i)) = (i − (k − 1), i − (k − 1)) and, by hypothesis 1), the list E covers all
the congruence classes modulo d, it follows that L(f, g) �⊆ D1. Suppose now that
there exists (i′, j′) ∈ L(f, g) \ D1 such that SR,C((i

′, j′)) ∈ D1. From B) it follows
that SR,C((i

′, j′)) ∈ {(e, e) | e ∈ E}, but obviously SR,C((i
′, j′)) ∈ L(f, g), which is

in contradiction with (∗). Hence L(f, g) ∩D1 = ∅.
Now we note that, given (i, j) ∈ Dh with h �= 1, we have SR,C((i, j)) = (i+1, j+

1) ∈ Dh if j+1 �∈ E and SR,C((i, j)) ∈ Dh−2 if j+1 ∈ E where the subscripts of the
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diagonals are considered modulo k. Since k is odd, this means that the list L(f, g)
will reach every non-empty diagonal and hence also the diagonal D1, but this is a
contradiction because L(f, g) ∩D1 = ∅.

As a consequence we have the following result.

Proposition 4.8. Let k ≥ 3 be an odd integer and let A be a cyclically k-diagonal
array of size n > k. If gcd(n, k − 1) = 1, then the vectors R := (1, . . . , 1) and
C := (−1, 1 . . . , 1) are a solution of P (A).

We point out that the result of Proposition 4.8 was previously obtained in [12]
(see Proposition 3.4).

Given a cyclically k-diagonal array of size n > k and vectors R = (1, . . . , 1) and
C ∈ {−1, 1}n, whose −1 are in positions E = (e1, . . . , et) where e1 < e2 < · · · < et,
we would like to study some properties of the move function SR,C . In particular,
consider an element (e, e) ∈ D1 with e ∈ E, there exists a minimum m ≥ 1 such
that Sm

R,C((e, e)) = (e′, e′) for some e′ ∈ E. We define the permutation ωC on E
as ωC(e) = e′. Similarly, given e ∈ E, there exists a minimum m ≥ 1 such that
e − m(k − 1) ≡ e′′ (mod n) for some e′′ ∈ E. We define the permutation ω1,C on
E as ω1,C(e) = e′′. Finally we define the permutation ω2,C on E = (e1, . . . , et) as
ω2,C(ei) = ei+(k−1) where the indices are considered modulo t.

Lemma 4.9. Let k ≥ 3 be an odd integer and let A be a cyclically k-diagonal array
of size n > k. Then the vectors R := (1, . . . , 1) and C ∈ {−1, 1}n, whose −1 are in
positions E = (e1, . . . , et) where e1 < e2 < · · · < et, are a solution of P (A) if and
only if:

1) the list E covers all the congruence classes modulo d, where d = gcd(n, k− 1);

2) the permutation ω2,C ◦ ω1,C on E is a cycle of length t = |E|.
Proof. Given e ∈ E, the second cell of the form (e′, e′) with e′ ∈ E we meet in the
list L(e, e) is reached after the following moves:

• from (e, e) we move backward into the diagonal D1 with steps of length k − 1
until we reach a cell of the form (ei + (k − 1), ei + (k − 1)) with ei ∈ E;

• from (ei + (k − 2), ei) = SR,C(ei + (k − 1), ei + (k − 1)) we move forward into
the diagonal Dk−1 with steps of length 1 until we reach the cell (ei+1−1+(k−
2), ei+1 − 1), where the indices are considered modulo t (as for the rest of this
proof);

• from (ei+1+(k−4), ei+1) = SR,C(ei+1−1+(k−2), ei+1−1) we move forward into
the diagonal Dk−3 with steps of length 1 until we reach the cell (ei+2−1+(k−
4), ei+2−1); we reiterate this procedure into the diagonals Dk−5, Dk−7, . . . , D4;

• since k is odd, we arrive at the cell (ei+(k−3)/2 + 1, ei+(k−3)/2) ∈ D2 from which
we move forward with steps of length 1 until we reach the cell (ei+(k−1)/2,
ei+(k−1)/2 − 1);
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• from (ei+(k−1)/2 + (k − 1), ei+(k−1)/2) = SR,C(ei+(k−1)/2, ei+(k−1)/2 − 1) we move
forward into the diagonal Dk with steps of length 1 until we reach the cell
(ei+(k+1)/2 − 1 + (k − 1), ei+(k+1)/2 − 1); we reiterate this procedure into the
diagonals Dk−2, Dk−4, . . . , D3;

• since k is odd, we arrive at the cell (ei+(k−1), ei+(k−1)) ∈ D1 that is the second
one of the form (e′, e′) ∈ D1 with e′ ∈ E we meet in the list L(e, e).

Because of the definitions, ω1,C(e) = ei and ω2,C(ei) = ei+(k−1). It follows that
ωC = ω2,C ◦ ω1,C . Since ωC is a cycle of length t if and only if the list L(1, 1) covers
all the positions of {(e, e) | e ∈ E}, the claim follows from Lemma 4.7.

