
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 76(1) (2020), Pages 149–182

Fertility, strong fertility, and postorder
Wilf equivalence

Colin Defant

Princeton University
Fine Hall, 304 Washington Rd.

Princeton, NJ 08544
U.S.A.

cdefant@princeton.edu

Abstract

We introduce “fertility Wilf equivalence,” “strong fertility Wilf equiva-
lence,” and “postorder Wilf equivalence,” three variants of Wilf equiva-
lence for permutation classes that formalize some phenomena that have
appeared in the study of West’s stack-sorting map. We introduce “sliding
operators” and show that they induce useful bijections among sets of valid
hook configurations. Combining these maps with natural decompositions
of valid hook configurations, we give infinitely many examples of fertil-
ity, strong fertility, and postorder Wilf equivalences. As a consequence,
we obtain infinitely many joint equidistribution results concerning many
permutation statistics. In one very special case, we reprove and exten-
sively generalize a result of Bouvel and Guibert. Another case reproves
and generalizes a result of the current author. A separate very special
case proves and generalizes a conjecture of the current author concerning
stack-sorting preimages and the Boolean-Catalan numbers. We end with
two open questions.

1 Introduction

Throughout this paper, the word “permutation” refers to a permutation of a set of
positive integers. We write permutations in one-line notation. Let Sn denote the
set of permutations of the set [n] := {1, . . . , n}. If π is a permutation of length
n, then the normalization of π is the permutation in Sn obtained by replacing the
ith-smallest entry in π with i for all i. We say a permutation is normalized if it is
equal to its normalization (equivalently, if it is an element of Sn for some n). The
set S0 contains one element: the empty permutation.
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Definition 1.1. Given τ ∈ Sm, we say a permutation σ = σ1 · · · σn contains the
pattern τ if there exist indices i1 < · · · < im in [n] such that the normalization of
σi1 · · ·σim is τ . We say σ avoids τ if it does not contain τ . Let Av(τ (1), τ (2), . . .)
denote the set of normalized permutations that avoid the patterns τ (1), τ (2), . . . (this
sequence of patterns could be finite or infinite). A permutation class is a set of
permutations that is of the form Av(τ (1), τ (2), . . .) for some patterns τ (1), τ (2), . . ..
Let Avn(τ (1), τ (2), . . .) = Av(τ (1), τ (2), . . .) ∩ Sn.

One of the central definitions in the study of permutation patterns is that of Wilf
equivalence. We say two permutation classes Av(τ (1), τ (2), . . .) and Av(τ ′(1), τ ′(2), . . .)
are Wilf equivalent if |Avn(τ (1), τ (2), . . .)| = |Avn(τ ′(1), τ ′(2), . . .)| for all n ≥ 0.
For example, it is well known that Av(τ) and Av(τ ′) are Wilf equivalent when-
ever τ, τ ′ ∈ S3. There are many examples of “trivial” Wilf equivalences that arise
from basic symmetries, but there are also several interesting examples of nontrivial
Wilf equivalences [1, 12, 35,38].

It is difficult to overstate the importance of permutation patterns in modern
combinatorics [2, 33]. This area originated in the book The Art of Computer Pro-
gramming [34], where Knuth introduced a certain stack-sorting algorithm and proved
that a permutation is sortable via this algorithm if and only if it avoids the pattern
231. In his Ph.D. thesis, West [41] modified Knuth’s original definition to form a
function, which we call the stack-sorting map and denote by s. The name “stack-
sorting” comes from the original definition of s, in which one sends a permutation
through a vertical “stack” according to a certain greedy procedure. A simple alter-
native definition of s is as follows. First, s maps the empty permutation to itself.
If π is a permutation of a set of positive integers with largest entry n, then we can
write π = LnR. We then simply declare s(π) = s(L)s(R)n. For example,

s(43512) = s(43) s(12) 5 = s(3) 4 s(1) 2 5 = 34125.

There is now a vast collection of literature concerning the stack-sorting map [2–11,
13,15–20,22–31,36,40–42].

West [41] defined the fertility of a permutation π to be |s−1(π)|, the number of
preimages of π under s. A priori, computing fertilities of permutations is a difficult
task. To support this claim, we note that West went to great lengths to find formulas
for the fertilities of the very specific permutations of the forms

23 · · · k1(k+1) · · ·n, 12 · · · (k−2)k(k−1)(k+1) · · ·n, and k12 · · · (k−1)(k+1) · · ·n.

In [8], Bousquet-Mélou defined a permutation to be sorted if its fertility is positive.
She gave an algorithm for determining whether or not a given permutation is sorted
and stated that it would be interesting to find a general method to compute the
fertility of any given permutation. This was accomplished in much greater generality
in [23] and [25] using new combinatorial objects called “valid hook configurations.”
We review the theory of valid hook configurations and their applications to computing
fertilities in Section 4.
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Most of the questions that researchers have asked about the stack-sorting map can
be phrased in terms of preimages of sets of permutations under s [4–9,13,16–20,22–27,
34,36,40–42]. For example, Bouvel and Guibert [9] studied permutations that could
be sorted via two iterations of the stack-sorting map and a given dihedral symmetry;
their results can be reinterpreted as formulas for the sizes of s−1(Avn(132)) and
s−1(Avn(312)). In [17, 19, 25], the current author computed the fertilities of many
sets of the form Avn(τ (1), . . . , τ (r)) for τ (1), . . . , τ (r) ∈ S3. He also refined these
enumerative results according to the statistics des and peak. Even more classically,
the set of 1-stack-sortable permutations in Sn is s−1(Avn(21)), while the set of 2-
stack-sortable permutations in Sn is s−1(Avn(231)) (see [2, 5, 17, 24] for definitions).
One other motivation for studying preimages of permutation classes under s comes
from the fact that these sets are often themselves permutation classes. For instance,
s−1(Av(321)) = Av(34251, 35241, 45231) (see [25] for more examples). This leads
us to define the fertility of a set A of permutations to be |s−1(A)|. It turns out
that there are many interesting examples of sets of permutations that have the same
fertility. For example, Bouvel and Guibert [9] showed that

|s−1(Avn(231))| = |s−1(Avn(132))| (1)

for all n ≥ 0, proving a conjecture of Claesson, Dukes, and Steingrimsson. The
current author [25] also proved that

|s−1(Avn(132, 312))| = |s−1(Avn(231, 312))| (2)

and conjectured that

|s−1(Avn(132, 231))| = |s−1(Avn(231, 312))|. (3)

In fact, we can even trace this phenomenon back to West [41], who showed that

|s−1(Avn(132, 312, 321))| = |s−1(Avn(132, 231, 321))|. (4)

This last equation was reproven by Bousquet-Mélou [8]. Motivated by these exam-
ples, we define a new variant of Wilf equivalence.

Definition 1.2. We say that two permutation classes Av(τ (1), τ (2), . . .) and
Av(τ ′(1), τ ′(2), . . .) are fertility Wilf equivalent if

|s−1(Avn(τ (1), τ (2), . . .))| = |s−1(Avn(τ ′(1), τ ′(2), . . .))|

for all n ≥ 0.

Previously, (1), (2), and (4) were the only known nontrivial examples of fertility
Wilf equivalences. In fact, the connections between the pairs of permutation classes in
these examples are much deeper than fertility Wilf equivalence. Bouvel and Guibert
[9] listed several permutation statistics and proved that these statistics are jointly
equidistributed on s−1(Avn(132)) and s−1(Avn(231)) (see Section 3 for definitions).
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Similarly, the current author [25] showed that the statistics des and peak (defined
in Section 3) are each equidistributed on s−1(Avn(132, 312)) and s−1(Avn(231, 312))
and on s−1(Avn(132, 312, 321)) and s−1(Avn(132, 231, 321)). It turns out that these
statistics are jointly equidistributed on each of these pairs of sets, but we will actually
say much more below.

In Section 2, we define1 a set DPT of labeled rooted trees called decreasing plane
trees and consider a special subset of DPT, denoted DPT(2), whose elements are
called decreasing binary plane trees. Decreasing binary plane trees can be used to
give an alternative definition of the stack-sorting map. Replacing decreasing binary
plane trees with other collections of decreasing plane trees yields extensive general-
izations of the problem of computing fertilities of permutations. The current author
introduced valid hook configurations in [23] in order to develop a method for solving
this general problem in a wide variety of natural cases.

This general point of view involving decreasing plane trees allows us to define
a much stronger variant of fertility Wilf equivalence, which we call “postorder Wilf
equivalence.” We give this definition and discuss some of its consequences in Section
2. In particular, postorder Wilf equivalence implies fertility Wilf equivalence. We
will also see in Proposition 3.1 that postorder Wilf equivalence implies a joint equidis-
tribution result concerning a large (uncountable) collection of permutation statistics
that we call “skeletal” statistics, many of which are well-studied. In Section 4, we
use valid hook configurations to define a separate notion that we call “strong fertility
Wilf equivalence.” We will see in Proposition 4.1 that strong fertility Wilf equiva-
lence implies fertility Wilf equivalence along with some joint equidistribution results
for certain permutation statistics.

In Section 5, we define “sliding operators” swu : Av(231) → Av(132) and swl :
Av(132) → Av(312), which are bijections with several useful properties. The map
swu allows us to vastly generalize Bouvel and Guibert’s joint equidistribution result
concerning stack-sorting preimages of Avn(231) and Avn(132). In fact, we will give
one general unified construction that produces a large infinite collection of pairs of
permutation classes that are strongly fertility Wilf equivalent and postorder Wilf
equivalent. As a special consequence of one specific case of this construction, we
recover the identity (2).

To be completely precise, the joint equidistribution on s−1(Avn(231)) and
s−1(Avn(132)) of all but one of the statistics that Bouvel and Guibert considered
follows from Proposition 3.1 and Theorem 5.1. In order to completely reprove Bou-
vel and Guibert’s full result, we need a short additional argument to handle the
last remaining statistic. This is the “Zeilberger statistic” zeil, which we define in
Section 3.

In a similar vein, we use swl to prove that Av(132, 231) and Av(231, 312) are
strongly fertility Wilf equivalent. In particular, this proves that they are fertility

1These definitions are not new to this article. In fact, these trees have received a large amount of
attention.
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Wilf equivalent, which constitutes the identity (3) that was conjectured in [25]. We
also show that these sets are not postorder Wilf equivalent. As before, our argument
generalizes substantially, and we actually obtain a unified construction that produces
a large infinite collection of pairs of permutation classes that are strongly fertility
Wilf equivalent. If Av(τ (1), τ (2), . . .) and Av(τ ′(1), τ ′(2), . . .) form one of these pairs,
then it follows from Proposition 4.1 that the statistics des and peak are jointly
equidistributed on s−1(Avn(τ (1), τ (2), . . .)) and s−1(Avn(τ ′(1), τ ′(2), . . .)) for all n ≥ 0.
At the end of Section 5, we prove the surprising fact that zeil is also equidistributed
on these two sets. In fact, we will prove the stronger statement that des, peak, and
zeil are jointly equidistributed on these sets. In particular, these three statistics are
jointly equidistributed on s−1(Avn(132, 231)) and s−1(Avn(231, 312)) for all n ≥ 0.

