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Abstract

We denote by Fq the field with q elements. A radius-r extended ball with
center in a 1-dimensional vector subspace V of F3

q is the set of elements
of F3

q with Hamming distance to V at most r. We define c(q) to be the
size of a minimum covering of F3

q by radius-1 extended balls. We define a
semiqueen to be a piece of a toroidal chessboard that extends the covering
range of a rook by the southwest-northeast diagonal containing it. Let
ξD(n) be the minimum number of semiqueens of the n×n toroidal board
necessary to cover the entire board except possibly for the southwest-
northeast diagonal. We prove that, for q ≥ 7, c(q) = ξD(q − 1) + 2.
Moreover, our proof exhibits a method to build such covers of F3

q from the
semiqueen coverings of the board. With this new method, we determine
c(q) for the odd values of q and improve both existing bounds for the
even case.

1 Introduction

The problem of finding minimum coverings of Fn
q with radius-r balls in the Ham-

ming distance is classic in code theory. There is a book on the subject [4] and an
updated table with the known bounds for the sizes of such coverings [10]. In [17], a
variation of this problem was introduced: a radius-r extended ball with center in
a 1-dimensional vector subspace V of Fn

q is the set of elements of Fn
q with Hamming

distance to V at most r. We define cq(n, r) as the size of a minimum covering of Fn
q

by radius-r extended balls; such a minimum covering is called a short covering.
In [14] some interesting reasons to study short coverings are listed. One is that

short coverings were used to construct record breaking classical coverings (in [14] it
is proved using short coverings that the minimum number of radius-7 hamming balls
necessary to cover F10

5 is 9). Another is that they respond well to some heuristic
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methods and give an economical way in terms of memory to store codes. A third one
is that they seem to have more interesting mathematical properties than the classic
coverings, like more compatibility with the algebraic structure of the vector space Fn

q

and connection with other structures (see [13, 15, 16] for examples).
Few values of cq(n, r) are known. Here, our concern is the values of c(q) := cq(3, 1).

Some work [13, 16, 15] proved bounds for c(q). In Corollary 1.4, we establish c(q) for
odd values of q and improve both existing bounds for the even values. In order to do
this, we introduce a relation between short coverings, projective spaces and toroidal
(chess)boards. The number of rooks needed to cover an n× n toroidal board is well
known, clearly n. Some studies on covering and packing of queens in toroidal boards
were made by [2] and [1]. We introduce a piece with range between a rook and a
queen, as described next.

We will use 1, . . . , n as standard representatives for the classes of Zn. The toroidal
n × n board will be modeled by Z2

n, with the first coordinate indexing the column
and the second the row, in such a way that (1, 1) corresponds to the southwestern
square and (n, n) to the northeastern square (the orientation is similar to a cartesian
plane). The diagonal of (a, b) ∈ Z2

n is the set D(a, b) := {(a+ t, b+ t) : t ∈ Zn}. The
vertical and horizontal lines of (a, b) ∈ Z2

n are respectively defined by V (a, b) :=
{(a, t) : t ∈ Zn} and H(a, b) := {(t, b) : t ∈ Zn}. The semiqueen of (a, b) ∈ Z2

n is
the set SQ(a, b) := D(a, b) ∪ V (a, b) ∪H(a, b).

We denote by Dn the toroidal n × n board without the southwest-northeast di-
agonal: Dn := Z2

n −D(1, 1). We also denote by ξ(n) and ξD(n) the respective sizes
of minimum coverings of Z2

n and Dn by semiqueens of Z2
n. Next we state our main

results. The next theorem establishes a relation between the values of c(q) and
ξD(q − 1).

Theorem 1.1 For a prime power q ≥ 5, c(q) = ξD(q− 1) + 2. Moreover, for q ≥ 7,
there is an algorithm for building minimum coverings of F3

q by radius-1 extended balls
from coverings of Dq−1 by semiqueens and vice-versa.

The proof of the first part of Theorem 1.1 is a construction that gives the al-
gorithm for the second part. The proof for Theorem 1.1 is concluded in Section 3.
There are certain difficulties in using this technique for higher dimensions than 3.
One is to make a more general version of Lemma 3.5 and another is to study the
coverings of higher-dimensional boards. The next theorem establishes values and
bounds for ξ(n):

Theorem 1.2 Let n be a positive integer.

(a) If n ≡ 2 mod 4, then ξ(n) = n/2.

