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Abstract

A hypergraph is said to be properly 2-colorable if there exists a 2-coloring
of its vertices such that no hyperedge is monochromatic. On the other
hand, a hypergraph is called non-2-colorable if there exists at least one
monochromatic hyperedge in each of the possible 2-colorings of its vertex
set. Let m(n) denote the minimum number of hyperedges in a non-
2-colorable n-uniform hypergraph. Establishing the lower and upper
bounds on m(n) is a well-studied research direction over several decades.
In this paper, we present new constructions for non-2-colorable uniform
hypergraphs. These constructions improve the upper bounds for m(8),
m(13), m(14), m(16) and m(17). We also improve the lower bound for
m(5).
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1 Introduction

Hypergraphs are combinatorial structures that are generalizations of graphs. A hy-
pergraph consists of a finite set of elements called its vertex set and a hyperedge
set formed by some distinct subsets of its vertex set. A hypergraph H = (V,E)
with vertex set V is called n-uniform if each hyperedge in the hyperedge set E has
exactly n vertices in it. A 2-coloring of such a hypergraph H is an assignment of
one of the two colors red and blue to each of the vertices in V. We say a 2-coloring
of H to be proper if each of its hyperedges has red as well as blue vertices. H is
said to be non-2-colorable if no proper 2-coloring exists for it; otherwise, it is said to
satisfy Property B. For an integer n ≥ 1, let m(n) denote the minimum number of
hyperedges present in a non-2-colorable n-uniform hypergraph.

Establishing an upper bound on m(n) is a well-explored combinatorial problem.
Erdős [6] gave a non-constructive proof to establish the currently best known upper
bound m(n) = O(n22n). However, there is no known construction for a non-2-
colorable n-uniform hypergraph that matches this upper bound. Abbott and Moser
[2] constructed a non-2-colorable n-uniform hypergraph with O((

√
7+o(1))n) hyper-

edges. Gebauer [8] improved this result by constructing a non-2-colorable n-uniform
hypergraph with O(2(1+o(1))n) hyperedges. Even though this is the best construction
known for a non-2-colorable n-uniform hypergraph for large n, it is still asymptoti-
cally far from the above-mentioned non-constructive upper bound given by Erdős.

Finding upper bounds on m(n) for small values of n is also a well-studied problem
and several constructions have been given for establishing these. For example, it can
be easily seen that m(1) ≤ 1, m(2) ≤ 3 (the corresponding 2-uniform hypergraph is
the triangle graph) and m(3) ≤ 7 (the corresponding 3-uniform hypergraph is known
as the Fano plane [10], denoted by Hf in this paper). The previously-mentioned
construction of Abbott and Moser shows that m(4) ≤ 27, m(6) ≤ 147 and m(8) ≤
2187. Moreover, their construction also gives non-trivial upper bounds on m(n) for
n = 9, 10, 12, 14, 15 and 16. For n ≥ 3, Abbott and Hanson [1] gave a construction
using a non-2-colorable (n− 2)-uniform hypergraph to show that m(n) ≤ n ·m(n−
2) + 2n−1 +2n−2((n− 1) mod 2). Using the best known upper bounds on m(n− 2),
this recurrence relation establishes non-trivial upper bounds as well as improves such
bounds on m(n) for a few small values of n. For example, it shows that m(4) ≤ 24,
m(5) ≤ 51 and m(7) ≤ 421. Seymour [14] further improved the upper bound on
m(4) to m(4) ≤ 23 by constructing a non-2-colorable 4-uniform hypergraph with
23 hyperedges. In this paper, we denote this hypergraph by Hs. For even integers
n ≥ 4, Toft [15] generalized this construction using a non-2-colorable (n−2)-uniform
hypergraph to improve Abbott and Hanson’s result to m(n) ≤ n ·m(n− 2)+ 2n−1 +(

n
n/2

)
/2. In particular, this led to establishing an upper bound m(8) ≤ 1339. For a

given integer n ≥ 3 and a non-2-colorable (n − 2)-uniform hypergraph A, we refer
to Abbott–Hanson’s construction for odd n and Toft’s construction for even n as
Abbott–Hanson–Toft construction and denote the number of hyperedges in such a
hypergraph as mA(n). We describe this construction in Section 1.1.
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m(n) Corresponding construction/recurrence relation
m(1) = 1 Single vertex
m(2) = 3 Triangle graph
m(3) = 7 Fano plane [10]
m(4) = 23 [12], [14]
m(5) ≤ 51 m(5) ≤ 24 + 5m(3)
m(6) ≤ 147 m(6) ≤ m(2)m(3)2

m(7) ≤ 421 m(7) ≤ 26 + 7m(5)
m(8) ≤ 1269 [11]
m(9) ≤ 2401 m(9) ≤ m(3)4

m(10) ≤ 7803 m(10) ≤ m(2)m(5)2

m(11) ≤ 25449 m(11) ≤ 15 · 28 + 9m(9)
m(12) ≤ 55223 m(12) ≤ m(3)4m(4)
m(13) ≤ 297347 m(13) ≤ 17 · 210 + 11m(11)
m(14) ≤ 531723 m(14) ≤ m(2)m(7)2

m(15) ≤ 857157 m(15) ≤ m(3)5m(5)
m(16) ≤ 4831083 m(16) ≤ m(2)m(8)2

m(17) ≤ 13201419 m(17) ≤ 21 · 214 + 15m(15)