In Section 6, we discuss the implications among the variants of Wilf equivalence
introduced throughout the paper. In particular, we show that fertility Wilf equiva-
lence does not imply strong fertility Wilf equivalence. We also end with two open
questions.

2 Decreasing Plane Trees

A rooted plane tree is a rooted tree in which the (possibly empty) subtrees of each
vertex are linearly ordered. This is a very broad collection of trees; it is even more
broad than the collection of trees discussed in [23]. In fact, there are infinitely many
rooted plane trees with just two vertices because such a tree can have arbitrarily many
empty subtrees. For example, the root vertex could have 27 empty subtrees, followed
by a child, then followed by 10 more empty subtrees. Let us stress that the only
purpose for considering such a large variety of trees is to demonstrate the versatility of
our results. These different types arise in different contexts in combinatorics (binary
plane trees, ternary plane trees, Motzkin trees, and many other natural families of
trees all fall under the general umbrella of “rooted plane trees”), so it is nice that
our methods can handle all of them uniformly. This also strengthens the definition
of postorder Wilf equivalence (hence, strengthening every theorem that yields an
example of postorder Wilf equivalence). Figure 1 shows some of the (infinitely many)
rooted plane trees with 3 vertices. A binary plane tree is a rooted plane tree in which
each vertex has exactly 2 (possibly empty) subtrees.

If X is a set of positive integers, then a decreasing plane tree on X is a rooted
plane tree in which the vertices are labeled with the elements of X (where each
label is used exactly once) such that each nonroot vertex has a label that is strictly
smaller than the label of its parent. Figure 2 shows two different decreasing binary
plane trees on {1, . . . , 7}. Let DPT denote the set of all decreasing plane trees. Let
DPT(2) ⊆ DPT be the set of decreasing binary plane trees.

A tree traversal is a scheme by which one can read the labels of a labeled tree
in some meaningful order to obtain a permutation. One tree traversal, called the
in-order traversal (sometimes called the symmetric order traversal), is only defined
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Figure 1: Some rooted plane trees on 3 vertices. The top 5 are the binary plane
trees on 3 vertices. In the leftmost tree on the bottom, the root vertex has no empty
subtrees, while its single child has a left child and an empty right subtree.
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Figure 2: Two different decreasing binary plane trees on {1, . . . , 7}.

on DPT(2). In order to read a decreasing binary plane tree in in-order, we read the
left subtree of the root in in-order, then read the label of the root, and finally read
the right subtree of the root in in-order. Let I(T ) denote the in-order reading of a
decreasing binary plane tree T . The map I is a bijection from the set of decreasing
binary plane trees on a set X to the set of permutations of X [2, 39]. Under this
bijection, the trees on the left and right in Figure 2 correspond to the permutations
4276153 and 2476153, respectively.

Another tree traversal, called the postorder traversal, is defined on all decreasing
plane trees. We read a decreasing plane tree in postorder by reading the subtrees
of the root from left to right (each in postorder) and then reading the label of the
root. Both trees in Figure 2 have postorder 2413567. Letting P (T ) be the postorder
reading of a decreasing plane tree T , we find that P is a map from DPT to the set of
all permutations. The basic yet fundamental connection between the stack-sorting
map and decreasing plane trees comes from the identity [2]

s = P ◦ I−1. (5)

It follows from this identity that the fertility of a permutation is equal to the number
of decreasing binary plane trees whose postorders are that permutation. In symbols,
this says that

|s−1(π)| =
∣∣∣P−1(π) ∩ DPT(2)

∣∣∣ . (6)

Therefore, we can vastly generalize the problem of computing the fertility of a per-
mutation π to the problem of computing∣∣P−1(π) ∩ Y

∣∣ ,
where Y is an arbitrary subset of DPT. In [23], the current author developed a
method for solving this problem for a wide variety of sets Y .
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The skeleton of a decreasing plane tree T is the rooted plane tree obtained by
removing the labels from T . If T ,T ′ ⊆ DPT, then we say a map ψ : T → T ′ is
skeleton-preserving if T and ψ(T ) have the same skeleton for all T ∈ T . We end
this section with one of the main definitions of this paper.

Definition 2.1. We say the permutation classes Av(τ (1), τ (2), . . .) and Av(τ ′(1),
τ ′(2), . . .) are postorder Wilf equivalent if there exists a skeleton-preserving bijection

η : P−1(Av(τ (1), τ (2), . . .))→ P−1(Av(τ ′(1), τ ′(2), . . .)).

3 Permutation Statistics

A permutation statistic is a function f from the set of all permutations to N ∪ {0}
such that f(π) = f(π′) whenever π and π′ have the same normalization. Note
that a permutation statistic is completely determined by its values on normalized
permutations. We now set the stage for subsequent sections with notation and
terminology concerning permutation statistics. We also prove a proposition that
elucidates the strength of postorder Wilf equivalence.

A descent of a permutation π = π1 · · · πn is an index i ∈ [n − 1] such that
πi > πi+1. An ascent of π is an index i ∈ [n− 1] such that πi < πi+1. A peak of π is
an index i ∈ {2, . . . , n−1} such that πi−1 < πi > πi+1. The descent set of π, denoted
Des(π), is the set of descents of π. One of the most important permutation statistics
is des, which is defined by des(π) = |Des(π)|. Let peak(π) denote the number of
peaks of π.

A left-to-right maximum of π = π1 · · · πn is an entry πi such that πj < πi whenever
1 ≤ j ≤ i − 1. A right-to-left maximum of π = π1 · · · πn is an entry πi such that
πj < πi whenever i + 1 ≤ j ≤ n. Let lmax(π) and rmax(π) denote the number of
left-to-right maxima of π and the number of right-to-left maxima of π, respectively.

The Zeilberger statistic, which originated in Zeilberger’s study of 2-stack-sortable
permutations [42] and has received attention in subsequent articles such as [7, 9, 14,
22], is denoted by zeil. For π ∈ Sn, zeil(π) is defined to be the largest integer m such
that the entries n, n− 1, . . . , n−m+ 1 appear in decreasing order in π.

The tail length of a permutation π = π1 · · · πn ∈ Sn, denoted tl(π), is the small-
est nonnegative integer ` such that πn−` 6= n − `. We make the convention that
tl(123 · · ·n) = n. For example,

tl(35412678) = 3, tl(1324) = 1, and tl(21453) = 0.

The tail length is a new statistic that was introduced in [26]; it is useful in the study
of the stack-sorting map [17–19, 26] and will play a crucial role for us in Section 5.
In what follows, recall the in-order reading I and the notion of the skeleton of a
decreasing plane tree from Section 2.
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Definition 3.1. The skeleton of a permutation π is the skeleton of I−1(π). We say
a permutation statistic f is skeletal if for every permutation π, f(π) only depends
on the skeleton of π.

Let LenDes denote the set of permutation statistics f such that f(π) only depends
on the length of π and the descent set Des(π). The set of statistics discussed in [9]
(see [9, 14] for all of their definitions) is

LenDes ∪ {lmax, rmax, zeil, indmax, slmax, slmax ◦ rev}. (7)

All of the statistics in (7) except zeil are skeletal. For example, one can show that i is
a descent of π if and only if the vertex whose label is read ith in the in-order traversal
of I−1(π) has a right child. Therefore, all of the statistics in LenDes are skeletal.
Even though tl, rmax, lmax, indmax, slmax, and slmax ◦ rev are not in LenDes, they
are still skeletal.

The following lemma connects the statistics zeil, rmax, and tl with the stack-
sorting map s. We will use it to understand the statistic zeil in the proof of Corol-
lary 5.1.

Lemma 3.1. For every permutation σ, we have

zeil(σ) = min{rmax(σ), tl(s(σ))}.

Proof. Without loss of generality, we may assume σ is normalized. Choose σ ∈ Sn,
and put c = zeil(σ). We can write

σ = µ(0) nµ(1)(n− 1)µ(2) · · ·µ(c−1)(n− c+ 1)µ(c),

where n− c does not appear in the subpermutation µ(c). Since n, n− 1, . . . , n− c+ 1
are right-to-left maxima of σ, we have c ≤ rmax(σ). By the definition of the stack-
sorting map, we have

s(σ) = s(µ(0))s(µ(1)) · · · s(µ(c−1))s(µ(c))(n− c+ 1) · · · (n− 1)n.

This shows that c ≤ tl(s(σ)). We now know that c ≤ min{rmax(σ), tl(s(σ))}, so
it suffices to prove the reverse inequality. If µ(c) is empty, then c = rmax(σ) ≥
min{rmax(σ), tl(s(σ))}. Therefore, we may assume µ(c) is nonempty. The entry in
s(σ) immediately preceding n− c+ 1 is an entry in s(µ(c)). This is also an entry in
µ(c), so it is not n− c. Hence, c = tl(s(σ)) ≥ min{rmax(σ), tl(s(σ))}.

We end this section by discussing joint equidistribution of permutation statistics
and how it relates to postorder Wilf equivalence.

Definition 3.2. Let A and A′ be sets of normalized permutations. Let E be a set
of permutation statistics. We say the elements of E are jointly equidistributed on A
and A′ if there is a bijection g : A→ A′ such that f(g(π)) = f(π) for all π ∈ A and
all f ∈ E .
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We stated in the introduction that Bouvel and Guibert [9] proved (using dif-
ferent language) that Av(231) and Av(132) are fertility Wilf equivalent. In fact,
they proved the much stronger statement that the statistics listed in (7) are jointly
equidistributed on s−1(Avn(231)) and s−1(Avn(132)) for all n ≥ 0. The following
proposition tells us that the joint equidistribution of all of these statistics other
than zeil on s−1(Avn(231)) and s−1(Avn(132)) is a special consequence of the fact
that Av(231) and Av(132) are postorder Wilf equivalent. This, in turn, is a special
case of Theorem 5.1 in Section 5. We will also be able to add zeil to this list of
equidistributed statistics in Corollary 5.1 with the help of Lemma 3.1.