Example 4.10. The following is a cyclically 7-diagonal array of size 13 in standard
form. We consider R := (1, . . . , 1) and C ∈ {−1, 1}n, whose −1 are in positions
E = (1, 2, 3, 4). We can easily check that ω1,C = (1, 2, 3, 4), ω2,C = (1, 3)(2, 4) and
ωC = ω2,C ◦ ω1,C = (1, 4, 3, 2). Since the hypotheses of Lemma 4.9 are satisfied, R
and C are a solution of P (A). We show in the table below the tour we obtain with
this solution.

↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
→ 0 31 46 60 75 89 13
→ 78 65 32 47 61 76 90
→ 64 52 39 33 48 62 77
→ 51 38 26 17 34 49 63
→ 37 25 16 4 19 35 50
→ 24 15 3 81 5 21 36
→ 14 2 80 68 82 6 23
→ 79 67 54 69 83 7 1
→ 53 41 55 70 84 8 66
→ 27 42 56 71 85 9 40
→ 28 43 57 72 86 10 18
→ 29 44 58 73 87 11 20
→ 30 45 59 74 88 12 22

Proposition 4.11. Let k ≥ 3 be an odd integer and let A be a cyclically k-diagonal
array of size n > k. Let us assume that the vectors R := (1, . . . , 1) and C are a
solution of P (A). Then there exists a solution of P (A′) for any cyclically k-diagonal
array A′ of size n′ = n + λ(k − 1) for any integer λ ≥ 0.

Proof. Let us consider the vector R′ := (1, . . . , 1) and the vector C ′ ∈ {−1, 1}n′
that

has the −1 in the same positions, denoted by E = (e1, . . . , et), of C. Then the per-
mutations ω1,C and ω1,C′ on E are identical and the same holds for the permutations
ω2,C and ω2,C′. Thus ωC = ωC′. Since gcd(n, k − 1) = gcd(n + λ(k − 1), k − 1), the
claim follows from Lemma 4.9.

As a consequence of Proposition 4.11 we obtain the following result:
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Theorem 4.12. Let 3 ≤ k < 200 be an integer and let A be a cyclically k-diagonal
array of size n > k. Then there exists a solution of P (A) if and only if n and k are
both odd.

Proof. The necessary condition n and k odd follows from Proposition 4.6. For any
odd integer k, with 3 ≤ k < 200, we checked, using a computer, that the odd values
n ∈ [k+2, 2k−1] have a solution with vector R = (1, . . . , 1). Hence the thesis follows
from Proposition 4.11.

At a first reading it seems that, in Lemma 4.9 (and in the analogous Lemma 4.7),
we should also require that n is not an even number, according to Proposition 4.6.
In the next result we show that this condition is hidden in the hypothesis of those
lemmas.

Proposition 4.13. Let k ≥ 3 be an odd integer and let A be a cyclically k-diagonal
array of size n > k. Let us consider the vectors R := (1, . . . , 1) and C ∈ {−1, 1}n,
where the positions of each −1 in C are described by E. Let us suppose that the list
E covers all the congruence classes modulo d, where d = gcd(n, k − 1). Then the
permutation ω2,C ◦ ω1,C on E can be a cycle of length t = |E| only if n is odd.

Proof. Suppose, for the sake of contradiction, that n is even (which implies d even)
and that ωC = ω2,C ◦ ω1,C is a cycle of length t. Denoted by τ the permutation of
the list E such that τ(ei) = ei+1, we have ω2,C = τk−1. Therefore ω2,C is always an
even permutation. Let us partition E in the congruence classes modulo d by setting
Eh := {ei ∈ E|ei ≡ h (mod d)}. Since d = gcd(n, k−1), the permutation ω1,C is the
product of cyclic permutations on the sets Eh, each of which has length |Eh|. Since
d is even and no Eh is empty, ω1,C has parity

∑d−1
h=0(|Eh| − 1) ≡ (

∑d−1
h=0 |Eh|)− d ≡ t

(mod 2), which is also the parity of ω2,C ◦ω1,C. By hypothesis we have assumed that
ωC is a cycle of length t, then it has parity t− 1, but this is a contradiction because
ωC = ω2,C ◦ ω1,C should have parity t.

Remark 4.14. Since the hypotheses of Lemma 4.7 imply those of Lemma 4.9, the
condition n odd is also hidden in Lemma 4.7.

Now we introduce a more general application of Lemma 4.9 that helps us in
finding a solution of the Crazy Knight’s Tour Problem whenever n is sufficiently
large.

Theorem 4.15. Let k ≥ 3 be an odd integer and let A be a cyclically k-diagonal
array of odd size n ≥ (k − 2)(k − 1). Then there exists a solution of P (A).

