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Abstract

Packings and coverings of complete graphs and complete multipartite
graphs have been extensively studied. In this paper, the study of packings
and coverings of line graphs of complete graphs is initiated. The graph
with vertex set {a,b,c,d} and edge set {ab,bc,ca,cd} is called a kite.
In this paper, maximum kite-packings and minimum kite-coverings of
L(K,)(X), that is, the A-fold line graph of the complete graph K,,, with
every possible leave and padding are obtained. In particular, it is shown
that for n > 4, the graph L(K,) has a kite-decomposition if and only if
n=0 (mod 2) orn =1 (mod 8).

1 Introduction

Throughout the paper, we consider only finite graphs without loops. Let V(G)
and E(G) denote the vertex set and edge set of a graph G, respectively. The path
(respectively, cycle) on k vertices is denoted by Py (respectively, C). A cycle of
length 3 is called a triangle. Let nG denote n vertex-disjoint copies of G. The
complete graph on n vertices is denoted by K, and the complete bipartite graph
with bipartition (X,Y), where |X| = m and |Y| = n, is denoted by K,,,. The
graph H; U Hy denotes the disjoint union of the graphs H; and H,. The graph G()\)
is obtained by replacing each edge of G' by A parallel edges. For disjoint subsets
A and B of the vertex set V(G) of G, let E(A,B) = {e = ab € E(G)la € A
and b € B}. The graph with vertex set {a,b,c,d} and edge set {ab, be, ca, cd} is
called a kite and it is denoted by [(a,b,c); cd]; see Figure 1. We denote a kite by
K. A graph G is said to be Hy, Hs, ..., Hi-decomposable if the edge set of G can
be partitioned into Ej, Es,..., Ey such that, for each i, (E;) ~ H;, where (E;)
denotes the subgraph induced by E;; we denote this by {Hy, Ha, ..., Hi} | G. If each
(E;) ~ H, then we say that G has an H-decomposition. In this case, we write
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H|G. If H = K then we say that G has a kite-decomposition. By an {H®, HY, H]}-
decomposition of a graph G, we mean a decomposition of G into o copies of Hy,
B copies of Hy and v copies of Hjs, where «, 3, v are non-negative integers and

al E(Hy)| + BIE(Hz)| + 7| E(Hs)| = [E(G)].
The line graph of a graph G, denoted by L(G), is the graph with V(L(G)) = E(G)

and eje; € E(L(G)) if and only if the edges e; and ey are incident at a common
vertex of G. Let Pg(t) be the set of all k-element subsets of the t element set
{1,2,...,t}. For a set S with |S| > 2, P5(S) denotes all 2-clement subsets of S. Let
V(K,) ={1,2,...,n}; then V(L(K,)(\)) = P2({1, 2, ..., n}) and |E(L(K,)(\))| =
An(n ;)(n 2)'

A packing of the graph G with kite K is a triple (V, E, L), where V' is the vertex
set of G, E is a set of edge-disjoint kites of GG, and L is the set of edges of G not
belonging to any of the kites of E. The collection of edges L is the leave. If |E| is as
large as possible, or equivalently if |L| is as small as possible, then (V| E, L) is called
a mazimum packing of G with kites. A covering of the graph G with kite K is a
triple (V, E, P), where V' is the vertex set of GG, P is a subset of the edge set of G(A),
and F is a set of edge-disjoint kites which partitions the union of P and the edge set
of G. The collection of edges P is called the padding. If |P| is as small as possible,
then (V, E, P) is called a minimum covering of G with kites. See [15] for definitions.

a

Figure 1: The graph kite, K = [(a, b, ¢); cd].

For brevity, we focus only on the literature related to decompositions of graphs
into kites. Bermond and Schénheim [2] proved the existence of a kite-decomposition
of K,. Roditty [18] obtained a maximum packing of K, with kites. Kii¢iikgif¢i and
Milici [14] obtained a complete solution for the decomposition of K,(\) into kites
and 4-cycles. Hu et al. [11] proved the existence of a maximum kite-packing of the
complete m-partite graph in which each partite set has n vertices, with every possible
leave. Tamil Elakkiya and Muthusamy [21] obtained a gregarious kite-decomposition
of K,, x K,,, where x denotes the tensor product of graphs. The kite decompositions
of certain graphs are considered in [4, 16, 17]. Maximum packings of K,, with graphs
Cy, Cs, Cg, K4, the graphs having four or fewer vertices, certain graphs on five vertices
and the 3-cube are studied in [1, 3, 13, 18, 19, 20, 23]. Hamilton cycle decompositions,
4-cycle decompositions, 2°-cycle decompositions, ¢ > 2, and 6-cycle decompositions
of L(K,), the line graph of the complete graph K,,, have been studied in [5, 6, 7,
9, 10, 22]. Very recently, Ganesamurthy et al. [8] obtained a characterization for
the existence of a {C¥%, Pf, B7}-decomposition of L(K,), where B is the bowtie,
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that is, the graph with two triangles having exactly one common vertex. In the
same paper, they also proved the existence of a {C§, K 16 3 }-decomposition of L(K,),
n > 4. In this paper, complete solutions to the maximum kite-packing and minimum
kite-covering of L(K,) are given.

To state the main Theorems 1.1 and 1.3 we define a graph P’. Let P’ be the
multigraph on three vertices a, b, ¢ and three edges ab, ab, bc.

We prove the following results:

Theorem 1.1. A mazimum K-packing of L(K,)(\), the \-fold line graph of K,
with all possible leaves exist. The leaves are given in the following table:

A=a (mod4) | n>4 and Possible leaves in L(K,)(X)
n="b (mod 8)
a=0 n>4 ]
ae€{l,2,3} |nevenorb=1]0
K3, Py, Ky 3,
b=3 3K,, Ps UKy, P,
a=1 K2UK2(2)7K2(3)
=5 Py, 2K,, Ko (2)
b="17 K,
=2 bE {3,7) Py, 2Ky, Ka(2)
b=5 [
b=3 K,
b=5 P53, 2K, K5(2)
a=3 K37P4,K1,3,
b=7 3Ky, Py U Ky, P,
K U Ky(2), Ka(3)

Corollary 1.2. For n > 4, the graph L(K,), the line graph of K,, has a kite-
decomposition if and only if n =0 (mod 2) orn =1 (mod 8).

Theorem 1.3. A mazimum K -covering of L(K,)()\) with all possible paddings exist.
The paddings are given in the following table:

A=a (mod4) | n>4 and Possible paddings in L(K,)(\)
n=">b (mod 8)
a=0 n>4 1]
a€{l,2,3} |nevenorb=1][0
b=3 K2
b=5 Py, 2K, Ka(2)
a=1 K3, Py, K13,
b=17 3Ky, Py U Ko, P,
Ko U Ks(2), Ka(3)
a=2 be {3,7) Py, 2Ky, K»(2)
b=5 [
K3, Py, Ky 3,
b=3 3Ky, Py U Ko, P,
a=3 KZUK2(2)7K2(3)
b=5 Py, 2Ky, K5 (2)
b=7 K,
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2 Basic lemmas

In this section, we prove some lemmas which are required to prove the main result
of this paper. Throughout this paper, we assume that {1,2,...,n} is the vertex set
of K,,.

Lemma 2.1. The graph L(K4) has a K-decomposition.

