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Abstract

Packings and coverings of complete graphs and complete multipartite
graphs have been extensively studied. In this paper, the study of packings
and coverings of line graphs of complete graphs is initiated. The graph
with vertex set {a, b, c, d} and edge set {ab, bc, ca, cd} is called a kite.
In this paper, maximum kite-packings and minimum kite-coverings of
L(Kn)(λ), that is, the λ-fold line graph of the complete graph Kn, with
every possible leave and padding are obtained. In particular, it is shown
that for n ≥ 4, the graph L(Kn) has a kite-decomposition if and only if
n ≡ 0 (mod 2) or n ≡ 1 (mod 8).

1 Introduction

Throughout the paper, we consider only finite graphs without loops. Let V (G)
and E(G) denote the vertex set and edge set of a graph G, respectively. The path
(respectively, cycle) on k vertices is denoted by Pk (respectively, Ck). A cycle of
length 3 is called a triangle. Let nG denote n vertex-disjoint copies of G. The
complete graph on n vertices is denoted by Kn and the complete bipartite graph
with bipartition (X, Y ), where |X| = m and |Y | = n, is denoted by Km,n. The
graph H1 ∪H2 denotes the disjoint union of the graphs H1 and H2. The graph G(λ)
is obtained by replacing each edge of G by λ parallel edges. For disjoint subsets
A and B of the vertex set V (G) of G, let E(A,B) = {e = ab ∈ E(G)|a ∈ A
and b ∈ B}. The graph with vertex set {a, b, c, d} and edge set {ab, bc, ca, cd} is
called a kite and it is denoted by [(a, b, c); cd]; see Figure 1. We denote a kite by
K. A graph G is said to be H1, H2, . . . , Hk-decomposable if the edge set of G can
be partitioned into E1, E2, . . . , Ek such that, for each i, 〈Ei〉 � Hi, where 〈Ei〉
denotes the subgraph induced by Ei; we denote this by {H1, H2, . . . , Hk} |G. If each
〈Ei〉 � H , then we say that G has an H-decomposition. In this case, we write
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H|G. If H = K then we say that G has a kite-decomposition. By an {Hα
1 , H

β
2 , H

γ
3 }-

decomposition of a graph G, we mean a decomposition of G into α copies of H1,
β copies of H2 and γ copies of H3, where α, β, γ are non-negative integers and
α|E(H1)|+ β|E(H2)|+ γ|E(H3)| = |E(G)|.

The line graph of a graph G, denoted by L(G), is the graph with V (L(G)) = E(G)
and e1e2 ∈ E(L(G)) if and only if the edges e1 and e2 are incident at a common
vertex of G. Let Pk(t) be the set of all k-element subsets of the t element set
{1, 2, . . . , t}. For a set S with |S| ≥ 2, P2(S) denotes all 2-element subsets of S. Let
V (Kn) = {1, 2, . . . , n}; then V (L(Kn)(λ)) = P2({1, 2, . . . , n}) and |E(L(Kn)(λ))| =
λn(n−1)(n−2)

2
.

A packing of the graph G with kite K is a triple (V,E, L), where V is the vertex
set of G, E is a set of edge-disjoint kites of G, and L is the set of edges of G not
belonging to any of the kites of E. The collection of edges L is the leave. If |E| is as
large as possible, or equivalently if |L| is as small as possible, then (V,E, L) is called
a maximum packing of G with kites. A covering of the graph G with kite K is a
triple (V,E, P ), where V is the vertex set of G, P is a subset of the edge set of G(λ),
and E is a set of edge-disjoint kites which partitions the union of P and the edge set
of G. The collection of edges P is called the padding. If |P | is as small as possible,
then (V,E, P ) is called a minimum covering of G with kites. See [15] for definitions.

�d
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��

�

a

b

c

Figure 1: The graph kite, K = [(a, b, c); cd].

For brevity, we focus only on the literature related to decompositions of graphs
into kites. Bermond and Schönheim [2] proved the existence of a kite-decomposition
of Kn. Roditty [18] obtained a maximum packing of Kn with kites. Küçükçifçi and
Milici [14] obtained a complete solution for the decomposition of Kn(λ) into kites
and 4-cycles. Hu et al. [11] proved the existence of a maximum kite-packing of the
complete m-partite graph in which each partite set has n vertices, with every possible
leave. Tamil Elakkiya and Muthusamy [21] obtained a gregarious kite-decomposition
of Km×Kn, where × denotes the tensor product of graphs. The kite decompositions
of certain graphs are considered in [4, 16, 17]. Maximum packings of Kn with graphs
C4, C5, C6, K4, the graphs having four or fewer vertices, certain graphs on five vertices
and the 3-cube are studied in [1, 3, 13, 18, 19, 20, 23]. Hamilton cycle decompositions,
4-cycle decompositions, 2�-cycle decompositions, � ≥ 2, and 6-cycle decompositions
of L(Kn), the line graph of the complete graph Kn, have been studied in [5, 6, 7,
9, 10, 22]. Very recently, Ganesamurthy et al. [8] obtained a characterization for
the existence of a {Cα

3 , P
β
4 , B

γ}-decomposition of L(Kn), where B is the bowtie,
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that is, the graph with two triangles having exactly one common vertex. In the
same paper, they also proved the existence of a {Cα

3 , K
β
1, 3}-decomposition of L(Kn),

n ≥ 4. In this paper, complete solutions to the maximum kite-packing and minimum
kite-covering of L(Kn) are given.

To state the main Theorems 1.1 and 1.3 we define a graph P ′. Let P ′ be the
multigraph on three vertices a, b, c and three edges ab, ab, bc.

We prove the following results:

Theorem 1.1. A maximum K-packing of L(Kn)(λ), the λ-fold line graph of Kn,
with all possible leaves exist. The leaves are given in the following table:

λ ≡ a (mod 4) n ≥ 4 and Possible leaves in L(Kn)(λ)
n ≡ b (mod 8)

a = 0 n ≥ 4 ∅
a ∈ {1, 2, 3} n even or b = 1 ∅

K3, P4, K1,3,
b = 3 3K2, P3 ∪K2, P

′,
a = 1 K2 ∪K2(2), K2(3)

b = 5 P3, 2K2, K2(2)
b = 7 K2

a = 2 b ∈ {3, 7} P3, 2K2, K2(2)
b = 5 ∅
b = 3 K2

b = 5 P3, 2K2, K2(2)
a = 3 K3, P4, K1,3,

b = 7 3K2, P3 ∪K2, P
′,

K2 ∪K2(2), K2(3)

Corollary 1.2. For n ≥ 4, the graph L(Kn), the line graph of Kn, has a kite-
decomposition if and only if n ≡ 0 (mod 2) or n ≡ 1 (mod 8).

Theorem 1.3. A maximum K-covering of L(Kn)(λ) with all possible paddings exist.
The paddings are given in the following table:

λ ≡ a (mod 4) n ≥ 4 and Possible paddings in L(Kn)(λ)
n ≡ b (mod 8)

a = 0 n ≥ 4 ∅
a ∈ {1, 2, 3} n even or b = 1 ∅

b = 3 K2

b = 5 P3, 2K2, K2(2)
a = 1 K3, P4, K1,3,

b = 7 3K2, P3 ∪K2, P
′,

K2 ∪K2(2), K2(3)
a = 2 b ∈ {3, 7} P3, 2K2, K2(2)

b = 5 ∅
K3, P4, K1,3,

b = 3 3K2, P3 ∪K2, P
′,

a = 3 K2 ∪K2(2), K2(3)
b = 5 P3, 2K2, K2(2)
b = 7 K2
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2 Basic lemmas

In this section, we prove some lemmas which are required to prove the main result
of this paper. Throughout this paper, we assume that {1, 2, . . . , n} is the vertex set
of Kn.

Lemma 2.1. The graph L(K4) has a K-decomposition.

Proof. Let V (L(K4)) = P2(4). A K-decomposition of L(K4) is given here:

[({1, 2}, {2, 3}, {1, 3}); {1, 3}{1, 4}], [({2, 4}, {2, 3}, {3, 4}); {3, 4}{1, 3}] and
[({2, 4}, {1, 2}, {1, 4}); {1, 4}{3, 4}].
Observation 2.1. For a graph G, S1(G) denotes the graph that arises out of the
subdivision of each edge of G exactly once; S1(G) is the first subdivision graph of G.
Let G� be the graph obtained from G by adding to each edge e = uv of G a new
vertex {u, v} such that the vertex {u, v} is adjacent to both the vertices u and v,
and {u, v} is a vertex of degree two in G�; see Figure 2. If we delete all the edges of
G in G�, then the resulting graph is isomorphic to S1(G), the first subdivision graph
of G and hence G� = G⊕ S1(G).