Proof. Set again R := (1, . . . , 1) and let d = gcd(n, k − 1), because of Proposition
4.8 we can assume that d ≥ 3. Now we want to define a vector C that satisfies the
hypothesis of Lemma 4.9. Since n ≥ (k − 2)(k − 1) ≥ (k − d+ 1)(k − 1), there exist
k columns e1, . . . , ek such that:

• ei = i for any i ∈ [1, d− 1];

• ei = d+ (k − 1)(i− d) for any i ∈ [d, k].
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Consider now the vector C ∈ {−1, 1}n, whose −1 are in positions (e1, . . . , ek).
Clearly the set {e1, . . . , ek} covers all the congruence classes modulo d. Since the
ei’s in the congruence class of d are at distance k − 1, ω1,C is the cyclic permutation
(ed, ek, ek−1, . . . , ed+1). In this context t = |E| = k and k − 1 ≡ −1 (mod t), hence
we have that ω2,C is the cyclic permutation (e1, ek, ek−1, . . . , e2). Since k − d + 1 is
odd, one can easily check that ω2,C ◦ ω1,C is given by the cyclic permutation:

(e1, ek, ek−2, . . . , ed+2, ed, ek−1, ek−3, . . . , ed+1, ed−1, . . . , e2).

Therefore, because of Lemma 4.9, the vectors R and C are a solution for the Crazy
Knight’s Tour Problem for any cyclically k-diagonal array of size n where n ≥ (k −
2)(k − 1).

4.2 k-diagonal square arrays

In this subsection we consider the case in which the filled diagonals of A are not
necessarily consecutive. In order to study the solutions of P (A) it is important to
know the number of empty diagonals between two filled diagonals, we thus introduce
the notion of empty strip.

Example 4.16. Here we have a 5-diagonal array of size 11, the non-empty diagonals
are D1, D4, D6, D7 and D11.

• • • • •
• • • • •
• • • • •

• • • • •
• • • • •

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • •

Let A be a k-diagonal array of size n > k. A set S = {Dr+1, Dr+2, . . . , Dr+t}
is said to be an empty strip of width t if Dr+1, Dr+2, . . . , Dr+t are empty diagonals,
while Dr and Dr+t+1 are filled diagonals. The array of Example 4.16 has three empty
strips S1 = {D2, D3}, S2 = {D5} and S3 = {D8, D9, D10}.
Definition 4.17. Let A be a k-diagonal array of size n > k. We will say that A is
a k-diagonal array with width s if all the empty strips of A have width s.
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Example 4.18. The following is a 5-diagonal array of size 11 with width 3.

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

We will say that a k-diagonal array A is written in standard form if D1 is a filled
diagonal and Dn is an empty diagonal. For instance the array of Example 4.16 is
not in a standard form, while that of Example 4.18 is written in a standard form. In
the following we will suppose that A is written in a standard form, since this is not
restrictive in order to study the solution of P (A).

Now we present a result which generalizes Lemma 4.7.

Lemma 4.19. Let k ≥ 3 be an odd integer and let A be a k-diagonal array of size
n > k and width s. Then the vectors R := (1, . . . , 1) and C ∈ {−1, 1}n, where the
positions of each −1 in C are described by E, are a solution of P (A) if and only if:

1) the list E covers all the congruence classes modulo d, where d = gcd(n, k− 1);

2) the list L(1, 1) covers all the positions of {(e, e)|e ∈ E}.
Proof. Let Di1 = D1, Di2 , . . . , Dik with ij < ij+1, for any j = 1, . . . , k − 1, be the k
non-empty diagonals of A.

If R and C are a solution, the list L(1, 1) covers all the filled positions of A
and hence all the positions of {(e, e)|e ∈ E} ⊆ D1. Let us suppose, for the sake of
contradiction, that R and C are a solution and that there exists a congruence class
[f ] modulo d that is not covered by the list E. We note that, for (i, i) ∈ D1 and
i + s + 1 �∈ E, we have SR,C((i, i)) = (i+ s + 1, i+ s + 1) ∈ D1 where i+ s + 1 ≡ i
(mod d). Therefore the list L(f, f) is contained in D1, which is a contradiction.

Conversely, let us suppose, for the sake of contradiction, that the hypotheses 1)
and 2) of the statement are satisfied, but L(1, 1) does not cover F (A). Let (f, g) ∈
F (A) \L(1, 1) and consider the list L(f, g); obviously L(1, 1)∩L(f, g) = ∅, hence by
2) we have that

{(e, e)|e ∈ E} ∩ L(f, g) = ∅. (∗)
We note that, given a position (i, j), SR,C((i, j)) ∈ D1 only in the following two cases:

A) (i, j) ∈ D1 and i+ s+ 1 �∈ E;

B) (i, j) ∈ Di3 and SR,C((i, j)) = (e, e) for some e ∈ E.
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Since for i+ s+1 /∈ E we have SR,C((i, i)) = (i+ s+1, i+ s+1) and, by hypothesis
1), the list E covers all the congruence classes modulo d, it follows that L(f, g) �⊆ D1.
Suppose now that there exists (i′, j′) ∈ L(f, g)\D1 such that SR,C((i

′, j′)) ∈ D1. From
B) it follows that SR,C((i

′, j′)) ∈ {(e, e)|e ∈ E}, but obviously SR,C((i
′, j′)) ∈ L(f, g),

which is in contradiction with (∗). Hence L(f, g) ∩ D1 = ∅. Given (i, j) ∈ Dih,
set SR,C((i, j)) = (i′′, j′′). We note that SR,C((i, j)) ∈ Dih if j′′ �∈ E, otherwise
SR,C((i, j)) ∈ Dih−2

where the subscripts of the diagonals are considered modulo k.
Since k is odd it means that the list L(f, g) will reach every non-empty diagonal and
hence also the diagonal D1, but this is a contradiction because L(f, g)∩D1 = ∅.