Proof. Let V(L(K,)) = Pa2(4). A K-decomposition of L(K,) is given here:

[({1,2},{2,3}, {1, 3}); {1, 3}{1. 4}], [({2,4},{2, 3}, {3,4}); {3,4:{1. 3}] and
[({274}7{172}7{174})3{174}{374}]' O

Observation 2.1. For a graph G, S1(G) denotes the graph that arises out of the
subdivision of each edge of G exactly once; S1(G) is the first subdivision graph of G.
Let G* be the graph obtained from G by adding to each edge e = uv of G a new
vertex {u, v} such that the vertex {u, v} is adjacent to both the vertices u and v,
and {u, v} is a vertex of degree two in G*; see Figure 2. If we delete all the edges of
G in G*, then the resulting graph is isomorphic to S;(G), the first subdivision graph
of G and hence G* = G & S,(G).

{(I,C b,C}

O {a,*b}
3 03

Figure 2: The graphs C5 and C3.

Observation 2.2. Let V(L(Kp+1)) = P2({1,2,...,n+ 1}). We partition the ver-
tex set of L(K, 1) into two sets A; and Ay, where V(A;) = P2({1,2,...,n}) and
V(Ay) = U {i,n + 1}. The subgraph of L(K, ;) induced by A; (respectively,
Ay) is isomorphic to L(K,,) (respectively, K,,). Clearly, E(Ay, Ay), in L(K,41), is
{{i,jHi,n + 1}, {4, j}{y,n + 1}}, 1 < i < j < n; note that each 2-element subset
represents a vertex in the line graph. Then L(K, 1) = (A1) ® (As) ® (E(A1, Ay)) =
L(K,) ® K}; see Observation 2.1.

Let T' denote the tree on five vertices {a,b,c,d, e} with edge set {ab, be, cd, be};
we denote this T by [a, b, ¢, d; be]; see Figure 3. We use this T at many places in the
later part of this paper.

Lemma 2.2. If G admits a T-decomposition, then G* admits a K -decomposition.

Proof. Let the vertices of T' be {a,b,c,d,e}. Since G has a T-decomposition, G* =
T*aT*®---dT*. A K-decomposition of T™* is given here:
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a (&
b
&
d
The tree T" = [a, b, ¢, d; be]. T

Figure 3: The graphs 7" and 7™ are shown above.

[(a, {a, b}, b); be], [(e,{b, e}, b); b{b, c}] and [(d, {c, d}, ¢); c{b, c}].

Lemma 2.3. The graph K] admits a K-decomposition.

Proof. By Lemma 2.2, it suffices to prove that K, admits a T-decomposition. Let
V(Kys) = X UY, where X = {zy, 20, 23,24} and Y = {y1,90,...,96}. A T-
decomposition of Ky is [y1, 21, Y3, ¥3; T1y2]s [Ya, 21, Ys, T35 T1Ys], [Ya, T3, Y1, 25 23y2],
[Ya, T2, Yo, T35 T2ys], (Y1, Tas Yo, Ta; Taye] and [ys, T4, Y3, Ta; Taya). [

Lemma 2.4. For all k > 1, each of the graphs Kjg., K§g, and Kiyg;. admits a
K -decomposition.

Proof. By Lemma 2.2, it suffices to show that the graphs Kygr, Kggr and Kig g,
k > 1, admit T-decompositions.

(1) Clearly, Kygr = Kya® Kys4 @B Kyq. Let V(Ky4) = X UY, where X =

2k—times

{xla T2, T3, .%'4} and Y = {yla Y2, Ys, y4} Let p = (xla .%'2‘, r3, x4)(y1, Y2, Y3, y4) be a
permutation on V(Ky4). A T-decomposition of K44 is p'[y1, Z1, Yo, T4; T1Y4], Where

Py, 21, Y2, a3 21y4] = [Pi(yl)api(%)aPi(y2)>Pi($4)§Pi(xl);oi(?ﬂ)]a 0<2<3.
(i1) Clearly, Kgsr = Kos @ Kps @ -+ @ Kgg, where X = {z1,29,...,76} and ¥ =

NV
k—times

{y1. 2, ..., ys} is the bipartition of Kgs. Let p=(x1,22...,26)(y1, Y2, - - -, Ys) (y7) (ys)
be a permutation on V(Ksg). A T-decomposition of Kgg is p'|y7, T1, Y2, Te; T171] and

Pi[3/87$6,y4,9€1;336y5], where 0 <7 < 5.

(t7i) Clearly, the graph Kijggr = Kios ® Kios @ -+ P® Kips. We now produce a

k—times
T-decomposition of Kjgg. The graph Kg ¢ is the union of four edge-disjoint copies
of Ky5. A T-decomposition of K5 is described here, where we assume that the
bipartition (X,Y) of K45 is X = {1, 29, 23,24} and Y = {y1, Y2, Y3, Y, Ys }
(Y1, 01, Y3, Ta; 1Y)y [Yas T2, Y1, Ta; Tayol, Y1, T3, Y2, Ta3 T3Ys], [Ys, Ta, Ya, T35 Yae] and
[Ya, 21, Y5, T2; Y53 0
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Lemma 2.5. For each L € {P3,2K5}, there exists a mazimum K-packing of K}
with leave L.

Proof. Let V(K,) ={1,2,3,4}. A K-packing of K} with leave Py is [(1,{1,3},3); 34],
[(1,{1,4},4);4{3,4}], [(2,{2,3},3);3{3,4}], [(4,{2,4},2);21] and the leave is
{1{1,2},{1, 2}2}.

A K-packing of K} with leave 2K, is [(1,{1,4},4);4{3,4}], [(3,{1,3},1);12],
[(2,{2,4},4);43], [(3,{2,3},2);2{1,2}] and the leave is {3{3,4}, 1{1,2}}. O

Lemma 2.6. The graph Py has a mazimum K-packing with leave K.

Proof. Let V(Py,) = {a,b,c,d}. A K-packing of P; with leave K, is the following:
[(a,{a,b},b);b{b,c}], [(d,{c,d},c); bc] and the leave is c{b, c}.

{a,b {b,c} {cd}

a b c d
Figure 4: The graph Pj.

Lemma 2.7. The graph K§ has a mazximum K-packing with leave Ks.

Proof. Let V(Kg) = {1,2,...,6}. A T-packing of Kg with leave P is [1,2, 3, 4;25],
[4,5,3,1;56], [4,6,1,5;63] and the leave is {14,42,26}. Hence the graph K} has a
T*-packing with leave P;. By Lemma 2.2, the graph 7™ has a K-decomposition.
Thus the graph K§ has a K-packing with leave K5, because P} can be decomposed
into two copies of the kite K and one copy of K5, by Lemma 2.6. O

Let M be the graph with vertex set {a, b, ¢,d, e, f} and edge set {ab, bc, cd, de, cf}.
We denote M by [a, b, c,d, e;cf]; see Figure 5.

Lemma 2.8. For each L € {Py, K\3}, there exists a mazimum K-packing of M*
with leave L.

Proof. A K-packing of M* with leave Py is [(e, {d, e}, d);dc], [(a,{a,b},b); b{b, c}|,
[(f, {c, f},¢);c{b, c}], and the leave is {bc, c{c,d},{c,d}d}. A K-packing of M* with
leave K3 is [(a, {a,b},b);b{b,c}], [(f.{c, [}.c);c{c,d}], [(e,{d, e}, d);d{c,d}], and
the leave is {cb, c{b, c}, cd}.

U

Lemma 2.9. For each L € {Kj3, Py, K1 3,3K5, P3 U Ky}, there exists a mazimum
K-packing of K7, with leave L.
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{a,b} {b,c} {c,d} {d, e}

S
<
y O
S
®

Figure 5: The graphs M and M™.