(b) If n ≡ 0 mod 4, then ξ(n) = 1 + n/2.

(c) If n is odd, then n+1
2
≤ ξ(n) ≤ 2n+1

3
.

For values of ξD(n), we have:
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Theorem 1.3 Let n be a positive integer.

(a) If n is even, then ξD(n) = n/2.

(b) If n is odd, then n+1
2
≤ ξD(n) ≤ 2n+1

3
.

From Theorems 1.1 and 1.3 and the known values of c(3) and c(4) of [17](see also
Section 4), we have:

Corollary 1.4 Let q ≥ 3 be a prime power.

(a) If q is odd, then c(q) = q+3
2

.

(b) If q is even, then q+4
2
≤ c(q) ≤ 2q+5

3
.

The upper bound c(q) ≤ q+3
2

in Corollary 1.4 was proved by Martinhão and
Carmelo in [13] for q ≡ 3 mod 4. The same result for q ≡ 1 mod 4 was recently
proved independently of this work by Martinhão [12]. The upper bound in item (b)
of Corollary 1.4 improves the previous one c(q) ≤ 6� q−1

9 	+6�log4( q−1
3 )	+3, set in [15].

The lower bounds of Corollary 1.4 improve the bound c(q) ≥ (q + 1)/2 set in [16].
The next theorem gives us better upper bounds for some even values of q:

Theorem 1.5 For positive odd integers m and n:

(a) ξ(mn) ≤ mξ(n).

(b) If q is a power of 2 and q = mn + 1 ≥ 7, then c(q) ≤ mξ(n) + 2.

Theorems 1.2, 1.3 and 1.5 are proved in Section 2. In Section 4, we use an integer
linear programming (ILP) formulation to compute ξ(n), ξD(n) and c(q) for small
values of q and n not covered by our results. There are still few known values for
ξ(n) with n odd. Next, we state some conjectures:

Conjecture 1.6 If p is a prime number, then ξ(p) =
⌊
2p+1
3

⌋
.

Conjecture 1.7 If n is an odd positive integer, then
ξ(n) = min{(n/m)ξ(m) : m divides n}.

Conjecture 1.8 If n is an odd positive integer, then
ξ(n) = min{(n/p)ξ(p) : p is a prime divisor of n}.

Conjecture 1.9 For n assuming positive integer values, lim
n→∞

ξ(2n+1)
2n+1

= 2
3
.
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2 Proofs of Theorems 1.2, 1.3 and 1.5

In this section, we prove Theorems 1.2, 1.3 and 1.5. We will prove some lemmas and
establish some concepts first.

Next, we extend our definitions for more general groups than Zn. Let G be a
finite abelian group and (a, b) ∈ G2. We define the respective diagonal, vertical
and horizontal lines and semiqueen of (a, b) ∈ G2 as follows:

• D(a, b) := DG(a, b) := {(ta, tb) : t ∈ G},
• H(a, b) := HG(a, b) := {(t, b) : t ∈ G},
• V (a, b) := VG(a, b) := {(a, t) : t ∈ G} and

• SQ(a, b) := SQG(a, b) := D(a, b) ∪H(a, b) ∪ V (a, b).
For X ⊆ G2, we define SQ(X) as the union of all semiqueens of the form SQ(x) with
x ∈ X. In an analogous way we define D(X), H(X) and V (X).

We define D(G) := G2−D(1G, 1G) and denote by ξ(G) and ξD(G) the respective
sizes of a minimum covering G2 and D(G) by semiqueens of G2. Suppose that
ϕ : G→ H is a group isomorphism and define Φ(a, b) = (ϕ(a), ϕ(b)) for (a, b) ∈ G2.
It is clear that for x ∈ G2, SQH(Φ(x)) = Φ(SQG(x)). Therefore:

Lemma 2.1 If G and H are isomorphic finite abelian groups, then ξ(G) = ξ(H)
and ξD(G) = ξD(H).

Lemma 2.2 For each finite abelian group G, ξD(G) ≥ (|G|−1)/2 and ξ(G) ≥ |G|/2.
Proof: Write n := |G|. Let {SQ(x1), . . . , SQ(xk)} be a minimum covering of D(G) by
semiqueens. It is clear that k = ξD(G) ≤ ξ(G) < n. So, we may choose a vertical line
L of G2 avoiding V (x1), . . . , V (xk). Note that C := (L∩D(G))−(H(x1)∪· · ·∪H(xk))
has at least n − k − 1 elements, which must be covered by D(x1), . . . , D(xk). Since
each diagonal intersects C in one element, k ≥ n−k−1 and ξD(G) = k ≥ (n−1)/2.
Analogously, we can prove that ξ(G) ≥ n/2. �

For k ∈ Z+, we define a function δk : Z2
k → Zk by δk(a, b) = b − a for each

(a, b) ∈ Z2
k. We will use this funtion in the proofs that follow in this section. The

proof of the next lemma is elementary.

