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Abstract

In the eternal dominating set problem, guards form a dominating set
on a graph, and at each step, a vertex is attacked. To defend against
the attack, each guard either remains in place or moves to a neighboring
vertex in order to form a new dominating set that contains the attacked
vertex. We wish to determine the minimum number of guards required to
successfully defend against any possible sequence of attacks, the eternal
domination number. This number is known for 3 × n grid graphs when
n < 26. This paper determines exact values of eternal domination num-
bers for 3× n grid graphs when n ≥ 26.

1 Introduction

A dominating set for a graph is a positioning of guards on vertices so that every
vertex is monitored from a distance of at most one. A graph’s domination number
is the smallest size of such a set. An eternal dominating family is a collection of
dominating sets resulting from having to respond to an arbitrary infinitely long
sequence of attacks at individual vertices. Each response permits each guard to
either remain stationary or move a distance of one, but must have one guard move
to the attacked vertex. The smallest size of the sets for such a family is the eternal
domination number. This has been referred to as the “all guards move model” or
“eternal m-security” [7] and as “m-eternal domination” [4], and is one of a number
of variations of problems involving mobile guards [8]. This paper builds on previous
results on the eternal domination number for members of the family of 3 × n grid
graphs [2, 3, 4, 9], determining the outstanding values.

The domination number, denoted γ(G), has been determined for all grid graphs
[5, 6], with the value for 3 × n grid graphs being γ(P3 �Pn) = �3n+1

4
�, making this
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a lower bound for the eternal domination number of such graphs, which we denote
γ∞
all(P3 �Pn). Goldwasser, Klostermeyer, and Mynhardt [4] found that

γ∞
all(P3 �Pn) ≤

⌈
8n

9

⌉
for n ≥ 9

and conjectured that γ∞
all(P3 �Pn) = �4n+5

5
� for n > 9. Finbow, Messinger, and van

Bommel [2] disproved the conjecture and provided a tightening of the bounds to⌈
4n+ 6

5

⌉
≤ γ∞

all(P3 �Pn) ≤
⌈
6n+ 2

7

⌉
for n ≥ 11.

Messinger and Delaney [9] developed a set of configurations for eternal dominating
families which helped reduce the upper bound to

γ∞
all(P3 �Pn) ≤

⌈
4n+ 10

5

⌉
+

{
1 if n ≡ 0, 1, 3 (mod 5)

0 otherwise.

This paper employs a variation of their configurations and proves the lower bound is
not tight, specifically when n ≡ 1 (mod 5), n ≥ 26, in order to remove the gap com-
pletely, construct eternal dominating families, and establish the value γ∞

all(P3 �Pn) =
�4n+7

5
� for n ≥ 26.

2 Definitions

Let G = (V,E) be a graph. A dominating set of G is a subset of V whose closed
neighbourhood is V . The smallest cardinality of a dominating set is denoted γ(G) and
is called the domination number of G. Let Dq(G) be the set of all dominating sets of
G which have cardinality q. Let D,D′ ∈ Dq(G). We will say D can be transformed
to D′ (or D transforms to D′) if D = {v1, v2, . . . , vq}, D′ = {u1, u2, . . . , uq} and
ui ∈ N [vi] for i = 1, 2, . . . , q.

In the “eternal dominating set problem,” a defender is given q guards to protect
the graph from a series of attacks on vertices made by an attacker. An eternal
dominating family of G is a subset E ⊆ Dq(G) for some q so that for every D ∈ E
and every possible attack v ∈ V (G), there is a dominating set D′ ∈ E such that
v ∈ D′ and D transforms to D′. When the value of q in the above definition is
known, we refer to this family as an eternal dominating family with q guards. For a
graph G, the minimum value of q such that there exists an eternal dominating family
with q guards is denoted γ∞

all(G). A set D ∈ Dq(G) is an eternal dominating set or a
q-eternal dominating set if it is a member of some eternal dominating family. Note
that the set of all eternal dominating sets of a particular cardinality is an eternal
dominating family, provided the family is non-empty.

The Cartesian product of graphs G and H is denoted by G�H . The vertex set
of G�H is V (G�H) = {(u, v)|u ∈ V (G), v ∈ V (H)}, and two vertices (u, v) and
(u′, v′) are adjacent if and only if u = u′ and vv′ ∈ E(H) or v = v′ and uu′ ∈ E(G).
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When G = Pm and H = Pn, these graphs are also known as a grids or grid graphs
of dimensions m× n. The vertices of Pm (respectively Pn) are labeled in their usual
ordering u1, u2, . . . um (resp. v1, v2, . . . vn). In this paper, we focus on the eternal
domination numbers of grid graphs with m = 3. Each copy of P3, corresponding to
a vertex of Pn, is referred to as a column. We refer to each of the columns as the
first column, second column, etc. and as column 1, column 2, etc. starting from one
the columns corresponding to a leaf of Pn and proceeding consecutively.

In constructing eternal dominating families we make use of the symmetries of the
3× n grid graph. Given a dominating set D ∈ Dq(P3 �Pn), a vertical reflection of D
(about the horizontal line of symmetry) is denoted Dv, while a horizontal reflection
(about the vertical line of symmetry) is denoted Dh. A rotation of a dominating set
D by 180◦ (which is the same as both the vertical reflection of Dh and the horizontal
reflection of Dv) is denoted Dr. When we wish to discuss an arbitrary symmetry of
a dominating set D, we denote it Ds.

3 Previous Results and Extensions

We begin with several observations of Beaton et. al [1] and Finbow et. al [2], and
extend two of these results. We note that, by symmetry, statements and arguments
referring to the first i columns also apply to the last i columns, for any i.

Theorem 3.1 [1] Given dominating sets D,E ∈ Dq(Pm �Pn) and any arbitrary
symmetry s resulting from a reflection or rotation, D transforms to E if and only if
Ds transforms to Es.

Corollary 3.2 Let E be an eternal dominating family of P3 �Pn. Then the family

F = E ∪ {Dh|D ∈ E} ∪ {Dv|D ∈ E} ∪ {Dr|D ∈ E}
is an eternal dominating family of P3 �Pn.

Proof: Let F ∈ F be some dominating set in F . If F ∈ E , then since E is an
eternal dominating family, for every possible attack v ∈ V (P3 �Pn), there exists a
dominating set D′ ∈ E so that v ∈ D′ and F transforms to D′.

Otherwise, if F /∈ E , there must exist a dominating set D ∈ E and some symmetry
s of D such that F = Ds. Consider an attack on some v ∈ V (P3 �Pn). Let vs ∈
V (P3 �Pn) be the image of v under the symmetry s. Since E is an eternal dominating
family, there exists a dominating set D′ ∈ E so that vs ∈ D′ and D transforms to
D′. It follows that v ∈ D′

s, the symmetry of D′, and F = Ds transforms to D′
s.

As D′
s ∈ F , and F was an arbitrary member of F , it follows that F is an eternal

dominating family of P3 �Pn.

