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Abstract

Twins in a graph are vertices that are not adjacent, and which have
exactly the same neighbors. In the twin graph of a graph G, every vertex
represents an equivalence class of twins in G and is weighted by the size
of this class. Motivated by (complex) group testing with two defectives
and by fair division problems, we are interested in decomposing graphs
with few twin classes into k induced subgraphs with nearly equal edge
numbers, where every edge belongs to exactly one subgraph. Technically
we consider the fractional version of the problem, where the vertices of
a weighted twin graph can be split into arbitrary fractions, and the k
induced subgraphs must receive exactly the same total edge weights. The
results then apply to usual graphs, subject to a small discretization error.
We show that such equitable induced decompositions are indeed possible
for various twin graphs, including all bipartite graphs, cycles Cn and
Cn-colorable graphs, and (C3, C5)-free graphs. We also pay attention
to the necessary number of vertices (after the splittings) in the induced
decompositions. Usually this number is bounded by k + O(1), but for
complete bipartite graphs, i.e., when the twin graph is a single edge,
roughly 2

√
k vertices suffice, and their exact minimum number is easy to

compute for many k.

1 Introduction

Complex group testing [5, 6] is a natural generalization of the well-studied group
testing problem and is described as follows. We are given a set of items and an
unknown family of nonempty subsets called complexes. We can choose an arbitrary
subset, called a pool, and test it. The result of the test is positive if the pool contains
at least one complex as a subset, and otherwise negative. The goal is to identify the
complexes by a minimum number of tests. We know in advance, for given numbers
d and r, that (at most or exactly) d complexes exist, and that each complex has (at
most or exactly) r elements.
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The case r = 1 is the ordinary group testing problem. The case r = 1, d = 1
is trivial in the sense that it can be optimally solved adaptively by binary search
or non-adaptively by binary encoding. The case r = 2 with a general d has found
special attention, e.g., in [7, 8].

The main motivation for complex group testing is the search for unknown factors
that cause a certain effect if and only if all these factors are present, and where the
candidate factors can be independently switched on and off in experiments. Examples
include gene knockout experiments in biology, testing the properties of mixtures of
chemicals, and fault diagnosis of technical installations or software.

In the following we only deal with the case of exactly one complex comprising
exactly two items (or vice versa). This case should be quite common, as many
phenomena are caused by the coincidence of two different factors, whereas none of
the factors alone has an effect. (For instance, only the combination of two specific
chemicals may be toxic.) Moreover, this case has a neat connection to graph theory,
as explained below.

We assume that the reader is familiar with usual graph-theoretic concepts, like
neighbor, clique, independent set, induced subgraph, bipartite graph, etc. A twin
class is a maximal set I of vertices such that I is an independent set and all vertices
in I have the same neighborhood. Let n and m denote the number of vertices and
edges, respectively.

For d = 1 and r = 2 we may think of the items and candidate pairs as vertices
and edges, respectively, of an undirected graph. When a pool is tested positively, the
remaining graph is the subgraph induced by this pool. When a pool is tested nega-
tively, the remaining graph is obtained by deleting the edges, but not the vertices, of
this pool. Usual group testing with two defectives (d = 2 and r = 1) is equivalent:
just take the complements of the pools.

If initially all pairs are candidates, the graph is a clique. Negative tests cut out
the edge sets of some smaller cliques. Moreover, as soon as the negatively tested pools
cover every vertex at least once, the vertex set of the remaining graph is partitioned
into twin classes whose number depends only on the number of pools but not on the
graph size. Since positive tests leave induced subgraphs, the statements remain true
if we encounter some positive tests, too.

The candidate graph can naturally consist of a few twin classes also right from
the beginning: The candidate factors may belong to different classes (e.g., genes with
different roles, chemicals of different types), and we may know in advance that the
two sought items can only belong to certain pairs of distinct classes. Altogether,
graphs of arbitrary size but with a limited number of twin classes are of special
interest in our context.

Next, also the pool sizes may be restricted for practical reasons (e.g., one cannot
inject too many faulty conditions in a system simultaneously, or mix too many dif-
ferent chemicals for a test). This imposes limits on the number of vertices or edges
in each pool. In the following we briefly discuss a situation where, for some factor
β < 1, at most βm edges are allowed in each pool. We use a known fact which is
Proposition 1.25 in [1]:
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Proposition 1.1. For adaptive group testing with exactly one positive element (d = 1
and r = 1) and pools of size at most s, the following strategy minimizes the worst-case
number of tests: First test pairwise disjoint sets with s elements until a positive result
is obtained or less than 2s elements are left, then continue with bisection search.

Suppose for a moment that we know a family of induced subgraphs, each with
at most βm edges, that together cover all edges of a given graph. Then, Proposition
1.1 applied to the edge set yields that the following strategy minimizes the worst-
case number of tests, up to an additive error of at most one test: First test a
minimum number of the mentioned induced subgraphs. As soon as a positive test
is found, the size limitation is trivially satisfied in the remaining graph. Henceforth
do bisection search, that is, repeatedly test an induced subgraph with roughly half
of the remaining edges. Bisection search is always possible, in the sense that there
exists an efficient search strategy that misses the information-theoretic lower bound
(binary logarithm of the number of edges) by at most one test; see [12] for an elegant
proof of a more general result.

If 1/β happens to be an integer, an ideal covering would be a partitioning of the
edge set into 1/β induced subgraphs with pairwise disjoint edge sets of equal, or
nearly equal, sizes. In general graphs we cannot expect such partitionings to exist,
and even if they do, their construction would involve the NP-hard problem of finding
induced subgraphs with prescribed numbers of edges. However, in this paper we will
show such constructions at least for certain graphs. These cases may appear very
special, but they are twin graphs that arise from negative initial tests as described
above.