Lemma 2.3 Le k ∈ Z+. If (a, b), (c, d) ∈ Z2
k, then (c, d) ∈ D(a, b) if and only if

δk(c, d) = δk(a, b).

Lemma 2.4 If n is a positive integer and n ≡ 2 mod 4, then ξD(n) = ξ(n) = n/2.

Proof: By Lemma 2.2, it is enough to find a covering of Z2
n with n/2 semiqueens.

Define X := {(2, n), (4, n − 2), . . . , (n, 2)}. Let us check that {SQ(x) : x ∈ X}
covers the board. This covering is illustrated for n = 6 in Figure 1. Note that
δn(X) = {n − 2, n − 6, . . . , 2 − n}. Since n ≡ 2 mod 4, it follows that δn(X) is the
set of the even elements of Zn.
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Now let (a, b) ∈ Z2
n. If both b and a are odd, then δn(a, b) is even and, therefore,

δn(a, b) ∈ δn(X) and (a, b) ∈ D(X) ⊆ SQ(X). Otherwise, if one of a or b is even, it
is clear that (a, b) is in the vertical or horizontal line of an element of X. Therefore,
{SQ(x) : x ∈ X} covers the board and the lemma is true. �

�

�

�

�

�

�

Figure 1: A covering of Z2
6 as in Lemma 2.4 and a covering of D12 as in Lemma 2.5

Lemma 2.5 If n is a positive integer multiple of 4, then ξD(n) = n/2.

Proof: Let 4m := n. By Lemma 2.2, it is enough to find a covering of D4m with 2m
elements. Such covering is illustrated for 4m = 12 in Figure 1. Define:

• A = {(2, 4m), (4, 4m− 2), . . . (2m, 2m+ 2)},
• B := {(2m+ 2, 2m− 2), (2m+ 4, 2m− 4), . . . , (4m− 2, 2)} and

• C := {(4m, 2m)}
We claim that {SQ(x) : x ∈ A ∪ B ∪ C} covers D4m. Let (a, b) ∈ D4m. If a or b
is even, then it is clear that (a, b) is in the horizontal or vertical line of a member
of A ∪ B ∪ C. Suppose that both a and b are odd. We will use the function δk for
k = 4m. Now, δ4m(a, b) is even. Moreover, δ4m(a, b) = 0, since (a, b) /∈ D4m if a = b.
Note that δ4m(A) = {4m− 2, 4m− 6, . . . , 6, 2} and δ4m(B) = {−4,−8, . . . , 4− 4m}.
So, δ4m(A ∪B) contains all non-zero even elements of Z4m. In particular it contains
δ4m(a, b) = b − a. Therefore, (a, b) ∈ D(x) ⊆ SQ(x) for some x ∈ A ∪ B and the
lemma holds. �

The next lemma is elementary and its proof is omitted.

Lemma 2.6 If ∅ � S � Zn then S = {x+ 1 : x ∈ S}.

Lemma 2.7 Let V0 and V1 be consecutive vertical lines of Z2
n with n ≥ 2. Suppose

that X, Y ⊆ Z2
n satisfy |Y |, |X| ≤ n − 1 and V0 ∪ V1 ⊆ D(X) ∪ H(Y ). Then

|X|+ |Y | ≥ n + 1.
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Proof: Suppose the contrary. Say that V1 = {(a + 1, b) : (a, b) ∈ V0}. For i = 0, 1,
Vi is the union of Ai := Vi∩D(X) and Bi := Vi∩H(Y ). Note that |A0| = |A1| ≤ |X|
and |B0| = |B1| ≤ |Y |. For i = 0, 1, |Vi| ≤ |Ai| + |Bi| = |X| + |Y | ≤ n = |Vi|. So,
Ai ∩ Bi = ∅. Define a function π : Z2

n → Zn by π(a, b) = b. Since the restriction of
π to each vertical line is bijective, π(A0) = Zn − π(B0) = Zn − π(B1) = π(A1). But
π(A1) := {t+ 1 : t ∈ π(A0)}, a contradiction to Lemma 2.6. �
Lemma 2.8 For each odd integer n ≥ 3, ξD(n) ≥ (n + 1)/2.