Proposition 3.1. Let Av(τ (1), τ (2), . . .) and Av(τ ′(1), τ ′(2), . . .) be permutation classes
that are postorder Wilf equivalent. For every n ≥ 0, all skeletal statistics are jointly
equidistributed on s−1(Avn(τ (1), τ (2), . . .)) and s−1(Avn(τ ′(1), τ ′(2), . . .)). In particular,
these two permutation classes are fertility Wilf equivalent.

Proof. According to Definition 2.1, there exists a skeleton-preserving bijection

η : P−1(Av(τ (1), τ (2), . . .))→ P−1(Av(τ ′(1), τ ′(2), . . .)).

For each positive integer n, the map η sends decreasing binary plane trees on [n] to
decreasing binary plane trees on [n]. In other words, it induces a skeleton-preserving
bijection

η̃ : P−1(Avn(τ (1), τ (2), . . .)) ∩ DPT(2) → P−1(Avn(τ ′(1), τ ′(2), . . .)) ∩ DPT(2) . (8)

Using the identity s = P ◦ I−1 from (5), we find that

I(P−1(Avn(τ (1), τ (2), . . .)) ∩ DPT(2)) = s−1(Avn(τ (1), τ (2), . . .)).

It follows that the map η# := I ◦ η̃ ◦ I−1 is a bijection from s−1(Avn(τ (1), τ (2), . . .))
to s−1(Avn(τ ′(1), τ ′(2), . . .)). Because η̃ is skeleton-preserving, I−1(σ) and I−1(η#(σ))
have the same skeleton. This means that σ and η#(σ) have the same skeleton, so
f(σ) = f(η#(σ)) for every σ ∈ s−1(Avn(τ (1), τ (2), . . .)) and every skeletal statistic f .

Remark 3.1. In the proof of Proposition 3.1, we only used the hypothesis that the
permutation classes were postorder Wilf equivalent in order to deduce the existence
of the skeleton-preserving bijection η̃ in (8). We never used the full strength of the
hypothesis that there is a skeleton-preserving bijection between the much larger sets
P−1(Avn(τ (1), τ (2), . . .)) and P−1(Avn(τ ′(1), τ ′(2), . . .)). In other words, we really only
used the fact that the permutation classes are postorder Wilf equivalent when we
restrict our attention to decreasing binary plane trees. Therefore, stating that two
permutation classes are postorder Wilf equivalent is much stronger than stating that
they satisfy the conclusion of Proposition 3.1. To phrase this more precisely, let us
say that two permutation classes Av(τ (1), τ (2), . . .) and Av(τ ′(1), τ ′(2), . . .) are binary
postorder Wilf equivalent if there exists a skeleton-preserving bijection η̃ as in (8).
In Section 6, we show that Av(123) and Av(123, 3214) are binary postorder Wilf
equivalent but not postorder Wilf equivalent. ♦
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4 Valid Hook Configurations

In [23], the current author introduced “valid hook configurations” in order to solve
the problem of computing |P−1(π) ∩ Y |, where P denotes the postorder traversal
defined in Section 5 and Y is an arbitrary set of decreasing plane trees. We wish to
break with the notational conventions introduced in that article. We use the term
“valid hook configuration” to refer to a slight variant of a specific type of object
considered in [23]. The objects turn out to have interesting combinatorial properties
in their own right [16, 21, 26, 36, 37]. In this section, we state the main fertility
formulas that connect valid hook configurations with the stack-sorting map. We also
define strong fertility Wilf equivalence and discuss some of its consequences.

The first part of a valid hook configuration is a permutation π = π1 · · · πn. We
use the example permutation

2 7 3 5 9 10 11 4 8 1 6 12 13 14 15 16

throughout this section. The plot of π is obtained by plotting the points (i, πi) for
all i ∈ [n]. If i ∈ [n− 1] is a descent of π (recall that this means πi > πi+1), then we
call the point (i, πi) a descent top of the plot of π. The left image in Figure 3 shows
the plot of our example permutation.
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Figure 3: The left image depicts the plot of the permutation
2 7 3 5 9 10 11 4 8 1 6 12 13 14 15 16.

The right image shows a valid hook configuration of this permutation.

A hook of π is drawn by starting at a point (i, πi) in the plot of π, drawing
a line segment vertically upward, and then drawing a line segment horizontally to
the right until reaching another point (j, πj). This only makes sense if i < j and
πi < πj. The point (i, πi) is called the southwest endpoint of the hook, while (j, πj)
is called the northeast endpoint. The right image in Figure 3 shows the plot of our
example permutation with three hooks. The southwest endpoints of the hooks are
(2, 7), (7, 11), (9, 8), and the corresponding northeast endpoints are (7, 11), (15, 15),
(13, 13).
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Figure 4: Four placements of hooks that are forbidden in a valid hook configuration.

Definition 4.1. Let π be a permutation of length n with k descents. A valid hook
configuration of π is a tuple (H1, . . . , Hk) of hooks of π subject to the following
constraints:

1. The southwest endpoints of the hooks are precisely the descent tops of the plot
of π.

2. A point in the plot of π cannot lie directly above a hook.

3. Hooks cannot intersect or overlap each other except in the case that the northeast
endpoint of one hook is the southwest endpoint of the other.

Let VHC(π) denote the set of valid hook configurations of π. We make the convention
that a valid hook configuration includes its underlying permutation as part of its
definition. In other words, VHC(π) and VHC(π′) are disjoint whenever π and π′ are
distinct.

A valid hook configuration of π induces a coloring of the plot of π. To color the
plot, draw a “sky” over the entire diagram and assign a color to the sky. Assign
arbitrary distinct colors other than the one used to color the sky to the k hooks in
the valid hook configuration. There are k northeast endpoints of hooks, and these
points remain uncolored. However, all of the other n − k points will be colored. In
order to decide how to color a point (i, πi) that is not a northeast endpoint, imagine
that this point looks directly upward. If this point sees a hook when looking upward,
it receives the same color as the hook that it sees. If the point does not see a hook, it
must see the sky, so it receives the color of the sky. However, if (i, πi) is the southwest
endpoint of a hook, then it must look around (on the left side of) the vertical part
of that hook (see Figure 5).

To summarize, we started with a permutation π with k descents. We chose a valid
hook configuration (H1, . . . , Hk) of π by drawing k hooks according to Conditions
1, 2, and 3 in Definition 4.1. This valid hook configuration then induced a coloring
of the plot of π. Specifically, n − k points were colored, and k + 1 colors were used
(one for each hook and one for the sky). Let qi be the number of points given the
same color as Hi, and let q0 be the number of points given the same color as the
sky. Then (q0, . . . , qk) is a composition2 of n − k into k + 1 parts; we say the valid

2Throughout this paper, a composition of b into a parts is an a-tuple of positive integers whose
sum is b.
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Figure 5: The coloring induced by a valid hook configuration.

hook configuration induces this composition. Let V(π) be the set of compositions
induced by valid hook configurations of π. We call the elements of V(π) the valid
compositions of π.

We frequently make tacit use of the following result, which is Lemma 3.1 in [23].

Theorem 4.1 ( [23]). Each valid composition of a permutation π is induced by a
unique valid hook configuration of π.

The next theorem, which follows from the results in Section 5 of [23], has proven
useful in [17,24,25]. Let L(r, i, j) be the number of binary plane trees with r vertices,
i − 1 right edges, and j leaves. Let Lr(x, y) =

∑r
i=1

∑r
j=1 L(r, i, j)xiyj. Let Cr =

Lr(1, 1) = 1
r+1

(
2r
r

)
be the rth Catalan number.

Theorem 4.2 ([23]).3 Let π = π1 · · · πn be a permutation with des(π) = k. We have

∑
σ∈s−1(π)

xdes(σ)+1ypeak(σ)+1 =
∑

(q0,...,qk)∈V(π)

k∏
t=0

Lqt(x, y).

In particular,

|s−1(π)| =
∑

(q0,...,qk)∈V(π)

k∏
t=0

Cqt .

3The article [23] gives a general construction that allows one to produce decreasing plane trees
of various types that have a specified permutation as their postorder readings. This leads to
numerous analogues and generalizations of Theorem 4.2. For example, a very special consequence
of Theorem 4.1 in that article is that the number of decreasing Motzkin trees with postorder π is∑
(q0,...,qk)∈V(π)

k∏
t=0

Mqt−1, where Mr is the rth Motzkin number.
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We end this section by defining and discussing strong fertility Wilf equivalence.
Let us first fix some simple terminology and notation. A partition is a composition
whose parts appear in nonincreasing order. The type of a composition c is the par-
tition obtained by rearranging the parts of c into nonincreasing order. For instance,
the type of (1, 3, 4, 1) is (4, 3, 1, 1). Define the type of a valid hook configuration
H to be the type of the valid composition induced by H. For example, the valid
hook configuration in Figure 5 induces the valid composition (3, 4, 3, 3), so it has
type (4, 3, 3, 3). If B and B′ are sets of valid hook configurations, we say a function
θ : B → B′ is type-preserving if H and θ(H) have the same type for every H ∈ B.
Given a set A of permutations, let VHC(A) =

⋃
π∈A VHC(π) be the set of valid hook

configurations of the elements of A.

Definition 4.2. We say the permutation classes Av(τ (1), τ (2), . . .) and Av(τ ′(1),
τ ′(2), . . .) are strongly fertility Wilf equivalent if there exists a type-preserving bi-
jection

θ : VHC(Av(τ (1), τ (2), . . .))→ VHC(Av(τ ′(1), τ ′(2), . . .)).

Remark 4.1. If θ is as in Definition 4.2, then

θ(VHC(Avn(τ (1), τ (2), . . .))) = VHC(Avn(τ ′(1), τ ′(2), . . .))

for all n ≥ 0. Indeed, suppose H ∈ VHC(Av(τ (1), τ (2), . . .)). Let π and π′ be the
underlying permutations of H and θ(H), respectively (these are uniquely determined
according to the last part of Definition 4.1). Suppose π ∈ Sn and π′ ∈ Sn′ . Let
k = des(π) and k′ = des(π′). By our discussion above, the valid composition induced
by H is a composition of n − k into k + 1 parts. Similarly, the valid composition
induced by θ(H) is a composition of n′ − k′ into k′ + 1 parts. Because θ is type-
preserving, we must have n − k = n′ − k′ and k + 1 = k′ + 1. Hence, n = n′.

♦

Proposition 4.1. Let Av(τ (1), τ (2), . . .) and Av(τ ′(1), τ ′(2), . . .) be permutation classes
that are strongly fertility Wilf equivalent. For every n ≥ 0, the statistics des and peak
are jointly equidistributed on s−1(Avn(τ (1), τ (2), . . .)) and s−1(Avn(τ ′(1), τ ′(2), . . .)). In
particular, Av(τ (1), τ (2), . . .) and Av(τ ′(1), τ ′(2), . . .) are fertility Wilf equivalent.