�

� �

�

� �

� �

�
a b

c

a b

c{a, c} {b, c}

{a, b}
C3 C�

3

Figure 2: The graphs C3 and C�
3 .

Observation 2.2. Let V (L(Kn+1)) = P2({1, 2, . . . , n + 1}). We partition the ver-
tex set of L(Kn+1) into two sets A1 and A2, where V (A1) = P2({1, 2, . . . , n}) and
V (A2) = ∪n

i=1{i, n + 1}. The subgraph of L(Kn+1) induced by A1 (respectively,
A2) is isomorphic to L(Kn) (respectively, Kn). Clearly, E(A1, A2), in L(Kn+1), is
{{i, j}{i, n + 1}, {i, j}{j, n + 1}}, 1 ≤ i < j ≤ n; note that each 2-element subset
represents a vertex in the line graph. Then L(Kn+1) = 〈A1〉 ⊕ 〈A2〉 ⊕ 〈E(A1, A2)〉 =
L(Kn)⊕K�

n; see Observation 2.1.

Let T denote the tree on five vertices {a, b, c, d, e} with edge set {ab, bc, cd, be};
we denote this T by [a, b, c, d; be]; see Figure 3. We use this T at many places in the
later part of this paper.

Lemma 2.2. If G admits a T -decomposition, then G� admits a K-decomposition.

Proof. Let the vertices of T be {a, b, c, d, e}. Since G has a T -decomposition, G� =
T � ⊕ T � ⊕ · · · ⊕ T �. A K-decomposition of T � is given here:
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The tree T = [a, b, c, d; be]. T �

Figure 3: The graphs T and T � are shown above.

[(a, {a, b}, b); bc], [(e, {b, e}, b); b{b, c}] and [(d, {c, d}, c); c{b, c}].

Lemma 2.3. The graph K�
4,6 admits a K-decomposition.

Proof. By Lemma 2.2, it suffices to prove that K4,6 admits a T -decomposition. Let
V (K4,6) = X ∪ Y , where X = {x1, x2, x3, x4} and Y = {y1, y2, . . . , y6}. A T -
decomposition of K4,6 is [y1, x1, y3, x3; x1y2], [y4, x1, y5, x3; x1y6], [y4, x3, y1, x2; x3y2],
[y4, x2, y6, x3; x2y5], [y1, x4, y2, x2; x4y6] and [y5, x4, y3, x2; x4y4].

Lemma 2.4. For all k ≥ 1, each of the graphs K�
4,8k, K

�
6,8k and K�

10,8k admits a
K-decomposition.

Proof. By Lemma 2.2, it suffices to show that the graphs K4,8k, K6,8k and K10,8k,
k ≥ 1, admit T -decompositions.

(i) Clearly, K4,8k = K4,4 ⊕K4,4 ⊕ · · · ⊕K4,4︸ ︷︷ ︸
2k−times

. Let V (K4,4) = X ∪ Y , where X =

{x1, x2, x3, x4} and Y = {y1, y2, y3, y4}. Let ρ = (x1, x2, x3, x4)(y1, y2, y3, y4) be a
permutation on V (K4,4). A T -decomposition of K4,4 is ρi[y1, x1, y2, x4; x1y4], where
ρi[y1, x1, y2, x4; x1y4] = [ρi(y1), ρ

i(x1), ρ
i(y2), ρ

i(x4); ρ
i(x1)ρ

i(y4)], 0 ≤ i ≤ 3.

(ii) Clearly, K6,8k = K6,8 ⊕K6,8 ⊕ · · · ⊕K6,8︸ ︷︷ ︸
k−times

, where X = {x1, x2, . . . , x6} and Y =

{y1, y2, . . . , y8} is the bipartition of K6,8. Let ρ=(x1, x2 . . . , x6)(y1, y2, . . . , y6)(y7)(y8)
be a permutation on V (K6,8). A T -decomposition of K6,8 is ρ

i[y7, x1, y2, x6; x1y1] and
ρi[y8, x6, y4, x1; x6y5], where 0 ≤ i ≤ 5.

(iii) Clearly, the graph K10,8k = K10,8 ⊕K10,8 ⊕ · · · ⊕K10,8︸ ︷︷ ︸
k−times

. We now produce a

T -decomposition of K10,8. The graph K8,10 is the union of four edge-disjoint copies
of K4,5. A T -decomposition of K4,5 is described here, where we assume that the
bipartition (X, Y ) of K4,5 is X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4, y5}:
[y1, x1, y3, x4; x1y2], [y3, x2, y1, x4; x2y2], [y1, x3, y2, x4; x3y3], [y5, x4, y4, x3; y4x2] and
[y4, x1, y5, x2; y5x3].
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Lemma 2.5. For each L ∈ {P3, 2K2}, there exists a maximum K-packing of K�
4

with leave L.

Proof. Let V (K4) = {1, 2, 3, 4}. AK-packing ofK�
4 with leave P3 is [(1, {1, 3}, 3); 34],

[(1, {1, 4}, 4); 4{3, 4}], [(2, {2, 3}, 3); 3{3, 4}], [(4, {2, 4}, 2); 21] and the leave is
{1{1, 2}, {1, 2}2}.

A K-packing of K�
4 with leave 2K2 is [(1, {1, 4}, 4); 4{3, 4}], [(3, {1, 3}, 1); 12],

[(2, {2, 4}, 4); 43], [(3, {2, 3}, 2); 2{1, 2}] and the leave is {3{3, 4}, 1{1, 2}}.
Lemma 2.6. The graph P �

4 has a maximum K-packing with leave K2.

Proof. Let V (P4) = {a, b, c, d}. A K-packing of P �
4 with leave K2 is the following:

[(a, {a, b}, b); b{b, c}], [(d, {c, d}, c); bc] and the leave is c{b, c}.

� � �

� �

��

�

a b c d

{a, b} {b, c} {c, d}

Figure 4: The graph P �
4 .

Lemma 2.7. The graph K�
6 has a maximum K-packing with leave K2.

Proof. Let V (K6) = {1, 2, . . . , 6}. A T -packing of K6 with leave P4 is [1, 2, 3, 4; 25],
[4, 5, 3, 1; 56], [4, 6, 1, 5; 63] and the leave is {14, 42, 26}. Hence the graph K�

6 has a
T �-packing with leave P �

4 . By Lemma 2.2, the graph T � has a K-decomposition.
Thus the graph K�

6 has a K-packing with leave K2, because P �
4 can be decomposed

into two copies of the kite K and one copy of K2, by Lemma 2.6.

LetM be the graph with vertex set {a, b, c, d, e, f} and edge set {ab, bc, cd, de, cf}.
We denote M by [a, b, c, d, e; cf ]; see Figure 5.

Lemma 2.8. For each L ∈ {P4, K1,3}, there exists a maximum K-packing of M�

with leave L.

Proof. A K-packing of M� with leave P4 is [(e, {d, e}, d); dc], [(a, {a, b}, b); b{b, c}],
[(f, {c, f}, c); c{b, c}], and the leave is {bc, c{c, d}, {c, d}d}. A K-packing of M� with
leave K1,3 is [(a, {a, b}, b); b{b, c}], [(f, {c, f}, c); c{c, d}], [(e, {d, e}, d); d{c, d}], and
the leave is {cb, c{b, c}, cd}.

Lemma 2.9. For each L ∈ {K3, P4, K1,3, 3K2, P3 ∪ K2}, there exists a maximum
K-packing of K�

10 with leave L.
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Figure 5: The graphs M and M�.

Proof. In this lemma, for convenience we assume that V (K10) = {a1, a2, . . . , a10}.
(i) A K-packing of K�

10 with leave K3 is obtained through a T -packing of K10. A
T -packing of K10 with leave K2 is

[a1, a2, a3, a4; a2a5], [a1, a3, a5, a9; a3a6], [a1, a5, a7, a3; a7a4],
[a1, a6, a5, a4; a6a7], [a7, a9, a1, a4; a1a10], [a9, a2, a8, a4; a8a5],
[a2, a6, a10, a5; a10a7], [a3, a8, a9, a10; a8a7], [a7, a1, a8, a10; a8a6],
[a10, a2, a4, a6; a2a7], [a10, a3, a9, a4; a9a6],

and the leave is the edge a4a10. Since K10 has a T -packing with leave K2, K
�
10 admits

a T �-packing with leave K�
2 . By Lemma 2.2, the graph K�

10 has a K-packing with
leave K3; observe that K�

2 � K3.