Proof. In this lemma, for convenience we assume that V(Kyg) = {a1,as, ...,a0}-

(1) A K-packing of K7, with leave K3 is obtained through a T-packing of Kj,. A
T-packing of Ky with leave K5 is

[al,aQ,ag,a4;a2a5], [a1>a3,a5,a9;a3a6], [al,a5,a7,a3;a7a4],
[a17a67a57a4;a6a7]7 [a7,a9,a1,a4;a1a10], [a97a27a87a43a8a5]7
[GQ, Gg, 10, A5, a10a7]7 [a:«z, as, ag, a10; a8a7], [a7, ai, ag, aip; a8a6]7
[am, g, A4, G} a2a7], [alo, as, g, (4, @9%],

and the leave is the edge asa;9. Since K has a T-packing with leave Ky, K7, admits
a T™-packing with leave K3. By Lemma 2.2, the graph K7, has a K-packing with
leave K3; observe that K ~ K.

(17) A T-packing of K with leave M is

[a17a27a37a4;a2a5]7 [0/1,0,3,(15,(19;(130,6], [ah%,a?,a:«z;a?%],

[al, Qg, A5, A4; a6a7]7 [ag, A2, Ag, A4; a8a5]7 [0’27 ag, A10, A5; a10a7],

[a3,a8,a9,a10;a8a7], [a%al,alo,az;alag], [a%ag,%,as;%ada

[a7, A2, A4, A9, a4a1],
with leave {ajas, agayo, aipas, asag, ajpas . Hence the graph K7, admits a T*-packing
with leave M*. By Lemma 2.2, 7™ has a K-decomposition. Thus the graph K7, has
a K-packing with leave P;, because M™* has three copies of the kite K and one copy
of P,, by Lemma 2.8.

(17i) Next we describe a K-packing of K}, with leave K 3. From (ii) above, K},
has a T*-packing with leave M*. By Lemmas 2.2 and 2.8, the result follows.

(iv) A K-packing of K7, with leave 3K is obtained by taking a decomposition of
Kjy into K}, Kg and K74 Now apply Lemmas 2.5, 2.7 and 2.3 to the appropriate
graphs to get a desired K-packing with leave 3 K.

(v) A K-packing of K7, with leave P3 U K, is obtained by taking a decomposition
of Kj, into Kj, K§ and Kjg. Applying Lemmas 2.5, 2.7 and 2.3 to the appropriate
graphs, K7, has a K-packing with leave P53 U Kj. O

We use the following theorem in the proof of Lemma 2.11.

Theorem 2.10. [12] The graph K,, admits a T-decomposition if and only if n = 0
or 1 (mod 8).
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By Lemma 2.2 and Theorem 2.10, both the graphs K3, and Kg,_ ;, k¥ > 1, admit
K-decompositions.

Lemma 2.11. For all k > 1 and for each i € {0,2,4,6}, the graph K., admits a
mazximum K-packing with every possible leave. The possible leaves are given in the
table below:

Possible leaves

0

K3, Py, K 3,3K5, P U Ky
P37 2K2

K,

D = N O =

Proof. For i = 0, the graph Kg; has a T-decomposition by Theorem 2.10, and the
graph Kj, admits a K-decomposition by Lemma 2.2. For ¢ = 2, the graph K, =
K3, EBKg(k_l) @Kfo,s(k;—l)' By Theorem 2.10 and Lemma 2.4, the graphs Ké‘(k_l) and
K 1*0’8%_1) have K-decompositions, and the rest follows by Lemma 2.9. For ¢ = 4, the
graph Kg; , = Kj® K, & Kjg,. Now by Theorem 2.10, Lemmas 2.4 and 2.5, we get
a K-packing with leave P3 or 2K5. For i = 6, the graph K, 4 = K¢ @ K, © Kg g
Now applying Theorem 2.10, Lemmas 2.4 and 2.7 to the respective graphs, we get a
K-packing with leave K. O

3 Maximum packing of L(K,) with kites

Let G be the graph given in Figure 6. From the proof of Theorem 1.4 of [8], we have
the following lemma.

Lemma 3.1. [8] Forn = 2k, k > 3, the edge set of L(K,) can be partitioned into
(g) copies of L(Ky) and (g) copies of G, where G s isomorphic to the graph given
in Figure 6.

Lemma 3.2. The graph G, (given in Figure 6) has a K-decomposition.

Proof. A K-decomposition of G consists of the kites

[(ag, b2, ca); cabs),  [(as, c3,ba);baar], [(as, bs,c1);craql,
[(c2,b3,a1); arcq], [(c2,a,b1);b1c1],  [(c3,b2, a4); agby].
Lemma 3.3. If n > 4 is even, then the graph L(K,) has a K-decomposition.

Proof. Let n =2k, k > 2. The case k = 2 follows by Lemma 2.1. If £ > 3, then the
graph L(K,) = L(Ky) ® L(Ky) ®--- @ L(K,) DGO GE D --- DG, by Lemma 3.1.

(g)—times (g)ftimes
We obtain a K-decomposition of L(Ky) by applying Lemmas 2.1 and 3.2 to the
graphs L(K,) and G, respectively. O

Theorem 3.4. A mazimum K-packing of L(K,) with every possible leave is given
in the following table:
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Figure 6: The graph G.

n Possible leaves
n =0 (mod 2) or 1 (mod 8) [}
n_g(mOd 8) K37P47K1,373K27P2UK2
n =5 (mod 8) P; 2K,
n =7 (mod 8) K,

Proof. Case 1: n =2k, k > 2.
By Lemma 3.3, L(K,,) has a K-decomposition.

Case 2: n=2k+1, k> 2.

Then n = 1,3,5 or 7 (mod 8). Let n = 8k + 14, i € {1,3,5,7}. The graph
L(Kgkyi) = L(Kspti-1) ® K§,,;_1, by Observation 2.2. For each ¢ € {1,3,5,7},
applying Lemmas 3.3 and 2.11 to the graphs L(Kg4s-1) and K, ;_,, respectively,
we obtain K-packings with every possible leave. O

Proof of Corollary 1.2. The proof immediately follows from the above theorem.

4 Maximum packing of L(K,)(\) with kites

In this section, we prove the existence of a maximum kite-packing of L(K,)()),
A > 2, with every possible leave.

Lemma 4.1. The graph Kj(2) has a K-decomposition.

Proof. A K-decomposition of K}(2) is
[(2,{1,2},1);13], [(2,{2,3},3);3{1,3}], [(4,{2,4},2);2{2,3}],
[(3,{1,3},1);12], [(4,{2,4},2);2{1, 2}, [(4,{1,4},1); 1{1,3}], O
[(4,{3,4},3);32], [(4,{3,4},3);:3{2,3}], [(4{1,4},1);1{1,2}]

Lemma 4.2. For each L € {Ps,2K,, K5(2)}, there exists a mazimum K -packing of

each of the graphs Kj(3) and K}(5) with leave L.

Proof. (i) Clearly, the graph K;(3) = K; @ K;(2). By Lemmas 2.5 and 4.1, a
required K-packing of Kj(3) with leave P; or 2K, follows.
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A K-packing of K}(3) with leave K»(2) is

[(2,{1,2},1);13], [(1,{1,4},4);4{2,4}], [(2,{2,3},3);3{1,3}],
[(3,{1,3},1);12], [(3,{2,3},2);2{2,4}], [(3,{1,3},1); 1{1,2}],
[(3,{3,4},4);42], [(4,{2,4},2);2{2,3}], [(4,{3,4},3);3{2,3}],
[(4,{3,4},3);32), [(4,{1,4},1); 1{1,3}], [(4,{1,4},1);1{1,2}],
[(4,{2,4},2);21].

and the leave is {2{1,2},2{1, 2}}.