Proof: Let 2m + 1 := n with m ≥ 1. By Lemma 2.2, ξD(2m + 1) ≥ m. Suppose
for a contradiction that ξD(2m+ 1) = m and let X := {x1, . . . , xm} be an m-subset
of D(2m + 1) such that {SQ(x) : x ∈ X} covers D(2m + 1). Thus, there are two
consecutive vertical lines V0 and V1 in Z2

2m+1 avoiding V (X). As D(2m+1) ⊆ SQ(X),
it follows that V0∪V1 ⊆ H(X)∪D(X∪{(1, 1)}). By Lemma 2.7, 2m+1 = 2|X|+1 ≥
(2m+ 1) + 1, a contradiction. �

The next lemma was proved by L. Euler [5]. An alternative proof may be found
in [6, Corollary 1]. The reader also may see a more general result in Wanless’s survey
[18, Theorem 2], proved by Maillet [11].

Lemma 2.9 (Euler, 1779) Let Q = [qij] be a Latin square with even order n ≥ 2.
Suppose that qij = qkl if and only if i− j ≡ k− l modn. Then, Q admits no set X of
n entries such that each pair of entries of X are in different rows, different columns
and has different symbols. (Such a set is called a Latin transversal.)

In Lemma 2.9, supposing that qij = qkl if and only if i+ j ≡ k + l modn has the
same effect; usually this is the way it is usually stated.

Lemma 2.10 If n is a positive integer multiple of four, then ξ(n) = 1 + n/2.

Proof: Let 4m := n. By Lemma 2.5, 2m = ξD(4m) ≤ ξ(4m) ≤ ξD(4m)+1 = 2m+1.
So, all we have to prove is that ξ(4m) = 2m. Suppose for a contradiction that
ξ(4m) = 2m. Let X := {(at, bt) : t = 1, . . . , 2m} be a subset of Z2

4m such that
{SQ(x) : x ∈ X} covers Z2

4m.
First we will prove that:

{a1, . . . , a2m}, {b1, . . . , b2m} ∈
{{1, 3, . . . , 4m− 1}, {2, 4, . . . , 4m}}. (1)

Suppose the contrary. Then, there are two consecutive horizontal lines avoiding
H(X) or two consecutive vertical lines avoiding V (X). We may assume the later
case. Let V0 and V1 be such lines. So, V0 ∪ V1 ⊆ H(X) ∪ D(X). By Lemma 2.7,
2|X| = 4m ≥ 4m+ 1, a contradiction. So, (1) holds.

By (1), we may assume, without loss of generality, that E := {2, 4, . . . , 4m} =
{a1, . . . , a2m} = {b1, . . . , b2m}. So X ⊆ E × E. Let F := Z4m − E. The fact that
V (X) ∪ H(X) does not intersect F × F implies that F × F ⊆ D(X). We will use
the function δk for k = 4m. Note that, in each row or column of F ×F , δ4m assumes
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2m distinct values. By Lemma 2.3, δ4m also assumes 2m distinct values on X. Now,
construct a Latin square having F as set of rows and columns such that the symbol
in (a, b) is δ4m(a, b). The existence of this Latin square contradicts Lemma 2.9. �

Next we prove Theorem 1.5.

�

�

�
�

�

�

�

� �

�

� �

�

� �

Figure 2: A covering of Z2
15 by semiqueens constructed from a covering of Z2

5 with
the method of the proof of Theorem 1.5

Proof of Theorem 1.5: As we will deal with both rings Zn and Zmn, for distinction
purposes, we will denote by z + kZ the residue class modulo k of z for each z ∈ Z

and k ∈ {n,mn}. Let {SQZn
(xi + nZ, yi + nZ) : i = 1, . . . , ξ(Zn)} be a covering for

Z2
n. Define

X :=
{(

(xi + λn) +mnZ, (yi − λn) +mnZ
)
: i = 1, . . . , ξ(Zn) and λ ∈ Z

}
.