(ii) A T -packing of K10 with leave M is

[a1, a2, a3, a4; a2a5], [a1, a3, a5, a9; a3a6], [a1, a5, a7, a3; a7a4],
[a1, a6, a5, a4; a6a7], [a9, a2, a8, a4; a8a5], [a2, a6, a10, a5; a10a7],
[a3, a8, a9, a10; a8a7], [a7, a1, a10, a2; a1a9], [a7, a9, a6, a8; a6a4],
[a7, a2, a4, a9; a4a1],

with leave {a1a8, a8a10, a10a3, a3a9, a10a4}. Hence the graph K�
10 admits a T �-packing

with leave M�. By Lemma 2.2, T � has a K-decomposition. Thus the graph K�
10 has

a K-packing with leave P4, because M� has three copies of the kite K and one copy
of P4, by Lemma 2.8.

(iii) Next we describe a K-packing of K�
10 with leave K1,3. From (ii) above, K�

10

has a T �-packing with leave M�. By Lemmas 2.2 and 2.8, the result follows.

(iv) A K-packing of K�
10 with leave 3K2 is obtained by taking a decomposition of

K�
10 into K�

4 , K
�
6 and K�

4,6. Now apply Lemmas 2.5, 2.7 and 2.3 to the appropriate
graphs to get a desired K-packing with leave 3K2.

(v) A K-packing of K�
10 with leave P3 ∪K2 is obtained by taking a decomposition

of K�
10 into K�

4 , K
�
6 and K�

4,6. Applying Lemmas 2.5, 2.7 and 2.3 to the appropriate
graphs, K�

10 has a K-packing with leave P3 ∪K2.

We use the following theorem in the proof of Lemma 2.11.

Theorem 2.10. [12] The graph Kn admits a T -decomposition if and only if n ≡ 0
or 1 (mod 8).
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By Lemma 2.2 and Theorem 2.10, both the graphs K�
8k and K�

8k+1, k ≥ 1, admit
K-decompositions.

Lemma 2.11. For all k ≥ 1 and for each i ∈ {0, 2, 4, 6}, the graph K�
8k+i admits a

maximum K-packing with every possible leave. The possible leaves are given in the
table below:

i Possible leaves
0 ∅
2 K3, P4, K1,3, 3K2, P3 ∪K2

4 P3, 2K2

6 K2

Proof. For i = 0, the graph K8k has a T -decomposition by Theorem 2.10, and the
graph K�

8k admits a K-decomposition by Lemma 2.2. For i = 2, the graph K�
8k+2 =

K�
10⊕K�

8(k−1)⊕K�
10,8(k−1). By Theorem 2.10 and Lemma 2.4, the graphs K�

8(k−1) and
K�

10,8(k−1) have K-decompositions, and the rest follows by Lemma 2.9. For i = 4, the
graph K�

8k+4 = K�
4 ⊕K�

8k⊕K�
4,8k. Now by Theorem 2.10, Lemmas 2.4 and 2.5, we get

a K-packing with leave P3 or 2K2. For i = 6, the graph K�
8k+6 = K�

6 ⊕K�
8k ⊕K�

6,8k.
Now applying Theorem 2.10, Lemmas 2.4 and 2.7 to the respective graphs, we get a
K-packing with leave K2.

3 Maximum packing of L(Kn) with kites

Let G be the graph given in Figure 6. From the proof of Theorem 1.4 of [8], we have
the following lemma.

Lemma 3.1. [8] For n = 2k, k ≥ 3, the edge set of L(Kn) can be partitioned into(
k
2

)
copies of L(K4) and

(
k
3

)
copies of G, where G is isomorphic to the graph given

in Figure 6.

Lemma 3.2. The graph G, (given in Figure 6) has a K-decomposition.

Proof. A K-decomposition of G consists of the kites

[(a2, b2, c4); c4b4], [(a3, c3, b4); b4a1], [(a3, b3, c1); c1a4],
[(c2, b3, a1); a1c4], [(c2, a2, b1); b1c1], [(c3, b2, a4); a4b1].

Lemma 3.3. If n ≥ 4 is even, then the graph L(Kn) has a K-decomposition.

Proof. Let n = 2k, k ≥ 2. The case k = 2 follows by Lemma 2.1. If k ≥ 3, then the
graph L(Kn) = L(K4)⊕ L(K4)⊕ · · · ⊕ L(K4)︸ ︷︷ ︸

(k2)−times

⊕G⊕G⊕ · · · ⊕G︸ ︷︷ ︸
(k3)−times

, by Lemma 3.1.

We obtain a K-decomposition of L(K2k) by applying Lemmas 2.1 and 3.2 to the
graphs L(K4) and G, respectively.

Theorem 3.4. A maximum K-packing of L(Kn) with every possible leave is given
in the following table:
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Figure 6: The graph G.

n Possible leaves
n ≡ 0 (mod 2) or 1 (mod 8) ∅

n ≡ 3 (mod 8) K3, P4, K1,3, 3K2, P2 ∪K2

n ≡ 5 (mod 8) P3, 2K2

n ≡ 7 (mod 8) K2

Proof. Case 1: n = 2k, k ≥ 2.

By Lemma 3.3, L(Kn) has a K-decomposition.

Case 2: n = 2k + 1, k ≥ 2.

Then n ≡ 1, 3, 5 or 7 (mod 8). Let n = 8k + i, i ∈ {1, 3, 5, 7}. The graph
L(K8k+i) = L(K8k+i−1) ⊕ K�

8k+i−1, by Observation 2.2. For each i ∈ {1, 3, 5, 7},
applying Lemmas 3.3 and 2.11 to the graphs L(K8k+i−1) and K�

8k+i−1, respectively,
we obtain K-packings with every possible leave.

Proof of Corollary 1.2. The proof immediately follows from the above theorem.

4 Maximum packing of L(Kn)(λ) with kites

In this section, we prove the existence of a maximum kite-packing of L(Kn)(λ),
λ ≥ 2, with every possible leave.

Lemma 4.1. The graph K�
4 (2) has a K-decomposition.

Proof. A K-decomposition of K�
4 (2) is

[(2, {1, 2}, 1); 13], [(2, {2, 3}, 3); 3{1, 3}], [(4, {2, 4}, 2); 2{2, 3}],
[(3, {1, 3}, 1); 12], [(4, {2, 4}, 2); 2{1, 2}], [(4, {1, 4}, 1); 1{1, 3}],
[(4, {3, 4}, 3); 32], [(4, {3, 4}, 3); 3{2, 3}], [(4, {1, 4}, 1); 1{1, 2}].

Lemma 4.2. For each L ∈ {P3, 2K2, K2(2)}, there exists a maximum K-packing of
each of the graphs K�

4 (3) and K�
4(5) with leave L.

Proof. (i) Clearly, the graph K�
4(3) = K�

4 ⊕ K�
4(2). By Lemmas 2.5 and 4.1, a

required K-packing of K�
4 (3) with leave P3 or 2K2 follows.
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A K-packing of K�
4(3) with leave K2(2) is

[(2, {1, 2}, 1); 13], [(1, {1, 4}, 4); 4{2, 4}], [(2, {2, 3}, 3); 3{1, 3}],
[(3, {1, 3}, 1); 12], [(3, {2, 3}, 2); 2{2, 4}], [(3, {1, 3}, 1); 1{1, 2}],
[(3, {3, 4}, 4); 42], [(4, {2, 4}, 2); 2{2, 3}], [(4, {3, 4}, 3); 3{2, 3}],
[(4, {3, 4}, 3); 32], [(4, {1, 4}, 1); 1{1, 3}], [(4, {1, 4}, 1); 1{1, 2}],
[(4, {2, 4}, 2); 21].

and the leave is {2{1, 2}, 2{1, 2}}.
(ii) A K-packing of K�

4 (5) with leave L ∈ {P3, 2K2, K2(2)} follows by (i) above and
Lemma 4.1, since K�

4(5) = K�
4 (2)⊕K�

4 (3).

The following lemma is an easy observation.

Lemma 4.3. If H|G then H|G(λ), for any λ ≥ 2.

Lemma 4.4. The graphs K�
6 (2), K

�
6(3) and K�

6 (5) have maximum K-packings with
leave 2K2, K1,3 and K2, respectively.