The more general case when 1/β is fractional is less clear. We may still take the
next smaller inverse of an integer. Some limited overlaps and size differences of the
tested edge sets would not always increase the worst-case number of tests. If, regard-
less, we can efficiently construct equitable families of disjoint induced subgraphs, we
might as well use them, thus performing the optimal number of tests in the first
phase when the graph is larger then the allowed pool size. However, we will not
prove formal results on that matter, and we must leave it to future research.

Finally, we have arrived at the following problem: Partition a graph into induced
subgraphs with pairwise disjoint edge sets of nearly equal sizes.

Trivially, the same problem appears if complexes may be present or not, and we
only want to check the absence of complexes by group tests where the number of
edges in each pool is bounded. Moreover, the problem appears fascinating in its own
right, and it may also find other applications. In general, problems of dividing objects
equitably, where the parts must obey certain restrictions, have various applications
in management and administration. Here we cannot survey the whole field, and we
refer to some selected papers [2, 4, 9, 10].

2 Fractional Induced Decompositions

The notion of induced decompositions is already well known in graph theory [13, 3].
An induced decomposition of a graph G consists of induced subgraphs H1, . . . , Hk of
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G such that every edge of G belongs to exactly one subgraph Hi. In an induced H-
decomposition, all Hi are isomorphic to some fixed graph H . But remember that the
subject of the present paper is different: We are interested in induced decompositions
where the graphs Hi are not necessarily isomorphic but have the same number of
edges, as far as possible.

Two vertices u and v in a graph G are twins (sometimes called “false twins” in
other literature), if uv is not an edge, and u and v are adjacent to exactly the same
set of other vertices. The twin relation is an equivalence relation whose equivalence
classes are the twin classes of G.

The twin graph T (G) of G is defined as the graph whose vertices are the twin
classes of G, and where two vertices are adjacent if and only if some (and hence
all) vertices in the two corresponding twin classes are adjacent, i.e., if the two twin
classes induce a complete bipartite graph.

Recall that we consider large graphs with a few twin classes. We can succinctly
represent any such graph G by its twin graph T (G), where every vertex of T (G) has
a weight indicating the number of vertices in the corresponding twin class in G. We
also give every edge of T (G) a weight indicating the number of edges between the
corresponding twin class in G.

We abstract away the size of G and keep only T (G) and the proportions of twin
class sizes. That is, we multiply all vertex weights and all edge weights with some
scaling factor σ and σ2, respectively, where σ is some free parameter. Note that
the weight of every edge is the product of the weights of its end vertices. We call
every weighted graph with this property a weighted twin graph. In particular, we
may choose σ = 1/

√
m, such that the sum of edge weights is normalized to 1.

Next we introduce a fractional analogue to the notion of induced subgraphs, for
these weighted twin graphs T . From every vertex, say with weight w, we take any
“portion” of weight w′, where 0 ≤ w′ ≤ w. We connect the vertices, with their chosen
weights w′, by the edges inherited from T to a graph T ′. If T ′ contains twins (which
can happen if some weights w′ are 0), we may merge any twins to single vertices and
sum up their weights. The edge weights in T ′ are again set to be the products of the
vertex weights. We call every weighted twin graph T ′ obtained from T in this way
an induced subgraph of T .

Obviously, any induced subgraph of G corresponds to an induced subgraph of
T = T (G), but the converse does not hold, as we cannot split vertices of G. However,
for any fixed T and for large enough graphs G whose weighted twin graph is T (or
approximately T ) we can approximately realize any induced subgraph of T as an
induced subgraph of G, by rounding fractional vertex numbers to integers. We do
not further elaborate on this point in detail, however it is obvious that the relative
error vanishes as G grows.

The removal of the edges of an induced subgraph T ′ from T is slightly more
difficult to describe. We have to replace every vertex of T with two weighted copies:
the portion belonging to and not belonging to T ′. In an obvious way, every edge is
replaced with four edges between the 2 + 2 copies of its end vertices, and one of the
four edges is deleted. In the worst case this can double the number of vertices (i.e.,
twin classes).
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More generally, a family of k induced subgraphs T1, . . . , Tk of T can be canonically
represented as follows. Every vertex v of T is split into at most 2k vertices vI , one
for each subset I ⊆ {1, . . . , k}. The weight of every vertex vI is the portion of v that
belongs to the subgraphs Ti with indices i ∈ I, and does not belong to any subgraph
Ti with an index i /∈ I. Every edge uv is replaced with all possible edges uIvJ , and
the weight of every edge is again the product of the weights of its two end vertices.
We keep only the vertices and edges with positive weights; note that many weights
can be zero. We also refer to the resulting graph as the generalized twin graph of the
family.

The family of induced subgraphs T1, . . . , Tk is an induced decomposition of T if
and only if |I ∩ J | = 1 holds for every edge uIvJ . Translated back to graphs G
with (weighted) twin graph T , this condition just says that every edge of G belongs
to exactly one of the induced subgraphs represented by the Ti. Note carefully that
several Ti may share the same vertices.

Now we can formulate our main goal as follows: Given a weighted twin graph
and an integer k, construct a family F of k induced subgraphs such that F is an
induced decomposition, the total edge weights of the k induced subgraphs in F are
equal, and the number of vertices in the generalized twin graph of F is kept to a
minimum.