Proof. Fix n ≥ 0. Let

θ : VHC(Av(τ (1), τ (2), . . .))→ VHC(Av(τ ′(1), τ ′(2), . . .))

be the type-preserving bijection whose existence is guaranteed by Definition 4.2.
Remark 4.1 tells us that θ(VHC(Avn(τ (1), τ (2), . . .))) = VHC(Avn(τ ′(1), τ ′(2), . . .)). Let
Lr(x, y) be as in Theorem 4.2. Given a composition q = (q0, . . . , qk), let

Lq(x, y) =
k∏
t=0

Lqt(x, y).
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Let qH denote the valid composition induced by a valid hook configuration H. Be-
cause θ is type-preserving, we have LqH(x, y) = Lqθ(H)(x, y) for allH ∈ VHC(Avn(τ (1),

τ (2), . . .)). Invoking Theorems 4.1 and 4.2, we find that∑
σ∈s−1(Avn(τ (1),τ (2),...))

xdes(σ)+1ypeak(σ)+1 =
∑

H∈VHC(Avn(τ (1),τ (2),...))

LqH(x, y)

=
∑

H∈VHC(Avn(τ (1),τ (2),...))

Lqθ(H)(x, y)

=
∑

H′∈VHC(Avn(τ ′(1),τ ′(2),...))

LqH′ (x, y)

=
∑

σ′∈s−1(Avn(τ ′(1),τ ′(2),...))

xdes(σ
′)+1ypeak(σ

′)+1.

5 Main Results

In this section, we define the sliding operators swu and swl. We use swu to produce
infinitely many examples of pairs of postorder Wilf equivalent permutation classes,
recovering Bouvel and Guibert’s result concerning s−1(Av(231)) and s−1(Av(132))
as a special consequence. We then use swl to produce infinitely many examples of
pairs of strongly fertility Wilf equivalent permutation classes, proving the conjectured
identity (3) as a special consequence. We end this section with a discussion of the
Zeilberger statistic and its joint equidistribution with des and peak on certain sets.

For π ∈ Sn, let rot(π) (respectively, rot−1(π)) be the permutation whose plot
is obtained by rotating the plot of π counterclockwise (respectively, clockwise) by
90◦. Equivalently, rot(π) is the reverse of the inverse of π. If λ = λ1 · · ·λ` ∈ S`
and µ = µ1 . . . µm ∈ Sm, then the direct sum of λ and µ, denoted λ ⊕ µ, is the
permutation in S`+m obtained by “placing µ above and to the right of λ.” The skew
sum of λ and µ, denoted λ 	 µ, is the permutation in S`+m obtained by “placing
µ below and to the right of λ.” More formally, the ith entries of λ ⊕ µ and λ 	 µ,
respectively, are

(λ⊕µ)i=

{
λi if 1 ≤ i ≤ `;

µi−`+` if `+1 ≤ i ≤ `+m
and (λ	µ)i=

{
λi +m if 1 ≤ i ≤ `;

µi−` if `+1 ≤ i ≤ `+m.

Note that ⊕ and 	 are both associative operations on the set of normalized per-
mutations. We say a normalized permutation is sum indecomposable if it cannot be
written as the direct sum of two shorter permutations. We say a normalized permu-
tation is skew indecomposable if it cannot be written as the skew sum of two shorter
permutations.

Definition 5.1. If π is the empty permutation, then swu(π) = π. If π ∈ Avn(231)
for some n ≥ 1, then we can write π = L⊕(1	R) for some normalized permutations
L and R. We let

swu(π) = (swu(L)⊕ 1)	 swu(R).
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For π ∈ Av(132), let
swl(π) = rot−1(swu(rot(π))).

Remark 5.1. The name “swu” stands for “southwest up” because swu has the
effect of sliding up points in the southwest region of the plot of π. Similarly, “swl”
stands for “southwest left.” It is sometimes helpful to extend the definitions of swu
and swl to permutations of arbitrary sets of positive integers. If π is a 231-avoiding
permutation of a set X of positive integers and π′ is the normalization of π, then we
define swu(π) to be the unique permutation of X whose normalization is swu(π′).
We define swl on arbitrary 132-avoiding permutations similarly. ♦

The article [16] discusses and proves several properties of the sliding operators
swu and swl. In the following lemma, we simply state the properties that we will
need later. We omit the proofs because they either appear in [16] or are immediate
from the definitions we have given. Recall the definitions of Des(π), des(π), and tl(π)
from Section 3.

Lemma 5.1. The maps swu and swl have the following properties:

• The map swu : Av(231)→ Av(132) is bijective.

• The map swl : Av(132)→ Av(312) is bijective.

• The restriction of swl to Av(132, 231) is a bijection from Av(132, 231) to
Av(231,312).

• We have tl(π) = tl(swu(π)) and Des(π) = Des(swu(π)) for every π ∈ Av(231).

• We have tl(π) = tl(swl(π)) and des(π) = des(swl(π)) for every π ∈ Av(132).

Remark 5.2. Since swu and swl are bijections, they have inverses swu−1 and swl−1.
These maps are called swd and swr in [16], but we will not use these names here. ♦

Our primary motivation for considering the map swu comes from the following
proposition, which is proven in [22] using polyurethane toggles.

Proposition 5.1. For every π ∈ Av(231), there is a skeleton-preserving bijection

ηπ : P−1(π)→ P−1(swu(π)).

The next proposition will provide an important tool for building permutation
classes that behave nicely under the map swu.

Proposition 5.2. Let τ be a permutation such that swu(Av(231, τ)) = Av(132,
swu(τ)). If τ is sum indecomposable, then

swu(Av(231, τ ⊕ 1)) = Av(132, swu(τ ⊕ 1)).

If τ is skew indecomposable, then

swu(Av(231, 1	 τ)) = Av(132, swu(1	 τ)).
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Proof. We prove the case in which τ is sum indecomposable; the proof of the case in
which τ is skew indecomposable is similar. We will prove that

swu(Avn(231, τ ⊕ 1)) = Avn(132, swu(τ ⊕ 1))

for all n ≥ 0. This is easy if n ≤ 1, so we may assume n ≥ 2 and proceed by
induction on n. Choose π ∈ Avn(231, τ ⊕ 1) and σ ∈ Avn(132, swu(τ ⊕ 1)). Our
goal is to show that swu(π) ∈ Avn(132, swu(τ ⊕ 1)) and swu−1(σ) ∈ Avn(231, τ ⊕ 1).
We already know that swu(π) avoids 132 and swu−1(σ) avoids 231, so we are left to
show that swu(π) avoids swu(τ ⊕ 1) and swu−1(σ) avoids τ ⊕ 1.

We can write
π = L⊕ (1	R) and σ = (L̂⊕ 1)	 R̂ (9)

so that

swu(π) = (swu(L)⊕ 1)	 swu(R) and swu−1(σ) = swu−1(L̂)⊕ (1	 swu−1(R̂)).
(10)

Because L,R ∈ Av(231, τ⊕1), it follows by induction that swu(L) and swu(R) avoid

swu(τ ⊕ 1). Similarly, swu−1(L̂) and swu−1(R̂) avoid τ ⊕ 1.

Assume by way of contradiction that swu(π) contains swu(τ ⊕ 1). Note that
swu(τ ⊕ 1) = swu(τ) ⊕ 1 by the definition of swu. Since swu(L) and swu(R) avoid
swu(τ ⊕ 1), it follows from (10) that swu(L) contains swu(τ). Using our hypothesis,
we deduce that

swu(L) 6∈ Av(132, swu(τ)) = swu(Av(231, τ)).

We know that L avoids 231 (because π does), so L must contain τ . We can now use
(9) to see that π contains τ ⊕ 1, which is our desired contradiction.

Next, assume by way of contradiction that swu−1(σ) contains τ ⊕ 1. Combining
(10) with the hypothesis that τ is sum indecomposable, it is straightforward to check

that swu−1(L̂) contains τ . This means that

L̂ 6∈ swu(Av(231, τ)) = Av(132, swu(τ)).

We know that L̂ avoids 132 (because σ does), so L̂ must contain swu(τ). It is now
immediate from (9) that σ contains swu(τ)⊕1 = swu(τ⊕1), which is a contradiction.

Propositions 5.1 and 5.2 allow us to produce several examples of postorder Wilf
equivalences. The following theorem exhibits infinitely many such examples, but
there could certainly be others. Let us first fix some notation. Given π ∈ Sn, let

χm(π) =

{
(n+m−1) · · · (n+3)(n+1)π(n+2)(n+4) · · · (n+m) if m ≡ 0 mod 2;

(n+m) · · · (n+3)(n+1)π(n+2)(n+4) · · · (n+m−1) if m ≡ 1 mod 2.

(11)
For example,

χ5(132) = 86413257, and χ6(132) = 864132579.
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Theorem 5.1. Preserving the preceding notation, let

A =
⋃
m≥0

{χm(1), χm(12), χm(1423), χm(2143)}.

Let τ (1), τ (2), . . . be a (possibly empty) list of patterns taken from the set A, and
let τ ′(i) = swu(τ (i)) for all i. The permutation classes Av(231, τ (1), τ (2), . . .) and
Av(132, τ ′(1), τ ′(2), . . .) are postorder Wilf equivalent.

Proof. We know that swu : Av(231)→ Av(132) is a bijection. We will show that

swu(Av(231, τ (1), τ (2), . . .)) = Av(132, τ ′(1), τ ′(2), . . .).

This will allow us to define

η : P−1(Av(231, τ (1), τ (2), . . .))→ P−1(Av(132, τ ′(1), τ ′(2), . . .))

by
η(T ) = ηP (T )(T ),

where ηP (T ) : P−1(P (T )) → P−1(swu(P (T ))) is the skeleton-preserving bijection
from Proposition 5.1. It will then follow that η is a skeleton-preserving bijection,
which will complete the proof. By taking intersections, we find that it suffices to
prove that

swu(Av(231, τ)) = Av(132, swu(τ)) (12)

for all τ ∈ A.

Choose τ ∈ A, and write τ = χm(µ) for some m ≥ 0 and µ ∈ {1, 12, 1423, 2143}.
We induct on m. Suppose that m ≥ 1 and that we have already proven the equality
swu(Av(231, χm−1(µ))) = Av(132, swu(χm−1(µ))). If m is even, then χm−1(µ) is sum
indecomposable and τ = χm−1(µ)⊕ 1, so we can use Proposition 5.2 to see that (12)
holds. If m is odd, then χm−1(µ) is skew indecomposable and τ = 1 	 χm−1(µ), so
we can use Proposition 5.2 to see that (12) holds in this case as well. This completes
the proof of the inductive step, so it remains to prove the base case in which m = 0.
In other words, we need to prove (12) when τ = µ ∈ {1, 12, 1423, 2143}. This is easy
if µ ∈ {1, 12}, so we may assume µ ∈ {1423, 2143}.