Lemma 3.3 Let E be an eternal dominating family of P3 �Pn. If there are at least k
guards in the first i columns for each dominating set D ∈ E , then for any set D′ ∈ E
all of the following hold.
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1. If there are at most k guards in the first i+1 columns, then there are k guards
in the first i columns, no guards in column i + 1, and three guards in column
i+ 2.

2. If there are at most k+1 guards in the first i+2 columns, then there are k+1
guards in the first i + 1 columns, no guards in column i + 2, and at least two
guards in column i+ 3.

3. If there are at most k+2 guards in the first i+3 columns, then there are k+2
guards in the first i + 2 columns, no guards in column i + 3, and at least two
guards in column i+ 4.

4. If there are at most k+3 guards in the first i+4 columns, then there are k+3
guards in the first i + 3 columns, no guards in column i + 4, and at least one
guard in column i+ 5.

5. There are at least k + 4 guards in the first i+ 5 columns.

6. If there are at most k + 4 guards in the first i + 6 columns, then there are k
guards in the first i columns, one guard in the middle of column i+1, no guards
in column i+ 2, two guards (in the top row and bottom row) of column i + 3,
no guards in column i+ 4, one guard in the middle of column i+ 5, no guards
in column i+ 6, and three guards in column i+ 7, as shown in Figure 1.

1 · · · i i+1 i+2 i+3 i+4 i+5 i+6 i+7

X X

k guards X X X

X X

Figure 1: Only possible configuration for Lemma 3.3 (6.).

Proof: Items (1.) through (5.) were proven in [2]. We proceed to proving (6.).

Given the assumption of at most k+4 guards in the first i+6 columns, (5.) and
(1.) show there are no guards in column i+ 6 and three guards in column i+ 7.

By assumption, there are at least k guards in the first i columns. Since there are
no guards in column i+ 6, we require at least two guards in columns i+ 3 through
i + 5 to dominate the vertices of columns i + 4 and i + 5. This shows there are at
most k + 2 guards in the first i+ 2 columns.

Suppose there are exactly k + 2 guards in the first i + 2 columns. Then there
are at most two guards in column i + 3, column i+ 4 and column i + 5. As D is a
dominating set, it can be seen that there must be a guard in column i + 5, a guard
in column i+4 and two guards in column i+2. Hence there are k guards in the first
i+ 1 columns. It follows from (1.) there are k + 3 guards in the first i+ 2 columns,
a contradiction showing there at most k + 1 guards in the first i+ 2 columns.
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By (2.), there are k + 1 guards in the first i + 1 columns, no guards in column
i + 2 and at least two guards in column i + 3. As D is dominating, the remaining
guard must be in the middle of column i + 5, the two guards in column i+ 3 must
be in the top and bottom row, and there is a guard in column i+ 1 which must be
in the middle row.

Corollary 3.4 ([2]) In any eternal dominating set of P3 �Pn, for any � ≥ 2, the
first � columns contain at least

⌈
4�−3
5

⌉
guards.

Lemma 3.5 ([2]) Let E be a family of eternal dominating sets of P3 �Pn and let
i ∈ {0, 1, 2, 3, 4}. For every D ∈ E , there are at least i guards in the first i + 1
columns.

4 Improving the Lower Bound

In this section, we establish an improved lower bound in the case n ≡ 1 (mod 5).
We note when n ≡ 1 (mod 5), the lower bound is

⌈
4n+6
5

⌉
= 4n+6

5
.

Lemma 4.1 Let E be an eternal dominating family of P3 �Pn. If there are at least
10 guards in the first 12 columns for each dominating set D ∈ E , then for any � ≥ 3,
� 
= 7, the first � columns contain at least

⌈
4�−2
5

⌉
guards.

Proof: For 3 ≤ l ≤ 11,
⌈
4�−3
5

⌉
=

⌈
4�−2
5

⌉
unless l = 7. For l = 12,

⌈
4�−2
5

⌉
= 10. So

by assumption and Corollary 3.4, the first l columns contain at least
⌈
4�−2
5

⌉
guards

for 3 ≤ � ≤ 12, unless � = 7. Further, by Lemma 3.3 (5.), if the result holds for
� = k, then the result holds for � = k + 5. By induction, for any � ≥ 8, the first �
columns contain at least

⌈
4�−2
5

⌉
guards.

Lemma 4.2 Let n ≡ 1 (mod 5), n ≥ 26. Let E be an eternal dominating family of
P3 �Pn with at most 4n+6

5
guards and with the property that if D ∈ E , then Dr ∈ E .

There is an eternal dominating set in E with 9 guards in the first 12 columns.

Proof: By Corollary 3.4, there must be at least 9 guards in the first 12 columns.
Suppose then, by way of contradiction, each dominating set in E has at least 10
guards in the first 12 columns. Hence, since D ∈ E implies Dr ∈ E , each dominating
set in E has at least 10 guards in the last 12 columns.

Let l be the largest integer such that for any k ≤ l, every eternal dominating set
in E has at least k guards in the first k + 2 columns, but there is a set D ∈ E with
at most l guards in the first l + 3 columns. Such an l must exist since there are at
most 4n+6

5
guards and n ≥ 26, thus there are at most n− 4 guards in the n columns.

By assumption and Corollary 3.4, l ≥ 10. We claim l ≤ n−9. Suppose an eternal
dominating set has n− 8 guards in the first n− 6 columns. By Corollary 3.4, there
are at least five guards in the last 6 columns, hence the number of guards is at least
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n − 8 + 5 ≤ 4n+6
5

. This implies n ≤ 21, a contradiction, and therefore l ≤ n − 9.
Recall there is a dominating set D which has at most l guards in the first l + 3
columns. By Lemma 3.3 (1.), D has l guards in the first l + 2 columns, no guards
in column l + 3 and three guards in column l + 4. It must be the case that either
n− (l + 4) = 7 or n− (l + 4) 
= 7.

Case 1: n− (l + 4) = 7. By Corollary 3.4, D has at least 5 guards in the remaining
7 columns. Therefore 4n+6

5
≥ |D| ≥ l+0+ 3+ 5 = (l+4)+ 4 = (n− 7) + 4 = n− 3.

This implies n ≤ 21, a contradiction.

Case 2: n− (l + 4) 
= 7. Since l ≤ n− 9, n− (l + 4) ≥ 5. By Lemma 4.1, D has at

least
⌈
4(n−(l+4))−2

5

⌉
guards in the remaining n− (l + 4) columns. Hence,

4n+ 6

5
≥ |D| ≥ l + 0 + 3 +

⌈
4(n− (l + 4))− 2

5

⌉
.

Rearranging we obtain
4n+ 6

5
≥ 4n+ 6

5
+

⌈
l − 9

5

⌉
which is false since l ≥ 10.

As both cases lead to a contradiction, our original assumption that each domi-
nating set in E has at least 10 guards in the first 12 columns is false. Thus, from
this result and Corollary 3.4, we can conclude there is a dominating set in E with
exactly 9 guards in the first 12 columns.

Observation 4.3 ([2]) The unique minimum dominating set (up to reflection) on
P3 �P6 is the following.