Table 1: The best known upper bounds on m(n) for small values of n [11]

It can be easily observed that m(n) ≤ mA(n) for any non-2-colorable (n − 2)-
uniform hypergraph A. In fact, we have already seen that the above-mentioned
upper bounds m(4) ≤ 23, m(5) ≤ 51, m(7) ≤ 421 and m(8) ≤ 1339 are obtained
by Abbott–Hanson–Toft constructions using the best known constructions for non-
2-colorable 2, 3, 5 and 6-uniform hypergraphs, respectively. A construction given by
Mathews et al. [11] improved the upper bound on m(8) to m(8) ≤ 1269. In addition,
they modified the Abbott–Hanson–Toft construction to improve the upper bounds
on m(n) for n = 11, 13 and 17. The currently best known upper bounds on m(n) for
n ≤ 17 are given in Table 1.

In the other direction, Erdős [6] showed the lower bound on m(n) to be m(n) =
Ω(2n), which was later improved by Beck [3] to m(n) = Ω(n1/3−o(1)2n). The currently
best known lower bound m(n) = Ω(

√
n

lnn
2n) was given by Radhakrishnan and Srini-

vasan [13]. A simpler proof for the same result has been given by Cherkashin and
Kozik [4]. Note that there is a significant asymptotic gap between the currently best
known lower and upper bounds on m(n). Even for small values of n, we are only
aware of a few lower bounds for m(n) that match the corresponding upper bounds.
It can be easily seen that m(1) ≥ 1, m(2) ≥ 3 and m(3) ≥ 7 and therefore m(1) = 1,
m(2) = 3 and m(3) = 7. Österg̊ard [12] showed that m(4) ≥ 23 and established
m(4) = 23 as a result. The exact values of m(n) are not yet known for n ≥ 5, even
though it can be easily observed that m(n + 1) ≥ m(n) for any n ≥ 1.
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1.1 Abbott-Hanson-Toft Construction

As mentioned above, Abbott-Hanson’s construction [1] for odd n along with Toft’s
construction [15] for even n is referred to as Abbott-Hanson-Toft construction. For
a given n ≥ 3, this construction is built using a non-2-colorable (n − 2)-uniform
hypergraph, which we call the core hypergraph and denote by H ′

c = (V ′
c , E

′
c). Let its

hyperedge set be E ′
c = {e1, e2, . . . , emc}.

Let A and B be two disjoint sets of vertices where A = {a1, a2, . . . , an} and
B = {b1, b2, . . . , bn}, each disjoint with V ′

c . For a given K ⊂ {1, 2, . . . , n}, we define
AK =

⋃
i∈K{ai}, BK =

⋃
i∈K{bi}, AK = A \ AK and BK = B \BK .

The construction of the non-2-colorable n-uniform hypergraph H = (V,E) is as
follows. The vertex set is V = V ′

c ∪ A ∪ B and the hyperedge set E consists of the
following hyperedges:

(i) ei ∪ {aj} ∪ {bj} for every pair i, j satisfying 1 ≤ i ≤ mc and 1 ≤ j ≤ n;

(ii) AK ∪BK for each K such that |K| is odd and 1 ≤ |K| ≤ �n/2	;
(iii) AK ∪BK for each K such that |K| is even and 2 ≤ |K| ≤ �n/2	;
(iv) A.

It is easy to observe that the number mH′
c
(n) of hyperedges in H is 2n−1 + nmc

for odd n and 2n−1 + nmc +
(

n
n/2

)
/2 for even n.

1.2 Our Contributions

In this paper, we give constructions that improve the best known upper bounds on
m(8), m(13), m(14), m(16) and m(17). We also establish a non-trivial lower bound
on m(5).

In Section 2, we provide a construction that improves the upper bounds for m(8),
m(14) and m(17).

Theorem 1.1. Consider an integer k satisfying 0 < k < n. Let w = �n/k	, x = n
mod k, y = �k/x	 and z = k mod x. (Note that y and z are defined if and only if
x > 0.)

(a) If x > 0 and z > 0, m(n) ≤ w ·m(n−k)m(k)+y ·m(k)wm(x)+
(
x+z−1

z

)
m(n−

k)m(x)y +
(
x+z−1

x

)
m(k)w.

(b) If x > 0 and z = 0, m(n) ≤ w·m(n−k)m(k)+y·m(k)wm(x)+m(n−k)m(x)y .