We wish to show that swu(Avn(231, µ)) = Avn(132, swu(µ)) for all n ≥ 0. This
is trivial if n ≤ 2, so we may assume n ≥ 3 and induct on n. Fix π ∈ Avn(231, µ)
and σ ∈ Avn(132, swu(µ)). Our goal is to show that swu(π) ∈ Avn(132, swu(µ)) and
swu−1(σ) ∈ Avn(231, µ). We know that swu(π) avoids 132 and swu−1(σ) avoids 231,
so we need only prove that swu(π) avoids swu(µ) and that swu−1(σ) avoids µ.

Let us write
π = L⊕ (1	R) and σ = (L̂⊕ 1)	 R̂ (13)

so that

swu(π) = (swu(L)⊕ 1)	 swu(R) and swu−1(σ) = swu−1(L̂)⊕ (1	 swu−1(R̂)).
(14)
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Because L,R ∈ Av(231, µ), it follows by induction that swu(L) and swu(R) avoid

swu(µ). A similar argument shows that swu−1(L̂) and swu−1(R̂) avoid µ. We now
consider cases based on whether µ is 1423 or 2143.

First, suppose µ = 1423. In this case, swu(µ) = 3412. Assume by way of
contradiction that swu(π) contains 3412. Because swu(R) avoids 3412, it follows
from (14) that swu(L) is nonempty. Hence, L is nonempty. Because swu(L) avoids
3412, it follows from (14) that swu(R) has at least one ascent. This tells us that
swu(R) is not a strictly decreasing permutation, which means that R is not strictly
decreasing either. Hence, R has an ascent. It is now immediate from (13) that
π contains 1423, which is a contradiction. Now assume swu−1(σ) contains 1423.

Because swu−1(R̂) avoids 1423, we can use (14) to see that swu−1(L̂) is nonempty.

Similarly, swu−1(R̂) has an ascent because swu−1(L̂) avoids 1423. As a consequence,

L̂ is nonempty, and R̂ has an ascent. It is now immediate from (13) that σ contains
3412, which is a contradiction. This handles the case in which µ = 1423.

For the second case, suppose µ = 2143. In this case, swu(µ) = 3241. Assume
by way of contradiction that swu(π) contains 3241. Using (14) and the fact that
swu(R) and swu(L) avoid 3241, we deduce that swu(L) has a descent and swu(R)
is nonempty. This implies that L has a descent and R is nonempty. It follows from
(13) that π contains 2143, which is a contradiction. A similar argument shows that
swu−1(σ) avoids 2143. This handles the case in which µ = 2143.

Remark 5.3. Even if we just take the sequence τ (1), τ (2), . . . in Theorem 5.1 to be
empty, we obtain the new result that Av(231) and Av(132) are postorder Wilf equiv-
alent. The vast generality of Theorem 5.1 comes from the vast generality inherent
in the definition of postorder Wilf equivalence coupled with the large size of the set
A. We could obtain infinitely many examples of postorder Wilf equivalence even if
A was replaced by

⋃
m≥0{χm(1)}; the other elements of A just yield more examples!

♦

Theorem 5.2. Let

A =
⋃
m≥0

{χm(1), χm(12), χm(1423), χm(2143)}.

Let τ (1), τ (2), . . . be a (possibly empty) list of patterns taken from the set A, and
let τ ′(i) = swu(τ (i)) for all i. The permutation classes Av(231, τ (1), τ (2), . . .) and
Av(132, τ ′(1), τ ′(2), . . .) are strongly fertility Wilf equivalent.

Proof. For π ∈ Avn(231), we can transform a valid hook configuration H = (H1, . . . ,
Hm) of π into a valid hook configuration ŝwu(H) of swu(π) (see Figure 6). The plot
of swu(π) is obtained by vertically sliding the points in the plot of π. During this slid-
ing process, we simply keep all the hooks in H attached to the same points to obtain
ŝwu(H). In order to state this more precisely, let (iu, πiu) and (ju, πju) be the south-
west and northeast endpoints of Hu, respectively. We let ŝwu(H) = (H ′1, . . . , H

′
m),

where H ′u is the hook with southwest endpoint (iu, swu(π)iu) and northeast endpoint
(ju, swu(π)ju).
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Figure 6: Each valid hook configuration H of π corresponds to a valid hook config-
uration ŝwu(H) of swu(π). We have drawn the induced colorings to show that the
transformation does not change the induced valid composition. Indeed, both of these
valid hook configurations induce the valid composition (3, 2, 3, 3).

We saw in the proof of Theorem 5.1 that

swu(Av(231, τ (1), τ (2), . . .)) = Av(132, τ ′(1), τ ′(2), . . .).

Using Lemma 5.1 and Definitions 4.1 and 5.1, one can verify that ŝwu gives a type-
preserving bijection from VHC(π) to VHC(swu(π)) for every π∈Av(231, τ (1), τ (2), . . .).
Therefore, it also gives a type-preserving bijection

VHC(Av(231, τ (1), τ (2), . . .))→ VHC(Av(132, τ ′(1), τ ′(2), . . .)).

In the specific case of the following corollary in which the sequence τ (1), τ (2), . . .
is empty, we recover the joint equidistribution result of Bouvel and Guibert [9] men-
tioned in the introduction and also find several new statistics that are jointly equidis-
tributed on s−1(Avn(231)) and s−1(Avn(132)). In the case in which the sequence
consists of the single pattern τ (1) = 312, we reprove and greatly generalize Theorem
10.1 from [25].

Corollary 5.1. Let τ (1), τ (2), . . . and τ ′(1), τ ′(2), . . . be sequences as in the statement of
Theorem 5.1. For every n ≥ 0, the statistic zeil and all skeletal statistics are jointly
equidistributed on s−1(Avn(231, τ (1), τ (2), . . .)) and s−1(Avn(132, τ ′(1), τ ′(2), . . .)).

Proof. In the proof of Theorem 5.1, we saw that there is a skeleton-preserving bijec-
tion

η : P−1(Av(231, τ (1), τ (2), . . .))→ P−1(Av(132, τ ′(1), τ ′(2), . . .))

given by
η(T ) = ηP (T )(T ),
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where ηP (T ) : P−1(P (T )) → P−1(swu(P (T ))) is the skeleton-preserving bijection
from Proposition 5.1. Following the proof of Proposition 3.1, we see that η restricts
to a skeleton-preserving bijection

η̃ : P−1(Avn(231, τ (1), τ (2), . . .)) ∩ DPT(2) → P−1(Avn(132, τ ′(1), τ ′(2), . . .)) ∩ DPT(2) .

As in the proof of Proposition 3.1, we note that the map η# = I◦η̃◦I−1 yields a bijec-
tion from s−1(Avn(231, τ (1), τ (2), . . .)) to s−1(Avn(132, τ ′(1), τ ′(2), . . .)) for every n ≥ 0.
We need to show that f(σ) = f(η#(σ)) for every σ ∈ s−1(Avn(231, τ (1), τ (2), . . .)) and
every statistic f that is either zeil or is skeletal. If f is skeletal, then this follows
immediately from the fact that η̃ is skeleton-preserving. We are left to consider the
case f = zeil.

Choose σ ∈ s−1(Avn(231, τ (1), τ (2), . . .)), and let T = I−1(σ). According to (5),
s(σ) = P (T ). We have

η̃(T ) = η(T ) = ηP (T )(T ) ∈ P−1(swu(P (T ))) = P−1(swu(s(σ))),

so
s(η#(σ)) = s ◦ I ◦ η̃ ◦ I−1(σ) = P ◦ η̃ ◦ I−1(σ) = P (η̃(T )) = swu(s(σ)).

As a consequence, we can use Lemma 5.1 to see that tl(s(η#(σ))) = tl(swu(s(σ))) =
tl(s(σ)). It is not difficult to show that the statistic rmax is skeletal, so we know
from above that rmax(η#(σ)) = rmax(σ). We now invoke Lemma 3.1 to find that

zeil(η#(σ)) = min{rmax(η#(σ)), tl(s(η#(σ)))} = min{rmax(σ), tl(s(σ))} = zeil(σ).

We now turn our attention to the map swl. The proof of the following proposition
makes use of a general procedure that allows us to decompose valid hook configura-
tions. This procedure (phrased differently) has been crucial for enumerating 3-stack-
sortable permutations and stack-sorting preimages of permutation classes [17, 19].
Let π = π1 · · · πn be a permutation, and let H be a hook of π with southwest end-
point (i, πi) and northeast endpoint (j, πj). Let us assume that j is larger than every
descent of π. The hook H separates π into two parts. One part, which we call the
H-unsheltered subpermutation of π and denote by πHU , is π1 · · · πiπj+1 · · · πn. The
other part, which we call the H-sheltered subpermutation of π and denote by πHS , is
πi+1 · · · πj−1. Note that the entry πj does not appear in either of these two parts.

This decomposition of π into the H-unsheltered and H-sheltered subpermutations
provides a useful decomposition of valid hook configurations of π that include H.
Denote the set of such valid hook configurations by VHCH(π). We have maps

ϕHU : VHCH(π)→ VHC(πHU ) and ϕHS : VHCH(π)→ VHC(πHS ).

Rather than describe these maps in words, we find it more instructive to give an
illustrative example in Figure 7. The following lemma provides useful information
about these maps. We use Figure 7 as a substitute for the proof of this lemma.
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Figure 7: An illustration of the maps ϕHU and ϕHS from Lemma 5.2. Notice that
the hook H in H “becomes” the sky in ϕHS (H); this is why we colored that sky red
instead of the usual color blue. The valid composition induced by H is (3, 4, 3, 1, 1),
and the valid compositions induced by ϕHU (H) and ϕHS (H) are (3, 4) and (3, 1, 1),
respectively.

Lemma 5.2. Let π = π1 · · · πn be a permutation with descents d1 < · · · < dk. Let H
be a hook of π with southwest endpoint (di, πdi) and northeast endpoint (j, πj), and
assume j > dk. Let VHCH(π) be the set of valid hook configurations of π that include
the hook H. The maps

ϕHU : VHCH(π)→ VHC(πHU ) and ϕHS : VHCH(π)→ VHC(πHS )

are such that the map

ϕH : VHCH(π)→ VHC(πHU )× VHC(πHS )

given by ϕH(H) = (ϕHU (H), ϕHS (H)) is a bijection. If H ∈ VHCH(π) induces the valid
composition (q0, . . . , qk), then the valid compositions induced by ϕHU (H) and ϕHS (H)
are (q0, . . . , qi−1) and (qi, . . . , qk), respectively.