1 2 3 4 5 6

X

X X X

X

Lemma 4.4 For any n ≡ 1 (mod 5), n ≥ 26, γ∞
all(P3 �Pn) ≥ 4n+ 11

5
.

Proof: Let n ≡ 1 (mod 5), n ≥ 26 be given and let E be an eternal dominating
family of P3 �Pn which uses 4n+6

5
guards. Set d = 4n+6

5
and let

E ′ = E ∪ {Dh|D ∈ E} ∪ {Dv|D ∈ E} ∪ {Dr|D ∈ E}.
By Corollary 3.2, E ′ is an eternal dominating family of P3 �Pn. It follows from
Lemma 4.2 that there exists an eternal dominating set D ∈ E ′ with 9 guards in
the first 12 columns. By Corollary 3.4, any eternal dominating set of P3 �Pn must
contain at least 9 guards in the first 11 columns, and hence by Lemma 3.3 (6.), D
has 5 guards in the first 6 columns, one guard in the middle of column 7, no guards
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in column 8, two guards (in the top row and bottom row) of column 9, no guards
in column 10, one guard in the middle of column 11, no guards in column 12, and
three guards in column 13.

We now wish to determine the possible positions of the 5 guards in the first 6
columns in D. Let u be the vertex in the middle row of column 6, v be the vertex in
the middle row of column 7, and w be the vertex in the middle row of column 8. As
E ′ is an eternal dominating family, D must transform to a set E ∈ E ′ with w ∈ E,
corresponding to the response to an attack on w. A guard in v is the only possible
guard in D that could respond to the attack, implying E has 5 guards in the first
7 columns. By Corollary 3.4, there are at least 5 guards in the first 6 columns of
every set in E ′, and hence E has no guards in column 7 and 5 guards in the first 6
columns. Further these 5 guards must dominate each vertex in the first 6 columns
and hence, by Observation 4.3, u ∈ E. It follows that of the 5 guards in the first 6
columns in D, one is adjacent to u, and thus the 5 guards in the first 6 columns in D
dominate each vertex in the first six columns of D. Therefore, from Observation 4.3,
there are two possibilities, call them A and B, for the guards locations in the first
13 columns, as illustrated in Figure 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

X X X

A X X X X X X

X X X

X X X

B X X X X X X

X X X

Figure 2: The two possible configurations for Lemma 4.4.

We first wish to show thatA is not part of a d-eternal dominating set. To establish
this, we consider a sequence of two attacks and the corresponding transformations,
as depicted in Figure 3. Specifically, the first attack is at the middle vertex of column
2. To successfully defend against the attack, the defender must move the guards to
transform an eternal dominating set containing A to a d-eternal dominating set D′

containing the attacked vertex (and thus also containing A′).
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In particular, the defender must:

• move the guard in column 1 to the attacked vertex.

• move the guards in column 3 to column 2 so that D′ has a vertex in the
neighbourhood of each of the vertices of the first column.

• move the guards in the middle vertices of columns 5 through 7 one column
to the left so that D′ has guards in the neighbourhood of all the vertices in
columns 4 through 6.

• move the guards in the top and bottom vertices in column 9 to column 8 so
that D′ has guards in the neighbourhood of all the vertices in columns 7 and
8.

• move the guard in the middle vertex of column 11 to the middle vertex of
column 10 so that D′ has guards in the neighbourhood of all the vertices in
columns 9 and 10.

• move the guards in the top and bottom vertices in column 13 to column 12 so
that D′ has guards in the neighbourhood of all the vertices in column 11.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

X X X

A X X X X X X

X X X

X X X ? ?

A′ X X X X X ? ?

X X X ? ?

X X

A′′ 6 guards X X X

X X

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3: Two attacks and defender responses, starting from A.

According to Corollary 3.4, the last n − 12 columns of D′ contain at least⌈
4(n−12)−3

5

⌉
guards, or d − 11 guards as n ≡ 1 (mod 5). This implies there are

no other guards in the first 12 columns of D′.

With guards located on the vertices of D′ (containing A′), consider an attack on
the middle vertex of column 9. To successfully defend against the attack, the defender
must transform D′ to a d-eternal dominating set D′′ containing the attacked vertex
(and thus A′′). The defender must move the guard in column 10 to the attacked
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vertex, and it is clear that in D′′ there are 9 guards in the first 9 columns. Hence,
there are d− 9 guards in the remaining n− 9 columns.

By Corollary 3.4, every dominating set in E ′ has at least
⌈
4(n−15)−3

5

⌉
guards in

the last n− 15 columns, or d− 13 as n ≡ 1 (mod 5).

With these two values (i = n− 15 and k = d − 13), Lemma 3.3 (6.) implies D′′

has d− 13 guards in the last n− 15 columns, one guard in the middle of column 15,
no guards in column 14, two guards (in the top and bottom row) of column 13, no
guards in column 12, one guard in the middle of column 11, no guards in column
10, and three guards in column 9. However, after moving the guard in column 10 to
column 9 in response to the attack, no guard can be moved to the middle of column
11. Thus D′ cannot transform to a d-eternal dominating set containing A′′, so A is
not part of an eternal dominating set.

An almost identical argument can be used to establish B is not part of an eternal
dominating set by considering an attack in the middle of the third column, followed
by an attack in the middle of the ninth column. Therefore D does not exist.

This result, combined with the previous value γ∞
all(P3 �Pn) ≥

⌈
4n+6
5

⌉
for n ≥ 11,

improves the lower bound to the following.

Corollary 4.5 For all n ≥ 26, γ∞
all(P3 �Pn) ≥

⌈
4n+7

5

⌉
.

5 Arrangement for n ≡ 2 (mod 5)

In this section we provide an eternal dominating family with sets of cardinality
4n+7

5
when n ≡ 2 (mod 5). Two of the building blocks for guard arrangements

are illustrated in Figure 4. We note these building blocks were also the basis of
the configurations provided by Messinger and Delaney [9], however, modifications to
their work, including careful attention to the first four and last three columns, allow
for fewer guards than in their results.

Consider the two guard arrangements as illustrated in Figure 4. Shifting the
repeating patterns of these building blocks within the 3 × n grid graph where n ≡
2 (mod 5) is fixed, and providing an adjustment for the start and end of each domi-
nating set, lead to several possible configurations. Some specific ones are illustrated
in Figure 5, where a starting pattern of four columns adjusts for the start, a pattern
of three columns adjusts for the end, and the ellipses in each configuration represent
a continuation of the pattern from the central part in five-column block increments.
Note that in the configurations for G, O, and P (see Figure 4), the last three columns
shown complete a dominating set only in the case when n ≡ 2 (mod 10). The given
ending is used in this case, and while we do not include it in Figure 5, the vertical
reflection of each ending is necessarily used to complete the dominating set in G, O,
and P when n ≡ 7 (mod 10).