(17) A K-packing of K} (5) with leave L € {Ps,2K5, K5(2)} follows by (i) above and
Lemma 4.1, since K;(5) = K;(2) & K;(3). O

The following lemma is an easy observation.

Lemma 4.3. If H|G then H|G(X), for any A > 2. O

Lemma 4.4. The graphs K§(2), K§(3) and K{(5) have mazximum K -packings with
leave 2Ky, K 3 and Ky, respectively.

Proof. From the proof of Lemma 2.7, the graph K¢ = 11 & 15 & T5 & P, where
Ty = [1,2,3,4;25], Ty = [4,5,3,1;56], T3 = [4,6,1,5;63] and P, = [1,4,2,6]. Here
Ty, T, and T3 are isomorphic to 7', and P, is the path of length 3. Then K} =
Tr®TydT5y®Py. Now consider the graph K§ =Ty ®Ty ® H*, where H* =15 ® Py
see Figure 7.

{1,5} {1,6} {3,6}

Figure 7: The graphs H and H*.

(i) The graph Kg(2) =T7(2) ®T3(2) & H*(2). By Lemmas 2.2 and 4.3, the graphs
T7(2) and T5(2) have K-decompositions. A K-packing of H*(2) with leave 2K, is
[(1,{1,4},4);16], [(2,{2,4},4);4{1,4}], [(3,{3,6},6);6{1,6}],
[(2,{2,6},6);46], [(2,{2,6},6);6{4,6}], [(3,{3,6},6);6{1,6}],
[(2,{2,4},4); 14], [(5,{1,5},1); 1{1,6}], [(5,{1,5},1);1{1,6}],
[(4,{4,6},6); 16].
and the leave is {1{1,4},4{4,6}}.

(17) The graph K§(3) = T7(3) @ 13(3) @ H*(3). The graphs 77 (3) and T5(3) have
K-decompositions, by Lemmas 2.2 and 4.3.
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A K-packing of H*(3) with leave K 3 is
[(1, {1, 4}, 4);4{2,4}], [(1,{1,4},4);4{4,6}], [(1 4); 4
[(3,{3,6},6);6{1,6}], [(3,{3,6},6);6{1,6}, [(4 6); 6
[(3,{3,6},6); 6{1,6}], [(5,{1,5},1);1{1,6}], [(4,{2,4},2);2
[(5 ); ], [(4 6);6
); l 16 2);1

RIS S

);
);
[(4, {2,4},2);2{2,6} ) ,{1,5},1 1{1,6} ,
[(57 {17 5}7 1)3 1{17 6} ) [(67 {27 6}7 2 2{274} )
and the leave is {6{4,6},6{2,6},64}.

(7ii) Clearly, the graph Kg(5) = Kf & K§{(4) = K@ Ty (4) @ T3(4) & H*(4). By
Lemmas 2.2 and 4.3, the graphs T7(4) and T3(4) have K-decompositions, and by
Lemma 2.7 the graph K} has a K-packing with leave K3. A K-decomposition of
H*(4) is

[(1a{174}74)a4{274}]a [(2a{276}76>32{274}]7 [(1,{1,4},4);16],
[(1a{174}74>a4{274}]a [(2a{274}74>34{476}]7 [(17{174}74);24]7
[(27 {27 6}7 6)? 2{27 4}]a [(37 {37 6}7 6)3 6{17 6}]7 [(27 {27 6}7 6)3 24]7
[(2,{2,6},6);6{4,6}], [(3,{3,6},6);6{1,6}], [(2,{2,4}, 4);46],
[(3,{3,6},6);6{1,6}], [(5,{1,5},1);1{1,6}], [(4,{4,6},6);16],
[(3,{3,6},6);6{1,6}], [(5,{1,5},1);1{1,6}], [(4,{4,6},6);16],
[(5a{175}71>a1{176}]a [(5a{175}71>31{176}]7 [(47 {4a6}76)§16]'

O

Lemma 4.5. For each L € {Ps,2K,, K5(2)}, there exists a mazimum K -packing of
K§(2) with leave L.

Proof. (i) From the proof of Lemma 2.7, the graph K¢ = T@®T GT @ P,. The graph
K;(2) =T*2) & T*(2) & T*(2) ® P;(2). By Lemmas 2.2 and 4.3, the graph 7*(2)
has a K-decomposition. A K-packing of Pf(2) with leave Py when P, = [1,4,2, 6] is
[(1,{1,4},4);24], [(1,{1,4},4);4{2,4}], [(6,{2,6},2); 24], [(6,{2, 6}, 2); 2{2,4}], and
the leave is {2{2,4},{2,4}4}.

(77) A K-packing of K}(2) with leave 2K follows by Lemma 4.4.

(7ii) Since K has a K-packing with leave Ky, Kj(2) has a K-packing with leave
K5(2), by Lemma 2.7. O

Recall that P’ is the multigraph on three vertices a, b, ¢ and three edges ab, ab, be.
We use it often in the rest of the paper.

Lemma 4.6. For each L € {K3, Py, P;UK,, P'}, there ezists a mazimum K -packing
of Py(3) with leave L.

Proof. Let V(Py) ={a,b,c,d}.

(1) A K-packing of Py(3) with leave K3 is
[(a,{a, b}, );bc], [(a,{a, b}, b);b{b,c}t], [(a,{a,b},b);b{b, c}],
[(d, {e,d},c);bel, [(d,{e,d}, c);e{b,c}], [(d,{e,d},c);c{b, c}]
and the leave is {{b, c}c, cb,b{b, c}}.
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(1) A K-packing of P;(3) with leave P, is
[(a,{a,b},b);bc], [(d,{c,d}, c); b, [(a, {a, b}, b); b{b, c}],
[(b,{b, ¢} e)sed], [(a,{a, b}, 0);0{b, c}t], [(d, {c,d}, c); c{b, c}]
and the leave is {{b, c}c, c{c, d},{c, d}d}.
(7ii) A K-packing of P;(3) with leave P; U Kj is
[(a,{a,b},b); bc], [(a,{a,b},b); bc], [(a, {a, b}, b); b{b, c}],
[(b,{b ¢} 0);c{e,d}], [(d,{e,d}, c);efb, ct], [(d, {c, d}, c);e{b, c}]
and the leave is {b{b, ¢}, cd,d{c,d}}.

(iv) A K-packing of Py(3) with leave P’ is

[(av {a7 b}a b)§ bC], [(av {a7 b}a b)§ bc]a [(a7 {av b}a b); b{bv C}]a
[(da {Ca d}7 C>§ bc]a [(da {Ca d}a C>§ C{ba C}]a [(d7 {Ca d}a 0)3 C{ba C}]
and the leave is {b{b, c}, b{b, c}, {b, c}c}. O

Lemma 4.7. For each L € {Kg, P4, K173, 3K2, P3 UKQ, P,, KQ UKQ(Z), K2(3)}, there
exists a mazimum K-packing of K§(3) with leave L.

Proof. (i) A K-packing of K (3) with leave K3, Py, PsU K, or P’ is described below.

Since the graph K¢ = T ® T & T @& P, (see the proof of Lemma 2.7), the graph
K;(3) = T*(3) & T*(3) ® T*(3) ® P;(3). By Lemmas 2.2, 4.3 and 4.6, the graph
K{(3) has a K-packing with leave L € {K3, Py, P3 U Ky, P'}.