The latter condition is important for the approximate realization of the decompo-
sitions of T in actual graphs G with T (G) = T , since fractional numbers of vertices
in G must be rounded to integers. The more vertices we produce in the twin graph,
the more rounding operations we need. More informally, a decomposition with fewer
vertices is just “simpler”. Similar conditions appear in other equitable division prob-
lems where the fragmentation of the pieces, e.g., the number of cuts, shall be kept
to a minimum.

In the following sections we study equitable fractional decompositions of various
twin graphs. Let Kn and Cn denote the clique and the cycle, respectively, of n
vertices.

3 The Twin Graph K2

Consider T = K2, which is the twin graph of complete bipartite graphs. It is trivial
to construct an induced decomposition into k induced subgraphs with equal total
edge weights, just by splitting one of the two vertices into k vertices with equal
vertex weights. However, this creates a twin graph with k + 1 vertices. On second
thought, O(

√
k) vertices should be enough, through a careful division of both initial

vertices. Below we study the number of vertices needed. In fact we will show an
upper bound 2

√
k(1 + o(1)).

We can think of a weighted K2 as a rectangle, where the side lengths and the area
are the weights of the two vertices and of the edge, respectively. Any partitioning of
the two vertices into, respectively, g and h smaller weighted vertices naturally defines
a g × h grid of gh rectangles that we call cells. (A g × h grid is a grid with g rows
and h columns.) Furthermore, any induced decomposition into k induced subgraphs
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is described by assigning a mark from {1, . . . , k} to each cell, in such a way that,
for every i, the union of all cells with mark i is a sub-grid. Here, the term sub-grid
means a set of cells that can be turned into a rectangle by permutations of the rows
and columns, respectively, of the entire grid. In particular, a usual rectangle of cells
is also a sub-grid.

Definition 3.1. For a given k we define r := �√k�, and we define d := 2r if
r2 +1 ≤ k ≤ r2 + r, and d := 2r+1 if r2 + r+1 ≤ k ≤ r2 +2r+1. If k is not clear
from context, we may write r(k) and d(k).

Note that d + 1 = min{g + h| gh ≥ k}. It follows that every induced decom-
position into k induced subgraphs needs at least d + 1 vertices. Below we will give
two contributions: we derive an upper bound on the number of vertices, and we
characterize the numbers k for which d+ 1 vertices are sufficient.

Theorem 3.2. For every k there exists an induced decomposition of the weighted
twin graph K2 (given with arbitrary vertex weights) into k induced subgraphs with

equal total edge weights and with at most d+
√
d/2 + log2 d+O(1) vertices.

Proof. First we describe the principal shape of our construction. We fix some number
g of rows. For various divisors f of g we create columns for f marks, where always
g/f consecutive cells get the same mark. The total number of marks must be k.
Since, within every column, marks are assigned to the same number of cells, it is
trivial to finally choose the breadths of the columns such that all k rectangles (unions
of cells with the same mark) occupy equal areas.

We are left with a purely number-theoretic task: Write k as a sum of a minimum
number h of divisors of g. (Note that a divisor may in general appear multiple times
in this sum.) Finally we choose g so as to minimize g+h. Here we do not aim for the
exact minimum g + h, but only for a simple general construction that yields some
good upper bound.

The idea is to choose g both close to
√
k and with a large number of prime factors

2. We work out the details now. Let e be the largest integer with 2e ≤ 4
√
k, and

let p be the largest integer with g := 2e · p ≤ √
k (which also defines our g). By

maximality of p we have
√
k − g < 2e ≤ 4

√
k, thus g ≥ √

k − 4
√
k.

First we generate a maximum number of columns with g marks, that is, we stop
only when another column would raise the total number of marks above k. The
number of such columns is at most k/g ≤ k/(

√
k − 4

√
k) = k(

√
k + 4

√
k)/(k −√

k) =

(
√
k + 4

√
k)/(1−

√
1/k) = (

√
k + 4

√
k)(1 +O(

√
1/k)) =

√
k + 4

√
k +O(1).

There remain fewer than g ≤ √
k marks to assign. Since g has all divisors g/2i

for i ≤ e, we can create a new column for at least half of the remaining marks, and
continue doing so until fewer than p marks are left. (Note that the last such divisor
is g/2e = p.) Obviously, the number of these columns is at most e.

As said above, there remain fewer than p marks to assign. We observe that
2e+1 > 4

√
k due to the maximality of e. Hence p = g/2e ≤ 2

√
k/2e+1 < 2

√
k/ 4

√
k =

2 4
√
k ≤ 4 · 2e. Since g has all divisors 2i for i ≤ e, we conclude that at most e + 3
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further columns suffice to host all remaining marks, using the binary expansion of
their number.

Since e ≤ log2
4
√
k = (1/4) log2 k, the total number of columns needed is no larger

than
√
k + 4

√
k + (1/2) log2 k + O(1). Together with the g ≤ √

k rows these are at
most 2

√
k+ 4

√
k+(1/2) log2 k+O(1) vertices. We plug in the definition of d to obtain

the assertion.

Note that our upper and lower bound differ only by a factor 1 + O(1/
√
d). An

intriguing question is whether the dominating
√
d/2 term can be improved. Other

numbers close to
√
k may have even “nicer” divisors than in our construction based

on powers of 2, but it seems to be a more intricate number-theoretic matter to derive
a better bound.

In the second part of this section we follow a different route and characterize the
numbers k for which d(k) + 1 vertices are sufficient. (Remember that this was the
absolute minimum.) We call a cell lonely if no other cell has the same mark, that is,
the cell is one of the k sub-grids of our induced decomposition.

Lemma 3.3. In every induced decomposition of K2 into induced subgraphs with equal
total edge weights, the lonely cells form a sub-grid.