Note that |X| ≤ mξ(Zn). To prove item (a), it suffices to check that each element
(a +mnZ, b +mnZ) ∈ Z2

mn is in the semiqueen of some element of X. Let i be the
index such that, for vi := (xi + nZ, yi + nZ), u := (a + nZ, b + nZ) ∈ SQZn

(vi). If
u ∈ VZn(vi), then there is an integer λ such that a = xi+λn and (a+mnZ, b+mnZ)
is in the semiqueen of

(
(xi + λn) +mnZ, (yi − λn) + mnZ

) ∈ X. If u ∈ HZn(vi),
we proceed analogously. So, we may assume that u ∈ DZn(vi). We will use the
function δk for k = n on Z2

n and for k = mn on Zmn. As u ∈ DZn(vi), it follows that
δn(u) = δn(vi) and, therefore, there is an integer α such that b − a = yi − xi − αn.
Since mn is odd, 2 +mnZ is invertible in Zmn and there is an integer λ such that
2λ+mnZ = α +mnZ. Now

δmn

(
(xi + λn) +mnZ, (yi − λn) +mnZ

)
= (yi − xi)− 2λn+mnZ

= b− a+mnZ

= δmn(a +mnZ, b+mnZ).
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By Lemma 2.3, (a+mnZ, b+mnZ) is in the semiqueen of
(
(xi + λn) +mnZ, (yi −

λn) +mnZ
) ∈ X. This completes the proof for item (a). Item (b) follows from item

(a) and Theorem 1.1. �
Lemma 2.11 If n is odd, then ξ(n) ≤ �(2n+ 1)/3�.

Proof: Write n = 3m+ r with r ∈ {0, 1, 2}. If r = 0, then, as ξ(3) = 2, by Theorem
1.5, ξ(n) ≤ 2m = �(2n + 1)/3� and the lemma holds. So, assume that r ∈ {1, 2}.
We shall prove that ξ(n) ≤ 2m+ 1. Consider a subdivision of the board as below:

Q1,3 Q2,3 Q3,3

Q1,2 Q2,2 Q3,2

Q1,1 Q2,1 Q3,1

,

where Q1,1, Q2,2 and Q3,3 are square blocks with respective orders m + 1, m and
m+ r − 1. Let Xi be the set of the pairs of Z2

n in the southeast-northwest diagonal
of Qi,i. Define X = X1 ∪ X2. We will prove that {SQ(x) : x ∈ X} covers the
board. If Qi,j = Q3,3 it is clear that Qi,j ⊆

⋃
x∈X

(
H(x) ∪ V (x)

)
. So, let y ∈ Q3,3.

We shall prove that y ∈ D(x) for some x ∈ X. If c is a coordinate of y, then
2m + 2 ≤ c ≤ 3m + r. Therefore, −m ≤ −m − r + 2 ≤ δn(y) ≤ m + r − 2 ≤ m.
Note that δn(X1) = {m,m − 2, m − 4, . . . , 4 −m, 2 −m,−m} and δn(X2) = {m −
1, m − 3, . . . , 3 − m, 1 − m}. So, δn(X1 ∪ X2) = {m,m − 1, . . . , 1 − m,−m} and
δn(y) ∈ δn(X). By Lemma 2.3, y is in D(x) for some x ∈ X and the lemma holds.�
Proof of Theorem 1.2: Items (a) and (b) follow from Lemmas 2.4 and 2.10, respec-
tively. Item (c) follows from Lemmas 2.8 and 2.11. �
Proof of Theorem 1.3: Item (a) follows from Lemmas 2.4 and 2.5. Item (b) follows
from Lemmas 2.8 and 2.11. �

3 From F3
q to the projective plane

In this section, we establish relations between short coverings and coverings by
semiqueens using the projective plane as a link between them. We prove Theorem
1.1 at the end of this section.

We define the projective plane PG(2, q) as the set of the 1-dimensional vector
subspaces of F3

q; we call its elements points. We say that L ⊆ PG(2, q) is a line
if the union of the elements of L is a 2-dimensional vector subspace of F3

q. We
denote the subspace spanned by (α, β, γ) ∈ F3

q − {0} by homogeneous coordinates
(α : β : γ) ∈ PG(2, q).

We say that the points of PG(2, q) are cardinal, coast or midland when they
have exactly one, two or three non-zero coordinates respectively. We denote the
cardinal points by c1 := (1 : 0 : 0), c2 := (0 : 1 : 0) and c3 := (0 : 0 : 1). We
also denote the line containing the points u and v by ←→u, v, provided u = v, and, for
convenience, ←→u, u := {u}. We say that a line of PG(2, q) is a midland line if it
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contains a midland point and a coast line otherwise. Note that the unique coast
lines are ←−→c1, c2, ←−→c1, c3 and ←−→c2, c3. Moreover, we denote by ei the i-th vector in the
canonical basis of F3

q, and by [v1, . . . , vn] the subspace of F3
q spanned by v1, . . . , vn.