Proof. From the proof of Lemma 2.7, the graph K6 = T1 ⊕ T2 ⊕ T3 ⊕ P4, where
T1 = [1, 2, 3, 4; 25], T2 = [4, 5, 3, 1; 56], T3 = [4, 6, 1, 5; 63] and P4 = [1, 4, 2, 6]. Here
T1, T2 and T3 are isomorphic to T , and P4 is the path of length 3. Then K�

6 =
T �
1 ⊕T �

2 ⊕T �
3 ⊕P �

4 . Now consider the graph K�
6 = T �

1 ⊕T �
2 ⊕H�, where H� = T �

3 ⊕P �
4 ;

see Figure 7.

� � � �
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� � � �

� �
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�

�
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{1, 5} {1, 6} {3, 6}

{1, 4}

{4, 6}

{2, 4}

{2, 6}

Figure 7: The graphs H and H�.

(i) The graph K�
6 (2) = T �

1 (2)⊕ T �
2 (2)⊕H�(2). By Lemmas 2.2 and 4.3, the graphs

T �
1 (2) and T �

2 (2) have K-decompositions. A K-packing of H�(2) with leave 2K2 is

[(1, {1, 4}, 4); 16], [(2, {2, 4}, 4); 4{1, 4}], [(3, {3, 6}, 6); 6{1, 6}],
[(2, {2, 6}, 6); 46], [(2, {2, 6}, 6); 6{4, 6}], [(3, {3, 6}, 6); 6{1, 6}],
[(2, {2, 4}, 4); 14], [(5, {1, 5}, 1); 1{1, 6}], [(5, {1, 5}, 1); 1{1, 6}],
[(4, {4, 6}, 6); 16].

and the leave is {1{1, 4}, 4{4, 6}}.
(ii) The graph K�

6(3) = T �
1 (3)⊕ T �

2 (3)⊕H�(3). The graphs T �
1 (3) and T �

2 (3) have
K-decompositions, by Lemmas 2.2 and 4.3.
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A K-packing of H�(3) with leave K1,3 is

[(1, {1, 4}, 4); 4{2, 4}], [(1, {1, 4}, 4); 4{4, 6}], [(1, {1, 4}, 4); 42],
[(3, {3, 6}, 6); 6{1, 6}], [(3, {3, 6}, 6); 6{1, 6}], [(4, {4, 6}, 6); 61],
[(3, {3, 6}, 6); 6{1, 6}], [(5, {1, 5}, 1); 1{1, 6}], [(4, {2, 4}, 2); 26],
[(4, {2, 4}, 2); 2{2, 6}], [(5, {1, 5}, 1); 1{1, 6}], [(4, {4, 6}, 6); 61],
[(5, {1, 5}, 1); 1{1, 6}], [(6, {2, 6}, 2); 2{2, 4}], [(6, {2, 6}, 2); 16].

and the leave is {6{4, 6}, 6{2, 6}, 64}.
(iii) Clearly, the graph K�

6 (5) = K�
6 ⊕K�

6 (4) = K�
6 ⊕ T �

1 (4) ⊕ T �
2 (4) ⊕ H�(4). By

Lemmas 2.2 and 4.3, the graphs T �
1 (4) and T �

2 (4) have K-decompositions, and by
Lemma 2.7 the graph K�

6 has a K-packing with leave K2. A K-decomposition of
H�(4) is

[(1, {1, 4}, 4); 4{2, 4}], [(2, {2, 6}, 6); 2{2, 4}], [(1, {1, 4}, 4); 16],
[(1, {1, 4}, 4); 4{2, 4}], [(2, {2, 4}, 4); 4{4, 6}], [(1, {1, 4}, 4); 24],
[(2, {2, 6}, 6); 2{2, 4}], [(3, {3, 6}, 6); 6{1, 6}], [(2, {2, 6}, 6); 24],
[(2, {2, 6}, 6); 6{4, 6}], [(3, {3, 6}, 6); 6{1, 6}], [(2, {2, 4}, 4); 46],
[(3, {3, 6}, 6); 6{1, 6}], [(5, {1, 5}, 1); 1{1, 6}], [(4, {4, 6}, 6); 16],
[(3, {3, 6}, 6); 6{1, 6}], [(5, {1, 5}, 1); 1{1, 6}], [(4, {4, 6}, 6); 16],
[(5, {1, 5}, 1); 1{1, 6}], [(5, {1, 5}, 1); 1{1, 6}], [(4, {4, 6}, 6); 16].

Lemma 4.5. For each L ∈ {P3, 2K2, K2(2)}, there exists a maximum K-packing of
K�

6 (2) with leave L.

Proof. (i) From the proof of Lemma 2.7, the graph K6 = T ⊕T ⊕T ⊕P4. The graph
K�

6 (2) = T �(2) ⊕ T �(2) ⊕ T �(2) ⊕ P �
4 (2). By Lemmas 2.2 and 4.3, the graph T �(2)

has a K-decomposition. A K-packing of P �
4 (2) with leave P3 when P4 = [1, 4, 2, 6] is

[(1, {1, 4}, 4); 24], [(1, {1, 4}, 4); 4{2, 4}], [(6, {2, 6}, 2); 24], [(6, {2, 6}, 2); 2{2, 4}], and
the leave is {2{2, 4}, {2, 4}4}.
(ii) A K-packing of K�

6 (2) with leave 2K2 follows by Lemma 4.4.

(iii) Since K�
6 has a K-packing with leave K2, K

�
6(2) has a K-packing with leave

K2(2), by Lemma 2.7.

Recall that P ′ is the multigraph on three vertices a, b, c and three edges ab, ab, bc.
We use it often in the rest of the paper.

Lemma 4.6. For each L ∈ {K3, P4, P3∪K2, P
′}, there exists a maximum K-packing

of P �
4 (3) with leave L.

Proof. Let V (P4) = {a, b, c, d}.
(i) A K-packing of P �

4 (3) with leave K3 is

[(a, {a, b}, b); bc], [(a, {a, b}, b); b{b, c}], [(a, {a, b}, b); b{b, c}],
[(d, {c, d}, c); bc], [(d, {c, d}, c); c{b, c}], [(d, {c, d}, c); c{b, c}]

and the leave is {{b, c}c, cb, b{b, c}}.
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(ii) A K-packing of P �
4 (3) with leave P4 is

[(a, {a, b}, b); bc], [(d, {c, d}, c); bc], [(a, {a, b}, b); b{b, c}],
[(b, {b, c}, c); cd], [(a, {a, b}, b); b{b, c}], [(d, {c, d}, c); c{b, c}]

and the leave is {{b, c}c, c{c, d}, {c, d}d}.
(iii) A K-packing of P �

4 (3) with leave P3 ∪K2 is

[(a, {a, b}, b); bc], [(a, {a, b}, b); bc], [(a, {a, b}, b); b{b, c}],
[(b, {b, c}, c); c{c, d}], [(d, {c, d}, c); c{b, c}], [(d, {c, d}, c); c{b, c}]

and the leave is {b{b, c}, cd, d{c, d}}.
(iv) A K-packing of P �

4 (3) with leave P ′ is
[(a, {a, b}, b); bc], [(a, {a, b}, b); bc], [(a, {a, b}, b); b{b, c}],
[(d, {c, d}, c); bc], [(d, {c, d}, c); c{b, c}], [(d, {c, d}, c); c{b, c}]

and the leave is {b{b, c}, b{b, c}, {b, c}c}.
Lemma 4.7. For each L ∈ {K3, P4, K1,3, 3K2, P3∪K2, P

′, K2∪K2(2), K2(3)}, there
exists a maximum K-packing of K�

6(3) with leave L.

Proof. (i) A K-packing of K�
6 (3) with leave K3, P4, P3∪K2 or P

′ is described below.

Since the graph K6 = T ⊕ T ⊕ T ⊕ P4 (see the proof of Lemma 2.7), the graph
K�

6 (3) = T �(3) ⊕ T �(3) ⊕ T �(3) ⊕ P �
4 (3). By Lemmas 2.2, 4.3 and 4.6, the graph

K�
6 (3) has a K-packing with leave L ∈ {K3, P4, P3 ∪K2, P

′}.
(ii) The graph K�

6 (3) = K�
6 ⊕K�

6 (2). For each L ∈ {K2 ∪K2(2), 3K2}, the graph
K�

6 (3) has a K-packing with leave L, by Lemmas 2.7 and 4.5.

(iii) Since K�
6 has a K-packing with leave K2, K

�
6(3) has a K-packing with leave

K2(3), by Lemma 2.7.