The following result, obtained independently and in a more general form in [7]
(see Lemma 2.2), is an easy consequence of the previous lemma.

Proposition 4.20. Let k ≥ 3 be an odd integer and let A be a k-diagonal array of
size n > k and width s. If gcd(n, s + 1) = 1, then the vectors R := (1, . . . , 1) and
C := (−1, 1, . . . , 1) are a solution of P (A).

Proof. It is immediate to see that conditions 1) and 2) of Lemma 4.19 are satisfied.

If the array A has exactly two strips of the same width the following holds.

Corollary 4.21. Let n > k ≥ 3 be odd integers and let A be a k-diagonal array of
odd size n and width s = n−k

2
. If gcd(n, k − 2) = 1, then the vectors R := (1, . . . , 1)

and C := (−1, 1, . . . , 1) are a solution of P (A).

Proof. Since n and k are odd, gcd(n, k − 2) = 1 if and only if gcd(n, n−k+2
2

) = 1.
Note that n−k+2

2
= s+ 1, hence the thesis follows from Proposition 4.20.

Example 4.22. The array of Example 4.18 satisfies the hypotheses of Corollary
4.21 with n = 11, k = 5 and s = 3. We show the tour obtained with the solution
presented in the corollary writing in a position j if we reach that position after having
applied SR,C to (1, 1) exactly j times.

↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
→ 0 37 15 53 32
→ 22 3 38 18 54
→ 44 23 6 39 21
→ 45 24 9 40 13
→ 46 25 1 41 16
→ 47 26 4 42 19
→ 11 48 27 7 43
→ 33 14 49 28 10
→ 34 17 50 29 2
→ 35 20 51 30 5
→ 36 12 52 31 8
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5 Cyclically almost k-diagonal square arrays

We have seen that the necessary conditions for the existence of a solution of the
problem when we have a k-diagonal array of size n are n and k odd. Hence if we
want to obtain some results about arrays of even size and/or with an even number
of filled diagonals, we have to change the structure of filled cells. In order to break
the symmetry as little as possible we consider an array with k filled diagonals and
another “extra” filled position.

Definition 5.1. Let k ≥ 1 be an integer. We will say that a square array A of size
n > k is almost k-diagonal if the non-empty cells of A are exactly those of k distinct
diagonals Di1, Di2 , . . . , Dik together with another extra filled position belonging to a
diagonal Dj with j �= i1, . . . , ik.

In other words, an almost k-diagonal array can be obtained by adding an extra
filled cell to a k-diagonal array, hence it has exactly kn+ 1 filled positions.

Example 5.2. The following is an almost 2-diagonal array of size 5, whose totally
filled diagonals are D3 and D4, and the extra filled position is (4, 4).

• •
• •

• •
• • •
• •

First of all, we determine a necessary condition for the existence of a solution of
P (A) when A is an almost k-diagonal array.

Proposition 5.3. Let A be an almost k-diagonal array of size n > k. If P (A) admits
a solution then kn is even with k �= 1 or (n, k) = (2, 1).

Proof. Since |F (A)| = kn + 1, from Corollary 2.8 we have that kn must be even.
Then note that for k = 1, A admits nontrivial closed subarrays except when n = 2.
Hence the thesis follows from Theorem 2.7.

Definition 5.4. Let A be an almost k-diagonal array of size n > k. We will say
that A has width s if A can be obtained by adding an extra filled cell to a k-diagonal
array with width s.

An almost k-diagonal array A of width s is said to be in standard form if the
extra filled cell is (1, �) with 2 ≤ � ≤ s+ 1, D1 is a totally filled diagonal, Dn has at
most (1, 2) as filled position (note that this happens only when � = 2). As before,
without loss of generality we may assume that A is written in standard form.

Also in this section we will look for solutions with R = (1, . . . , 1). As done in
Section 4, by E we will denote the list of positions of −1’s in C. Moreover by
Ch we will mean the set of the cells (j, j) of D1 such that j ≡ h (mod d), where
d = gcd(n, s+ 1).
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Lemma 5.5. Let k ≥ 3 be an odd integer and let A be an almost k-diagonal array
of size n > k written in standard form and with width s, whose extra filled position
is (1, �). Then the vectors R := (1, . . . , 1) and C ∈ {−1, 1}n, where the positions of
each −1 in C are described by E, and with c� = 1, are a solution of P (A) if and only
if:

1) the list E covers all the congruence classes modulo d if � ≡ 1 (mod d), where
d = gcd(n, k−1), otherwise the list E covers all the congruence classes modulo
d except at most one among the classes of 1 and of �;

2) the list L(1, 1) covers all the positions of {(e, e)|e ∈ E}.
Proof. Let Di1 = D1, Di2 , . . . , Dik with ij < ij+1, for any j = 1, . . . , k − 1, be the k
totally filled diagonals of A.