Proof. We denote by x(c) and y(c) the horizontal and vertical side length, respec-
tively, of a cell c. Note that all lonely cells must have equal areas, and the areas of
other cells must be strictly smaller.

If two lonely cells a and b are in the same row, then trivially y(a) = y(b), and
since x(a) · y(a) = x(b) · y(b), it also follows x(a) = x(b). Similarly, any two cells in
the same column are congruent as well. Now let a and b be lonely cells not being in
the same row or column, and let c and e be the cells that form together with a and
b a sub-grid, as displayed here:

a c
e b

Since x(a)·y(a) ≥ x(c)·y(c) = x(b)·y(a), we conclude x(a) ≥ x(b). By symmetry,
and by involving the cell e, we also get the other inequalities x(a) ≤ x(b), y(a) ≥ y(b),
y(a) ≤ y(b). Altogether this shows that all lonely cells are congruent.

Consider the sub-grid spanned by the lonely cells; it consists of all cells c such
that both the row of c and the column of c contains some lonely cell. Since all lonely
cells are congruent, it follows that all rows in this sub-grid have the same breadth,
and so have the columns. Hence all cells in this sub-grid are congruent, which further
implies that they are lonely. In other words, the lonely cells form a sub-grid.

Now we can show that induced decompositions with d(k) + 1 vertices necessarily
have a rather strict structure.

Theorem 3.4. Every induced decomposition of K2 into k induced subgraphs with
equal total edge weights and d(k) + 1 vertices is described by some g × h grid where
all cells are lonely, except at most one row or column with f rectangles of h/f or
g/f cells, where f is some divisor of h or g, respectively.
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Proof. Let r2+1 ≤ k ≤ r2+ r. Consider any g×h grid with g+ h = d+1 = 2r+1.
Note that gh ≤ r(r+1) = r2+r. The lonely cells form some g′×h′ sub-grid. Assume
that g′ + h′ ≤ d − 1 = 2r − 1. Then g′h′ ≤ (r − 1)r = r2 − r. Trivially, the number
of rectangles beyond the lonely cells is at most half the number of further cells. This
yields k ≤ g′h′ + (gh− g′h′)/2 = (gh+ g′h′)/2 ≤ ((r2 + r) + (r2 − r))/2 = r2, which
contradicts r2 + 1 ≤ k. Thus g′ + h′ ≥ d = 2r.

The argument in the other case is almost literally the same, but for easier reading
we repeat it here, with the modifications:

Let r2+r+1 ≤ k ≤ r2+2r+1. Consider any g×h grid with g+h = d+1 = 2r+2.
Note that gh ≤ (r + 1)2 = r2 + 2r + 1. The lonely cells form some g′ × h′ sub-grid.
Assume that g′ + h′ ≤ d − 1 = 2r. Then g′h′ ≤ r2. Trivially, the number of
rectangles beyond the lonely cells is at most half the number of further cells. This
yields k ≤ g′h′+(gh−g′h′)/2 = (gh+ g′h′)/2 ≤ ((r2+2r+1)+ r2)/2 = r2+ r+1/2,
which contradicts r2 + r + 1 ≤ k. Thus g′ + h′ ≥ d = 2r + 1.

This shows that, in a g × h grid with d + 1 vertices, at most one row or column
consists of cells that are not lonely. Since all rectangles must have equal areas, this
row (column) must consist of f rectangles with h/f (g/f) cells each, where f is some
divisor of h (g).

Using Theorem 3.3 we can now very easily enumerate all numbers k = 1, 2, 3, . . .
for which induced decompositions with d(k)+1 vertices exist: Depending on whether
d(k) = 2r(k) or d(k) = 2r(k) + 1 we start from an r × r grid or an r × (r + 1) grid,
then we decrement the number of rows and increment the number of columns, and
we try all divisors to add one row or column to the sub-grid of lonely cells. If we
cannot hit exactly the number k of marks, then we know from Theorem 3.3 that
d(k) + 1 vertices are not enough. In this case we try and add another divisor (that
is, either two rows or two columns), in order to obtain d(k) + 2 vertices.

An interesting observation is that, for growing k, the cases d(k) + 1 and d(k) + 2
take turns quite unsystematically, but d(k) + 2 vertices are sufficient for all k ≤ 166.
The smallest k for which the question cannot be settled in this way is 167.

Problem A. For which k do we need d(k)+ 2 vertices, d(k)+ 3 vertices, and so on?

4 The Twin Graph C3

The next larger twin graph is T = C3 (= K3). Unlike the case of K2, the existence
of equitable induced decompositions is no longer obvious. But it is again helpful to
look at a suitable geometric model.

Lemma 4.1. Let us be given a twin graph C3 with arbitrary positive vertex weights,
and 4 positive numbers x1, . . . , x4 such that

∑4
i=1 xi equals the total edge weight.

Then there exists an induced decomposition into 4 induced subgraphs, which are again
weighted C3, with total edge weights x1, . . . , x4, and with 6 vertices.

Proof. We can naturally think of a weighted twin graph C3 as an axis-parallel cuboid
in an x, y, z-coordinate system: The 3 vertices of C3 are represented by half-open
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segments on the 3 coordinate axes, whose lengths are proportional to the vertex
weights. For instance, if the first vertex has weight w, we represent it by the segment
[0, w) on the x-axis. The cuboid is the Cartesian product of the 3 segments. The
3 edges of C3 are represented by rectangles on the planes with x = 0, y = 0, and
z = 0, respectively, which are the Cartesian products of the mentioned segments,
i.e., 3 faces of the cuboid that meet in one corner.