(iv) A K-packing of K�
6 (3) with leave K1,3 follows by Lemma 4.4.

Lemma 4.8. For each L ∈ {P3, 2K2, K2(2)}, there exists a maximum K-packing of
K�

10(2) with leave L.

Proof. Clearly, K�
10(2) = K�

4(2) ⊕ K�
6 (2) ⊕ K�

4,6(2). By Lemmas 2.3, 4.1 and 4.3,
the graphs K�

4(2) and K�
4,6(2) have K-decompositions. Thus a required K-packing

follows by Lemma 4.5.

Recall that the graph M = [a, b, c, d, e; cf ]; see Figure 5.

Lemma 4.9. The graph M�(3) has a maximum K-packing with leave K2.

Proof. A K-packing of M�(3) with leave K2 is

[(a, {a, b}, b); b{b, c}], [(a, {a, b}, b); bc], [(a, {a, b}, b); b{b, c}],
[(b, {b, c}, c); c{c, d}], [(c, {c, d}, d); de], [(e, {d, e}, d); d{c, d}],
[(f, {c, f}, c); c{b, c}], [(f, {c, f}, c); bc], [(c, {c, d}, d); d{d, e}],
[(f, {c, f}, c); c{b, c}], [(e, {d, e}, d); cd]
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and the leave is e{d, e}.
Lemma 4.10. For each L ∈ {P ′, K2 ∪ K2(2), K2(3)}, there exists a maximum K-
packing of M�(5) with leave L.

Proof. (i) A K-packing of M�(5) with leave P ′ is

[(a, {a, b}, b); bc], [(a, {a, b}, b); b{b, c}], [(e, {d, e}, d); cd],
[(a, {a, b}, b); bc], [(a, {a, b}, b); b{b, c}], [(b, {b, c}, c); c{c, d}],
[(b, {b, c}, c); cd], [(d, {c, d}, c); c{b, c}], [(e, {d, e}, d); d{c, d}],
[(f, {c, f}, c); bc], [(e, {d, e}, d); d{c, d}], [(a, {a, b}, b); b{b, c}],
[(f, {c, f}, c); cd], [(e, {d, e}, d); d{c, d}], [(e, {d, e}, d); d{c, d}],
[(f, {c, f}, c); cd], [(f, {c, f}, c); c{c, d}], [(f, {c, f}, c); c{c, d}]

and the leave is {{b, c}c, {b, c}c, c{c, d}}.
(ii) A K-packing of M�(5) with leave K2 ∪K2(2) is

[(a, {a, b}, b); bc], [(a, {a, b}, b); b{b, c}], [(f, {c, f}, c); bc],
[(d, {c, d}, c); bc], [(a, {a, b}, b); b{b, c}], [(b, {b, c}, c); c{c, d}],
[(c, {c, d}, d); de], [(c, {c, d}, d); d{d, e}], [(a, {a, b}, b); b{b, c}],
[(e, {d, e}, d); cd], [(e, {d, e}, d); d{c, d}], [(e, {d, e}, d); d{c, d}],
[(e, {d, e}, d); cd], [(f, {c, f}, c); c{c, d}], [(a, {a, b}, b); b{b, c}],
[(f, {c, f}, c); bc], [(f, {c, f}, c); c{b, c}], [(f, {c, f}, c); c{b, c}]

and the leave is {{b, c}c, {b, c}c, {d, e}e}.
(iii) A K-packing of M�(5) with leave K2(3) is

[(a, {a, b}, b); bc], [(a, {a, b}, b); b{b, c}], [(f, {c, f}, c); cd],
[(d, {c, d}, c); bc], [(a, {a, b}, b); b{b, c}], [(b, {b, c}, c); c{c, d}],
[(e, {d, e}, d); cd], [(a, {a, b}, b); b{b, c}], [(e, {d, e}, d); d{c, d}],
[(e, {d, e}, d); cd], [(e, {d, e}, d); d{c, d}], [(d, {c, d}, c); c{b, c}],
[(f, {c, f}, c); bc], [(f, {c, f}, c); c{c, d}], [(f, {c, f}, c); c{c, d}],
[(f, {c, f}, c); bc], [(e, {d, e}, d); d{c, d}], [(a, {a, b}, b); b{b, c}]

and the leave is {{b, c}c, {b, c}c, {b, c}c}.
Lemma 4.11. The graph K�

10(3) has a maximum K-packing with leave K2.

Proof. Since the graph K�
10 has a T �-packing with leave M� (see the proof of

Lemma 2.9), the graph K�
10(3) = T �(3) ⊕ T �(3) ⊕ · · · ⊕ T �(3)⊕M�(3). The graph

K�
10(3) has a K-packing with leave K2, by applying Lemmas 2.2 and 4.3 to the graph

T �(3) and Lemma 4.9 to the graph M�(3).

Lemma 4.12. For each L ∈ {K3, P4, K1,3, 3K2, P3∪K2, P
′, K2∪K2(2), K2(3)} there

exists a maximum K-packing of K�
10(5) with leave L.

Proof. (i) The graph K�
10(5) = K�

10 ⊕K�
10(4)

= K�
10 ⊕K�

4(4)⊕K�
6(4)⊕K�

4,6(4).
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From the proof of Lemma 4.4 (iii) and Lemmas 4.1, 2.3 and 4.3, the graphs K�
4 (4),

K�
6 (4) and K�

4,6(4) have K-decompositions. Now a K-packing of K�
10(5) with leave

L ∈ {K3, P4, K1,3, 3K2, P3 ∪K2} follows by Lemma 2.9.

(ii) From the proof of Lemma 2.9, the graph K�
10 has a T �-packing with leave M�

and hence the graph K�
10(5) has a T �(5)-packing with leave M�(5). The required

K-packing with leave L ∈ {P ′, K2 ∪K2(2), K2(3)} follows by applying Lemmas 2.2
and 4.3 to the graph T �(5) and Lemma 4.10 to the graph M�(5).

Lemma 4.13. For each i ∈ {2, 6} and each L ∈ {P3, 2K2, K2(2)}, there exists a
maximum K-packing of K�

8k+i(2), k ≥ 1, with leave L.

Proof. For i = 2, the graphK�
8k+2(2) = K�

10(2)⊕K�
8(k−1)(2)⊕K�

10,8(k−1)(2). Now apply

Lemmas 2.11, 2.4 and 4.3 to the graphs K�
8(k−1)(2) and K�

10,8(k−1)(2) and Lemma 4.8

to the graph K�
10(2). For i = 6, the graph K�

8k+6(2) = K�
6 (2) ⊕ K�

8k(2) ⊕ K�
6,8k(2).

Now apply Lemmas 2.11, 2.4 and 4.3 to the graphs K�
8k(2) and K�

6,8k(2) and Lemma
4.5 to the graph K�

6 (2).

Lemma 4.14. For all k ≥ 1 and each i ∈ {2, 4, 6} the graph K�
8k+i(3) admits a

maximum K-packing with every possible leave as described in the table below:

i Possible leaves
2 K2

4 P3, 2K2, K2(2)
6 K3, P4, K1,3, 3K2, P3 ∪K2, P

′, K2 ∪K2(2), K2(3)

Proof. For i = 2, the graph K�
8k+2(3) = K�

10(3)⊕K�
8(k−1)(3)⊕K�

10,8(k−1)(3). By Lem-

mas 2.11, 2.4 and 4.3, the graphsK�
8(k−1)(3) andK�

10,8(k−1)(3) haveK-decompositions.

The graph K�
8k+2(3) has a K-packing with leave K2, by Lemma 4.11. For i = 4, the

graph K�
8k+4(3) = K�

4 (3) ⊕ K�
8k(3) ⊕ K�

4,8k(3). Now by Lemmas 2.11, 2.4 and 4.3,
the graphs K�

8k(3) and K�
4,8k(3) have K-decompositions. The result now follows by

Lemma 4.2. For i = 6, the graph K�
8k+6(3) = K�

6(3)⊕K�
8k(3)⊕K�

6,8k(3). The result
follows by Lemmas 2.11, 2.4, 4.3 and 4.7.

Lemma 4.15. For all k ≥ 1 and each i ∈ {2, 4, 6} the graph K�
8k+i(5) admits a

maximum K-packings with every possible leave as described in the table below:

i Possible leaves
2 K3, P4, K1,3, 3K2, P3 ∪K2, P

′, K2 ∪K2(2), K2(3)
4 P3, 2K2, K2(2)
6 K2

Proof. For i = 2, the graph K�
8k+2(5) = K�

10(5)⊕K�
8(k−1)(5)⊕K�

10,8(k−1)(5). By Lem-

mas 2.11, 2.4 and 4.3, the graphsK�
8(k−1)(5) and K�

10,8(k−1)(5) have K-decompositions

and, by Lemma 4.12 applied to K�
10(5), give the required K-packings with every pos-

sible leave.