In the following proposition, recall the definition of a type-preserving map from
the paragraph preceding Definition 4.2. Also, recall Remark 5.1, which tells us how
to define swl on 132-avoiding permutations that are not necessarily normalized.

Proposition 5.3. For every permutation π that avoids 132 and 3412, there is a
type-preserving bijection

θπ : VHC(π)→ VHC(swl(π)).

Proof. In order to prove the proposition for a permutation π, it suffices to prove
the proposition for the normalization of π; indeed, it is then easy to “unnormalize”
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the relevant permutations and valid hook configurations. Thus, we may assume
π ∈ Avn(132, 3412). To ease notation, let π′ = π′1 · · · π′n = swl(π). The proof is by
induction on n. If n ≤ 2, then the conclusion is obvious because π = π′. Thus, we
may assume that n ≥ 3 and that π 6= π′. Let a = n− tl(π). This means that πr = r
for all r ∈ {a + 1, . . . , n} and that πa 6= a. Lemma 5.1 tells us that a = n − tl(π′).
If a = n, then VHC(π) and VHC(π′) are both empty (a permutation that has a valid
hook configuration must end with its largest entry), so there is nothing to do. Thus,
we may assume a ≤ n− 1. It is straightforward to check that a ≥ 3 because π 6= π′.
We now consider two cases.

First, assume πa = 1. The point (a − 1, πa−1) must be a descent top of the plot
of π, so it follows from Definition 4.1 that every valid hook configuration of π has a
hook with southwest endpoint (a− 1, πa−1). It is not difficult to check that π′r = πr
for all r ∈ {a − 1, . . . , n}, so every valid hook configuration of π′ has a hook with
southwest endpoint (a−1, πa−1). Fix j ∈ {a+1, . . . , n}. Let H be the hook of π with
southwest endpoint (a− 1, πa−1) and northeast endpoint (j, j). Let H ′ be the hook
of π′ with southwest endpoint (a− 1, πa−1) and northeast endpoint (j, j). Although
H and H ′ have the same endpoints, we think of them as being distinct since they
are hooks of different permutations. We will show that there is a type-preserving
bijection

θHπ : VHCH(π)→ VHCH
′
(π′).

This will complete the proof in this case since we can simply combine the bijections
θHπ for all possible choices of H (i.e., all possible choices of j) to form the desired
bijection θπ.

Consider the H-unsheltered and H-sheltered subpermutations πHU = π1 · · ·
πa−1πj+1 · · · πn and πHS = πa · · · πj−1 = 1(a+ 1)(a+ 2) · · · (j − 1). Similarly, consider
the H ′-unsheltered and H ′-sheltered subpermutations (π′)H

′
U = π′1 · · · π′a−1π′j+1 · · · π′n

and (π′)H
′

S = π′a · · · π′j−1 = 1(a + 1)(a + 2) · · · (j − 1) = πHS . It is straightforward to

verify that swl(πHU ) = (π′)H
′

U and swl(πHS ) = πHS = (π′)H
′

S . Therefore, we know by
induction that there exist type-preserving bijections

θπHU : VHC(πHU )→ VHC((π′)H
′

U ) and θπHS : VHC(πHS )→ VHC((π′)H
′

S ).

Invoking Lemma 5.2, we find the maps

VHCH(π)
ϕH−−→ VHC(πHU )× VHC(πHS )

θ
πH
U
×θ

πH
S−−−−−→

VHC((π′)H
′

U )× VHC((π′)H
′

S )
(ϕH

′
)−1

−−−−→ VHCH
′
(π′).

The composite map (ϕH
′
)−1 ◦ (θπHU × θπHS ) ◦ ϕH is a bijection. Using the last part

of Lemma 5.2 along with the fact that the maps θπHU and θπHS are type-preserving,

we find that this composite map is also type-preserving. Hence, we can set θHπ =
(ϕH

′
)−1 ◦ (θπHU × θπHS ) ◦ ϕH to complete the proof in the case πa = 1. Figure 8

illustrates the construction of θHπ in this case.
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Figure 8: An example illustrating the construction of θHπ in the case in which πa = 1.
The transformation θπHU × θπHS is defined recursively; we omit the steps transforming
the top right section into the bottom right section in this example. This transforma-
tion sometimes interchanges a sky with a hook, which is why one of the skies in the
bottom right section is green.

For the second case, assume πa = b ≥ 2. Because π avoids 132, we can write
π = (λ	 (µ⊕ 1))⊕ idn−a, where idn−a = 123 · · · (n− a) is the identity permutation
in Sn−a, µ ∈ Sb−1, and λ ∈ Sa−b. Note that µ is nonempty because b ≥ 2. Since
n − a is the tail length of π, b ≤ a − 1. This means that λ is also nonempty. The
permutation λ cannot have an ascent because π avoids 3412. Therefore, λ = δa−b is
the decreasing permutation in Sa−b. This allows us to write

π = (δa−b 	 (µ⊕ 1))⊕ idn−a . (15)

It is straightforward to check that

π′ = swl(µ)⊕ δa−b+1 ⊕ idn−a,

where δa−b+1 is the decreasing permutation in Sa−b+1. The point (a − b, b + 1) is a
descent top of the plot of π, and the point (b, a) is a descent top of the plot of π′.
Fix ` ∈ [n− a]. Let H be the hook of π with southwest endpoint (a− b, b + 1) and
northeast endpoint (a+ `, a+ `). Let H ′ be the hook of π′ with southwest endpoint
(b, a) and northeast endpoint (n + 1 − `, n + 1 − `). We will show that there is a
type-preserving bijection

θHπ : VHCH(π)→ VHCH
′
(π′).

This will complete the proof in this case since we can simply combine the bijections
θHπ for all possible choices of H (i.e., all possible choices of `) to form the desired
bijection θπ.
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Consider the H-unsheltered and H-sheltered subpermutations

πHU = π1 · · · πa−bπa+`+1 · · · πn = a(a− 1) · · · (b+ 1)(a+ `+ 1)(a+ `+ 2) · · ·n

and
πHS = πa−b+1 · · · πa+`−1 = µ b(a+ 1)(a+ 2) · · · (a+ `− 1).

Similarly, consider the H ′-unsheltered and H ′-sheltered subpermutations

(π′)H
′

U = π′1 · · · π′bπ′n+2−` · · · π′n = swl(µ) a(n+ 2− `)(n+ 3− `) · · ·n

and

(π′)H
′

S = π′b+1 · · · π′n−` = (a− 1)(a− 2) · · · b(a+ 1)(a+ 2) · · · (n− `).

One can verify that swl(πHU ) and (π′)H
′

S have the same normalization, so there is a
natural type-preserving bijection ω1 : VHC(swl(πHU )) → VHC((π′)H

′
S ). We know by

induction that there is a type-preserving bijection θπHU : VHC(πHU )→ VHC(swl(πHU )),

so we obtain a type-preserving bijection ψ1 = ω1 ◦ θπHU : VHC(πHU ) → VHC((π′)H
′

S ).

We can also check that swl(πHS ) and (π′)H
′

U have the same normalization, so a similar
argument produces type-preserving bijections ω2 : VHC(swl(πHS )) → VHC((π′)H

′
U )

and ψ2 = ω2 ◦ θπHS : VHC(πHS )→ VHC((π′)H
′

U ).

Invoking Lemma 5.2, we find the maps

VHCH(π)
ϕH−−→ VHC(πHU )× VHC(πHS )

ψ1×ψ2−−−−→ VHC((π′)H
′

S )× VHC((π′)H
′

U )

δ−→ VHC((π′)H
′

U )× VHC((π′)H
′

S )
(ϕH

′
)−1

−−−−→ VHCH
′
(π′),

where δ is defined by δ(H1,H2) = (H2,H1). The composite map (ϕH
′
)−1 ◦ δ ◦ (ψ1 ×

ψ2) ◦ ϕH is a bijection. Using the last part of Lemma 5.2 along with the fact that
the maps ψ1 and ψ2 are type-preserving, we find that this composite map is also
type-preserving. Hence, we can set θHπ = (ϕH

′
)−1 ◦ δ ◦ (ψ1×ψ2) ◦ϕH to complete the

proof of the case in which πa ≥ 2. Figure 9 illustrates the construction of θHπ in this
case.

Propositions 5.2 and 5.3 allow us to produce several examples of strong fertility
Wilf equivalences. The following theorem exhibits infinitely many such examples, but
there could certainly be others. The proof below does not directly cite Proposition
5.2, but it does cite the proof of Theorem 5.1, which, in turn, makes heavy use of
Proposition 5.2. Recall the definition of rot from the beginning of this section and
the definition of χm from (11). For π ∈ Sn, let χ̃m(π) = rot−1(χm(rot(π))).

Theorem 5.3. Preserving the preceding notation, let

B =
⋃
m≥0

{χ̃m(1), χ̃m(21), χ̃m(2431)}.
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Figure 9: An example illustrating the construction of θHπ in the case in which πa ≥ 2.
The transformation θπHU × θπHS is defined recursively; we omit the steps transforming
the top middle section into the top right section in this example. This transformation
sometimes interchanges a sky with a hook, which is why one of the skies in the top
right section is orange.

Let τ (1), τ (2), . . . be a (possibly empty) list of patterns taken from the set B, and let
τ ′(i) = swl(τ (i)) for all i. The permutation classes

Av(132, 3412, τ (1), τ (2), . . .) and Av(312, 1342, τ ′(1), τ ′(2), . . .)

are strongly fertility Wilf equivalent.

Proof. By Lemma 5.1, we know that swl : Av(132) → Av(312) is a bijection. We
will show that

swl(Av(132, 3412, τ (1), τ (2), . . .)) = Av(312, 1342, τ ′(1), τ ′(2), . . .).

This will allow us to define

θ : VHC(Av(132, 3412, τ (1), τ (2), . . .))→ VHC(Av(132, 1342, τ ′(1), τ ′(2), . . .))

by
θ(H) = θπ(H),
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where π is the underlying permutation of H and θπ : VHC(π)→ VHC(swl(π)) is the
type-preserving bijection from Proposition 5.3. The map θ will be a type-preserving
bijection, so this will complete the proof. By taking intersections, we find that it
suffices to prove that

swl(Av(132, 3412, τ)) = Av(312, 1342, swl(τ))

for all τ ∈ B.

Fix τ ∈ B. It is straightforward to check that rot(τ) ∈ A, where A is the set in
Theorem 5.1. We saw in the proof of Theorem 5.1 that

swu(Av(231, rot(τ))) = Av(132, swu(rot(τ))).