(27) The graph KF(3) = K§ & K§(2). For each L € {Ks U K5(2),3K,}, the graph
K{(3) has a K-packing with leave L, by Lemmas 2.7 and 4.5.
)

: 5 3
(14i) Since K has a K-packing with leave K5, K§(3) has a K-packing with leave
K5(3), by Lemma 2.7.

(
(iv) A K-packing of K§(3) with leave K 3 follows by Lemma 4.4. O

Lemma 4.8. For each L € {P3,2K5, K5(2)}, there exists a maximum K-packing of
K3,(2) with leave L.

Proof. Clearly, K3((2) = Kj(2) ® K§(2) ® Kj4(2). By Lemmas 2.3, 4.1 and 4.3,
the graphs Kj(2) and Kj4(2) have K-decompositions. Thus a required K-packing
follows by Lemma 4.5. O

Recall that the graph M = [a, b, ¢, d, e; cf]; see Figure 5.
Lemma 4.9. The graph M*(3) has a maximum K-packing with leave K.

Proof. A K-packing of M*(3) with leave K3 is
(a,{a, b}, 0);{b,c}], [(a,{a,b}, b;; bel,  [(a,{a,b},0);b{b, c}],

[ [

[(0,{b, c},c);c{e,d}], [(c,{c.d},d);de], [(e,{d, e}, d);d{c,d}],
[(f7 {Ca f}v 6)3 C{ba C}]a [(fa {C f} )a bc]a [(Ca {Ca d}a d>§ d{d7 6}],
[(f{e, [} e)sefb e}, (e, {d, e}, d); cd]
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and the leave is e{d, e}. O

Lemma 4.10. For each L € {P', Ky U K5(2), K5(3)}, there exists a mazimum K-
packing of M*(5) with leave L.

Proof. (i) A K-packing of M*(5) with leave P’ is

(a,{a,0},0);bc], [(a,{a,b},0);0{b,c}],  [(e,{d, e}, d); cd],
(a,{a,b},b);bc], [(a,{a,b},0);b{b, c}], [(b, {b, ¢}, ¢); efe, d}),

(b {b,c}, c)sed],  [(d{e,d}, c);eib,c}],  [(e;{d, e}, d);d{c, d}],
(fi{e, [} e)sbel [(e,{d; e}, d)sdie, d}], [(a,{a, b}, b); b{b, c}],

(fi{e, [}, e)sedl, (e, {d, e}, d);d{e, d}], [(e,{d, e}, d); d{c,d}],
(7. ge. fhoc)sedl, [ {e fhoiefe.d)), [(F{e.T).0)

and the leave is {{b, c}c, {b, c}e, c{c,d}}.

[
[
[
[
[
[ c{e, dj]

(1) A K-packing of M*(5) with leave Ky U K»(2) is

[(a,{a,b},b);bc],  [(a,{a,b},0);6{b,c}], [(f,{c, [}, c);bd],

[(d,{c,d}, c);bc, [(a,{a,b},0);6{b,c}], [(b,{b,c},c); c{e, d}],
(e, {c,d}, d); de], [(c,{c,d},d);d{d,e}], [(a,{a,b},b);b{b,c}],
(e, {d, e}, d); cd], [(e,{d, e}, d);d{c,d}], [(e,{d,e},d);d{c,d}],
(e, {d. e} d)sedl, [(F.{e.f}.0)ele )], [(a, {a,b),b): b, ).
(F{e.rVoorbe, [(FAerhoorelbell, [ fe fhe)iefb.c)]

and the leave is {{b, c}c, {b, c}c, {d, e}e}.
(1ii) A K-packing of M*(5) with leave K5(3) is

[(a,{a,b},b);bc],  [(a,{a,b},0);b{b,c}], [(f.{c, [}, c);ed],
[(d,{c,d},c);be], [(a,{a,b},0);b{b,c}], [(b,{b.c}, )i c{c,d}],
(e, {d, e}, d);cd], [(a,{a,b},b);b{b,c}], [(e,{d, e}, d);d{c,d}],
(e, {d, e}, d);cd], [(e,{d, e}, d); d{c,d}], [(d{c,d}, c); ce{b, e},
(£ {e.s}o0rbd, [(F{e.sYoorele )] (e fho)iele.d)]
[(f:{e. f1e)i0c), [(e,{d, e}, d);d{e, d}], [(a,{a,b},b); b{b, c}]
and the leave is {{b, c}c, {b, c}c, {b, c}c}. O

Lemma 4.11. The graph K},(3) has a mazimum K -packing with leave Ks.

Proof. Since the graph K}, has a T*-packing with leave M* (see the proof of
Lemma 2.9), the graph K7,(3) =T*(3) @ T*(3) @ --- @ T*(3) @ M*(3). The graph
K7,(3) has a K-packing with leave K, by applying Lemmas 2.2 and 4.3 to the graph
T*(3) and Lemma 4.9 to the graph M*(3). O

Lemma 4.12. For each L € {K3, Py, K 3,3K5, PsU Ky, P/, Ko UK5(2), Ko(3)} there
exists a mazimum K -packing of K7,(5) with leave L.

Proof. (i) The graph K7,(5) = K}, ® K7,(4)
= Ky © K1(4) ® Kg(4) © K74(4).
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From the proof of Lemma 4.4 (7i7) and Lemmas 4.1, 2.3 and 4.3, the graphs Kj(4),
Ki(4) and Kj(4) have K-decompositions. Now a K-packing of K3,(5) with leave
L € {K3, Py, K, 3,3K,, Py U K, } follows by Lemma 2.9.

(#7) From the proof of Lemma 2.9, the graph K7, has a T*-packing with leave M*
and hence the graph K7,(5) has a T*(5)-packing with leave M*(5). The required
K-packing with leave L € {P’, Ky U K5(2), K5(3)} follows by applying Lemmas 2.2
and 4.3 to the graph 7*(5) and Lemma 4.10 to the graph M*(5). O

Lemma 4.13. For each i € {2,6} and each L € {Ps,2K,, K5(2)}, there ezists a
mazimum K-packing of K§, ;(2), k > 1, with leave L.

Proof. Fori = 2, the graph K3 »(2) = K{,(2)0Kg;,_1)(2)8 K, g4,_1)(2). Now apply
Lemmas 2.11, 2.4 and 4.3 to the graphs K3, ,)(2) and K7, (2) and Lemma 4.8
to the graph K7,(2). For i = 6, the graph K§, ,¢(2) = K§(2) © K§(2) © K§g.(2).
Now apply Lemmas 2.11, 2.4 and 4.3 to the graphs K, (2) and K, (2) and Lemma
4.5 to the graph K{(2). O

Lemma 4.14. For all k > 1 and each © € {2,4,6} the graph K, ,(3) admits a
maximum K-packing with every possible leave as described in the table below:

1 | Possible leaves

2 | Ky

4| P3,2K5, K5(2)

6 K37P4,K1_’3,3K2,P3UKQ,P/,KQUK2(2),K2(3)

Proof. For i = 2, the graph K, ,(3) = K{((3) ® Kg,_1)(3) ® K{jg(;,_1)(3). By Lem-
mas 2.11, 2.4 and 4.3, the graphs K3, (3) and Kfo,s(k—n(?’) have K-decompositions.
The graph K§, ,,(3) has a K-packing with leave K5, by Lemma 4.11. For i = 4, the
graph K3, ,(3) = K;(3) ® Kg,(3) © Kjg(3). Now by Lemmas 2.11, 2.4 and 4.3,
the graphs K3 (3) and Kjg, (3) have K-decompositions. The result now follows by
Lemma 4.2. For i = 6, the graph K ,4(3) = Kg(3) ® Kg,(3) ® K§g,(3). The result
follows by Lemmas 2.11, 2.4, 4.3 and 4.7. O

Lemma 4.15. For all k > 1 and each i € {2,4,6} the graph K, ,(5) admits a
mazximum K -packings with every possible leave as described in the table below:

1 | Possible leaves

2 K37P47K1y3,3K2,P3UKQ,PI,KQUK2(2),K2(3)
4 P3,2K2,K2<2)

6 | Ko

Proof. For i = 2, the graph K§ . ,(5) = Kio(5) ® Kg,_1)(5) @ Ky g(;,_1y(5). By Lem-
mas 2.11, 2.4 and 4.3, the graphs Ky, _,)(5) and K7 4_,(5) have K-decompositions
and, by Lemma 4.12 applied to K7,(5), give the required K-packings with every pos-
sible leave.