If R and C are a solution, the list L(1, 1) covers all the filled positions of A
and hence all the positions of {(e, e)|e ∈ E} ⊆ D1. Let us suppose, for the sake
of contradiction, that R and C are a solution and that one of the following two
conditions holds:

a) there exists a congruence class [f ] modulo d, with f �≡ 1, � (mod d), that is
not covered by the list E;

b) the congruence classes of 1 and of � modulo d are not covered by the list E.

Firstly suppose we are in case a). We note that, for (i, i) ∈ D1 with i+ (s+ 1) �∈ E
and i �≡ 1 (mod d), we have SR,C((i, i)) = (i + (s + 1), i + (s + 1)) ∈ D1 where
i + (s + 1) ≡ i (mod d). Therefore the list L(f, f) is contained in D1, which is a
contradiction.

Now suppose we are in case b). Note that SR,C((1, 1)) = (�, �) ∈ C� and that if
(j, j) ∈ C� then SR,C((j, j)) ∈ C� except when j = n + �− (s + 1), in fact SR,C((n +
�− (s+1), n+ �− (s+1)) = (1, �). Also, since A is in standard form, SR,C((1, �)) =
(s+ 2, s+ 2) ∈ C1 and if (j, j) ∈ C1 then SR,C((j, j)) ∈ C1 except when j = 1. Hence
if � �≡ 1 (mod d), then L(1, 1) ⊆ C1 ∪ C� ∪ (1, �), otherwise L(1, 1) ⊆ C1 ∪ (1, �). In
both cases we obtain a contradiction.

Conversely, let us suppose, for the sake of contradiction, that conditions 1) and
2) of the statement are satisfied, but L(1, 1) does not cover F (A), and let (f, g) ∈
F (A) \L(1, 1). Let us consider the list L(f, g), obviously L(1, 1)∩L(f, g) = ∅, hence
by 2) we have that

{(e, e)|e ∈ E} ∩ L(f, g) = ∅. (∗)
We note that, given a position (i, j), SR,C((i, j)) ∈ D1 only in the following four
cases:

A) if (i, j) = (i, i) ∈ D1 and i �∈ {e − (s + 1)|e ∈ E} ∪ {1, � − (s + 1)}, then
SR,C((i, i)) = (i+ (s+ 1), i+ (s+ 1));

B) if (i, j) = (1, 1), then SR,C((1, 1)) = (�, �);

C) if (i, j) = (1, �) and s+ 2 �∈ E, then SR,C((1, �)) = (s+ 2, s+ 2);
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D) if (i, j) ∈ Di3 and SR,C((i, j)) = (e, e) for some e ∈ E.

If f �≡ 1, � (mod d), from A) and hypothesis 1), it follows that L(f, g) �⊆ D1∪{(1, �)}.
Now let f ≡ 1, � (mod d) and assume L(f, g) ⊆ D1 ∪ {(1, �)}. From A), B) and C)
this implies that L(f, g) = C1 ∪ C� ∪ {(1, �)}. But this happens if and only if the
list E does not cover the congruence classes of 1 and of � modulo d, which is in
contradiction with hypothesis 1). Hence, in any case, L(f, g) �⊆ D1 ∪ {(1, �)}.

Suppose now that there exists (i′, j′) ∈ L(f, g) \ {D1 ∪ {(1, �)}} such that
SR,C((i

′, j′)) ∈ D1 ∪ {(1, �)}. We note that SR,C((i
′, j′)) = (1, �) if and only if

(i′, j′) = (n+ �− (s+ 1), n+ �− (s+ 1)) ∈ D1, but (i
′, j′) �∈ D1. From D) it follows

that SR,C((i
′, j′)) ∈ {(e, e)|e ∈ E}, but obviously SR,C((i

′, j′)) ∈ L(f, g), which is in
contradiction with (∗). Hence L(f, g) ∩ (D1 ∪ {(1, �)}) = ∅.

Set δh = s + 1 if Dih−1 is empty and δh = 1 otherwise. We note that, given
(i, j) ∈ Dih with h = 2, . . . , k, we have SR,C((i, j)) = (i + δh, j + δh) ∈ Dih if
j + δh �∈ E and SR,C((i, j)) ∈ Dih−2

if j + δh ∈ E where the subscripts of the
diagonals are considered modulo k. Since k is odd it means that the list L(f, g)
will reach every totally filled diagonal and hence also the diagonal D1, but this is a
contradiction because L(f, g) ∩ {D1 ∪ {(1, �)}} = ∅.

As an immediate consequence we have the following result.

Proposition 5.6. Let k ≥ 3 be an odd integer and let A be an almost k-diagonal
array of size n > k and with width s, whose extra filled position is (1, �) with � even.
If gcd(n, s + 1) = 2, then the vectors R := (1, . . . , 1) and C := (−1, 1, . . . , 1) are a
solution of P (A).

We have an analogous partial result in the case � odd only for almost k-diagonals
arrays in which the k totally filled diagonals are consecutive. Hence we introduce
the following concept.

Definition 5.7. An almost k-diagonal array A whose k totally filled diagonals are
consecutive will be said a cyclically almost k-diagonal array.

Note that in this case if we write the array in standard form the extra filled
position is (1, �) with 2 ≤ � ≤ n− k + 1 and that the width is s = n− k.