For i = 4, the graph K�
8k+4(5) = K�

4 (5) ⊕ K�
8k(5) ⊕ K�

4,8k(5). As above, by
Lemmas 2.11, 2.4 and 4.3, the graphs K�

8k(5) and K�
4,8k(5) have K-decompositions.
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Now apply Lemma 4.2 to K�
4 (5) to get a required K-packing with every possible

leave.

For i = 6, the graph K�
8k+6(5) = K�

6(5) ⊕ K�
8k(5) ⊕ K�

6,8k(5). By Lemmas 2.11,
2.4 and 4.3, the graphs K�

8k(5) and K�
6,8k(5) have K-decompositions. The result now

follows by applying Lemma 4.4 to the graph K�
6(5).

We use the following theorem in the proof of the next lemma.

Theorem 4.16. [14] Let α and β be non-negative integers. For any integer n ≥ 4 and
λ ≥ 1, the graph Kn(λ) has a {Kα, Cβ

4 }-decomposition if and only if 4(α+β) = λ
(
n
2

)
,

where K denotes the kite.

Lemma 4.17. For λ ≥ 2 and n ≥ 4, the graph L(Kn)(λ) admits a K-decomposition
if and only if n is even or n ≡ 1 (mod 8) or λ ≡ 0 (mod 4).

Proof. The proof of the necessity is obvious. We prove the sufficiency. If n ≡ 0
(mod 2) or n ≡ 1 (mod 8), the proof follows by Corollary 1.2 and Lemma 4.3. If
λ ≡ 0 (mod 4), then λ = 4k′, for some k′ ≥ 1. The graph L(Kn)(4k

′) = Kn−1(4k
′)⊕

Kn−1(4k
′)⊕· · ·⊕Kn−1(4k

′), as the star at each vertex of Kn yields a Kn−1 in L(Kn).
By Theorem 4.16, a K-decomposition of L(Kn)(λ) exists.

Lemma 4.18. For each λ ∈ {2, 3, 5}, the graph L(Kn)(λ) admits a maximum K-
packing with every possible leave as described in the table below:

λ n ≡ a (mod 8) Possible leaves
2 a = 5 ∅

a ∈ {3, 7} P3, 2K2, K2(2)
a = 3 K2

3 a = 5 P3, 2K2, K2(2)
a = 7 K3, P4, K1,3, 3K2, P3 ∪K2,

P ′, K2 ∪K2(2), K2(3)
a = 3 K3, P4, K1,3, 3K2, P3 ∪K2,

5 P ′, K2 ∪K2(2), K2(3)
a = 5 P3, 2K2, K2(2)
a = 7 K2

Proof. Case 1. λ = 2.

If n ≡ 3 or 7 (mod 8), then for each i ∈ {3, 7}, the graph L(K8k+i)(2) =
L(K8k+i−1)(2)⊕K�

8k+i−1(2), by Observation 2.2. We apply Lemmas 4.17 and 4.13 to
the graphs L(K8k+i−1)(2) and K�

8k+i−1(2) to get a required maximum K-packing. If
n ≡ 5 (mod 8), then the graph L(K8k+5)(2) = K8k+4(2)⊕K8k+4(2)⊕· · ·⊕K8k+4(2),
as the star at each vertex of K8k+5 yields a K8k+4 in L(K8k+5). Now apply The-
orem 4.16 to the graph K8k+4(2).

Case 2. λ = 3.

If n ≡ 3, 5 or 7 (mod 8), then for each i ∈ {3, 5, 7}, the graph L(K8k+i)(3) =
L(K8k+i−1)(3)⊕K�

8k+i−1(3), by Observation 2.2. We apply Lemmas 4.17 and 4.14 to
the graphs L(K8k+i−1)(3) and K�

8k+i−1(3) to get a maximum K-packing.
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Case 3. λ = 5.

If n ≡ 3, 5 or 7 (mod 8), then for each i ∈ {3, 5, 7}, the graph L(K8k+i)(5) =
L(K8k+i−1)(5) ⊕ K�

8k+i−1(5), by Observation 2.2. We apply Lemmas 4.17 and 4.15
to the graphs L(K8k+i−1)(5) and K�

8k+i−1(5), respectively, to obtain a maximum K-
packing with every possible leave.

Proof of Theorem 1.1. Because of Theorem 3.4 and Lemmas 4.17 and 4.18,
the proof follows for λ ∈ {1, 2, 3, 4, 5}. Now we consider the proof for λ ≥ 6. Let
λ = 4k′ + i, where i ∈ {0, 1, 2, 3} and k′ ≥ 1. For i = 0, the graph L(Kn)(λ)
has a K-decomposition, by Lemma 4.17. For i = 1, the graph L(Kn)(4k

′ + 1) =
L(Kn)(5)⊕ L(Kn)(4k

′ − 4). The result now follows by Lemmas 4.17 and 4.18. For
each i ∈ {2, 3}, the graph L(Kn)(4k

′ + i) = L(Kn)(i)⊕ L(Kn)(4k
′). The result now

follows by Lemmas 4.17 and 4.18.

5 Minimum covering of L(Kn)(λ) with kites

In this section, we prove the existence of a minimum kite-covering of L(Kn)(λ), λ ≥
1, with every possible padding.

Lemma 5.1. For all k ≥ 1 and for each i ∈ {2, 4, 6}, the graph K�
8k+i admits a

minimum K-covering with every possible padding. The possible paddings are given
in the following table:

i Possible paddings
2 K2

4 P3, 2K2, K2(2)
6 K3, P4, K1,3, 3K2, P3 ∪K2,

P ′, K2 ∪K2(2), K2(3)

Proof. The graph K�
8k+2 = K�

10 ⊕ K�
8(k−1) ⊕ K�

10,8(k−1), K
�
8k+4 = K�

4 ⊕ K�
8k ⊕ K�

4,8k

and K�
8k+6 = K�

6 ⊕ K�
8k ⊕ K�

6,8k. By Theorem 2.10 and Lemmas 2.2 and 2.4, the
graphs K�

8(k−1), K
�
8k, K

�
10,8(k−1), K

�
4,8k and K�

6,8k have K-decompositions. It suffices
to show that each of the graphs K�

4 , K
�
6 and K�

10 has a minimum K-covering with
every possible padding.

(i) A minimum K-covering of K�
4 with padding P ∈ {P3, 2K2, K2(2)} is given below:

A minimum K-covering of K�
4 with padding P3 is

[(1, {1, 4}, 4); 4{3, 4}], [(1, {1, 3}, 3); 34], [(1, {1, 2}, 2); 2{2, 3}],
[(2, {2, 3}, 3); 3{3, 4}], [(4, {2, 4}, 2); 12]

and the padding is {12, 2{2, 3}}.
A minimum K-covering of K�

4 with padding 2K2 is

[(1, {1, 4}, 4); 4{3, 4}], [(1, {1, 3}, 3); 23], [(2, {2, 4}, 4); 34],
[(2, {2, 3}, 3); 3{3, 4}], [(2, {1, 2}, 1); 14]

and the padding is {14, 23}. A minimum K-covering of K�
4 with padding K2(2) is
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[(1, {1, 2}, 2); 24], [(3, {2, 3}, 2); 2{2, 4}], [(3, {3, 4}, 4); 4{2, 4}],
[(3, {1, 3}, 1); 1{1, 2}], [(4, {1, 4}, 1); 1{1, 2}]

and the padding is {1{1, 2}, 1{1, 2}}.
(ii) A minimum K-covering of K�

6 with padding P ∈ {K3, P4, K1,3, 3K2, P3 ∪
K2, P

′, K2 ∪K2(2), K2(3)} is described below:

The graph K�
6 can be decomposed in two different ways, namely, K�

6 = T � ⊕ T � ⊕
T �⊕P �

4 and K�
6 = T �⊕T �⊕H�. If K�

6 = T �⊕T �⊕T �⊕P �
4 , then by Lemma 2.2 and

Appendix A, the paddings are P ∈ {K3, P4, K1,3, P
′}. If K�

6 = T � ⊕ T � ⊕H�, then
again by Lemma 2.2 and Appendix A, the paddings are P ∈ {3K2, P3 ∪ K2, K2 ∪
K2(2), K2(3)}.
(iii) A minimum K-covering of K�

10 with padding K2 is given below.