We denote by EB[v, r] the extended ball with radius r and center v. The next lemma
is easy to check:

Lemma 3.1 If v ∈ F3
q − {0}, then EB[v, 1] is the union of the members of

←−→
[v], c1 ∪←−→

[v], c2 ∪
←−→
[v], c3.

Motivated by Lemma 3.1, we define the compass rose of p ∈ PG(2, q) as

W (p) :=←→p, c1 ∪←→p, c2 ∪←→p, c3.
From Lemma 3.1, we may conclude:

Corollary 3.2 Let p1, . . . , pn ∈ PG(2, q) and for i = 1, . . . , n, let vi ∈ pi − {0}.
Then, {W (p1), . . . ,W (pn)} covers PG(2, q) if and only if {EB[v1, 1], . . . , EB[vn, 1]}
covers F3

q. Moreover, c(q) is the size of a minimum covering of PG(2, q) by compass
roses.

We say that a compass rose W (p) is cardinal, coast or midland according
to which of these adjectives applies to p. It is clear that W (p1) = W (p2) implies
p1 = p2. So, exactly one of these adjectives applies to a particular compass rose. The
following properties of compass roses are elementary and easy to check:

Lemma 3.3 Each midland compass rose is the union of three distinct midland lines,
each coast compass rose is the union of a coast and a midland line and each cardinal
compass rose is the union of two distinct coast lines.

Lemma 3.4 Let q be a prime power and suppose that c(q) ≤ q − 2. Then, every
minimum covering C of PG(2, q) by compass roses contains at least two non-midland
compass roses. In particular, each coast line is contained in a member of C.
Proof: Since PG(2, q) has three distinct coast lines, the first part of the lemma
follows from the second part and from Lemma 3.3. So, let us prove the second part.
Suppose that it fails. Let C be a minimum covering of PG(2, q) by compass roses
such that no member contains a fixed coast line L. Let K be the set of coast points
in L. Since no member of C contains L, each compass rose in C meets K in at most
one point. So, q − 1 = |K| ≤ |C| = c(q) ≤ q − 2, a contradiction. �
Lemma 3.5 Let q be a prime power and suppose that c(q) ≤ q − 2. Then, there is
a minimum covering of PG(2, q) by compass roses containing precisely one cardinal
compass rose and one coast compass rose.

Proof: Choose a minimum covering C of PG(2, q) by compass roses maximizing
the number of midland compass roses primarily and coast compass roses secondarily.
There are three coast lines in PG(2, q): the members of L := {←−→c1, c2,

←−→c1, c3,
←−→c2, c3}.

By Lemmas 3.4 and 3.3, the members of L are covered by:
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(i) One cardinal and one coast compass rose of C,
(ii) Two cardinal compass roses of C, or

(iii) Three coast compass roses of C.
We shall prove that (i) occurs. Indeed, first suppose for a contradiction that (ii)
holds. Say that the members of L are covered by W (c1) and W (c2). If p is a coast
point of←−→c2, c3, then W (c1) and W (p) are enough to cover the coast lines of PG(2, q).
Hence (C − {W (c2)}) ∪ {W (p)} contradicts the secondary maximality of C. Thus,
(ii) does not hold.

Now, suppose that (iii) holds. The coast lines of PG(2, q) are covered by three
coast compass roses W (p1),W (p2),W (p3) ∈ C. It is clear that p1, p2 and p3 are
in different coast lines. For {i, j, k} = {1, 2, 3}, say that pk ∈ ←−→ci, cj. Let x be the
intersection point of ←−→c2, p2 and ←−→c3, p3. Note that x is a midland point. We claim that

C′ := (C − {W (p2),W (p3)}) ∪ {W (c1),W (x)}

contradicts the primary maximality of C. Note that C′ has more midland compass
roses than C and |C′| ≤ |C|. It is left to to show that C′ covers PG(2, q). For this
purpose, it is enough to prove that W (p2) ∪ W (p3) ⊆ W (c1) ∪ W (x). Indeed, as
p2 ∈ ←−→c1, c3, it follows that W (p2) = ←−→c1, c3 ∪ ←−→c2, p2, but ←−→c2, p2 = ←−→c2, x ⊆ W (x) and←−→c1, c3 ⊆ W (c1). Moreover, W (p3) = ←−→c1, c2 ∪ ←−→c3, p3, but ←−→c3, p3 = ←−→c3, x ⊆ W (x) and←−→c1, c2 ⊆W (c1). So, C′ covers PG(2, q) and (iii) does not occur. Therefore, (i) holds.