The central part of Configuration B (Blue) follows Pattern 1. The central part of
Configuration Y (Yellow) also follows Pattern 1 shifted but is shifted one column to
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the right, and the central part of Configuration R (Red) follows Pattern 1 shifted two
columns to the right. The central parts of Configurations G (Green), O (Orange)
and P (Purple) similarly follow Pattern 2. The central parts of the three configu-
rations which follow Pattern 2 alternate between an original block of five columns
and its vertical reflection, but must start with the original block as shown to form a
dominating set.

We claim the sets depicted in Figure 5 are part of an eternal dominating family
consisting of all possible configurations illustrated in Figure 5, Figure 6, and Fig-
ure 7, as well as their symmetries. Each configuration illustrated represents either a
particular configuration or a set of configurations in the eternal dominating family.
We provide an explanation of the configurations themselves before discussing how
a defence to every possible attack is encoded in the figures. Those in Figure 5 are
described above.

Configurations listed in Figure 6 all contain one column with three guards. We
call the block containing three guards in one of its columns an x block or, when
appropriate, an x start. For example, the configuration xO illustrated in Figure 6
is equivalent to configuration O except we do not use an orange start. A set of
possible configurations is illustrated by the configuration labeled RxO in Figure 6.
These configurations begin identically to the pattern of R, followed by an x block
somewhere in the central part, and with the remaining blocks following the O pattern.
The ellipses in this configuration represent zero or more repetitions of the pattern
of the closest five columns from the central block. Using the notation of Messinger
and Delaney [9], we use the C to represent any sequence of combinations of Y and B
blocks. In Figure 6, the configuration labeled xC represents the set of configurations
with an x start and any combination of Y and B blocks in the central part of the
configuration, and either choice of ending from Y or B. Similarly RxC represents
a set of configurations which begin with the pattern of R, followed by an x block
somewhere in the central part, and finishes with a sequence of Y and B blocks of the
appropriate length.

The six additional sets of configurations illustrated in Figure 7, represent some
additional combinations of patterns from Figure 5. The sets of configurations labeled
PO and PG begin with the pattern of P and finish with the pattern of O and G,
respectively; that is, they contain the purple start followed by zero or more five-
column blocks of the pattern of P, and the remaining blocks follow the orange or
green pattern. In each case shown in Figure 7, the last column of the last purple
block has a guard in the top column and the guard in the first column of the first

X X

· · · X X X X · · ·
X X

Pattern 1

X X X

· · · X X · · ·
X X X

Pattern 2

Figure 4: Two basic guard patterns.



S. FINBOW ET AL. /AUSTRALAS. J. COMBIN. 76 (1) (2020), 1–23 11

orange or green pattern is in the bottom row. For configurations in these sets where
the last column of the last purple block has a guard in the bottom column, the guard
in the first column of the first orange or green pattern is in the top row. The set
of configurations labeled RO are the configurations which start with the pattern of
R, continue with the horizontal reflection of the middle blocks of the O pattern, and
end with a distinctive ending pattern. Note that in these sets the second column of
the first flipped orange pattern always has a guard in the top row. The final three
sets of configurations can be expressed in terms of patterns we have seen, except
they have a single column which we call m, since it contains one guard in the middle
row, separating two distinct patterns. Configurations labeled RmO start with blocks
following the pattern of R, and finish with blocks following the pattern of O so that
there is a guard in the top row of the first column of the first orange pattern (with
a unique ending containing only two columns); however, these two are separated
by a single m column. The configurations in the sets YmO and OmO start with the
horizontal reflection of the Y and O patterns, respectively, starting with horizontal
reflections of their specific endings, followed by zero or more blocks which follow the
pattern of the horizontal reflections of their central blocks. In either case, this is
followed by the m column and the appropriate number of blocks which follow the O
pattern. For configurations in YmO , the first column of the first block has a guard in
the bottom row. For configurations in OmO , if there is a guard in the top row of the
last column of the last flipped orange pattern, there is a guard in the bottom row of

Blue Start Blue Patterns Blue Pattern Blue Patterns Blue End

G X Ov G Gv Ov X O Gv G O X Ov G Gv Ov X O Gv G O X

B X G O X · · · X Gh G O X X Gh G O X X Gh G O X · · · X Gh G

Gv X O Gv G O X Ov G Gv Ov X O Gv G O X Ov G Gv Ov X

Yellow Start Yellow Patterns Yellow Pattern Yellow Patterns Yellow End

O Gv X G O Ov G X Gv Ov O Gv X G O Ov G X Gv Ov O Gv

Y X X O Ph · · · X X G O Ph X X G O Ph X X G O Ph · · · X X X

Ov G X Gv Ov O Gv X G O Ov G X Gv Ov O Gv X G O Ov G

Red Start Red Patterns Red Pattern Red Patterns Red End

Pv P xY X Oh P Pv RxY X Or Pv P RxY X Oh P Pv RxY X Or Pv P

R X X xY P · · · Oh X X RxY P Oh X X RxY P Oh X X RxY P · · · Oh X X

P Pv xY X Or Pv P RxY X Oh P Pv RxY X Or Pv P RxY X Oh P X

Green Start Green Patterns Green Pattern Green Patterns Green End

X • Y X • Bh X Y • X Bh • Y X • Bh X Y • X Bh •
G Y X Bh Bh · · · Y Y X Bh Bh Y Y X Bh Bh Y Y X Bh Bh · · · Y Y X

• X Y • X Bh • Y X • Bh X Y • X Bh • Y X • Bh X

Orange Start Orange Patterns Orange Pattern Orange Patterns Orange End

X B • Rh X • B X Rh • X B • Rh X • B X Rh • X B

O X Rh X B · · · B Rh Rh X B B Rh Rh X B B Rh Rh X B · · · B Rh X

• B X Rh • X B • Rh X • B X Rh • X B • Rh X • B

Purple Start Purple Patterns Purple Pattern Purple Patterns Purple End

• X xO • Yh X • RxO X Yh • X RxO • Yh X • RxO X Yh • X

P R R xO X · · · Oh R R RxO X Oh R R RxO X Oh R R RxO X · · · Oh R X

X • xO X Yh • X RxO • Yh X • RxO X Yh • X RxO • Yh X •

Figure 5: Six monochromatic guard configurations when n ≡ 2 (mod 5).



S. FINBOW ET AL. /AUSTRALAS. J. COMBIN. 76 (1) (2020), 1–23 12

the first column of the first orange pattern, otherwise, there is a guard in the bottom
row of the last column of the last flipped orange pattern and a guard in the top row
of the first column of the first orange pattern. As in the previous configurations,
when appropriate, the vertical reflection of the ending pattern is used instead of the
one shown in Figure 7. In all cases, the ellipses in these configurations represent zero
or more repetitions of the pattern of the closest five columns from the central block.

For a set of configurations A, we will denote the set of configurations of the
vertical reflection (respectively horizontal reflection and rotation by 180◦) of all con-
figurations in A by Av (respectively Ah and Ar). To justify the claim that all possible
configurations illustrated in Figure 5, Figure 6, and Figure 7, as well as their sym-
metries, form an eternal dominating set, a defence to every possible attack on each
configuration is encoded in the figures.