For any point (r, s, t) in the cuboid we divide the twin graph as follows. First
we divide the space into the 8 axis-parallel octants that have their origins at (r, s, t).
More formally, each point (x, y, z) belongs to an octant depending on whether x < r,
y < s, z < t or not. The intersections of the cuboid with these octants define a
partitioning into 8 smaller cuboids. We select 4 of them, that pairwise intersect in a
line segment. (They would be the black “fields” in a 2 × 2× 2 “checkerboard”, and
the other 4 would be the white “fields”.)

According to this partitioning we split each vertex of C3 in 2 vertices whose
weights are again proportional to the segment lengths. Each of the 4 chosen cuboids
represents an induced subgraph, in the obvious sense. We also claim that every edge
of the twin graph, after the splitting, is contained in exactly one of these 4 induced
subgraphs. To see that this claim is true, just consider the projections of the 4
selected cuboids to each of the 3 coordinate planes. Next we adjust the weights.

Let y1, . . . , y4 be the edge weights of our 4 induced subgraphs, where the indexing
is arbitrary. Define di := yi − xi. We will show that the point (r, s, t) can be chosen
such that yi = xi for i = 1, . . . , 4. Note that

∑4
i=1 yi =

∑4
i=1 xi, hence

∑4
i=1 di = 0,

and that we want
∑4

i=1 |di| = 0.
Trivially, we can select any j ∈ {1, . . . , 4} and move the point (r, s, t) so as to

increase or decrease yj by some desired small amount (without caring how this affects
the other yi). Also observe that moving the point (r, s, t) parallel to some axis, i.e.,
changing exactly one of the three coordinates, increases two of the variables yi and
decreases the two others. Conversely, for each of the six partitionings of {1, . . . , , 4}
in two sets I and J with |I| = |J | = 2, there exists such a moving direction that
increases the yi with i ∈ I and decreases the yj with j ∈ J . These manipulations
enable the following existence proof, which can also be turned into an algorithm to
find the said point.

Consider a point (p, q, r) that minimizes maxi |di|. Such a point exists, since a
continuous function on a compact set attains its minimum. We call every index
j ∈ {1, . . . , 4} with |dj| = maxi |di| a critical index. Assume that maxi |di| > 0.

If exactly one critical index j exists, then we can decrease its |dj|, yet keeping j
critical, and thus decrease maxi |di|.

Assume that exactly 2 indices j are critical, without loss of generality j = 1 and
j = 2. If both d1 > 0 and d2 > 0, then they cannot be the only critical indices
(contrary to the assumption), because of

∑4
i=1 di = 0. The same reasoning applies if

both d1 < 0 and d2 < 0. Thus we can assume d1 > 0 and d2 < 0; the opposite case
is symmetric. Now we can decrease d1 and another difference, say d3, and increase
d2 and d4, thus making maxi |di| smaller.

Assume that exactly 3 indices i are critical. Similarly as before, no matter which
of the corresponding di are assumed to be positive or negative,

∑4
i=1 di = 0 implies
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that this case is impossible.
Finally assume that all 4 indices i are critical. Again, due to

∑4
i=1 di = 0, two of

them must be positive and negative, respectively. Hence we can decrease the former
and increase the latter, thereby making maxi |di| smaller.

For every case we have seen that either the case is impossible or maxi |di| is not
minimal. Hence the assumption was wrong, and maxi |di| = 0 holds true.

Lemma 4.2. Every weighted twin graph C3 with arbitrary positive vertex weights
has an induced decomposition into 9 induced subgraphs with equal total edge weights
and with 9 vertices.

Proof. We use again the cuboid and partition the segment on the x-axis into 3
segments X1, X2, X3 of equal lengths. Similarly we define Y1, Y2, Y3 and Z1, Z2, Z3

on the y- and z-axis, respectively. This splits every vertex of C3 into 3 new vertices
of equal weights. We choose the 3 + 6 = 9 cuboids of the form Xi × Yj × Zk, where
either i = j = k or {i, j, k} = {1, 2, 3}. Indeed, every edge belongs to exactly one
of the induced subgraphs represented by these cuboids, and their total edge weights
are trivially equal.

Theorem 4.3. Every weighted twin graph C3 with arbitrary positive vertex weights
possesses, for k ∈ {4, 7, 9, 10, 13} and for every k ≥ 16, an induced decomposition
into k induced subgraphs with equal edge weights and with at most k + 2 vertices.

Proof. First we show the following claim: For k = 3j+1 (j ≥ 0 integer) and arbitrary
positive numbers xi with

∑k
i=1 xi = 1, there exists an induced decomposition into k

induced subgraphs C3 with total edge weights x1, . . . , xk.
We prove the claim by induction on j. The induction base j = 1 is stated by

Lemma 4.1. Suppose that the claim is true for j − 1. We replace the desired edge
weights x1, . . . , x3j+1 with x1, . . . , x3(j−1), x3j−2 + x3j−1 + x3j + x3j+1 and apply the
induction hypothesis to these 3(j − 1) + 1 edge weights. This yields 3(j − 1) + 1
induced subgraphs which are C3 and have the indicated edge weights. We apply
Lemma 4.1 once more to the last subgraph and split its total edge weight into the
desired proportions. This yields 3j + 1 induced subgraphs with total edge weights
x1, . . . , x3j+1. The number of vertices increases by 3 in the inductive step.

If k = 3j + 1 for some integer j ≥ 0, we choose all xi = 1/k, and we are done.
If k = 3j for some integer j ≥ 4, we choose x1 = 9x2 = . . . = 9xk−8 and divide the
first subgraph into 9 smaller subgraphs using Lemma 4.2. This last step increases
the number of subgraphs by 8 but the number of vertices by only 6. If k = 3j−1 for
some integer j ≥ 6, we choose x1 = x2 = 9x3 = . . . = 9xk−16 and divide the first two
subgraphs into 9 + 9 smaller subgraphs using Lemma 4.2. This last step increases
the number of subgraphs by 16 but the number of vertices by only 12. These cases
modulo 3 cover all numbers k in the assertion.