(c) If x = 0, m(n) ≤ w ·m(n− k)m(k) +m(k)w.

In Section 3, we give a construction to prove the following result that improves the
upper bounds for m(13) and m(16) by substituting Hf and Hs, respectively, for F .
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Theorem 1.2. Consider an integer k ≥ 2 and a non-2-colorable (k − 1)-uniform
hypergraph F . Then, m(3k+1) ≤ (m(k− 1)+ 2k−1)m(k+1)2+2mF (k+1)m(k)2 +
4m(k + 1)m(k)2.

In Section 4, we improve the currently best known lower bound m(5) ≥ 28.

Theorem 1.3. m(5) ≥ 29.

2 Multi-Core Construction

Consider an integer k satisfying 0 < k < n. We define w = �n/k	, x = n mod k, y =
�k/x	 and z = k mod x. As mentioned above, y and z are defined if and only if
x > 0. A multi-core construction makes use of a non-2-colorable (n − k)-uniform
hypergraph Hc = (Vc, Ec), a total of w identical non-2-colorable k-uniform hy-
pergraphs H1 = (V1, E1), . . . , Hw = (Vw, Ew) and a total of y identical non-2-
colorable x-uniform hypergraphs H ′

1 = (V ′
1 , E

′
1), . . . , H

′
y = (V ′

y , E
′
y). The vertex

sets of the hypergraphs Hc, H1, . . . , Hw, H
′
1, . . . , H

′
y are pairwise disjoint. Let us

denote Ec = {e1, e2, . . . , emc}, E1 = {e11, e12, . . . , e1mk
}, . . ., Ew = {ew1 , ew2 , . . . , ewmk

},
E ′

1 = {e′11 , e′12 , . . . , e′1mx
}, . . ., E ′

y = {e′y1 , e′y2 , . . . , e′ymx
}. Consider a vertex set A =

{a1, a2, . . . , ax+z−1}, disjoint with each of Vc, V1, . . . , Vw, V
′
1 , . . . , V

′
y . We define Ap as

the collection of all p-element subsets of the vertex set A. Let E = {j1∪ j2∪· · ·∪ jw :
(j1, j2, . . . , jw) ∈ E1 × E2 × · · · × Ew} and E ′ = {j′1 ∪ j′2 ∪ · · · ∪ j′y : (j′1, j

′
2, . . . , j

′
y) ∈

E ′
1 × E ′

2 × · · · ×E ′
y}.

We define the construction of a non-2-colorable n-uniform hypergraph H = (V,E)
as follows. The vertex set is V = Vc∪A∪V1∪· · ·∪Vw∪V ′

1∪· · ·∪V ′
y . The construction

of the hyperedges belonging to E depends on the values of x and z as follows.

Case 1. For x > 0 and z > 0, E contains the following hyperedges:

(i) ei ∪ elj for every triple i, j, l satisfying 1 ≤ i ≤ mc, 1 ≤ j ≤ mk and
1 ≤ l ≤ w;

(ii) e′ji ∪ e for every triple i, j, e satisfying 1 ≤ i ≤ mx, 1 ≤ j ≤ y and e ∈ E ;
(iii) ei ∪ e′ ∪S for every triple i, e, S satisfying 1 ≤ i ≤ mc, e

′ ∈ E ′ and S∈Az;

(iv) e ∪ S for every pair e, S satisfying e ∈ E and S ∈ Ax.

Case 2. For x > 0 and z = 0, E contains the following hyperedges:

(i) ei ∪ elj for every triple i, j, l satisfying 1 ≤ i ≤ mc, 1 ≤ j ≤ mk and
1 ≤ l ≤ w;

(ii) e′ji ∪ e for every triple i, j, e satisfying 1 ≤ i ≤ mx, 1 ≤ j ≤ y and e ∈ E ;
(iii) ei ∪ e′ for every pair i, e′ satisfying 1 ≤ i ≤ mc and e′ ∈ E ′.

Case 3. For x = 0, E contains the following hyperedges:
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(i) ei ∪ elj for every triple i, j, l satisfying 1 ≤ i ≤ mc, 1 ≤ j ≤ mk and
1 ≤ l ≤ w;

(ii) e for each e ∈ E .

The number of hyperedges in H is given by

|E| =

⎧⎪⎨
⎪⎩
wmcmk + ymx(mk)

w +
(
x+z−1

z

)
mc(mx)

y +
(
x+z−1

x

)
(mk)

w if x > 0, z > 0;

wmcmk + ymx(mk)
w +mc(mx)

y if x > 0, z = 0;

wmcmk + (mk)
w if x = 0.

Proof of Theorem 1.1. For the sake of contradiction, let us assume that χ is a
proper 2-coloring of H . Without loss of generality, let the hypergraph Hc contain
a red hyperedge in the coloring χ. The hyperedges formed in Step (i) in each of
the cases ensure that each hypergraph Hj contains a blue hyperedge for each j ∈
{1, . . . , w}.