For i = 4, the graph Kfy(5) = Ki(5) @ K4u(5) © Kig(5). As above, by
Lemmas 2.11, 2.4 and 4.3, the graphs Kg (5) and Kj g, (5) have K-decompositions.
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Now apply Lemma 4.2 to Kj(5) to get a required K-packing with every possible
leave.

For i = 6, the graph Kg ,4(5) = Kg(5) ® K3, (5) © Kg,(5). By Lemmas 2.11,
2.4 and 4.3, the graphs K (5) and K¢, (5) have K-decompositions. The result now
follows by applying Lemma 4.4 to the graph Kf(5). O

We use the following theorem in the proof of the next lemma.

Theorem 4.16. [14] Let o and [ be non-negative integers. For any integern > 4 and
A > 1, the graph K,(\) has a {K®, C?}-decomposition if and only if 4(a+ ) = A5,
where K denotes the kite.

Lemma 4.17. For A > 2 and n > 4, the graph L(K,)(\) admits a K-decomposition
if and only if n is even orn =1 (mod 8) or A =0 (mod 4).

Proof. The proof of the necessity is obvious. We prove the sufficiency. If n = 0
(mod 2) or n = 1 (mod 8), the proof follows by Corollary 1.2 and Lemma 4.3. If
A =0 (mod 4), then X\ = 4k, for some k' > 1. The graph L(K,,)(4k") = K,—1(4k") &
K, 14K")®---® K,_1(4k"), as the star at each vertex of K, yields a K,,_1 in L(K,).
By Theorem 4.16, a K-decomposition of L(K,,)(\) exists. O

Lemma 4.18. For each A € {2,3,5}, the graph L(K,)(\) admits a mazimum K-
packing with every possible leave as described in the table below:

A | n=a (mod 8) | Possible leaves
2la=5 0
a < {3, 7} Pg, 2K2, K2(2)
a=3 KQ
3la=5 Pg, ZKQ, K2(2)
a="7T Kg,P4,K173,3K2,P3UK27
P, Ky U Ks(2), K(3)
a=3 K37P4,K1’3,3KQ,P3UK2,
5 P, Ky U Ky (2), K(3)
a=5 Py, 2K, K2 (2)
a="7 KQ

Proof. Case 1. A = 2.

If n = 3 or 7 (mod 8), then for each ¢ € {3,7}, the graph L(Kg)(2) =
L(Kgiti-1)(2) ® K§,,;_1(2), by Observation 2.2. We apply Lemmas 4.17 and 4.13 to
the graphs L(Kgi1i-1)(2) and K., 1(2) to get a required maximum K-packing. If
n =5 (mod 8), then the graph L(Kgri5)(2) = Ksp14(2) ® Kgrya(2) B - - Kspra(2),
as the star at each vertex of Kgi, 5 yields a Kggig in L(Kggi5). Now apply The-
orem 4.16 to the graph Kgii4(2).

Case 2. A = 3.

If n = 3,5 0or 7 (mod 8), then for each i € {3,5,7}, the graph L(Kg4;)(3) =
L(Ksti-1)(3) ® Kg,,;1(3), by Observation 2.2. We apply Lemmas 4.17 and 4.14 to
the graphs L(Kgi1i—1)(3) and Kg, ., 1(3) to get a maximum K-packing.
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Case 3. A =5.

If n = 3,5 o0r 7 (mod 8), then for each i € {3,5,7}, the graph L(Kg1;)(5) =
L(Kgi4i-1)(5) ® K§,.;_1(5), by Observation 2.2. We apply Lemmas 4.17 and 4.15
to the graphs L(Kgivi—1)(5) and K., ,(5), respectively, to obtain a maximum K-
packing with every possible leave. O

Proof of Theorem 1.1. Because of Theorem 3.4 and Lemmas 4.17 and 4.18,
the proof follows for A € {1,2,3,4,5}. Now we consider the proof for A > 6. Let
A = 4k + i, where i € {0,1,2,3} and &' > 1. For ¢ = 0, the graph L(K,)()\)
has a K-decomposition, by Lemma 4.17. For ¢ = 1, the graph L(K, )4k’ +1) =
L(K,)(5) ® L(K,,)(4k" —4). The result now follows by Lemmas 4.17 and 4.18. For
each i € {2,3}, the graph L(K,)(4k" + i) = L(K,)(i) ® L(K,)(4k"). The result now
follows by Lemmas 4.17 and 4.18. U

5 Minimum covering of L(K,)(\) with kites

In this section, we prove the existence of a minimum kite-covering of L(K,,)(\), A >
1, with every possible padding.

Lemma 5.1. For all k > 1 and for each i € {2,4,6}, the graph K3, ., admits a
manimum K -covering with every possible padding. The possible paddings are given
in the following table:

Possible paddings

K

P3,2K2,K2(2)

KS, P4, K1737 3K27 P3 U KQ,
P’ Ky U Ky(2), K3(3)

O = D] =

Proof. The graph K§ ., = Kj, @ K1y © Ky g—1y) Kappa = KJ © K, © Kjg,
and K o = K§ @© K, © Kggy,. By Theorem 2.10 and Lemmas 2.2 and 2.4, the
graphs Kgy_q), K, Kiygp_1), Kig, and Kgg, have K-decompositions. It suffices
to show that each of the graphs K}, K and K7, has a minimum K-covering with
every possible padding.

(1) A minimum K-covering of K} with padding P € {Ps,2K5, K5(2)} is given below:
A minimum K-covering of K} with padding Ps is
[(1,{1,4},4);4{3,4}], [(1,{1,3},3);34], [(1,{1,2},2);2{2,3}],
[(2,{2,3},3);3{3,4}], [(4,{2,4},2);12]
and the padding is {12,2{2,3}}.
A minimum K-covering of K} with padding 2K is
[(1,{1,4},4);4{3,4}], [(1,{1,3},3);23], [(2,{2,4},4);34],
[(2,{2,3},3);3{3,4}], [(2,{1,2},1); 14]
and the padding is {14,23}. A minimum K-covering of K} with padding K»(2) is
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[(1,{1,2},2);24], [(3,{2,3},2);2{2,4}], [(3,{3,4},4);4{2,4}],
[(3a{173}71>31{172}]a [(4a{174}71>31{172}]
and the padding is {1{1,2}, 1{1,2}}.