Problem B. Do there exist induced decompositions of the weighted K3 with equal
edge weights also for k ∈ {2, 3, 5, 6, 8, 11, 12, 14, 15}?
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We conjecture that they do not exist, not even with unequal weights. One can in
principle solve this problem by naive exhaustive search, however the number of cases
to consider would be prohibitive. It may be interesting to close these remaining gaps
without excessive case distinctions.

5 Independent Separators

For any graph G = (V,E) and any subset U ⊆ V let G[U ] denote the subgraph
induced by U . When we give the set U explicitly by its list of elements U =
{u1, u2, u3, . . . , }, we omit the curly brackets and write G[u1, u2, u3, . . .].

A set N ⊂ V is a separator if G[V \N ] has at least two connected components.
For any such connected component C, we refer to C ∪N or G[C ∪N ] as a wing.

First notice an equivalent characterization of induced decompositions that follows
instantly from the definition: A family of induced subgraphs H1, . . . , Hk of a graph
G forms an induced decomposition of G if and only if the Hi cover together all edges
of G, and the vertex sets of any two graphs Hi intersect in some independent set in
G.

Lemma 5.1. Let G = (V,E) be a graph, and let N ⊂ V be both an independent
set and a separator. Then, any induced decompositions of its wings form together an
induced decomposition of G.

Proof. Consider any two induced subgraphs from the given induced decompositions.
If they are in the same wing, they intersect in an independent set, due to the char-
acteristic property of induced decompositions. If they are in different wings, they
intersect in an independent set as well, since N was assumed to be an independent
set.

We remark that Lemma 5.1 straightforwardly extends to twin graphs. Next we
turn to special twin graphs.

Lemma 5.2. Consider any bipartite weighted twin graph whose vertex set consists of
two independent sets S and N , and let y denote its total edge weight. Let y′ and y′′

be any positive numbers with y′+y′′ = y. Then there exists an induced decomposition
into two induced subgraphs with total edge weights y′ and y′′, where at most one vertex
of S (and no vertex of N) is split in two vertices.

Proof. We may go through the vertices of S in an arbitrary order, until the total
weight of the edges incident to them reaches y′. At this moment we split the current
vertex u ∈ S in two vertices u′ and u′′, which have the same neighbors in N as u
had. We transfer some portion of the weight of u to u′, such that the total weight
of the edges incident to u and all previous vertices of S is exactly y′. We transfer
the remaining weight of u to u′′. Let S ′ to be the vertex set containing u′ and all
previous vertices of S, and let S ′′ be the vertex set containing u′′ and all subsequent
vertices of S. The two subgraphs induced by N ∪ S ′ and N ∪ S ′′ cover together all
edges, they intersect at most in the independent set N , and they have total edge
weights y′ and y′′, respectively.
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Our use of Lemmas 5.1 and 5.2 is to construct an induced decomposition of a
weighted twin graph T in a recursive fashion: We take an independent set S whose
set N of neighbors is independent, too. Note, in particular, that N is a separator,
or S ∪N is the entire vertex set. Due to Lemma 5.2 we can take away an arbitrary
portion of the total edge weight of T [S ∪ N ], by cutting off some subset S ′ of S
and all incident edges, where at most one vertex of S is split before this removal.
Then we put aside T [S ′∪N ], and we recursively construct an induced decomposition
of the remaining weighted twin graph (which still contains N as well). Lemma
5.1 guarantees the correctness of the construction, that is, we eventually obtain an
induced decomposition of T .

A first obvious consequence is:

Theorem 5.3. For every k, every bipartite twin graph T , with t vertices of arbitrary
positive weights, has an induced decomposition into k induced subgraphs whose total
edge weights are any k prescribed numbers that sum up to the total edge weight of T .
Furthermore, the twin graph of the decomposition has at most t+ k − 1 vertices.

Problem C. For the simplest bipartite twin graph T = K2 we had seen that 2
√
k(1+

o(1)) vertices are enough. Does every fixed bipartite graph T allow a decomposition
into k induced subgraphs with equal edge weights and with only o(k) vertices?

6 Odd Cycles as Twin Graphs

Recall that Cn is the cycle of n vertices. We also use the standard notation Pn for
a path of n vertices. It is well known that bipartite graphs are exactly those graphs
containing no (induced) subgraph Cn for odd n. We have just seen that bipartite
graphs can be divided into an arbitrary number of induced subgraphs with (e.g.)
equal total edge weights, and we have already studied the twin graph C3 separately.
Now it is natural to look at the larger odd cycles. In this section we will see that we
can decompose them equitably as well, using independent separators.

Theorem 6.1. For every k ≥ 3 there exists an induced decomposition of the weighted
twin graph C5 (given with arbitrary vertex weights) into k induced subgraphs with
equal total edge weights and with at most k + 4 vertices.

Proof. We denote the edges in cyclic order by e1, . . . , e5, and we let vi denote the
vertex incident to ei and ei+1. The starting point is arbitrary, that is, we can apply
an arbitrary cyclic shift to the indices. Also recall that we can normalize the total
edge weight to 1.

We prove the assertion by induction on k, where the intricate part is the induction
base k = 3.