Case 1. If x > 0 and z > 0, the hyperedges formed in Step (ii) ensure that each
hypergraph H ′

l contains a red hyperedge for each l ∈ {1, 2, . . . , y}. It can be
noted from the hyperedges generated in Step (iii) that there are at most z − 1
red vertices in the set A. This implies that A has at least x blue vertices. The
hyperedges formed in Step (iv) ensure that there are at most x−1 blue vertices
in A. Thus, we have a contradiction.

Case 2. If x > 0 and z = 0, the hyperedges formed in Step (ii) ensure that each
hypergraph H ′

l contains a red hyperedge for each l ∈ {1, 2, . . . , y}. It follows
that the hyperedges generated in Step (iii) include a red hyperedge. Thus, we
have a contradiction.

Case 3. If x = 0, it immediately follows that we have a blue hyperedge among
the hyperedges generated in Step (ii) of the construction. This leads to a
contradiction.

Thus, we have the following result on m(n).

If x > 0 and z > 0,

m(n) ≤ w ·m(n− k)m(k) + y ·m(k)wm(x)

+
(
x+z−1

z

)
m(n− k)m(x)y +

(
x+z−1

x

)
m(k)w.

If x > 0 and z = 0,

m(n) ≤ w ·m(n− k)m(k) + y ·m(k)wm(x) +m(n− k)m(x)y.

If x = 0,

m(n) ≤ w ·m(n− k)m(k) +m(k)w.

These recurrence relations give improvements onm(n) for n = 8, 14 and 17 as follows.
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• For n = 8 and k = 5, we have m(8) ≤ m(3)m(5) +m(5)m(3)+
(
4
2

)
m(3)m(3) +(

4
3

)
m(5) ≤ 1212 by using m(3) = 7 and m(5) ≤ 51 from Table 1.

• For n = 14 and k = 5, the recurrence relation gives m(14) ≤ 2m(9)m(5) +
m(5)2m(4)+

(
4
1

)
m(9)m(4)+

(
4
4

)
m(5)2 ≤ 528218 by using m(4) = 23, m(5) ≤ 51

and m(9) ≤ 2401 from Table 1.

• For n = 17 and k = 7, we obtain m(17) ≤ 2m(10)m(7) + 2m(7)2m(3) +(
3
1

)
m(10)m(3)2 +

(
3
3

)
m(7)2 ≤ 10375782 by using m(3) = 7, m(7) ≤ 421 and

m(10) ≤ 7803 from Table 1.

3 Block Construction

For an integer k > 0, we describe the construction of a collection H of non-2-
colorable n-uniform hypergraphs. Any hypergraph H = (V,E) belonging to this
collection is constructed using a non-2-colorable (n − 2k)-uniform hypergraph de-
noted by Hc = (Vc, Ec) and two disjoint collections of hypergraphs A and B. Let
Ec = {e1, e2, . . . , emc}. Let A = {H1, H2, . . . , Ht} and B = {H ′

1, H
′
2, . . . , H

′
t} be

the collection of hypergraphs such that each of Hi = (Vi, Ei) and H ′
i = (V ′

i , E
′
i) is

an identical copy of a non-2-colorable ki-uniform hypergraph satisfying ki ≥ k and∑t
i=1 ki ≥ n. Note that the sets Vc, V1, V2, . . . , Vt, V

′
1 , V

′
2 , . . . V

′
t are pairwise disjoint.

Let P = {i1, i2, . . . , ip} ⊆ {1, 2, . . . , t} such that 1 ≤ i1 < i2 < . . . < ip ≤ t. Using
the Cartesian products CP = Ei1 × Ei2 × · · · × Eip and C′

P = E ′
i1
× E ′

i2
× · · · × E ′

ip,
let us define the collection of hyperedges AP and BP as AP = {j1 ∪ j2 ∪ · · · ∪ jp :
(j1, j2, . . . , jp) ∈ CP} and BP = {j′1 ∪ j′2 ∪ · · · ∪ j′p : (j

′
1, j

′
2, . . . , j

′
p) ∈ C′

P}, respectively.
Also, let P = {1, 2, . . . , t} \ P .

The hypergraph H has the vertex set V = Vc ∪ V1 ∪ · · · ∪ Vt ∪ V ′
1 ∪ · · · ∪ V ′

t and
the hyperedge set E is generated from the following hyperedges, each containing at
least n vertices.