Consider the B configuration, which consists of a blue start and a repetition of
one or more blue patterns, followed by a blue end. In order to defend each possible
attack, we must ensure that every vertex not guarded can be defended by a move
of the guards. An attack on an unguarded vertex that appears in the same column
as some guard can be defended by a move of all guards either up or down within
each of their columns, leading to the G configuration (or the vertical reflection of
G). This is illustrated in Figure 5, where a G (or Gv) in each of these positions
of the B configuration indicates an attack on one of these vertices can be defended
by transforming B to the G configuration (or the vertical reflection of G). We note

x Start Orange Patterns Orange Pattern Orange Patterns Orange End

POv PO X POv X • B X Gv • X B • RmOv X • B X Gv • X B

xO X Y X B · · · B Y Gv X B B Y Gv X B B Y Gv X B · · · B Y X

PO POv X PO • X B • RmOv X • B X Gv • X B • RmOv X • B

Red Start Red Patterns x Block Orange Patterns Orange End

POv PO xC X OmO PO POv RxC X OmOv POv RxB X RO X • RxB X PG • X RxB

RxO X X xC PO · · · OmO X X RxC PO RxB X RO X RxB RxB RO PG X RxB · · · RxB RO X

PO POv xC X OmOv POv PO RxC X OmO PO RxB X RO • X RxB • RmOv X • RxB

Any Sequence of Yellow or Blue
Yellow and Blue Patterns End

G xO Gv X G G xO Gv

x Start X X G xO RmO X X X

G Gv X G Gv xOv G X Gv Gv xOv G

xC X G X PG · · · OR · · · OR

Gv G X Gv G xO X xOv G G xO X

X RO G xO X X RO G

Gv xOv X xO Gv Gv xOv X

Any Sequence of Yellow or Blue
Yellow and Blue Patterns End

PG POv PGv X PG PGv PO PG

Red Start Red Patterns x Block X X PG PO RmO X X X

PGv PG xC X OmO PG PGv RxC X OmOv PGv PG X PGv PGv PO PG X PGv PG POv PGv

RxC X X xC PG · · · OmO X X RxC PG OmO X RO X PG OR · · · OR

PG PGv xC X OmOv PGv PG RxC X OmO PG PGv X PG PG POv X PO PG PGv PO X

X RO PG PO X X RO PG

PGv PO X POv PGv PG POv X

Figure 6: Configurations with x Blocks for n ≡ 2 (mod 5).
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that in first blue pattern displayed in the central part, Gv is used to defend the top
row of the first column and G used to defend the bottom row of the first column,
but this is reversed in the second blue pattern displayed. Which defence is used
is dependent on the parity of the number of patterns which precede the pattern of
the vertex we are trying to defend. This is due in part to the central parts of the
three configurations which follow Pattern 2 alternating between an original block
and its vertical reflection. Every second iteration of a pattern has the same defensive
scheme and defensive schemes in adjacent blocks have a vertical symmetry. It is
important to note that the actual defence of an attack on the vertices in the blue
end is also dependent on the parity of the number of patterns which precede it as
well. Specifically, when n ≡ 7 (mod 10) we must defend the listed vertex with the
vertical reflection of the configuration shown in Figure 5. This is to reflect the fact
that the vertical reflection of the given ending is necessarily used to complete the
dominating set in G, O, and P when n ≡ 7 (mod 10).

Continuing with the B configuration, an attack on an unguarded vertex not in the
same column as some guard must be defended by moving guards from the adjacent
columns. The vertices labeled O (or Ov) indicate an attack on any one of these
vertices can be defended by a transformation to the O configuration (or the vertical
reflection of O). The vertices labeled Gh indicates an attack on any one of these
vertices can be defended by a transition of the guards to the horizontal reflection of
the G configuration. As an example, while the guards are in the B configuration, an

Purple Start Purple Patterns Orange Patterns Orange Patterns Orange End

• X xO • YmO X • RxO X • X RxB • RmOh X • RxB X RmOh • X RxB

PO ROv ROv xO X · · · OmO ROv ROv RxO X RxY RxY RmOh X RxB RxY RxY RmOh X RxB · · · RxY RxY X

X • xO X YmO • X RxO • X • RxB X RmOh • X RxB • RmOh X • RxB

Purple Start Purple Patterns Green Patterns Green Patterns Green End

• X xO • Yh X • RxO X • Bh X RxY • X Bh • RxY X • Bh X

PG Yh Yh xO X · · · OmO RxO Yh RxO X RxY RxY X Bh Bh RxY RxY X Bh Bh · · · RxY RxY X

X • xO X Yh • X RxO • X Bh • RxY X • Bh X RxY • X Bh •

Red Start Red Patterns Flipped Orange Patterns Flipped Orange Patterns RO End

Gr YmOh xY X YmOr Gh YmOh RxY X PGv X RxB • X Oh • RxB X • PGv X •
RO X X xY PGv · · · YmOh X X RxY PGv RxB X PGv POv RxB RxB X PGv POv RxB · · · RxB X PGv

Gh YmOr xY X YmOh Gr YmOr RxY X Oh • RxB X • PGv X RxB • X Oh • X

Red Start Red Patterns m Orange Patterns Orange Patterns RmO End

PGh POh xY X POh PGr POr RxY X RxOh X • Y X RxOh • X Y • RxOh X •
RmO X X xY PO · · · Y X X RxY PO X Y RxOh PO X RxOh Y RxOh PO X RxOh · · · Y xOh

PGr POr xY X POr PGh POh RxY X RxOh • X Y • RxOh X • Y X RxOh • X

Yellow End Flipped Yellow Patterns m Orange Patterns Orange Patterns Orange End

POv PO YmOh Rh X PO POv YmOr Rh • X P • Rh X • POh X Rh • X P

YmO X X X · · · PO YmOh Rh X X X YmOh Rh Rh X P YmOh Rh Rh X P · · · YmOh Rh X

PO POv YmOr Rh X POv PO YmOh Rh X • POh X Rh • X P • Rh X • POh

Flipped Orange End Flipped Orange Patterns m Orange Patterns Orange Patterns Orange End

Bh X • RmO X Bh • X RmO • X B • ROh X • B X ROh • X B

OmO X RmO Bh · · · Bh X RmO RmO Bh X B ROh ROh X B B ROh ROh X B · · · B ROh X

Bh • X RmO • Bh X • RmO X • B X ROh • X B • ROh X • B

Figure 7: Remaining Configurations for n ≡ 2 (mod 5).
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attack on the vertex in the middle of column 6 (appearing in the second column of
the first central block) can be defended by a move of the guard in column 5 to that
vertex. This defence is represented by the guard in the middle of the 6th last column
in the G configuration (appearing in the middle column of the last central block of
the G configuration). Note the difference in the number of columns in the start and
end of the configurations. An attack on the middle vertex in the middle column of
the blue end can be defended by a move of the guard in the first column of the blue
end, which is represented by the guard in the middle of the second column of the
green start in Gh.