Now, let W1 and W2 be the respective compass roses described in (i). It is left
to prove that W is midland if W ∈ C − {W1,W2}. As all cardinal compass roses
are contained in W1 ∪W2, by the minimality of C, it follows that W is not cardinal.
If W is coast, then W is the union of a coast line C and a midland line M . But,
C ⊆ W1 ∪ W2 and, if x ∈ M − C is a midland point, then M ⊆ W (x). Thus
(C −{W})∪{W (x)} violates the primary maximality of C. Therefore, W is midland
and the lemma holds. �

We define a bijection f : PG(2, q) → PG(2, q) to be a projective automor-
phism if f

(←→x, y) =←−−−−−→f(x), f(y) for all x, y ∈ PG(2, q).

Lemma 3.6 If f is a projective automorphism of PG(2, q) carrying cardinal points
into cardinal points, then f(W (x)) =W (f(x)) for each x ∈ PG(2, q). Moreover, x is
midland (resp. coast, cardinal) if and only if f(x) is midland (resp. coast, cardinal).

Proof: For x ∈ PG(2, q):

f(W (x)) = f (←−→x, c1 ∪←−→x, c2 ∪←−→x, c3)
= f (←−→x, c1) ∪ f (←−→x, c2) ∪ f (←−→x, c3)
=
←−−−−−→
f(x), f(c1) ∪

←−−−−−→
f(x), f(c2) ∪

←−−−−−→
f(x), f(c3)

=
←−−−→
f(x), c1 ∪

←−−−→
f(x), c2 ∪

←−−−→
f(x), c3

= W (f(x)).
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This proves the first part of the lemma. For the second part, by hypothesis, x is
cardinal if and only if f(x) is cardinal. Also, x is coast if and only if x is not cardinal
but is in the line containing two cardinal points, thus f(x) is also coast. Therefore,
x is coast if and only f(x) is coast. By elimination, this implies that x is midland if
and only if f(x) is midland. �

The next lemma has a straightforward proof.

Lemma 3.7 Let x be a cardinal point and y a coast point of PG(2, q) such that
W (x) ∪ W (y) contains all coast points of PG(2, q). Then, for some {i, j, k} =
{1, 2, 3}, x = ci and y ∈ ←−→cj , ck.

Lemma 3.8 Let q be a prime power and suppose that c(q) ≤ q − 2. There is a
minimum covering of PG(2, q) by compass roses containing W (0 : 0 : 1) and W (1 :
1 : 0) and such that all other members are midland.

Proof: By Lemma 3.5, there is a minimum covering C of PG(2, q) by compass
roses, all of which are midland, except for two, namely W (x) and W (y), where x is
a cardinal point and y a coast point. We may define a projective automorphism f :
PG(2, q)→ PG(2, q) by permutations of homogeneous coordinates and multiplying
fixed coordinates by non-zero factors such that f(x) = (0 : 0 : 1). By Lemma 3.7,
f(y) is in the form (a : b : 0) with a = 0 = b. So, in addition, we may pick f in such
a way that f(y) = (1 : 1 : 0). By Lemma 3.6, {f(W ) : W ∈ C} is the covering we
are looking for. �

Consider the multiplicative group F∗
q. We will use the terminologies D(F∗

q), ξD(F
∗
q),

etc. as defined in the beginning of Section 2 for G = F∗
q.

Consider the set M of midland points in PG(2, q) and the bijection ψ between
(F∗

q)
2 and M defined by ψ(a, b) = (a : b : 1). For x = (a, b) ∈ (F∗

q)
2, we clearly

have ψ
(
HF∗

q
(x)

)
= M ∩ (←−−−→

ψ(x), c1
)

and ψ
(
VF∗

q
(x)

)
= M ∩ (←−−−→

ψ(x), c2
)
. Moreover, as

DF∗
q
(x) = {(ta, tb) : t ∈ F∗

q}, hence:

ψ
(
DF∗

q
(x)

)
= {(ta : tb : 1) : t ∈ F∗

q} = {(a : b : t−1) : t ∈ F∗
q} =M ∩ (←−−−→

ψ(x), c3
)
.