(#4) A minimum K-covering of K¥ with padding P € {Kj, Py, K13,3K5, P3 U
Ky, P, Ky U K5(2), Ko(3)} is described below:

The graph K can be decomposed in two different ways, namely, Ky = T* & T* @
T*®P;and Kg =TT "0 H*. If Ky =T*®T*®T* @ Py, then by Lemma 2.2 and
Appendix A, the paddings are P € {K3, Py, K13, P'}. If Kf =T* @ T* & H*, then
again by Lemma 2.2 and Appendix A, the paddings are P € {3K5, Py U Ky, Ky U
K>3(2), K2(3)}-

(74) A minimum K-covering of K}, with padding K> is given below.
From the proof of Lemma 2.9(ii), the graph Kiy = T* @ T* @ --- & T* ®M*. Thus

~
10—times

a required K-covering with padding K follows by Lemma 2.2 and Appendix A. O

Lemma 5.2. For all k > 1 and for each i € {2,6}, the graph K§,  ;(2) admits a

minimum K -covering with padding P, where P € {P3,2K5, K5(2)}.

Proof. The graph Kg ,,(2) = K{y(2) & K§,_1)(2) & Kjjg4,_1)(2) and K§ 6(2) =
K§(2) © Kg(2) ® K§gip(2). By Theorem 2.10 and Lemmas 2.2, 2.4 and 4.3, the
graphs Ky, ,)(2), K§(2), Kijg4_1)(2) and K¢g,(2) have K-decompositions. It is
enough to show that the graphs K(2) and K7,(2) have minimum K-coverings with
every possible padding.

() A minimum K-covering of K}(2) with padding P, 2K, or K3(2) is described
below:

The graph K%(2) can be decomposed in two different ways, namely, KZ(2) = T*(2) &
T*(2)@T*(2) @ P;(2) and Kg(2) = T*(2)@T*(2) @ H*(2). If K£(2) = T*(2)T*(2) &
T*(2)® P;(2), then by Lemmas 2.2, 4.3 and Appendix A, the paddings are P or 2K.
If K§(2) =T*(2)®T*(2) ® H*(2), then again by Lemmas 2.2, 4.3 and Appendix A,
the padding is K5(2).

(#7) A minimum K-covering of K7,(2) with padding P, where P € {P;,2K5, K5(2)}
is described here. The result follows by (i) above and Lemmas 4.1, 2.3 and 4.3, since
the graph K7(2) = K§(2) © Kj(2) ® Kj4(2). 0O

Lemma 5.3. For all k > 1 and for each i € {2,4,6}, the graph K}, ,(3) admits a
manimum K -covering with every possible padding. The possible paddings are given
in the table below:

1 | Possible paddings

2 K37P4,K17373K27P3UK2’
P’ Ky U Ky(2), K3(3)

4| P3,2K,, K5(2)

6| Ko
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Proof. The graph Kg, ,,(3) = Ky (3) @ K5, _1)(3) B KTy g1y (3), Kiyya(3) = Ki(3)®
K§.(3) © K g, (3) and K3, 4(3) = K§(3) © Kg,(3) ® K{g,.(3). By Theorem 2.10 and
Lemmas 2.2, 2.4 and 4.3, the graphs K3, ,,(3), Kg,(3), Kijgp_1)(3), Kig(3) and
K§ g;.(3) have K-decompositions. It is enough to show that each of the graphs K73 (3),
K¢(3) and K3,(3) has a minimum K-covering with every possible padding.

(7) By the proof of Lemmas 5.1 and 4.1, a K-covering of Kj(3) with padding P,
where P € {Ps,2K5, K5(2)}, follows as the graph Kj(3) = K} & Kj(2).

(71) A K-covering of Ky(3) with padding K5 follows by Lemmas 2.2, 4.3 and Ap-
pendix A, as the graph K} (3) =T*(3) @& T*(3) & T*(3) & P;(3).

(zii) Clearly, K{,(3) = T*3)®T*(3)®---dT*(3)®M~*(3), by the proof of

N J
-~

10—times

Lemma 2.9. Now a K-covering of K3,(3) with padding P, where P € {Kj, Py, K1 3,
3Ky, Ps3UK,, P', KoUK(2), K5(3)}, follows by Lemmas 2.2, 4.3 and Appendix A. O

Lemma 5.4. For each A € {1,2,3}, the graph L(K,)(\) admits a minimum K-
covering with every possible padding as given in the table below:

A n=a (mod 8) | Possible paddings
lor2or3|nevenora=1|0
a=3 K2
1 a=2>5 P3,2K2,K2(2)
a="17 }(3,F)4,[(173,31(2,P3U[(27
P’ Ky U K5(2), Ko(3)
2 a € {3, 7} P37 2K27 KQ(Q)
a=>5 [
a=3 Kg,P4,K1’3,3K27P3UK27
3 P’ Ky U K5(2), Ko(3)
a=>5 P372K2,K2(2)
a="17 K2

Proof. Let i € {3,5,7}. The graph L(Kgp+:i)(A) = L(Kspti-1)(A) ® K§, ;-1 (A), by
Observation 2.2. By Lemma 4.17, the graph L(Kgg4;—1)()A) has a K-decomposition.
For A = 1 and for each ¢ € {3,5,7}, apply Lemma 5.1 to the graph K}, | to
obtain a minimum K-covering of L(Kgg;). For A = 2 and for each i € {3, 7}, apply
Lemma 5.2 to the graph Kg, ., ,(2) to get a K-covering of L(Kgi;)(2). Now the
result follows by applying Lemma 5.3 to the graph K, , ,(3) for A = 3 and for each
i€ {3,571 O

Proof of Theorem 1.3. Because of Lemmas 4.17 and 5.4, we only consider the
proof for A > 5. Let A = 4k’ + 4, where ¢ € {0,1,2,3} and &’ > 1. For i = 0, the
graph L(K,)()\) has a K-decomposition, by Lemma 4.17. For i € {1,2, 3}, the graph
L(K,)(\) = L(K,)(4k' + i) = L(K,)(i) ® L(K,)(4k"). Now the result follows by
Lemmas 5.4 and 4.17.

We summarise our main theorems in the following:
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Theorem 5.5. Maximum kite-packings and minimum kite-coverings of L(K,)(\)
with every possible leave and padding exist. The leaves and paddings are described in

the following table:

A=a (mod4) | n>4 and Possible leaves Possible paddings
n=>b (mod 8) | in L(K,)(\) in L(K,)(X\)
a=0 n>4 0 0
a€{l,2,3} |nevenorb=110 0
K37 P47 K1,37
b:3 3[(2,P3U[(2,P,7 KQ
a=1 KQUK2(2),K2(3)
b=>5 P3,2K5, K5(2) P3,2K5, K»5(2)
K3) P47 K1,37
b:7 K2 3K2,P3UK2,PI,
Ky U Ky (2), Ko(3)
bE{3,7) Py, 2Ky, Ka(2) | Py, 2Ka, Ko(2)
a=2 b= [ 0
K37 P47 K1,37
b:3 K2 3K2,P3UK2,P/,
Ky U Ky (2), Ko(3)
a=3 b=5 P3,2K2,K2(2) P3,2K2,K2(2)
K37 P47 K1,37
b:7 3K2,P3UK2,P/, KQ
Ky U K5(2), K3(3)

Proof. The proof follows by Theorems 1.1 and 1.3.
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Appendix A: Minimum coverings of some graphs with kites