(i) For each j satisfying 1 ≤ j ≤ t, ei∪eHj
∪eH′

j
for every triple i, eHj

, eH′
j
satisfying

1 ≤ i ≤ mc, eHj
∈ Ej and eH′

j
∈ E ′

j

(ii) For each P ⊂ {1, 2, . . . , t} such that |P | is odd and 1 ≤ |P | ≤ �t/2	, eH ∪ eH′

for every pair eH , eH′ satisfying eH ∈ AP and eH′ ∈ BP

(iii) For each P ⊂ {1, 2, . . . , t} such that |P | is even and 0 ≤ |P | ≤ �t/2	, eH ∪ eH′

for every pair eH , eH′ satisfying eH ∈ AP and eH′ ∈ BP

We select an arbitrary set of n vertices from each of the hyperedges generated
above to form the hyperedge set E. In case a hyperedge is included more than once
in E by this process, we keep only one of those to ensure that E is not a multi-
set. Let us count the number of hyperedges added to the hyperedge set E. Step
(i) adds at most |Ec|

∑t
i=1|Ei||E ′

i| =
∑t

i=1|Ei|2|Ec| hyperedges, whereas Steps (ii)
and (iii) together add at most

∏t
i=1|Ei|

(
1 +

(
t
1

)
+ . . . +

(
t

�t/2�
))

hyperedges. Note
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that |E| ≤ ∑t
i=1|Ei|2|Ec| + 2t−1

∏t
i=1|Ei| when t is odd, and |E| ≤ ∑t

i=1|Ei|2|Ec| +(
2t−1 +

(
t

t/2

)
/2
)∏t

i=1|Ei| when t is even. In the following lemma, we prove that H is
non-2-colorable by showing that any proper 2-coloring of H can be used to obtain a
proper 2-coloring of any t-uniform hypergraph constructed by Abbott–Hanson–Toft
construction.

Lemma 3.1. H is non-2-colorable.

Proof. Consider any t-uniform hypergraph HAHT = (VAHT , EAHT ) constructed by
Abbott–Hanson–Toft construction using a non-2-colorable (t − 2)-uniform core hy-
pergraph and two disjoint vertex sets {p1, . . . , pt} and {q1, . . . , qt}. Assuming for
the sake of contradiction that a proper 2-coloring exists for H , we give a proper
2-coloring for HAHT as follows.

• Color all vertices of the non-2-colorable (t − 2)-uniform core hypergraph of
HAHT with the color of the monochromatic hyperedge of Hc used in the con-
struction of H .

• Color each vertex pi with the color of the monochromatic hyperedge of Hi used
in the construction of H .

• Similarly, color each vertex qi with the color of the monochromatic hyperedge
of H ′

i used in the construction of H .

Since HAHT is non-2-colorable, we have a contradiction. As a result, we have the
following recurrence relation:

m(n) ≤
{
m(n− 2k)

∑t
i=1m(ki)

2 + 2t−1
∏t

i=1m(ki) if t is odd;

m(n− 2k)
∑t

i=1m(ki)
2 +

(
2t−1 +

(
t

t/2

)
/2
)∏t

i=1m(ki) if t is even.

Consider the special case when n = 3k + 1. Setting the values of t and ki’s as t = 3,
k1 = k + 1 and k2 = k3 = k in this special case, we obtain the following recurrence
relation:

m(3k + 1) ≤ m(k + 1)3 + 6m(k)2m(k + 1). (1)

We give an improvement of this result below.

Modified Block Construction

Let us first repeat the detailed description for the special case mentioned above,
i.e., the construction of a non-2-colorable (3k + 1)-uniform hypergraph H = (V,E)
belonging to H. We construct H using a non-2-colorable (k+1)-uniform hypergraph
Hc = (Vc, Ec) along with non-2-colorable (k+1)-uniform hypergraphs H1 = (V1, E1),
H ′

1 = (V ′
1 , E

′
1) and non-2-colorable k-uniform hypergraphs H2 = (V2, E2), H ′

2 =
(V ′

2 , E
′
2), H3 = (V3, E3), H

′
3 = (V ′

3 , E
′
3). Note that each H ′

i is an identical copy of Hi

for 1 ≤ i ≤ 3.
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For the modified construction described below, we set H1 as the Abbott–Hanson–
Toft construction that uses a non-2-colorable (k−1)-uniform core hypergraph H1c =
(V1c, E1c) and disjoint vertex sets A = {a1, a2, . . . , ak+1}, B = {b1, b2, . . . , bk+1}. Note
that H ′

1 is not necessarily identical to H1 in this modified block construction, whereas
each H ′

i is an identical copy of Hi for 2 ≤ i ≤ 3.