Now consider the Y configuration. An attack on an unguarded vertex of the Y
configuration that appears in the same column as some guard can be defended by
a move of most guards either up or down within each of their columns, leading to
the O configuration (or the vertical reflection of O) for most columns, and to the
G configuration (or the vertical reflection of G) for column 2 and the last column.
This is indicated in Figure 5 by the appropriate positions labeled O, Ov, G, or
Gv in the Y configuration. All remaining vertices are labeled G, Gv, or Ph, the
horizontal reflection of P, which represent an appropriate response to an attack on
those vertices. For example, if there is an attack on the top row of column 4, the
guards could respond by moving to the G pattern. Similarly, if there is an attack
on the middle row of the fourth last column while the guards are in configuration
Y, which is the last column of the last central block, the guards could respond by
moving to the Ph pattern, so that the new position of the guards in the forth last
column is the same as the position of the guards in the forth column of P. As before
(and through out), the appropriate defence to use is also dependent on the parity
of the number of patterns which precede the pattern of the vertex we are trying to
defend.

Many attacks, when the guards are in the G configuration, can be defended by a
transformation to Gv, indicated by the bullets ( • ). This requires the guard at the
top of the first column to move right, the guard at the bottom of the second column
to move left, all other guards in columns with two guards to move up or down, and
all other guards in columns with a single guard to move left or right. As indicated
in Figure 5, any remaining attack can be defended by a transformation to either Y
or Bh, the horizontal reflection of B. Recall that when n ≡ 7 (mod 10), the vertical
reflection of the illustrated ending is necessarily used to complete the dominating set.
In a similar manner, guards in the O configuration can transform to Ov (indicated
by • ), B, or Rh to defend against any possible attack.

Consider the P configuration. Most of the possible attacks can be defended by a
transformation to Pv, R, Oh, or Yh. However, consider an attack on the top vertex
of the third column. The guard in the second column must move defend this attack,
leaving only one guard in the first two columns, which must move to the middle of the
first column. Every configuration in Figure 5, and every symmetry of a configuration
in Figure 5, has at least two guards in the first two columns and hence this attack
cannot be defended by a transformation to a configuration in Figure 5. One possible
response leads to the pattern of configuration xO illustrated in Figure 6. An attack
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on the P configuration at one of the vertices labeled RxO in the repeating pattern
may also be defended by transforming to a similar configuration where the guard
defending the attack is in a column of three guards.

Finally, for the configurations in Figure 5, consider the R configuration. Most of
the possible attacks can be defended by a transformation to P, Oh, or their vertical
symmetries. However, consider an attack on the middle vertex of the third column.
The response can lead to the configuration we have denoted xY, which is an element
of the set of configurations labeled xC in Figure 6, consisting of an x start followed by
the necessary number of Y blocks, and ending with the end of the Y configuration. An
attack on the R configuration at one of the positions labeled RxY in the repeating red
pattern may be defended by transforming to a similar configuration where the guard
defending the attack is in the column of three guards. A set of possible configurations
is illustrated by the configuration RxC in Figure 6 where only Y patterns are chosen,
thus it begins with the pattern of R, including zero or more red blocks in the central
part, followed by the x pattern in the necessary position, and finishes with the Y
pattern, using zero or more yellow blocks in the central part, followed by the yellow
end.

Consider an attack on configuration xO in Figure 6. Attacks on some vertices in
the first four columns can be defended moving the guards to configurations in PO
or POv with no P blocks in the central part. Moving the guards to configurations
in xOv, B, Y, or Gv can be used to defend most of the remaining possible attacks.
An attack on the top or bottom of the last column of each of the central orange
blocks that is not defended by Gv can be defended by moving the guards to the
configuration in RmOv with no central red blocks; that is, the starting four columns
of R, the m column as the fifth column, and the remaining columns following the
orange pattern and an RmO end (or its vertical reflection as necessary).

For a configuration in the set denoted as RxO, attacks on the vertices labeled
with • can be defended by leaving the guards in the R and x patterns stationary, and
moving the guards in the O pattern to their vertical reflection. Moving the guards
in the R and x patterns to the P pattern and leaving the guards in the O pattern
stationary (or as necessary to their vertical reflection), provides a defence for attacks
on those vertices labeled PO and POv. An attack a vertex labeled xC can be defended
by moving the starting block to the x pattern, moving the guards in the R patterns
in the central part to the Y pattern, and moving the guards in the x and O patterns
to the B pattern. Similarly, an attack on a vertex labeled RxC can be defended by
moving the guards in the attacked block to the x pattern, any R blocks to the right
of the attacked block to the Y pattern, and the guards in the x and O blocks to the B
pattern. To transform guards in a configuration in RxO to a configuration in OmO (or
a vertical reflection of a configuration in OmO), move the guard in the middle of the
column with three guards one unit right. This guard becomes the lone guard in the
m column, the guards in the O pattern remain stationary (or as necessary to their
vertical reflection), and the remaining guards move as needed. The vertices labeled
RxB can be defended by the transition of guards in the last R block to an x block and
the x and O blocks to B blocks, leading to a configuration in RxC with no Y blocks.
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Moving the guards in the x block to an R block pattern, moving those in O blocks
to the horizontal reflection of O, and moving those in the ending to the pattern of
the ending of RO, leads to the RO configuration as a defence for attacks on those
vertices labeled RO. Attacks on vertices labeled RmOv can be defended by moving the
guards in the x pattern to the R pattern, using the first guard of the first O block
for the m column, and finishing with the orange pattern and RmO end. The resulting
configuration is the vertical reflection of a configuration in RmO. Finally, to defend
the vertices labeled PG one may move the guards in the R blocks and the x block to
a P pattern (or the vertical reflection of a P pattern) and move those guards in an
O block to the G pattern, transforming to a configuration in PG or PGv. Whether
a configuration in RxO transforms to a configuration in PG or PGv depends on the
parity of the number of R blocks.

Consider an attack on a configuration in xC in Figure 6. Most vertices can be
defended by moving the guards to G or Gv configurations, since guards in x, Y, and
B patterns can all move to the patterns of G and its vertical reflection. An attack
on the middle of column 4 can be defended by moving the guards to a PG pattern,
where the guards in x starting block transition to the P starting block, and all others
move to the G pattern. A transformation to xO (or its vertical reflection) would
defend most of the other attacks. To guard attacks on those vertices labeled RO,
guards in the x block move to the pattern of the R starting block, guards in Y and B
patterns move to the pattern of the horizontal reflection of O, and guards in the end
move to the pattern of the RO ending. Finally, any configuration in xC transforms
to the configuration in RmO where the m column is the fifth column.

For configurations in RxC, defence of the vertices labeled PG, PGv, PO, and
POv can be achieved by the transition of guards in the R blocks and the x block
to P and Pv patterns, and the transition of guards in the Y and B blocks to G
and Gv or O and Ov patterns. As with RxO, an attack on a vertex labeled xC or
RxC in configurations in RxC can be defended by moving the guards in the attacked
block to the x block pattern, moving any guards in the R blocks on the right of
the attacked block to the Y pattern, and leaving the guards in the Y and B blocks
stationary, yielding a configuration in xC or another configuration in RxC itself.
Similar parallels to the defence of RxO can be made here for the transformations
to the RmO, OmO and OmOv configurations, as well as the RO configuration, where
the guards in the x block are moved to an R pattern, the guards in the Y and B
blocks are moved to horizontal reflections of O patterns, and the guards in the Y or
B ending are moved to the RO ending.