Graph | Padding Covering
P Ks :{cd,d{c,d},{c,d}c} [(a,{a,b},b); b{b, c}], [(d,{c,d},c); bel,
! (d{c,d}, c); c{b, c}]
o [ Pk ke e}y | [(a {a. 0}.0): b{b, ], [ . o) ofe. 1,
! (d,{c,d}, c); cfb, c}]
P P’ {be, be, b{a, b}} (a,{a,b},b);bc], [(c, {b, c}, b); b{a, b},
! [(d,{c,d}, c); be]
P Ky 5 : {ab,be,b{b,c}} [(a,{a,b},b); b{b c}l, [(e, {b, ¢}, b); ab),
! (d,{c,d}, c); be]
PR PR (a, {a. B} D): 0{b, I, 1@ (&, @, )bl
(e {ds e}, d): cd), [(f. {e. F}. c)s b c}]
PyU Ky @ {14,4{1,4},6{4,6}} | [(2,{2,4},4);4{1,4}],[(2,{2,6},6);6{4,6}],
H* ((3,{3,6},6);6{1,6}], [(4,{1,4},1); 16],
(5,{1,5},1); 1{1,6}], [(6, {4, 6},4); 14]
Ky U Ko(2) : {14,14,6{4,6}} | [(2,{2,4},4);14],](2,{2,6},6);6{4,6}],
H* ((3,{3,6},6);6{1,6}], [(4,{1,4},1); 16],
[(5,41,5}, 1) 1{L, 6}, (6, {4, 6}, 4): 14
K(3) : {46, 46, 46} [(1,{1, 4}, 4); 46, [(2, {2, 4}, 4); 46,
H* [(27{276}76)546}7[(?’? {376}76)§6{176}]7
(4,{4,6}.6): 16],[(5, {1,5}, 1); 1{1,6}]
3K, : {1{1,6},36,4{1,4}} (2,12, 4}, 4); 4{1,4}], [(2. {2, 6}, 6); 36,
H* [(3,{3,6},6);6{1,6}],[(4,{1,4},1); 1{1,6}]
(4,{4,6},6);16], [(5,{1,5},1); 1{1, 6}]
Py :{bc,c{c,d}} (a,{a,b},b);bcl, [(a,{a,b},); b{b, c}]
Py(2) [(b,{b,c}, c); { d}], [(d,{c, d}, c); e{b, c}]
(d {c, d}, )b
2Ky {b1b, o}, e, dIF (0, {a, b}, b): {6, ], [{@> {a, b}, ); b, ],
Py(2) [(b,{b,c}, c); C{C d}], [(d,{c, d}, c); e{b, c}],
[(d,{c,d}, c); be]
K3(2) - {4{4,6},4{4,6}} [(1,{1,4},4);4{4,6}], [(2,{2,4},4); 4{4, 6},
[(2,{2,4},4);4{4,6}], [(2, {2, 6},6);6{4, 6},
e (2.{2.6).6):40L. (3, 3.6}, 6:6{L. 6}
((3,{3,6},6); 6{1 6}], [(4,{1,4},1); 18],
((4,{4,6},6);16], [(5,{1,5},1); 1{1, 6}],
[(5,{1,5},1); 1{1, 6}]
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Ky : {cd} d, [(a, {a, b}, b); b{b, c}];
Eb (’}] [(b,{b, c},c); cd],

b, c}], [(d,{c, d}, c); ¢{b, c}],

{a,b},b
o o

Ry < (d{d. o}, de, o{d, ]} {a,5},0): 0{6, 1. [(a: {a, B}, B); b0, ,

d]. [(b, {b. ¢}, c): efe, Y

d, {c.d}, ) efb. )], [(e. {d. ¢}, d); dfc. d}],
{d,c}.d):d{c,d}], [(e, {d. e}, d); cd]
{d,e},d);cd), [(f,{e. }0)i efb, e},

Fode. o) ele d. [(F. {e. 3, 0): bl

); b

);

);

d,{c,d},c g ]

{a,0},0);
o);

M*(3)

©);
Py : {ab,be, c{b, c}} {a,b},b); b{b, c}],[(a,{a, b}, b); bc],
ey
M) {1 i) {dsehdy dic.dy),

fide [ e)sede, 3] [(f:{e, [}, ¢); ed]

©);
Py U Ky : {b{b,c},cd,c{c,d}} {a,b},b); b{b, c}], [(a, {a, b}, b); b{b, c}],

{a,b},0); b{b, c}], [(b, {b, c}, c): c{c, d}],
d,{c,d},c);c{b, c}],[(d, {c, d}, c); c{b, c},

[
|

M) ) (e, {d, e}, d); cd],
e
[

{d, e},
{d, e},

&.&

)i
); d{c dY. [ {e. f}c)sbe,
[(f:{c, [}, ¢)ie{e,d}]

fde f}e)ibe], c
{a,b},0); b{b, c}], [(a, {a, b}, b); bc],
{a,b},0); 0], [(b,{b, c}, c); e{c, d}],
{e.d}], [(d, {c,d}, ¢); {b, c}],
) [( 7{dve}7d);d{cv d}]v

P’ {be, be, c{b, c}}

. b, {b,c c
M(3) o D
d), 1(F, e F}. ) bl
AL {c

{d,e}, d);
fide, 1} e)sed], [(f. {e, [} 0); efb, e}

[(a,
[(a
[(
[(
[(a,
[(a,
[(
[(e,
[(e,
[(
[(a,
[(a,
¢
& Ads e}, d);ed], [(f {e, £}, 0); ¢{b, e},
[(a,
[(a,
[(
[(e,
[(e,
[(
[(a,
[(a,
[(B,
[(e
[(e,
It

125
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Ky U K5(2) : {b{b,c}, cd, cd} {a, b},
{a, b},
d,{c,d},
{d, e},

Z b{b, c}l, [(a, {a, b}, b); b{b, c}],
¥
{d,e},d
B
b

b{b, c}], [(b, {b, c}, ¢); ed],

o, [(d, {c, d}, ¢); be],

d}, [(e, {d, e}, d); cd],
d{e.d}). (£, e, £}, 0)s efb. ],
oAb, e} [(f, {e, [}, ¢); e, d}]

);

);
M (3) %
)
g)b{b sl [(a; {a, b}, b); b{b, c}],
°);
)i
)i
);
);
);

fife 1}
{a, b},

3Ky : {b{a,b},cf,d{c,d}}
{a,b},0);bc], [(c, {b, c}, b); b{a, b}],
efb, e} [(d {e d} c); cf
{d,e},d);d{c,d}],

@
(a.
(
(e,
e,
(
@

&d{ ). ]
M(3) (e, (e} s
(e, {d. e}.d): ale, Y], [(f. {c. f}.):be),
(e f) (
@
(a,
@
e,
e,
(
(
(
(
(
(e
(s

o)ic{e, d}], [(f, {e, [}, 0); e{b, c}]
K5(3) : {be, be, be} {a,b},b); b{b, c}], [(a, {a, b}, b); bc],
b0y el dy {[lédC}{ iy o
M(3) {d. e} d); dfe, d}), (e, {d. e}, d); d{e, ],
e, {d, e}, d);cd], [(f, {c, f},¢);be],
fv{() f}io)ied] [(f e, f},¢);e{b, c}]
K5 :{d{d, e}, de,cd} a,{a,b},b); b{b, c}], [(a,{a,b},b); b{b, c}],
L
M) e {d. e}y cd] (e, {d.c) d)sdle. d}]
Ad, e}, d);cd] [(f, {c, f},¢); e{b, c}],
fide f}0);edb, e}, [(f, {e, [}, ¢); be]
The graphs M and H are as in Figures 5 and 7.
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