Example 5.8. This is a cyclically almost 2-diagonal array of size 5 with extra filled
position (1, 4) written in standard form.

• • •
• •
• •
• •
• •

From now on we will consider a cyclically almost k-diagonal array written in
standard form.
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Proposition 5.9. Let k ≡ 3 (mod 4) and let A be a cyclically almost k-diagonal
array of size n > k with the extra filled position (1, �) with � odd. If gcd(n, k−1) = 2,
then the vectors R := (1, . . . , 1) and C := (1,−1, 1, . . . , 1, c� = −1, 1, . . . , 1) are a
solution of P (A).

Proof. Let R and C be as in the statement. For any i = 2, . . . , k we set D1
i =

{(x, y) ∈ Di | 2 ≤ y ≤ �− 1} and D2
i = Di \D1

i . Since k ≡ 3 (mod 4), it is easy to
see that

L(1, 1) = ((1, 1), D2
k, D

1
k−2, D

2
k−4, D

1
k−6, . . . , D

2
3, (2, 2), (n+3−k, n+3−k), . . . , (k, k)).

Set B = ((2, 2), . . . , (k, k)) ⊆ L(1, 1). Note that (2, 2) ∈ D1 hence at least one of
(k+1, k+1) and (�+k−1, �+k−1) is in B, or B ⊆ D1. It is not hard to see that B ⊆
D1 implies that B = (b1, b2, . . . , b|B|) where bα = (2−(α−1)(k−1), 2−(α−1)(k−1))
for α = 1, . . . , |B|. But 2 − (α − 1)(k − 1) �= k since k is odd. So B �⊆ D1, hence
at least one of (k + 1, k + 1) and (� + k − 1, � + k − 1) is in B. Since � + k − 1 is
odd while k + 1 is even, we have that B = ((2, 2), . . . , (k + 1, k + 1), . . . , (k, k)) with
((2, 2), . . . , (k + 1, k + 1)) ⊆ D1 which implies:

L(1, 1) = ((1, 1), D2
k, D

1
k−2, D

2
k−4, D

1
k−6, . . . , D

2
3, (2, 2), . . . , (k + 1, k + 1),

D1
k−1, D

2
k−3, . . . , D

2
4, D

1
2, (1, �), (n− k + 2, n− k + 2), . . . , (k, k)).

Set G = ((n−k+2, n−k+2), . . . , (k, k)) ⊆ L(1, 1). Note that (n−k+2, n−k+2) ∈ D1

hence either (�+ k− 1, �+ k− 1) ∈ G, or G ⊆ D1. It is not hard to see that G ⊆ D1

implies that G = (g1, g2, . . . , g|G|) where gα = (n−k+2−(α−1)(k−1), n−k+2−(α−
1)(k− 1)) for α = 1, . . . , |G|. But n− k+ 2− (α− 1)(k− 1) = n+ 1−α(k− 1) ≡ k
(mod n) if and only if α ≡ n/2 − 1 (mod n/2) that is G coincides with the odd
elements of D1 except (1, 1). So we can suppose that (�+k−1, �+k−1) ∈ G which
implies:

L(1, 1) = ((1, 1), D2
k, D

1
k−2, D

2
k−4, D

1
k−6, . . . , D

2
3, (2, 2), . . . , (k + 1, k + 1),

D1
k−1, D

2
k−3, . . . , D

2
4, D

1
2, (1, �), (n− k + 2, n− k + 2), . . . , (�+ k − 1, �+ k − 1),

D2
k−1, D

1
k−3, . . . , D

1
4, D

2
2, D

1
k, D

2
k−2, . . . , D

2
5, D

1
3, (�, �), . . . , (k, k)).

It is clear that Di ⊆ L(1, 1) for any i �= 1. Suppose by way of contradiction that
there exists an element (j, j) ∈ D1, with (j, j) �∈ L(1, 1). Hence L(j, j)∩L(1, 1) = ∅,
which implies L(j, j) ⊆ D1 which is a contradiction since gcd(n, k − 1) = 2 and
2, � ∈ E.

Example 5.10. Consider a cyclically almost 7-diagonal array of size 14 in standard
form with the extra filled position (1, 5). We show in the table (5.1) the tour obtained
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in the proof of Proposition 5.9, where cells are tagged as in previous examples.

↓ ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
→ 0 50 5 59 88 43 23 77
→ 78 26 6 60 89 44 24
→ 25 47 52 7 61 90 45
→ 46 93 48 28 8 62 91
→ 92 65 94 49 96 9 63
→ 64 12 66 95 68 30 10
→ 11 33 13 67 15 69 98
→ 79 34 14 36 16 70 32
→ 80 35 82 37 17 71 51
→ 81 54 83 38 18 72 27
→ 1 55 84 39 19 73 53
→ 2 56 85 40 20 74 29
→ 3 57 86 41 21 75 97
→ 4 58 87 42 22 76 31

(5.1)

Now we investigate the case k even. We recall that, in this case, in order to have
a solution the size n of an almost k-diagonal array can be both even and odd.

Proposition 5.11. Let A be a cyclically almost 2-diagonal array of size n ≥ 3
with extra filled cell (1, �). The vectors R := (1, . . . , 1) and C := (1, . . . , 1, c� =
−1, 1, . . . , 1) are a solution of P (A).