From the proof of Lemma 2.9(ii), the graph K�
10 = T � ⊕ T � ⊕ · · · ⊕ T �

︸ ︷︷ ︸
10−times

⊕M�. Thus

a required K-covering with padding K2 follows by Lemma 2.2 and Appendix A.

Lemma 5.2. For all k ≥ 1 and for each i ∈ {2, 6}, the graph K�
8k+i(2) admits a

minimum K-covering with padding P , where P ∈ {P3, 2K2, K2(2)}.

Proof. The graph K�
8k+2(2) = K�

10(2) ⊕ K�
8(k−1)(2) ⊕ K�

10,8(k−1)(2) and K�
8k+6(2) =

K�
6 (2) ⊕ K�

8k(2) ⊕ K�
6,8k(2). By Theorem 2.10 and Lemmas 2.2, 2.4 and 4.3, the

graphs K�
8(k−1)(2), K

�
8k(2), K

�
10,8(k−1)(2) and K�

6,8k(2) have K-decompositions. It is

enough to show that the graphs K�
6 (2) and K�

10(2) have minimum K-coverings with
every possible padding.

(i) A minimum K-covering of K�
6(2) with padding P3, 2K2 or K2(2) is described

below:

The graph K�
6(2) can be decomposed in two different ways, namely, K�

6(2) = T �(2)⊕
T �(2)⊕T �(2)⊕P �

4 (2) and K�
6(2) = T �(2)⊕T �(2)⊕H�(2). If K�

6(2) = T �(2)⊕T �(2)⊕
T �(2)⊕P �

4 (2), then by Lemmas 2.2, 4.3 and Appendix A, the paddings are P3 or 2K2.
If K�

6(2) = T �(2)⊕ T �(2)⊕H�(2), then again by Lemmas 2.2, 4.3 and Appendix A,
the padding is K2(2).

(ii) A minimum K-covering of K�
10(2) with padding P , where P ∈ {P3, 2K2, K2(2)}

is described here. The result follows by (i) above and Lemmas 4.1, 2.3 and 4.3, since
the graph K�

10(2) = K�
6 (2)⊕K�

4 (2)⊕K�
4,6(2).

Lemma 5.3. For all k ≥ 1 and for each i ∈ {2, 4, 6}, the graph K�
8k+i(3) admits a

minimum K-covering with every possible padding. The possible paddings are given
in the table below:

i Possible paddings
2 K3, P4, K1,3, 3K2, P3 ∪K2,

P ′, K2 ∪K2(2), K2(3)
4 P3, 2K2, K2(2)
6 K2
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Proof. The graphK�
8k+2(3) = K�

10(3)⊕K�
8(k−1)(3)⊕K�

10,8(k−1)(3), K
�
8k+4(3) = K�

4 (3)⊕
K�

8k(3)⊕K�
4,8k(3) and K�

8k+6(3) = K�
6 (3)⊕K�

8k(3)⊕K�
6,8k(3). By Theorem 2.10 and

Lemmas 2.2, 2.4 and 4.3, the graphs K�
8(k−1)(3), K

�
8k(3), K

�
10,8(k−1)(3), K

�
4,8k(3) and

K�
6,8k(3) have K-decompositions. It is enough to show that each of the graphs K�

4 (3),
K�

6 (3) and K�
10(3) has a minimum K-covering with every possible padding.

(i) By the proof of Lemmas 5.1 and 4.1, a K-covering of K�
4 (3) with padding P ,

where P ∈ {P3, 2K2, K2(2)}, follows as the graph K�
4 (3) = K�

4 ⊕K�
4 (2).

(ii) A K-covering of K�
6 (3) with padding K2 follows by Lemmas 2.2, 4.3 and Ap-

pendix A, as the graph K�
6 (3) = T �(3)⊕ T �(3)⊕ T �(3)⊕ P �

4 (3).

(iii) Clearly, K�
10(3) = T �(3)⊕ T �(3)⊕ · · · ⊕ T �(3)︸ ︷︷ ︸

10−times

⊕M�(3), by the proof of

Lemma 2.9. Now a K-covering of K�
10(3) with padding P , where P ∈ {K3, P4, K1,3,

3K2, P3∪K2, P
′, K2∪K2(2), K2(3)}, follows by Lemmas 2.2, 4.3 and Appendix A.

Lemma 5.4. For each λ ∈ {1, 2, 3}, the graph L(Kn)(λ) admits a minimum K-
covering with every possible padding as given in the table below:

λ n ≡ a (mod 8) Possible paddings

1 or 2 or 3 n even or a = 1 ∅
a = 3 K2

1 a = 5 P3, 2K2, K2(2)
a = 7 K3, P4, K1,3, 3K2, P3 ∪K2,

P ′, K2 ∪K2(2), K2(3)
2 a ∈ {3, 7} P3, 2K2, K2(2)

a = 5 ∅
a = 3 K3, P4, K1,3, 3K2, P3 ∪K2,

3 P ′, K2 ∪K2(2), K2(3)
a = 5 P3, 2K2, K2(2)
a = 7 K2

Proof. Let i ∈ {3, 5, 7}. The graph L(K8k+i)(λ) = L(K8k+i−1)(λ) ⊕ K�
8k+i−1(λ), by

Observation 2.2. By Lemma 4.17, the graph L(K8k+i−1)(λ) has a K-decomposition.
For λ = 1 and for each i ∈ {3, 5, 7}, apply Lemma 5.1 to the graph K�

8k+i−1 to
obtain a minimum K-covering of L(K8k+i). For λ = 2 and for each i ∈ {3, 7}, apply
Lemma 5.2 to the graph K�

8k+i−1(2) to get a K-covering of L(K8k+i)(2). Now the
result follows by applying Lemma 5.3 to the graph K�

8k+i−1(3) for λ = 3 and for each
i ∈ {3, 5, 7}.
Proof of Theorem 1.3. Because of Lemmas 4.17 and 5.4, we only consider the
proof for λ ≥ 5. Let λ = 4k′ + i, where i ∈ {0, 1, 2, 3} and k′ ≥ 1. For i = 0, the
graph L(Kn)(λ) has a K-decomposition, by Lemma 4.17. For i ∈ {1, 2, 3}, the graph
L(Kn)(λ) = L(Kn)(4k

′ + i) = L(Kn)(i) ⊕ L(Kn)(4k
′). Now the result follows by

Lemmas 5.4 and 4.17.

We summarise our main theorems in the following:
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Theorem 5.5. Maximum kite-packings and minimum kite-coverings of L(Kn)(λ)
with every possible leave and padding exist. The leaves and paddings are described in
the following table:

λ ≡ a (mod 4) n ≥ 4 and Possible leaves Possible paddings
n ≡ b (mod 8) in L(Kn)(λ) in L(Kn)(λ)

a = 0 n ≥ 4 ∅ ∅
a ∈ {1, 2, 3} n even or b = 1 ∅ ∅

K3, P4, K1,3,
b = 3 3K2, P3 ∪K2, P

′, K2

a = 1 K2 ∪K2(2), K2(3)
b = 5 P3, 2K2, K2(2) P3, 2K2, K2(2)

K3, P4, K1,3,
b = 7 K2 3K2, P3 ∪K2, P

′,
K2 ∪K2(2), K2(3)

b ∈ {3, 7} P3, 2K2, K2(2) P3, 2K2, K2(2)
a = 2 b = 5 ∅ ∅

K3, P4, K1,3,
b = 3 K2 3K2, P3 ∪K2, P

′,
K2 ∪K2(2), K2(3)

a = 3 b = 5 P3, 2K2, K2(2) P3, 2K2, K2(2)
K3, P4, K1,3,

b = 7 3K2, P3 ∪K2, P
′, K2

K2 ∪K2(2), K2(3)

Proof. The proof follows by Theorems 1.1 and 1.3.
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Appendix A: Minimum coverings of some graphs with kites

Graph Padding Covering

P �
4

K3 : {cd, d{c, d}, {c, d}c} [(a, {a, b}, b); b{b, c}], [(d, {c, d}, c); bc],
[(d, {c, d}, c); c{b, c}]

P �
4

P4 : {b{b, c}, {b, c}c, c{c, d}} [(a, {a, b}, b); b{b, c}], [(b, {b, c}, c); c{c, d}],
[(d, {c, d}, c); c{b, c}]