As a consequence, ψ
(
SQF∗

q
(x)

)
= M ∩ W (ψ(x)). Note that ψ

(
DF∗

q
(1, 1)

)
= M ∩

(←−−−−−−−→
c3, (1 : 1 : 0)

)
. Therefore, the following lemma holds:

Lemma 3.9 Consider the function ψ as defined above and let X ⊆ (F∗
q)

2. Then
SQF∗

q
(X) is a covering by semiqueens of D(F∗

q) if and only if {W (ψ(x)) : x ∈ X} ∪
{W (0 : 0 : 1),W (1 : 1 : 0)} is a covering of PG(2, q) by compass roses.

Now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1: It is well known that the multiplicative group of a finite field
is cyclic. Thus, F∗

q
∼= Zq−1 and, by Lemma 2.1, ξD(F∗

q) = ξD(q − 1).
Let Q be a minimum covering of D(F∗

q) by semiqueens of (F∗
q)

2 andR the covering
of PG(2, q) by compass roses obtained from Q as in Lemma 3.9. So, |R|−2 = |Q| =
ξD(F

∗
q) = ξD(q − 1). By Corollary 3.2, c(q) ≤ |R| = ξD(q − 1) + 2.



J.P. COSTALONGA /AUSTRALAS. J. COMBIN. 76 (1) (2020), 41–54 52

Now we have to prove that ξD(q − 1) ≤ c(q)− 2 to finish the proof. When q = 5
the values are known and match the theorem (see Section 4). Assume that q ≥ 7.

We shall prove next that c(q) ≤ q−2 in order to satisfy the hypothesis of Lemma
3.8. First suppose that q is odd. By Theorem 1.3, ξD(q − 1) ≤ (q − 1)/2. By the
inequality that we already proved, c(q) ≤ ξD(q− 1)+2 ≤ (q− 1)/2+2. Since q ≥ 7,
this implies c(q) ≤ q− 2. Now suppose that q is even. It is known that c(8) = 6 (see
Section 4). So, we may assume that q ≥ 16. By Theorem 1.3, ξD(q−1) ≤ (2q−1)/3.
Hence c(q) ≤ ξD(q − 1) + 2 ≤ (2q + 5)/3. This implies that c(q) ≤ q − 2 because
q ≥ 16. Therefore, c(q) ≤ q − 2 for each prime power q ≥ 7.

By Corollary 3.2, c(q) is the size of a minimum covering {W (p) : p ∈ A} of
PG(2, q) by compass roses. By Lemma 3.8, we may choose A in such a way that
(0 : 0 : 1) and (1 : 1 : 0) are in A and all points of B := A−{(0 : 0 : 1), (1 : 1 : 0)} are
midland. Consider the injective function ψ : (F∗

q)
2 → PG(2, q) defined by ψ(a, b) =

(a : b : 1), the same one of Lemma 3.9. By Lemma 3.9, Q := {W (x) : x ∈ ψ−1(B)}
is a covering of D(F∗

q) by semiqueens of (F∗
q)

2. So, ξD(q− 1) = ξD(F
∗
q) ≤ |Q| = |B| =

|A| − 2 = c(q)− 2. �

4 Particular instances and ILP formulation

For X ∈ {Z2
n,Dn}, the following integer 0-1 linear program may be used to find

minimum coverings of X by semiqueens of Z2
n. In this formulation, xp = 1 if and

only if SQ(p) is used in the covering.

Minimize :
∑

p∈Z2
n

xp

Subject to : ∀q ∈ X :
∑

p∈Z2
n:q∈SQ(p)

xp ≥ 1.

For finding short coverings of F3
q, a formulation in terms of compass roses in PG(2, q)

works similarly (see Corollary 3.2):

Minimize :
∑

p∈PG(2,q)

xp

Subject to : ∀q ∈ PG(2, q) : ∑

p∈PG(2,q):q∈W (p)

xp ≥ 1.

Some instances not covered by our theorems were solved using GLPK [7], Cplex
[9] and Gurobi [8]. They are displayed in the tables below. The values c(2), c(3) and
c(4) are already known from [16].

n 3 5 7 9 11 13 15 17
ξ(n) 2 3 5 6 7 9 9 11
ξD(n) 2 3 4 6 7 8 9 11

q 2 3 4 5 8 16
c(q) 1 3 3 4 6 11
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