Using the notations introduced above, the vertex set of the hypergraph H is
V = Vc ∪ V1c ∪ A ∪ B ∪ V ′

1 ∪ V2 ∪ V ′
2 ∪ V3 ∪ V ′

3 . The hyperedge set E is generated
from the following hyperedges:

(a) eHc ∪ eH1 ∪ eH′
1
for every triple eHc , eH1 , eH′

1
satisfying eHc ∈ Ec, eH1 ∈ E1 and

eH′
1
∈ E ′

1;

(b) eHc ∪ eH2 ∪ eH′
2
for every triple eHc , eH2 , eH′

2
satisfying eHc ∈ Ec, eH2 ∈ E2 and

eH′
2
∈ E ′

2;

(c) eHc ∪ eH3 ∪ eH′
3
for every triple eHc , eH3 , eH′

3
satisfying eHc ∈ Ec, eH3 ∈ E3 and

eH′
3
∈ E ′

3;

(d) eH1∪eH′ for every pair eH1 , eH′ satisfying eH1 ∈ E1 and eH′ ∈ {j′2∪j′3 : (j′2, j′3) ∈
E ′

2 × E ′
3};

(e) eH2∪eH′ for every pair eH2 , eH′ satisfying eH2 ∈ E2 and eH′ ∈ {j′1∪j′3 : (j′1, j′3) ∈
E ′

1 × E ′
3};

(f) eH3∪eH′ for every pair eH3 , eH′ satisfying eH3 ∈ E3 and eH′ ∈ {j′1∪j′2 : (j′1, j′2) ∈
E ′

1 × E ′
2};

(g) All elements of the set {j1 ∪ j2 ∪ j3 : (j1, j2, j3) ∈ E1 ×E2 × E3}.

Note that each of the hyperedges formed in Steps (b) to (g) has 3k + 1 vertices.
However, the hyperedges formed in Step (a) have 3k+3 vertices in each of them. We
can remove any two vertices from each of these hyperedges to obtain the following
recurrence relation; recall that mH1c(k + 1) denotes the number of hyperedges in
the non-2-colorable (k+1)-uniform hypergraph constructed by Abbott–Hanson–Toft
construction that uses H1c as its core hypergraph:

m(3k + 1) ≤ mH1c(k + 1)m(k + 1)2 + 2mH1c(k + 1)m(k)2 + 4m(k + 1)m(k)2. (2)

Whenever m(k+1) < mH1c(k+1), it is evident that the upper bound onm(3k+1) that
this recurrence relation gives is worse than the one given by (1). However, we observe
that we can improve (2) by carefully selecting the two vertices to be removed from
each hyperedge formed in Step (a). Recall that each of these hyperedges is a union
of three hyperedges eHc ∈ Ec, eH1 ∈ E1 and eH′

1
∈ E ′

1. In the following paragraph,
we describe a process to create a set of k − 1 vertices from each hyperedge in the
(k+1)-uniform hypergraph H1 = (V1, E1). For each hyperedge eHc∪eH1∪eH′

1
formed

in Step (a), we use this process to remove two vertices from eH1 .

Given a hyperedge h ∈ E1, we create a set h′ containing k − 1 vertices as follows.
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Case 1. If h is created by Step (i) of Abbott–Hanson–Toft construction, i.e., if h is
of the form e ∪ {ai} ∪ {bi} for some e ∈ E1c, ai ∈ A and bi ∈ B, we define
h′ = e. In other words, we remove ai and bi from h to create h′.

Case 2. If h is created in Step (ii) of Abbott–Hanson–Toft construction, i.e., if h is
of the form AK ∪ BK for some K ⊂ {1, . . . , k + 1} such that |K| is odd and
1 ≤ |K| ≤ �(k + 1)/2	, we define h′ = AK ∪BK \ {ak, ak+1, bk, bk+1}.

Case 3. If h is created in Step (iii) of Abbott–Hanson–Toft construction, i.e., if h is
of the form AK ∪ BK for some K ⊂ {1, . . . , k + 1} such that |K| is even and
2 ≤ |K| ≤ �(k + 1)/2	, we define h′ = AK ∪BK \ {ak, ak+1, bk, bk+1}.

Case 4. If h is formed in Step (iv) of Abbott–Hanson–Toft construction, i.e., if h = A,
we define h′ = A \ {ak, ak+1}.

This completes the construction of the (3k + 1)-uniform hypergraph H .

Proof of Theorem 1.2. We improve the recurrence relation given in (2) as a result
of selecting k − 1 vertices from each h ∈ E1, as described above. Since this process
generates multiple copies of some (k− 1)-element vertex sets, the number of distinct
hyperedges formed in Step (a) in the construction of H is reduced. Let us determine
the cardinality of the set {h′ : h′ is generated from some h ∈ E1}.

It is easy to observe that the number of distinct h′’s formed in Case 1 is |E1c|.
On the other hand, the total number of distinct h′’s formed in Cases 2, 3 and 4 is at
most 2k−1. It follows from the fact that there are 2k−1 subsets of A \ {ak, ak+1} and
each h′ formed in one of the Cases 2, 3 and 4 is a union of the sets

⋃
i∈P{ai} and⋃

i∈{1,...,k−1}\P{bi} for some P ⊆ {1, . . . , k − 1}.
Since we have shown in Lemma 3.1 that H is non-2-colorable, we have the fol-

lowing improvement over (2):

m(3k+1) ≤ (m(k− 1)+2k−1)m(k+1)2+2mH1c(k+1)m(k)2+4m(k+1)m(k)2.