Proof. It is sufficient to note that L(1, 1)= ((1, 1), (� + 1, �), (� + 2, � + 1), (�+3, �+
2), . . . , (n, n−1), (1, n), (2, 1), (3, 2), . . . ,(�, �−1), (1, �), (n, n), (n−1, n−1), . . . , (2, 2)).

For k ≥ 4, we start by deriving some properties that must be satisfied by any
solution.

Proposition 5.12. Let k ≥ 4 be an even integer and let A be a cyclically almost
k-diagonal array of size n > k whose extra filled position is (1, �). If the vectors
R := (1, . . . , 1) and C ∈ {−1, 1}n, where the positions of each −1 in C are described
by E, are a solution of P (A) then

1) c� = −1;
2) gcd(|E|, k

2
) = 1;

3) the list E covers all the congruence classes modulo d, where d = gcd(n, k− 1),
if � ≡ 1 (mod d), otherwise the list E covers all the congruence classes modulo
d except at most the class of 1.

Proof. 1) If, by way of contradiction, we suppose that c� = 1, then L(1, 1) ⊆ D1 ∪
D3 ∪ . . . ∪Dk−1 ∪ {(1, �)}, hence L(1, 1) does not cover F (A).

2) Note that since k ≥ 4, (� + 2, � − 1) ∈ D4 is a filled position hence we can
consider the list L(� + 2, � − 1). If (1, �) �∈ L(� + 2, � − 1) then R and C are not a
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solution. So, suppose that (1, �) ∈ L(� + 2, � − 1). Since, by 1), c� = −1 we have
that SR,C((i, j)) = (1, �) if and only if (i, j) = (�, � − 1). Also, note that applying
SR,C to a filled cell of the diagonal D2a and of the j-th column we obtain a cell of
the diagonal D2a−2 (modulo k) and of the (j + 1)-th column (modulo n) or a cell
of D2a. Hence we have Sα

R,C((� + 2, � − 1)) = (�, � − 1) ∈ D2 implies that α = λn
for a suitable λ. We also note that given (i, j) �= (�, � − 1) and (i, j) ∈ Dh with
h = 2, . . . , k, SR,C((i, j)) ∈ Dh if j + 1 �∈ E, otherwise SR,C((i, j)) ∈ Dh−2 where the
subscripts are taken modulo k. Hence, after having applied α = λn times SR,C to
(�+2, �−1) we are in the diagonal of index 4−2λ|E| (mod k), but we have already
observed that Sα

R,C((� + 2, � − 1)) = (�, � − 1) ∈ D2. So we obtain 4 − 2λ|E| ≡ 2

(mod k), that is λ|E| ≡ 1 (mod k
2
), which implies that gcd(|E|, k

2
) = 1.

3) By way of contradiction, we suppose that there exists a congruence class [i]
modulo d, with i �≡ 1 (mod d) which is not covered by E. Let (f, f) ∈ Ci and note
that SR,C((f, f)) ∈ Ci since (f, f) �= (1, 1) because i �≡ 1 (mod d) and since E does
not cover the congruence class of i. Hence L(f, f) ⊆ Ci. So L(1, 1) does not cover
all the filled position of A.

Proposition 5.13. Let k ≥ 4 be an even integer and let A be a cyclically almost k-
diagonal array of size n > k whose the extra filled position is (1, �). If gcd(n, k−1) =
1 then the vectors R := (1, . . . , 1) and C := (1, . . . , 1, c� = −1, 1, . . . , 1) are a solution
of P (A).

Proof. Let R and C be as in the statement. For any i = 2, . . . , k we set D1
i =

{(x, y) ∈ Di | 1 ≤ y ≤ �− 1} and D2
i = Di \D1

i . It is easy to see that

L(1, 1)=((1, 1), D2
k, D

1
k, D

2
k−2, D

1
k−2, . . . , D

2
2, D

1
2, (1, �), (n−k+2, n−k+2), . . . , (k, k)).

Set B = ((n−k+2, n−k+2), . . . , (k, k)) ⊆ L(1, 1). Note that (n−k+2, n−k+2)∈D1

hence either (�+ k− 1, �+ k− 1) ∈ B or B ⊆ D1. It is not hard to see that B ⊆ D1

implies that B = (b1, b2, . . . , b|B|) where bα = (n − k + 2 − (α − 1)(k − 1), n − k +
2− (α− 1)(k − 1)) for α = 1, . . . , |B|. But n− k + 2− (α− 1)(k − 1) ≡ k (mod n)
if and only if α ≡ n− 1 (mod n), which implies |B| = n− 1 that is B = D1 \ (1, 1).
Since 2 ≤ � ≤ n − k + 1 we have � + k − 1 �≡ 1 (mod n). So we can suppose that
(�+ k − 1, �+ k − 1) ∈ B which implies that

L(1, 1) = ((1, 1), D2
k, D

1
k, D

2
k−2, . . . , D

2
2, D

1
2, (1, �), (n− k + 2, n− k + 2), . . . ,

(�+ k − 1, �+ k − 1), D2
k−1, D

1
k−1, D

2
k−3, . . . , D

2
3, D

1
3, (�, �), . . . , (k, k)).