Suppose that two edges exist with weights larger than 1/3. No matter whether
these two edges are incident or not, we can cyclically shift the indices such that: e1
and e2 together have weight larger than 1/3, and e3 and e4 together have weight larger
than 1/3. Now we apply Lemma 5.2, once with S = {v1} and N = {v5, v2}, and
once with S = {v3} and N = {v2, v4}. That is, we divide v1 and v3, respectively, and
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Figure 1: This shows the division of the twin graph C5 into 3 induced subgraphs. A
label i at an edge indicates that this edge belongs to Hi.

remove twice an induced subgraph with total edge weight 1/3. Hence the remaining
graph has total edge weight 1/3 as well. Due to Lemma 5.1 (applied twice) these 3
subgraphs form an induced decomposition.

The other case is that at most one edge has a weight larger than 1/3. Then let
e1, e2, e3 be consecutive edges, each with weights at most 1/3. The edges e3, e4, e5, e1
have together a weight at least 2/3. We can assume that e3 and e4 have together a
weight at least 1/3. (The case with e5 and e1 is symmetric.)

With these precautions we construct the following induced subgraphs. We divide
v3 into v′3 and v′′3 , and we divide v4 into v′4 and v′′4 . The splitting of their vertex
weights will be fixed later. Note that e3 and e5, respectively, is split in two edges,
and e5 is split in four edges. Let T ∗ be the resulting graph of 7 vertices. We define
H1 := T ∗[v1, v2, v′′3 , v

′
4, v

′′
4 ], H2 := T ∗[v1, v′3, v

′′
4 , v5], and H3 := T ∗[v2, v′3, v

′
4]. They

form an induced decomposition; just check their pairwise intersections. Edge e2 has
a weight at most 1/3, and the sum of weights of e3 and e4 was at least 1/3. Hence
we can choose the vertex weight of v′′3 such that H1 gets the total edge weight 1/3.
Similarly, e2 has a weight at most 1/3, and the sum of weights of e3, e4, e5, e1 was
at least 2/3. At most 1/3 (from e3 and e4) went into H1. Hence we can choose the
vertex weight of v′′4 such that H2 gets the total edge weight 1/3, too. There remains
exactly 1/3 for H3. This finishes the proof for k = 3. Since this construction is hard
to overlook in text, we also refer to Figure 1.

For the induction step, consider any fixed k ≥ 4 and assume that the assertion
is true for k − 1 subgraphs. Consider all 5 pairs of incident edges. Since every edge
belongs to exactly 2 of them, the sum of their edge weights is 2. Hence there exist
2 incident edges of total weight at least 2/5 > 1/4 ≥ 1/k. Let e2 and e3 be these
edges. We apply Lemma 5.2 with S = {v2} and N = {v1, v3} and cut off an induced
subgraph of total edge weight 1/k. Due to Lemma 5.1 and the induction hypothesis,
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C5 has an induced decomposition into k induced subgraphs with equal total edge
weights. Every step creates one new vertex.

We also find that C5 cannot always be divided into k = 2 induced subgraphs of
equal weights, This negative result is based on the following observation: Since an
induced subgraph H of a twin graph G consists of portions of the vertices of G, the
graph H ignoring the weights is also an induced subgraph of G in the usual sense.

Now, the only types of induced subgraphs of C5 (apart from isolated vertices)
are P2, P3, P4. Hence the only possible induced decompositions into k = 2 induced
subgraphs consist of a P3 and a P4 that share their end vertices. Obviously, their
total edge weights are in general different.

Dividing longer cycles is much easier because, loosely speaking, they have more
independent sets.

Theorem 6.2. For every n ≥ 6 and k ≥ 2 there exists an induced decomposition
of the weighted twin graph Cn (given with arbitrary vertex weights) into k induced
subgraphs with equal total edge weights and with at most n+ k − 1 vertices.

Proof. Twin graphs Cn with even n are already settled by Theorem 5.3, hence it
suffices to consider odd cycles. Take any j ≥ 2. In C4j−1, consider all 4j − 1 paths
of 2j edges. Since every edge belongs to exactly 2j of them, the sum of their edge
weights is 2j. Hence there exists a path P of 2j edges with total weight at least
2j/(4j − 1) > 1/2. The same double-counting argument shows that, in C4j+1, some
path P of 2j + 2 edges has total weight at least (2j + 2)/(4j + 1) > 1/2.

Note that P has even length, and the end vertices of P are not adjacent. Thus
we can apply Lemma 5.2, where the vertices of P are put alternatingly in N and
S, starting and ending with a vertex in N . Since 1/k ≤ 1/2, we can cut off an
induced subgraph U of total edge weight 1/k. More specifically, we can successively
process the vertices of S in their order on P , and put N and the visited vertices of S
completely in U , until the total edge weight of U reaches 1/k (and at this moment
at most one vertex of S is split). In particular, either some vertices of S end up
completely in U , or we reach 1/k already by splitting the first vertex of S. In the
former case we have “broken the cycle”, that is, we get an induced decomposition of
Cn into two paths of total edge weights 1/k and 1 − 1/k, respectively. In the latter
case we get an induced decomposition of Cn into P3 and (still) Cn, with total edge
weights 1/k and 1− 1/k, respectively. In both cases, the induced decomposition has
at most n+ 1 vertices.

Now we are ready to prove the assertion by induction on k. For k = 2, both total
edge weights are 1/2, and the number of vertices is at most n+ 2− 1. Suppose that
the assertion holds for k − 1. We split off U with total edge weight 1/k as described
above. If the remaining weighted twin graph is a path Pt, then we can use Theorem
5.3 (since paths are bipartite) to obtain an induced decomposition of Pt into k − 1
induced subgraphs with equal total edge weights and at most t+(k−1)−1 vertices,
in other words, with at most k − 2 additional vertices. If the remaining weighted
twin graph is still Cn, then we temporarily scale the vertex weights such that the
total edge weight becomes 1 again, and we apply the induction hypothesis. At most
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k − 2 new vertices are produced here, too. Clearly, after re-scaling to the original
weights, all k induced subgraphs have the same total edge weights, and Lemma 5.1
ensures that they form an induced decomposition.