The theorem follows by setting F to be the hypergraph H1c.

This result improves the upper bounds on m(n) for n = 13 and 16 as follows.

• For n = 13, we have k = 4. Note that mF (5) = mH1c(5) = 51, when the Fano
plane [10] Hf having 7 hyperedges is used as the core hypergraph H1c. There-
fore, we obtain m(13) ≤ (m(3) + 23)m(5)2 + 2mHf

(5)m(4)2 + 4m(5)m(4)2 ≤
200889 by using m(3) = 7, m(4) = 23 and m(5) ≤ 51 from Table 1.

• For n = 16, we have k = 5. Note that mF (6) = mH1c(6) = 180, when
the non-2-colorable 4-uniform hypergraph Hs with 23 hyperedges is used as
the core hypergraph H1c. Therefore, we obtain m(16) ≤ (m(4) + 24)m(6)2 +
2mHs(6)m(5)2 + 4m(6)m(5)2 ≤ 3308499 by using m(4) = 23, m(5) ≤ 51 and
m(6) ≤ 147 from Table 1.
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4 Improved Lower Bound for m(5)

We begin this section with Lemma 4.1 and Lemma 4.2 that are used to prove Lemma
4.3, which gives the best known lower bound on m(5). Let ml(n) be the minimum
number of hyperedges in a non-2-colorable n-uniform hypergraph with l vertices.

Lemma 4.1. [7] m2n−1(n) = m2n(n) =
(
2n−1
n

)
.

Lemma 4.2. [5] (Schönheim bound) Consider positive integers l ≥ n ≥ t ≥ 1 and
λ ≥ 1. Any n-uniform hypergraph with l vertices such that every t-subset of its

vertices is contained in at least λ hyperedges has at least
⌈

l
n

⌈
l−1
n−1

· · ·
⌈
λ(l−t+1)
n−t+1

⌉
· · ·

⌉⌉
hyperedges.

Lemma 4.3. [9] If n ≥ 4, then

m(n) ≥ min
x>2n,x∈N

{
max

{⌈ (
x

�x/2�
)

(
x−n

�x/2�−n

)
+
(

x−n
�x/2�−n

)⌉, ⌈x
n

⌈x− 1

n− 1

⌉⌉}}
.

Lemma 4.3 implies that m(5) ≥ 28, which is obtained when x = 23. We improve
this to m(5) ≥ 29 using the following lemma.

Lemma 4.4. [13] Consider a positive integer γ and a real number p ∈ [0, 1]. Any n-
uniform hypergraph H = (V,E) satisfying |{{e1, e2} : e1, e2 ∈ E, |e1 ∩ e2| = 1}| ≤ γ

is properly 2-colorable if 2−n+1(1− p)n|E|+ 4γ
(
2−2n+1p

∫ 1

0
(1− (xp)2)n−1dx

)
< 1.

Proof of Theorem 1.3. Let us consider a 5-uniform hypergraph H = (V,E) with
at most 28 hyperedges. We show that it is properly 2-colorable.

Case 1. If 5 ≤ |V | ≤ 8, any balanced 2-coloring (a coloring in which the number of
blue vertices and the number of red vertices differ by at most 1) of its vertex set is
a proper 2-coloring of H .

Case 2. If |V | = 9 or |V | = 10, it follows from Lemma 4.1 that m9(5) = m10(5) =
126. Since |E| ≤ 28, H has a proper 2-coloring.

Case 3. If 11 ≤ |V | ≤ 22, consider a balanced 2-coloring of H . We observe that a red
hyperedge blocks

( |V |−5
�|V |/2�−5

)
and a blue hyperedge blocks

( |V |−5
�|V |/2�−5

)
such colorings.

In order to ensure that none of these balanced 2-colorings is a proper 2-coloring of H ,

we need at least

⌈
( |V |
�|V |/2�)

( |V |−5
�|V |/2�−5)+(

|V |−5
�|V |/2�−5)

⌉
hyperedges. Since 11 ≤ |V | ≤ 22, it implies

that we need at least 29 hyperedges to ensure that no balanced 2-coloring of H is a
proper 2-coloring.

Case 4. If |V | = 23 and there exists a pair of vertices {vi, vj} not contained together
in any hyperedge of H , we construct a new hypergraph H ′ = (V ′, E ′) by merging
vertices vi and vj into a new vertex v. We observe that H ′ is 5-uniform with 22
vertices and |E| hyperedges. It follows from Case 3 that H ′ is properly 2-colorable.
This coloring of H ′ can be extended to a proper 2-coloring of H by assigning the
color of v to vi and vj . If |E| ≤ 27, note that Lemma 4.2 ensures that there exists
a pair of vertices not contained together in any hyperedge of H . Therefore, we
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would complete the proof by assuming that |E| = 28 and every pair of vertices is
contained in at least one hyperedge of H . For such a hypergraph, we show that the
cardinality of the set {{e1, e2} : e1, e2 ∈ E, |e1 ∩ e2| = 1} is at most 335. Setting
p = 0.3, γ = 335, n = 5 and |E| = 28 in Lemma 4.4, we observe that H is properly

2-colorable since 2−n+1(1− p)n|E|+ 4γ · 2−2n+1p
∫ 1

0
(1− (xp)2)n−1dx < 1.