P �
4

P ′ : {bc, bc, b{a, b}} [(a, {a, b}, b); bc], [(c, {b, c}, b); b{a, b}],
[(d, {c, d}, c); bc]

P �
4

K1,3 : {ab, bc, b{b, c}} [(a, {a, b}, b); b{b, c}], [(c, {b, c}, b); ab],
[(d, {c, d}, c); bc]

M� K2 : {cd} [(a, {a, b}, b); b{b, c}], [(d, {c, d}, c); bc],
[(e, {d, e}, d); cd], [(f, {c, f}, c); c{b, c}]

H�

P3 ∪K2 : {14, 4{1, 4}, 6{4, 6}} [(2, {2, 4}, 4); 4{1, 4}], [(2, {2, 6}, 6); 6{4, 6}],
[(3, {3, 6}, 6); 6{1, 6}], [(4, {1, 4}, 1); 16],
[(5, {1, 5}, 1); 1{1, 6}], [(6, {4, 6}, 4); 14]

H�

K2 ∪K2(2) : {14, 14, 6{4, 6}} [(2, {2, 4}, 4); 14], [(2, {2, 6}, 6); 6{4, 6}],
[(3, {3, 6}, 6); 6{1, 6}], [(4, {1, 4}, 1); 16],
[(5, {1, 5}, 1); 1{1, 6}], [(6, {4, 6}, 4); 14]

H�

K2(3) : {46, 46, 46} [(1, {1, 4}, 4); 46], [(2, {2, 4}, 4); 46],
[(2, {2, 6}, 6); 46], [(3, {3, 6}, 6); 6{1, 6}],
[(4, {4, 6}, 6); 16], [(5, {1, 5}, 1); 1{1, 6}]

H�

3K2 : {1{1, 6}, 36, 4{1, 4}} [(2, {2, 4}, 4); 4{1, 4}], [(2, {2, 6}, 6); 36],
[(3, {3, 6}, 6); 6{1, 6}], [(4, {1, 4}, 1); 1{1, 6}],
[(4, {4, 6}, 6); 16], [(5, {1, 5}, 1); 1{1, 6}]

P �
4 (2)

P3 : {bc, c{c, d}} [(a, {a, b}, b); bc], [(a, {a, b}, b); b{b, c}],
[(b, {b, c}, c); c{c, d}], [(d, {c, d}, c); c{b, c}],
[(d, {c, d}, c); bc]

P �
4 (2)

2K2 : {b{b, c}, c{c, d}} [(a, {a, b}, b); b{b, c}], [(a, {a, b}, b); b{b, c}],
[(b, {b, c}, c); c{c, d}], [(d, {c, d}, c); c{b, c}],
[(d, {c, d}, c); bc]

H�(2)

K2(2) : {4{4, 6}, 4{4, 6}} [(1, {1, 4}, 4); 4{4, 6}], [(2, {2, 4}, 4); 4{4, 6}],
[(2, {2, 4}, 4); 4{4, 6}], [(2, {2, 6}, 6); 6{4, 6}],
[(2, {2, 6}, 6); 46], [(3, {3, 6}, 6); 6{1, 6}],
[(3, {3, 6}, 6); 6{1, 6}], [(4, {1, 4}, 1); 16],
[(4, {4, 6}, 6); 16], [(5, {1, 5}, 1); 1{1, 6}],
[(5, {1, 5}, 1); 1{1, 6}]
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P �
4 (3)

K2 : {cd} [(a, {a, b}, b); bc], [(a, {a, b}, b); b{b, c}],
[(a, {a, b}, b); b{b, c}], [(b, {b, c}, c); cd],
[(d, {c, d}, c); c{b, c}], [(d, {c, d}, c); c{b, c}],
[(d, {c, d}, c); bc]

M�(3)

K3 : {d{d, e}, de, e{d, e}} [(a, {a, b}, b); b{b, c}], [(a, {a, b}, b); b{b, c}],
[(a, {a, b}, b); bc], [(b, {b, c}, c); c{c, d}],
[(d, {c, d}, c); c{b, c}], [(e, {d, e}, d); d{c, d}],
[(e, {d, e}, d); d{c, d}], [(e, {d, e}, d); cd]
[(e, {d, e}, d); cd], [(f, {c, f}, c); c{b, c}],
[(f, {c, f}, c); c{c, d}], [(f, {c, f}, c); bc]

M�(3)

P4 : {ab, bc, c{b, c}} [(a, {a, b}, b); b{b, c}], [(a, {a, b}, b); bc],
[(a, {a, b}, b); bc], [(b, {b, c}, c); c{c, d}],
[(c, {b, c}, b); ab], [(d, {c, d}, c); c{b, c}],
[(e, {d, e}, d); d{c, d}], [(e, {d, e}, d); d{c, d}],
[(e, {d, e}, d); cd], [(f, {c, f}, c); c{b, c}],
[(f, {c, f}, c); c{c, d}], [(f, {c, f}, c); cd]

M�(3)

P3 ∪K2 : {b{b, c}, cd, c{c, d}} [(a, {a, b}, b); b{b, c}], [(a, {a, b}, b); b{b, c}],
[(a, {a, b}, b); b{b, c}], [(b, {b, c}, c); c{c, d}],
[(d, {c, d}, c); c{b, c}], [(d, {c, d}, c); c{b, c}],
[(e, {d, e}, d); cd], [(e, {d, e}, d); cd],
[(e, {d, e}, d); d{c, d}], [(f, {c, f}, c); bc],
[(f, {c, f}, c); bc], [(f, {c, f}, c); c{c, d}]

M�(3)

P ′ : {bc, bc, c{b, c}} [(a, {a, b}, b); b{b, c}], [(a, {a, b}, b); bc],
[(a, {a, b}, b); bc], [(b, {b, c}, c); c{c, d}],
[(b, {b, c}, c); c{c, d}], [(d, {c, d}, c); c{b, c}],
[(e, {d, e}, d); d{c, d}], [(e, {d, e}, d); d{c, d}],
[(e, {d, e}, d); cd], [(f, {c, f}, c); bc],
[(f, {c, f}, c); cd], [(f, {c, f}, c); c{b, c}]
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M�(3)

K2 ∪K2(2) : {b{b, c}, cd, cd} [(a, {a, b}, b); b{b, c}], [(a, {a, b}, b); b{b, c}],
[(a, {a, b}, b); b{b, c}], [(b, {b, c}, c); cd],
[(d, {c, d}, c); bc], [(d, {c, d}, c); bc],
[(e, {d, e}, d); cd], [(e, {d, e}, d); cd],
[(e, {d, e}, d); d{c, d}], [(f, {c, f}, c); c{b, c}],
[(f, {c, f}, c); c{b, c}], [(f, {c, f}, c); c{c, d}]

M�(3)

3K2 : {b{a, b}, cf, d{c, d}} [(a, {a, b}, b); b{b, c}], [(a, {a, b}, b); b{b, c}],
[(a, {a, b}, b); bc], [(c, {b, c}, b); b{a, b}],
[(d, {c, d}, c); c{b, c}], [(d, {c, d}, c); cf ],
[(e, {d, e}, d); d{c, d}], [(e, {d, e}, d); cd],
[(e, {d, e}, d); d{c, d}], [(f, {c, f}, c); bc],
[(f, {c, f}, c); c{c, d}], [(f, {c, f}, c); c{b, c}]

M�(3)

K2(3) : {bc, bc, bc} [(a, {a, b}, b); b{b, c}], [(a, {a, b}, b); bc],
[(a, {a, b}, b); bc], [(b, {b, c}, c); c{c, d}],
[(b, {b, c}, c); c{c, d}], [(d, {c, d}, c); bc],
[(e, {d, e}, d); d{c, d}], [(e, {d, e}, d); d{c, d}],
[(e, {d, e}, d); cd], [(f, {c, f}, c); bc],
[(f, {c, f}, c); cd], [(f, {c, f}, c); c{b, c}]

M�(3)

K1,3 : {d{d, e}, de, cd} [(a, {a, b}, b); b{b, c}], [(a, {a, b}, b); b{b, c}],
[(a, {a, b}, b); bc], [(b, {b, c}, c); c{c, d}],
[(c, {c, d}, d); de], [(c, {c, d}, d); d{d, e}],
[(e, {d, e}, d); cd], [(e, {d, e}, d); d{c, d}]
[(e, {d, e}, d); cd], [(f, {c, f}, c); c{b, c}],
[(f, {c, f}, c); c{b, c}], [(f, {c, f}, c); bc]

The graphs M and H are as in Figures 5 and 7.
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