It is clear that Di ⊆ L(1, 1) for any i �= 1. Suppose, by way of contradiction, that
there exists an element (j, j) ∈ D1, with (j, j) �∈ L(1, 1). Hence L(j, j) ∩ L(1, 1) = ∅
implying L(j, j) ⊆ D1, which is a contradiction since gcd(n, k − 1) = 1.

6 A recursive construction

We have already seen in Theorem 2.7 that if A admits nontrivial closed subarrays
then P (A) has no solution. Note that if A has exactly t minimal closed subarrays,
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adding to A less than t − 1 extra filled cells, we get again an array with nontrivial
closed subarrays. Hence in order to obtain a solution of the problem for “arrays with
almost closed subarrays” it is necessary to add at least t − 1 filled cells. We start
investigating the case in which t = 2 and the arrays are placed diagonally.

Proposition 6.1. Let B1 and B2 be two arrays with no empty row and no empty
column. Let A be an array of the form

A =
B1 E1

E2 B2

where E1 ∪ E2 has exactly one filled position. Then P (A) has a solution if and only
if both P (B1) and P (B2) do.

Proof. Let (i, j) be the unique filled position of E1 ∪ E2. Firstly, we suppose that
(i, j) ∈ E2.

Let Rt and Ct be a solution of P (Bt) for t = 1, 2. We will show that R :=
(R1, R2) and C := (C1, C2) are a solution of P (A). Note that the element (i′, j′)
such that SR,C((i

′, j′)) = (i, j) belongs to B1 and that SR,C((i, j)) ∈ B2. Hence
the list L(i, j) has elements both in B1 and in B2. Suppose now that there exists
(f, g) ∈ F (A) \ L(i, j) and that L(f, g) contains elements both of B1 and B2. Since
for any (i1, j1) ∈ B1, SR,C((i1, j1)) �∈ B2, (i, j) ∈ L(f, g) which is a contradiction.
Hence, L(f, g) contains only elements of Bt for some t ∈ {1, 2}. Since R and C
restricted to Bt are nothing but Rt and Ct, which solve P (Bt), the list L(f, g) has
to contain all the elements of Bt. We deduce that L(f, g) ∩ L(i, j) �= ∅, which is a
contradiction.

Suppose now that R and C are a solution of P (A), namely that L(i, j) covers
all the filled positions of A. Since, as already remark, SR,C((i, j)) ∈ B2 and the
element (i′, j′) such that SR,C((i

′, j′)) = (i, j) belongs to B1, we have that L(i, j) =
((i, j), B̄2, B̄1) where B̄t is a list of filled cells of Bt, for t = 1, 2. The list L(i, j) covers
all the filled positions of A; hence B̄t = F (Bt) for t = 1, 2, so the restrictions of R
and C to Bt give a solution of P (Bt).

If (i, j) ∈ E1 the proof can be done in a similar way.

Example 6.2. Let B1 be a cyclically 3-diagonal array of size 7 in standard form
and let B2 be a totally filled 3× 4 array. A solution of P (B1) and one of P (B2) are
presented in Example 4.2 and in Theorem 3.3, respectively. Hence, joining these solu-
tions, we have that R := (−1, 1, 1, 1, 1, 1, 1, 1, 1, 1) and C := (−1,−1, 1, 1, 1,−1,−1,
1, 1, 1,−1) are a solution of P (A), for the array A shown in the table (6.1), where
cells are tagged as usual.
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A :=

↑ ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↑
← 31 25 28
→ 14 27 30
→ 26 21 13
→ 15 22 20
→ 16 23 33
→ 17 24 19
→ 18 29 32

→ 9 2 7 4
→ 0 5 10 3 12
→ 1 6 11 8

(6.1)

We have to point out that in Proposition 6.1 it is not necessary to require that
the arrays B1 and B2 are placed diagonally. In fact the same proof holds also when
the rows and the columns of B1 (resp. B2) are not consecutive in A, as shown in the
following example.

Example 6.3. Let B1 = R1 ∩ C1 where R1 = (R1, R2, R3, R4, R5, R7, R8) and C1 =
(C1, C2, C3, C4, C5, C8, C9) and set B2 = R2 ∩ C2 where R2 = (R6, R9, R10) and
C2 = (C6, C7, C10, C11). Note that B1 and B2 are the same arrays of Example 6.2,
but now their rows and columns are not consecutive in A. Also in this case starting
from the solutions of P (B1) and P (B2) it is possible to obtain a solution of P (A) as
shown in table (6.2):

A :=

↑ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↑
← 31 25 28
→ 14 27 30
→ 26 21 13
→ 15 22 20
→ 16 23 33
→ 9 2 7 4
→ 17 24 19
→ 18 29 32
→ 0 5 10 3 12
→ 1 6 11 8

(6.2)

Remark 6.4. Let A be an array with t minimal closed subarrays Bi, for i = 1, . . . , t,
such that P (Bt) has a solution. Iterating the previous procedure, it is possible to
add t−1 extra filled positions (in a suitable way) to A in order to obtain a new array
A′ such that P (A′) has a solution.
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