Moving to Figure 7, we note all represented configurations move to their vertical
reflections, providing a defence for any attack on vertex labeled •. We will first focus
on the response to some attacks on configurations in PO, PG, and RO simultaneously.

Guards in a configuration in PO or PG can defend attacks on vertices labeled xO
or RxO by moving the guards in the attacked block to the x pattern, moving guards
in any blocks to the left of the attacked block to the R pattern, and moving guards
in all blocks to the right, including any guards in P patterns, to the O pattern. In
the case the vertex is labeled RxO, the described transformation leads to either a
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configuration in RxO or a vertical reflection of a configuration in RxO, depending
on the number of P blocks in the original configuration. Configurations in RO can
similarly transform to xY and RxY. Guards in a configuration in PO, PG, or RO can
also transform to RxY and RxB, to defend attacks of vertices with these labels, by
moving the guards in the last P or R block to an x pattern, and moving the guards
in O, G, or flipped O patterns to either Y or B patterns.

Guards in a configuration in PO can defend attacks on vertices labeled ROv with
a transformation to a configuration in RO or ROv by moving the guards in their P
blocks to the R pattern and the guards in their O blocks to horizontal reflections of O
patterns. Note that encoding of the defence of a configuration in PO in Figure 7, we
use the label ROv to indicate an attack on the vertex can be defended by a transfor-
mation to a configuration in RO or a configuration in ROv, where the actual defence
the guards can use depends on the parity of the number of P blocks in the given
configuration. Guards in a configuration in PO can defend vertices labeled YmO and
OmO with transformations to a particular configuration in YmO and a particular con-
figuration in OmO. In each case, the desired transformation is achieved by having the
guard in the middle of the last column of the last P block after the transformation
in what becomes the m column of the configuration in YmO or OmO. The transition
of the remaining guards in the P blocks to the appropriate starting blocks completes
the transformation. For configuration PO, the remaining vertices whose defence is
not outline above are labeled RmOh. Guards can successfully respond to attacks on
these vertices by having the guard in the middle row of the last column of the last P
block moving one unit to the left, having the remaining guard in the last column of
the last P block and all guards in the O blocks move to the horizontal reflection of
R blocks (including the horizontal reflection of the red start at the end), and have
the remaining guards remain stationary (or move to the vertical reflection of their
current positions as necessary). This results in a configuration in RmOh or RmOv.

We now consider the configuration in PG. It is fairly straightforward to see that
any set in PG transforms to both Bh and Yh, and, as discussed above, the set also
transforms to xO, RxO, and RxY. As shown in Figure 7, all vertices in one of these
configurations can be defended by a transformation to one of these sets or to OmO,
achieved by having the guard in the middle of the last column of the last P block
remain stationary in what becomes the m column of the configuration OmO, and the
remaining guards move as needed.

Above we established that any configuration in RO can transform to xY, RxY, and
RxB. Note that configurations in RO also transform to both Gr and Gh, providing
a defence for an attack on the vertices so labeled. Each configuration in RO also
transforms to a particular configuration in YmOh and its vertical reflection (attacks
on vertices defended by the vertical reflection of this configuration are denoted by
YmOr) by moving the guards so that the last column of the last red block becomes
the m column of the configuration in YmOh. Guards in a given configuration in RO can
defend attacks on vertices labeled POv with a transformation to a configuration in
PO or in POv by moving the guards in their R blocks to the P pattern and moving
the guards in their flipped O blocks to O patterns.
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In a similar manner, it can be seen that a configuration in RO transforms to
a configuration in PG or in PGv by moving the guards in their R blocks to the
P pattern and moving the guards in flipped O blocks to G patterns. As before,
the actual response to an attack (a transformation to a configuration in PG or a
transformation to a configuration in PGv) depends on the parity of the number of
R blocks in the original transformation. Finally, an attack on a configuration, say
A, in RO could occur on a vertex labeled Oh. If n ≡ 2 (mod 10) and A has an even
number of red blocks or if n ≡ 7 (mod 10) and A has an odd number of red blocks,
then A transforms to Oh. Otherwise, A transforms to Or, providing a defence for
an attack on these vertices.

Consider a configuration in RmO. A transformation to defend an attack on one of
the vertices labeled PGh, PGr, POh, or POr can be achieved if the guards in the
orange blocks remain stationary (or move so they are in the vertical reflection of their
current positions), the guard in the m column moves one unit left, and the remaining
guards move to positions as indicated by the appropriate label. For an attack on
one of the vertices labeled PO, the guards in the red blocks move to the P pattern
and the remaining guards shift to a repositioned orange pattern. A configuration in
RmO can also defend attacks on the third column of its starting block and the fourth
columns of any of its R blocks with transformations to xY or RxY by moving the
guards in the attacked block to the x pattern and moving the remaining guards as
needed. The x block of the horizontal reflections of (or rotational symmetry of) xO
and RxO can defend attacks on corresponding positions in RmO labeled xOh or RxOh,
including the top and bottom of the m column. A transformation to Y can be used
to defend the remaining vertices.

As indicated in Figure 7, every configuration in YmO transforms to Rh. By moving
the guards in yellow end to an orange end (or its vertical image), guards in the flipped
yellow blocks to flipped orange blocks (or the vertical reflection), guards in the orange
blocks and orange end to yellow blocks and a yellow end, a configuration in YmO is
transformed into the horizontal image or 180 degree rotation of some configuration
in YmO, providing a defence to an attack on vertices labeled YmOh or YmOr. Attacks
on vertices of a configuration in YmO labeled PO or POv can be defended by a
transformation to a set in PO or its vertical symmetry (achieved by moving the
guards in the yellow end, flipped yellow patterns, and m column to P blocks, and
having the guards in the orange blocks remain stationary (or move so they are in
the vertical reflection of their current positions). Attacks on vertices of a set in
YmO labeled P may be defended similarly, except almost all guards in the orange
blocks move one unit right, to transform the configuration in YmO into either P or
Pv. For an attack on vertices labeled POh, transition the guards in yellow end to
a flipped orange end, the guards in the flipped yellow patterns to flipped orange
patterns, and the guards in the m column and orange patterns to purple patterns
(or as needed to the vertical reflection of these blocks) to obtain a configuration in
either POh or POr.

Finally, any attack on a configuration in OmO can be defended by transforma-
tions to B, Bh, a configuration in RmO (where the first guard in the first orange
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pattern moves to become the m column), or a configuration in ROh or ROr (where the
number of central red blocks matches the number of orange blocks in the attacked
OmO configuration).

Lemma 5.1 For n ≡ 2 (mod 5), n ≥ 17, γ∞
all(P3 �Pn) ≤ 4n+7

5
.