In order to show that the cardinality of the set {{e1, e2} : e1, e2 ∈ E, |e1∩e2| = 1}
is at most 335, we consider the degree sequence of H . Note that the degree of
a vertex is defined as the number of hyperedges it is contained in and the degree
sequence of a hypergraph is the ordering of the degrees of its vertices in a non-
increasing order. Consider an arbitrary vertex u of H . Observe that there are 22
distinct vertex pairs involving u and any hyperedge containing u has 4 such pairs in
it. Therefore, the degree of u is at least 6 and there exists another vertex u′ such
that {u, u′} is contained in at least two different hyperedges of H . Since the sum
of the degrees of the vertices of H is 140, the only possible degree sequences of H
are 〈8, 6, . . . , 6〉 and 〈7, 7, 6, . . . , 6〉. For the first sequence, the cardinality of the set
{{e1, e2} : e1, e2 ∈ E, |e1∩e2| = 1} is upper bounded by (

(
6
2

)−1)·22+(
(
8
2

)−1) = 335.

For the second sequence, it is upper bounded by (
(
6
2

)− 1) · 21 + (
(
7
2

)− 1) · 2 = 334.

Case 5. If |V | ≥ 24, assume the induction hypothesis that any 5-uniform hypergraph
with |V | − 1 vertices and |E| hyperedges is properly 2-colorable. The base case
|V | = 23 is proved in Case 4. If there exists a pair of vertices {vi, vj} not contained
together in any hyperedge ofH , consider a new hypergraphH ′ = (V ′, E ′) constructed
by merging vi and vj into a new vertex v. SinceH ′ is 5-uniform with |V ′| = |V |−1 and
|E ′| = |E|, we know from the induction hypothesis that H ′ is properly 2-colorable.
This coloring of H ′ can be extended to a proper 2-coloring of H by assigning the
color of v to vi and vj. Since it follows from Lemma 4.2 that the minimum number of
hyperedges required to ensure that each pair of vertices is contained in at least one

hyperedge is
⌈
|V |
5

⌈
|V |−1

4

⌉⌉
≥ 29, we are guaranteed to have a pair of vertices {vi, vj}

not contained together in any hyperedge of H .

5 Conclusion

In this paper, we have established the lower bound m(5) ≥ 29 which is still far from
the best known upper bound m(5) ≤ 51. We have also established improved upper
bounds for m(8), m(13), m(14), m(16) and m(17). In Table 2, we have highlighted
these improved bounds on m(n) for n ≤ 17. It would be interesting to determine the
exact values of m(n) for n ≥ 5.
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m(n) Corresponding construction/recurrence relation

m(1) = 1 Single vertex

m(2) = 3 Triangle graph

m(3) = 7 Fano plane [10]

m(4) = 23 [12], [14]

m(5) ≤ 51 m(5) ≤ 24 + 5m(3)

m(6) ≤ 147 m(6) ≤ m(2)m(3)2

m(7) ≤ 421 m(7) ≤ 26 + 7m(5)

m(8) ≤ 1212 m(8) ≤ 2m(3)m(5) +
(
4
2

)
m(3)m(3) +

(
4
3

)
m(5)

m(9) ≤ 2401 m(9) ≤ m(3)4

m(10) ≤ 7803 m(10) ≤ m(2)m(5)2

m(11) ≤ 25449 m(11) ≤ 15 · 28 + 9m(9)

m(12) ≤ 55223 m(12) ≤ m(3)4m(4)

m(13) ≤ 200889 m(13) ≤ (m(3) + 23)m(5)2 + 2mHf
(5)m(4)2 + 4m(5)m(4)2

m(14) ≤ 528218 m(14) ≤ 2m(9)m(5) +m(5)2m(4) +
(
4
1

)
m(9)m(4) +

(
4
4

)
m(5)2

m(15) ≤ 857157 m(15) ≤ m(3)5m(5)
m(16) ≤ 3308499 m(16) ≤ (m(4) + 24)m(6)2 + 2mHs(6)m(5)2 + 4m(6)m(5)2

m(17) ≤ 10375782 m(17) ≤ 2m(10)m(7) + 2m(7)2m(3) +
(
3
1

)
m(10)m(3)2 +

(
3
3

)
m(7)2

Table 2: Improved upper bounds on m(n) for small values of n
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