We also saw that swu(Av(231, 2143)) = Av(132, 3241), so

swu(Av(231, 2143, rot(τ))) = Av(132, 3241, swu(rot(τ))).

Since swl = rot−1 ◦ swu ◦ rot by definition, we have

swl(Av(132, 3412, τ)) = rot−1 ◦ swu(Av(231, 2143, rot(τ)))

= rot−1(Av(132, 3241, swu(rot(τ)))) = Av(312, 1342, swl(τ)).

Corollary 5.2. For every n ≥ 1, the statistics des and peak are jointly equidis-
tributed on s−1(Avn(132, 231)) and s−1(Avn(231, 312)). In particular, Av(132, 231)
and Av(231, 312) are fertility Wilf equivalent.

Proof. Take the sequence τ (1), τ (2), . . . in Theorem 5.3 to consist of the single pattern
231 = χ̃2(1) to find that the permutation classes Av(132, 3412, 231) = Av(132, 231)
and Av(312, 1342, 231) = Av(231, 312) are strongly fertility Wilf equivalent. Now
use Proposition 4.1.

Remark 5.4. Corollary 5.2, which follows from a very special case of Theorem
5.3, settles the conjecture from [25] stating that Av(132, 231) and Av(231, 312) are
fertility Wilf equivalent. If we were to replace the pattern 3412 in Theorem 5.3 with
231, we could simplify the proof of that theorem by immediately excluding the first
of the two cases (the case πa = 1). This would yield a weaker theorem, but even
this weaker theorem would suffice to prove the conjecture from [25] and to produce
infinitely many examples of strong fertility Wilf equivalence. We also could obtain
infinitely many examples of strong fertility Wilf equivalence if B was replaced by⋃
m≥0{χ̃m(1)}; the other elements of B just yield more examples! ♦

For many of the possible choices of the sequence τ (1), τ (2), . . . in Theorem 5.3, the
permutation classes Av(132, 3412, τ (1), τ (2), . . .) and Av(312, 1342, τ ′(1), τ ′(2), . . .) are
not postorder Wilf equivalent. In fact, they are not even binary postorder Wilf equiv-
alent (recall the definition from Remark 3.1) if 3124 ∈ Av(132, 3412, τ (1), τ (2), . . .).
To see this, assume 3124 ∈ Av(132, 3412, τ (1), τ (2), . . .). We can check that 3124 is
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the only permutation π ∈ Av4(132, 3412, τ (1), τ (2), . . .) such that P−1(π) 6= ∅ and
swl(π) 6= π. We have swl(3124) = 1324, so

P−1(Av4(312, 1342, τ ′(1), τ ′(2), . . .))

= (P−1(Av4(132, 3412, τ (1), τ (2), . . .)) \ P−1(3124)) ∪ P−1(1324).

If Av(132, 3412, τ (1), τ (2), . . .) and Av(312, 1342, τ ′(1), τ ′(2), . . .) were binary postorder
Wilf equivalent, then there would be a skeleton-preserving bijection from

P−1(3124) ∩ DPT(2) = I−1(s−1(3124)) = {I−1(3412), I−1(3421)}

to
P−1(1324) ∩ DPT(2) = I−1(s−1(1324)) = {I−1(3142), I−1(1342)}.

This would imply that the statistics in (7) other than zeil would be jointly equidis-
tributed on {3412, 3421} and {3142, 1342}. However, rmax is not even equidist-
ributed on {3412, 3421} and {3142, 1342} because both permutations in {3142, 1342}
have 2 right-to-left maxima while 3421 has 3.

It turns out that the statistic zeil is equidistributed on s−1(Avn(132, 3412, τ (1),
τ (2), . . .)) and s−1(Avn(312, 1342, τ ′(1), τ ′(2), . . .)) for all n ≥ 1! This is surprising in
light of Lemma 3.1 because we just saw that rmax is not necessarily equidistributed
on these sets. Indeed, in our proof of Corollary 5.1, we used the fact that the map η#

preserves rmax in order to deduce that it preserves zeil. We will actually prove that
des, peak, and zeil are jointly equidistributed on s−1(Avn(132, 3412, τ (1), τ (2), . . .))
and s−1(Avn(312, 1342, τ ′(1), τ ′(2), . . .)) for all n ≥ 1; this gives much more than the
mere equidistribution of zeil alone.

For π ∈ Sn, let

Zc(π) = {σ ∈ s−1(π) : zeil(σ) = c} and Z≥c(π) =
⋃
i≥c

Zi(π).

Let

Za,bc (π) = {σ ∈ Zc(π) : des(σ) = a, peak(σ) = b} and Za,b≥c (π) =
⋃
i≥c

Za,bi (π).

Recall the tail length statistic tl from Section 3. For each n ≥ 1 and λ = λ1 · · ·λn ∈
Sn, let λ∗ ∈ Sn−1 be the normalization of λ1 · · ·λn−1. Let D` denote the set of
permutations of which ` is a descent.

Lemma 5.3. Preserve the notation from above. Let π ∈ Sn for some n ≥ 3. Suppose
a, b, c are nonnegative integers such that 1 ≤ c ≤ tl(π)− 1. The map σ 7→ σ∗ induces
bijections

Za,bc (π) \Dn−1 → Za,b≥c (π∗),
(Za,bc (π) ∩Dn−1) \Dn−2 → Za−1,b−1c−1 (π∗),

Za,bc (π) ∩Dn−1 ∩Dn−2 → Za−1,bc−1 (π∗).
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Proof. The condition 1 ≤ c ≤ tl(π) − 1 forces tl(π) ≥ 2, so π = π∗n. Suppose
σ ∈ Zc(π). Since zeil(σ) = c, we can write

σ = µ(0) nµ(1)(n− 1)µ(2) · · ·µ(c−1)(n− c+ 1)µ(c),

where n − c does not appear in the subpermutation µ(c). By the definition of the
stack-sorting map, we have

π = s(σ) = s(µ(0))s(µ(1)) · · · s(µ(c−1))s(µ(c))(n− c+ 1) · · · (n− 1)n.

Because c < tl(π) = tl(s(σ)), Lemma 3.1 tells us that c = rmax(σ). This means that
n, n− 1, . . . , n− c+ 1 are the only right-to-left maxima of σ, so µ(c) is empty. Thus,

σ = µ(0) nµ(1)(n− 1)µ(2) · · ·µ(c−1)(n− c+ 1), (16)

and
π∗ = s(µ(0))s(µ(1)) · · · s(µ(c−1))(n− c+ 1) · · · (n− 1).

Now,
σ∗ = µ(0) (n− 1)µ(1)(n− 2)µ(2) · · · (n− c+ 1)µ(c−1), (17)

so
s(σ∗) = s(µ(0))s(µ(1)) · · · s(µ(c−1))(n− c+ 1) · · · (n− 1) = π∗.

It is clear that zeil(σ∗) ≥ c− 1, so σ∗ ∈ Z≥c−1(π∗).
We have seen that every element of Zc(π) ends with the entry n − c + 1, so the

map Zc(π) → Z≥c−1(π∗) given by σ 7→ σ∗ is injective. To see that it is surjective,
suppose λ ∈ Z≥c−1(π∗). Observe that λ is of the form

µ̂(0) (n− 1) µ̂(1)(n− 2) µ̂(2) · · · (n− c+ 1) µ̂(c−1),

where
s(µ̂(0))s(µ̂(1)) · · · s(µ̂(c−1))(n− c+ 1) · · · (n− 1) = π∗.

Letting
σ̂ = µ̂(0) n µ̂(1)(n− 1) µ̂(2) · · · µ̂(c−1)(n− c+ 1),

we find that σ̂ ∈ Zc(π) and σ̂∗ = λ.

With σ ∈ Zc(π) as in (16), we see that n − 1 ∈ Des(σ) if and only if µ(c−1) is
empty. According to (17), this occurs if and only if rmax(σ∗) = c − 1. Because
c − 1 < tl(π) − 1 = tl(π∗) = tl(s(σ∗)), Lemma 3.1 tells us that rmax(σ∗) = c − 1 if
and only if zeil(σ∗) = c − 1. This shows that the map σ 7→ σ∗ is a bijection from
Zc(π) ∩Dn−1 to Zc−1(π∗).

For the rest of the proof, assume σ ∈ Za,bc (π). If σ 6∈ Dn−1, then des(σ∗) =
des(σ) = a and peak(σ∗) = peak(σ) = b. Furthermore, it follows from the preceding
paragraph that zeil(σ∗) ≥ c. Hence, σ∗ ∈ Za,b≥c (π∗). Conversely, if σ∗ ∈ Za,b≥c (π∗),
then σ 6∈ Dn−1 because des(π) = des(π∗). This completes the proof of the bijection
Za,bc (π) \Dn−1 → Za,b≥c (π∗).
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If σ ∈ Dn−1 \Dn−2 (meaning n− 1 is a peak of σ), then we can easily check that
des(σ∗) = des(σ) − 1 = a − 1 and peak(σ∗) = peak(σ) − 1 = b − 1. Furthermore,
we know from above that zeil(σ∗) = c− 1. Hence, σ∗ ∈ Za−1,b−1c−1 (π∗). Conversely, if

σ∗ ∈ Za−1,b−1c−1 (π∗), then n−1 must be a peak of σ because peak(σ∗) < peak(σ). This
implies that σ ∈ Dn−1 \Dn−2. This completes the proof of the bijection (Za,bc (π) ∩
Dn−1) \Dn−2 → Za−1,b−1c−1 (π∗).

If σ ∈ Dn−1∩Dn−2, then des(σ∗) = des(σ)−1 = a−1 and peak(σ∗) = peak(σ) = b.
Furthermore, we know from above that zeil(σ∗) = c − 1. Hence, σ∗ ∈ Za−1,bc−1 (π∗).

Conversely, if σ∗ ∈ Za−1,bc−1 (π∗), then n − 1 must be a descent of σ and must not be
a peak of σ. This implies that σ ∈ Dn−1 ∩ Dn−2. This completes the proof of the
bijection Za,bc (π) ∩Dn−1 ∩Dn−2 → Za−1,bc−1 (π∗).

Theorem 5.4. Let
B =

⋃
m≥0

{χ̃m(1), χ̃m(21), χ̃m(2431)}

be the set from Theorem 5.3. Let τ (1), τ (2), . . . be a (possibly empty) list of patterns
taken from the set B, and let τ ′(i) = swl(τ (i)) for all i. For every n ≥ 0, the statistics
des, peak, and zeil are jointly equidistributed on

s−1(Avn(132, 3412, τ (1), τ (2), . . .)) and s−1(Avn(312, 1342, τ ′(1), τ ′(2), . . .)).