Problem D. Does the necessary number of vertices of decompositions into k induced
subgraphs with equal total edge weights grow linearly in k, for non-bipartite twin
graphs T ?

7 Using Homomorphisms

In this brief section we sketch an extension of some of the previous results.
A graph homomorphism f : G → H maps the vertices of a graph G to the vertices

of a graph H such that f(u), f(v) are adjacent in H whenever u, v are adjacent in
G. In short: edges are mapped to edges. If a homomorphism f : G → H exists,
then G is also called H-colorable. (Hence Kχ-colorability is the usual χ-colorability.)
A homomorphism substitutes, in an obvious sense, the vertices of H by independent
vertex sets in G, and the edges of H by induced bipartite subgraphs of G. Note
that the mapping of a graph G to its twin graph T is a homomorphism, with the
additional property that non-edges are mapped to non-edges, i.e., the said bipartite
subgraphs are complete there.

The constructions in the proofs of Theorem 6.1 and 6.2 can also be applied to
Cn-colorable twin graphs, to divide them into induced subgraphs with equal total
edge weights. Only the number of vertices is more tricky and depends on the given
twin graph. This implies the same divisibility results for Cn-colorable graphs, for
every n ≥ 5 and k ≥ 2 (except n = 5 and k = 2).

Many graphs are known to be Cn-colorable. To give some examples: Hexagonal
graphs are induced subgraphs of the triangular grid. All C3-free hexagonal graphs
are C5-colorable [11], and elementary case distinctions show that all C3-free graphs
with up to 7 vertices are C5-colorable, too.

8 Twin Graphs Without Short Odd Cycles

As we have seen, short odd cycles make it more difficult to divide the edge set of
a twin graph equitably into induced subgraphs. Therefore it is interesting to notice
the following result for a wider class of graphs where we just forbid the two shortest
odd cycles. However we can prove it only from some large enough k on, depending
on the smallest edge weight.

Theorem 8.1. For every {C3, C5}-free weighted twin graph T with t vertices (given
with arbitrary but fixed vertex weights such that the total edge weight equals 1), and
for every k being at least the inverse of the smallest edge weight, there exists an
induced decomposition into k induced subgraphs with equal total edge weights and
with at most t+ k − 1 vertices.
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Proof. Due to Theorem 5.3 it suffices to consider non-bipartite graphs T . Let d
denote the distance function in T , indicating the number of edges on a shortest path
between any two vertices. We call a vertex odd if it is contained in some odd cycle.
Since T is not bipartite, T contains some odd cycle, and hence some odd vertex
v. Furthermore, there exists an edge xy with d(v, x) = d(v, y). (To see this, do
breadth-first-search in T starting at v, and consider the distance layers. Some edge
xy has its two vertices in the same layer.) Finally, since T has no C3 or C5, this edge
also satisfies d(v, x) = d(v, y) ≥ 3.

Now we describe an algorithm that constructs the claimed induced decomposition.
We use H as a variable for the induced subgraph of T that we construct as the next
member of our induced decomposition. Also note that every edge of T has an edge
weight of at least 1/k.

We start with any odd vertex v of T that we mark active, and any edge vu. Our
first subgraph H is induced by v and a portion of u. Obviously we can choose this
portion such that H gets the edge weight 1/k.

Our next subgraph H is also induced by v and another portion of u. If the rest
of u is too small to achieve edge weight 1/k, then we distinguish two cases:

(1) Another unused edge vu′ exists in T . Then we put the rest of u and s suitable
portion of u′ in H . Since the edge vu′ has also a weight of at least 1/k, we can indeed
finalize our current subgraph H . We also rename u′ and let it be our next u.

(2) All edges incident to v are used up. Then let xy be some edge with d(v, x) =
d(v, y) ≥ 3. Note that d(u′, x) ≥ 2 and d(u′, y) ≥ 2. Hence the only possible edges
in T [v, u′, x, y] are vu′ and xy. We add to H the entire x and a suitable portion of
y. Again, since 1/k is small enough, we can indeed finalize the current H . We also
rename x to v and let it be our new active vertex, and we rename y to u. Furthermore,
we remove the old active vertex v and all incident edges from T (as they are already
assigned to earlier induced subgraphs in our induced decomposition).

Thanks to the renaming of vertices, this shows that we keep the following invariant
after every construction of an induced subgraph H : There exists at most one active
vertex v and am edge vu with the property that v together with some portion of u
is already used, while all other edges of T are either completely used or completely
unused.

Thus we can iterate these steps and split off induced subgraphs, each with total
edge weight 1/k. Whenever no vertex v as in the invariant exists, we can select a
new active vertex v arbitrarily. As soon as the removal of edges makes the remaining
twin graph bipartite, we abort the process and continue according to Theorem 5.3.
In either case, we eventually divide all of T into induced subgraphs H , each of total
edge weight 1/k.

Finally we argue that they form an induced decomposition. EveryH consists of an
active vertex and some of its neighbors, or of two (consecutively) active vertices and
some of their neighbors, and in both cases, all these neighbors form an independent
set. Every vertex that was once active is deleted as soon as all its incident edges are
used up. Hence any later subgraph H can intersect any earlier subgraph H only in
some independent set.

The bound of t+k−1 vertices comes again from the fact that every new induced
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subgraph splits at most one further vertex of T .
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