Proof. We saw in the proof of Theorem 5.3 that

swl(Avn(132, 3412, τ (1), τ (2), . . .)) = Avn(312, 1342, τ ′(1), τ ′(2), . . .),

so it suffices to prove that

|Za,bc (π)| = |Za,bc (swl(π))| (18)

for all a, b, c ∈ Z, and π ∈ Avn(132, 3412, τ (1), τ (2), . . .). We do this by induction on
n, noting that the result is trivial if n ≤ 2 since π = swl(π) in that case. Assume
n ≥ 3, and fix a, b, c ∈ Z and π ∈ Avn(132, 3412, τ (1), τ (2), . . .). We may assume
a, b ≥ 0 and c ≥ 1 since both sides of (18) are 0 otherwise. To ease notation, let
π′ = swl(π).

First, assume c ≤ tl(π) − 1. We know by Lemma 5.1 that tl(π) = tl(π′), so
c ≤ tl(π′)− 1. Lemma 5.3 tells us that

|Za,bc (π)| = |Za,bc (π) \Dn−1|+ |(Za,bc (π) ∩Dn−1) \Dn−2|+ |Za,bc (π) ∩Dn−1 ∩Dn−2|

= |Za,b≥c (π∗)|+ |Z
a−1,b−1
c−1 (π∗)|+ |Za−1,bc−1 (π∗)|. (19)

Similarly, we can replace π with π′ in Lemma 5.3 to obtain

|Za,bc (π′)| = |Za,b≥c ((π′)∗)|+ |Z
a−1,b−1
c−1 ((π′)∗)|+ |Za−1,bc−1 ((π′)∗)|. (20)

By induction on n, we know that |Za
′,b′

c′ (π∗)| = |Za
′,b′

c′ (swl(π∗))| for all a′, b′, c′ ∈ Z.
Hence,

|Za,b≥c (π∗)| = |Z
a,b
≥c (swl(π∗))|, |Za−1,b−1c−1 (π∗)| = |Za−1,b−1c−1 (swl(π∗))|,
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and |Za−1,bc−1 (π∗)| = |Za−1,bc−1 (swl(π∗))|. (21)

Because tl(π) ≥ c+ 1 ≥ 2, we know that π = π∗n. This implies that swl(π∗) = (π′)∗,
so we can combine (19), (20), and (21) to find that |Za,bc (π)| = |Za,bc (π′)|, as desired.

We now assume c ≥ tl(π). Lemma 3.1 tells us that zeil(σ) ≤ tl(π) and zeil(σ′) ≤
tl(π′) = tl(π) for all σ ∈ s−1(π) and σ′ ∈ s−1(π′). Consequently,

Zi(π) = Zi(π′) = ∅ for all i > tl(π). (22)

This shows that |Za,bc (π)| = |Za,bc (π′)| = 0 if c > tl(π). We are left to handle the case
c = tl(π). Using (22) and the fact that tl(π) = tl(π′), we deduce that

|Za,b≥1(π)| = |Za,btl(π)(π)|+
tl(π)−1∑
i=1

|Za,bi (π)| and |Za,b≥1(π′)| = |Za,btl(π)(π
′)|+

tl(π)−1∑
i=1

|Za,bi (π′)|.

We saw above that |Za,bi (π)| = |Za,bi (π′)| for all i ∈ {1, . . . , tl(π) − 1}. Therefore,
in order to prove that |Za,btl(π)(π)| = |Za,btl(π)(π

′)|, it suffices to prove that |Za,b≥1(π)| =

|Za,b≥1(π′)|. At this point, we use Proposition 5.3 to see that there is a type-preserving
bijection θπ : VHC(π) → VHC(π′). Mimicking the proof of Proposition 4.1, we find
that ∑

σ∈s−1(π)

xdes(σ)+1ypeak(σ)+1 =
∑

σ′∈s−1(π′)

xdes(σ
′)+1ypeak(σ

′)+1. (23)

The coefficient of xa+1yb+1 in the polynomial on the left-hand side of (23) is |Za,b≥1(π)|.
The coefficient of xa+1yb+1 in the polynomial on the right-hand side of (23) is
|Za,b≥1(π′)|.

Remark 5.5. In the specific case in which the sequence τ (1), τ (2), . . . consists of the
single pattern χ̃2(1) = 231, Theorem 5.4 generalizes Corollary 5.2. ♦

6 Conclusion and Ideas for Future Work

When it comes to studying the stack-sorting map, valid hook configurations provide
a unified framework for reproving and generalizing many known results and for dis-
covering and proving completely new results. This theme is supported by all of the
articles that make use of valid hook configurations [16–18,20,23–27], and the current
article is no exception.

Consider the chain of equalities∑
n≥1

|s−1(Avn(132, 312))|xn =
∑
n≥1

|s−1(Avn(231, 312))|xn

=
∑
n≥1

|s−1(Avn(132, 231))|xn

=
1− 2x−

√
1− 4x− 4x2

4x
. (24)
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The first of these equalities was proven in [25], and the other two equalities were con-
jectured there. The third was proven more recently in [19]. We completed this chain
by proving the second equality as a consequence of Corollary 5.2 above. It is worth

mentioning that the sequence with generating function
1− 2x−

√
1− 4x− 4x2

4x
has

appeared in other contexts. The reader can find more information about this se-
quence in [32], where its terms were named “Boolean-Catalan numbers.”

We can enlarge the sets counted in (24) in order to obtain another chain of
equalities. More precisely, it follows from Theorems 5.1 and 5.3 that∑

n≥1

|s−1(Avn(132, 3412))|xn =
∑
n≥1

|s−1(Avn(231, 1423))|xn

=
∑
n≥1

|s−1(Avn(312, 1342))|xn.

This leads naturally to the following problem.

Problem 6.1. Enumerate s−1(Av(132, 3412)).

Throughout this article, we have introduced four variants of Wilf equivalence: fer-
tility Wilf equivalence (Definition 1.2), postorder Wilf equivalence (Definition 2.1),
binary postorder Wilf equivalence (Remark 3.1), and strong fertility Wilf equiva-
lence (Definition 4.2). We have seen that all of these properties imply fertility Wilf
equivalence. In the discussion immediately following Remark 5.4, we saw that there
are infinitely many permutation classes that are strongly fertility Wilf equivalent but
not binary postorder Wilf equivalent (hence, not postorder Wilf equivalent). This
shows that binary postorder Wilf equivalence and postorder Wilf equivalence are
strictly stronger than fertility Wilf equivalence. We now show that strong fertility
Wilf equivalence is also strictly stronger than fertility Wilf equivalence.

Given permutations λ(1), . . . , λ(r), let C (λ(1), . . . , λ(r)) be the set of all normalized
permutations that are contained in at least one of the permutations λ(1), . . . , λ(r).
This is a permutation class because it is equal to Av(τ (1), τ (2), . . .), where τ (1), τ (2), . . .
is a list of all of the patterns that are not in C (λ(1), . . . , λ(r)). Let D = C (24135)
and D ′ = C (32415, 31425, 21435, 42135). It is straightforward to check that

(|s−1(D ∩ Sn)|)n≥1 = (|s−1(D ′ ∩ Sn)|)n≥1 = 1, 2, 6, 10, 4, 0, 0, 0, 0, . . . . (25)

This shows that D and D ′ are fertility Wilf equivalent. However,

|VHC(D ∩ S5)| = 1 < 4 = |VHC(D ′ ∩ S5)|.

By Remark 4.1, this forbids the existence of a type-preserving bijection VHC(D)→
VHC(D ′). Therefore, D and D ′ are not strongly fertility Wilf equivalent.

We also know that postorder Wilf equivalence implies binary postorder Wilf
equivalence. As promised in Remark 3.1, we now give a simple example showing
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that binary postorder Wilf equivalence does not imply postorder Wilf equivalence.
It is not difficult to show that

P−1(Av(123)) ∩ DPT(2) = {I−1(ε), I−1(1), I−1(12), I−1(21), I−1(231)}
= P−1(Av(123, 3214)) ∩ DPT(2),

where ε is the empty permutation. Therefore, Av(123) and Av(123, 3214) are binary
postorder Wilf equivalent. There exists a decreasing ternary plane tree (ternary
means that every vertex has exactly 3 (possibly empty) subtrees) with postorder
3214; this tree is an element of P−1(Av(123)) with 4 vertices. However, one can
check that there are no trees with 4 vertices in P−1(Av(123, 3214)). Hence, Av(123)
and Av(123, 3214) are not postorder Wilf equivalent.

By the discussion following Remark 5.4, strong fertility Wilf equivalence does not
imply binary postorder Wilf equivalence or postorder Wilf equivalence. However, we
do not know about the reverse implications.

Question 6.1. Does there exist a pair of permutation classes that are binary pos-
torder Wilf equivalent but are not strongly fertility Wilf equivalent?

Question 6.2. Does there exist a pair of permutation classes that are postorder Wilf
equivalent but are not strongly fertility Wilf equivalent?
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[2] M. Bóna, Combinatorics of permutations, CRC Press, 2012.
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[5] M. Bóna, A survey of stack-sorting disciplines, Electron. J. Combin. 9 (2) (2003),
#P16.

[6] M. Bóna, Symmetry and unimodality in t-stack sortable permutations, J. Combin.
Theory Ser. A 98 (1) (2002), 201–209.



C. DEFANT/AUSTRALAS. J. COMBIN. 76 (1) (2020), 149–182 181

[7] M. Bousquet-Mélou, Multi-statistic enumeration of two-stack sortable permutations,
Electron. J. Combin., 5 (1998), #R21.

[8] M. Bousquet-Mélou, Sorted and/or sortable permutations, Discrete Math. 225 (2000),
25–50.

[9] M. Bouvel and O. Guibert, Refined enumeration of permutations sorted with two
stacks and a D8-symmetry, Ann. Comb. 18 (2014), 199–232.
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[35] S. Linton, N. Ruškuc and V. Vatter, Permutation Patterns, London Math. Soc. Lec.
Note Series Vol. 376, Cambridge University Press, 2010.

[36] H. Mularczyk, Lattice paths and pattern-avoiding uniquely sorted permutations,
arXiv:1908.04025.

[37] M. Sankar, Further bijections to pattern-avoiding valid hook configurations,
arXiv:1910.08895.

[38] Z. Stankova and J. West, A new class of Wilf-equivalent permutations, J. Algebraic
Combin. 15 (2002), 271–290.

[39] R. P. Stanley, Enumerative combinatorics, Vol. 1, Second Ed., Cambridge University
Press, 2012.
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