Proof: The configurations illustrated in Figures 5, 6, and 7 together with all their
symmetries demonstrate how to construct one such eternal dominating family for
any such possible value of n. As discussed in this section a possible transformation
for any attack on any of the dominating sets.

6 Arrangement for n ≡ 3 (mod 5)

In this section, we construct an eternal dominating family of P3 �Pn when n ≡
3 (mod 5) by building on the configurations in Figures 5, 6, and 7. The basic idea is
to create dominating sets by adding one column with one guard, either at the front
or end of these configurations, and show the result is an eternal dominating family.

Lemma 6.1 For any n ≡ 3 (mod 5) with n ≥ 28, γ∞
all(P3 �Pn) ≤ 4n+ 8

5
.

Proof: Let n ≡ 3 (mod 5) be given and let E be the eternal dominating family
presented in Section 5 for a P3 �Pn−1 grid. We form F ′ from E as follows.

1. For each configuration D ∈ E , add to F ′ the configuration with a guard in the
middle of the first column and which is identical to D on the remaining n− 1
columns. The configuration created by this process (and its vertical reflection)
will be denoted mD (and mDv).

We note that m(Dh) is the horizontal reflection of the configuration identical to
D in the first n− 1 columns with a guard m in the middle of the last column.
Therefore we will denote (m(Dh))h with the notation Dm.

2. For each configuration D ∈ E with a guard in the bottom row (respectively in
the top row) of the first column, add to F ′ the configuration of P3 �Pn which
is identical to D on the last n − 1 columns and with a guard in the top row
(respectively bottom row) of the new first column. A configuration of this form
(and its vertical reflection) will be denoted tD, and (t(Dh))h will be denoted
by Dt.

In the three cases where configurations in E have a guard in both the top row
and the bottom row - Bt, RxCt, and xCt - the two sets that may be formed
with this process are vertical reflections of each other.

For example, the sets that have been added to F ′ that are associated with the
configurations B and Bh are shown in Figure 8.
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Let F = F ′ ∪ {Dh|D ∈ F ′} ∪ {Dv|D ∈ F ′} ∪ {Dr|D ∈ F ′}. To establish the
Lemma, it suffices to show the family F is an eternal dominating family of P3 �Pn.

According to the construction defined above, each set in F is a dominating set
with 4n+8

5
guards. Let D ∈ F ′. We note there exists a set E ∈ E such that D is

either mE or tE. Consider an attack on a vertex v ∈ V (P3 �Pn)−D.

We have four cases.

Case 1: v is not in the first column.

The defender considers only the position of the guards and the attacker on the
last n−1 columns. The guards on these vertices are positioned on the set E. As E is
an eternal dominating family for a P3 �Pn−1 grid, there is a set E ′ ∈ E so that v ∈ E ′

and E transforms to E ′. It follows that D transforms to D′ = mE ′ and v ∈ D′ ∈ F .

Case 2: v is the middle row of the first column.

Clearly v /∈ D, so D = tE. The set D transforms to D′ = mE and v ∈ D′ ∈ F .

Case 3: v is the top row (or bottom row) of the first column and D = mE.

Let u be the vertex in the bottom row of the second column. If u ∈ D, then D
transforms to tD and v ∈ tD. If u /∈ D, the defender momentarily considers only
the position of the guards and the attacker on the last n − 1 columns. The guards
on these vertices are positioned on the set E. As E be the eternal dominating family
for a P3 �Pn−1 grid, there is a set E ′ ∈ E so that u ∈ E ′ and E transforms to E ′. It
follows that D transforms to D′ = tE ′ and u, v ∈ D′ ∈ F .

Case 4: v is the top row (or bottom row) of the first column and D = tE.

Let u be the vertex in the bottom row of the second column. By definition of F ′,
u ∈ D. Careful inspection shows D is one of the sets listed in Table 1. The second
column represents a set D′ ∈ F so that v ∈ D′ and D transforms to D′.

We conclude that for any set D ∈ F ′ and for any attack on a vertex v ∈
V (P3 �Pn) − D, there exists a set D′ ∈ F such that v ∈ D′ and D transforms
to D′. If D ∈ F − F ′, for some symmetry s, Ds ∈ F ′. Consider an attack on some
v ∈ V (P3 �Pn) − D. Let vs ∈ V (P3 �Pn) be the image of v under the symmetry s.
As Ds ∈ F ′, there exists a dominating set D′ ∈ F so that vs ∈ D′ and Ds transforms

X X X X X

mB X X X · · · X X X X X X · · · X

X X X X X

X X X X X

Bm X X · · · X X X X X X · · · X X

X X X X X

X X X X X X

Bt X X · · · X X X X X X · · · X

X X X X X

Figure 8: New configurations formed by adding one column to B or Bh.
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Configuration Response to attack

tG tG

tO tO

tP mPh

Bt Gt

Gt Bt

Rt Rt

Pt Rt

Configuration Response to attack

xCt Gt

RxCt PGt

PGt RxCt

ROt ROt

RmOt mP

tPG Pm

tPO Pm

Table 1: Response to attacks from Case 4.

to D′. It follows that v ∈ D′
s, the symmetry of D′, and D transforms to D′

s. As
D′

s ∈ F , it follows that F is an eternal dominating family of P3 �Pn.

7 Main Result

We are now ready to present the main result of the paper.

Theorem 7.1 For all n ≥ 26,

γ∞
all(P3 �Pn) =

⌈4n+ 7

5

⌉
.

Proof: By Corollary 4.5, Lemma 5.1 and Lemma 6.1, the result holds when n ≡
2, 3 (mod 5). In [4], it is established that for 2 ≤ k ≤ 5, γ∞

all(P3 �Pk) = k. Noting
the first m columns can be guarded independently of the last k columns, 2 ≤ k ≤ 5,

γ∞
all(P3 �Pm+k) ≤ γ∞

all(P3 �Pm) + γ∞
all(P3 �Pk) = γ∞

all(P3 �Pn) + k. (1)

Note that γ∞
all(P3 �P21) = 18 [2]. When n = 26, the result now follows from (1) and

Corollary 4.5. For n > 26, n ≡ 0, 1, 4 (mod 5) there exists integers m and k so that
m ≡ 2 (mod 4), 2 ≤ k ≤ 4 and n = m + k. Therefore the result follows from (1),
Corollary 4.5, and Lemma 5.1.

With this result and previously determined values for smaller grids, the eter-
nal domination numbers for all 3 × n grid graphs are now determined, and can be
summarized as:

γ∞
all(P3 �Pn) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⌈
6n+2
7

⌉
if n ≤ 11⌈

4n+6
5

⌉
if 11 < n ≤ 22⌈

4n+7
5

⌉
otherwise.



S. FINBOW ET AL. /AUSTRALAS. J. COMBIN. 76 (1) (2020), 1–23 22

As a sequence starting with the eternal domination number of a 3×1 grid graph,
it is OEIS Sequence Number A289188 [10], presented as follows:

2, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 18, 19,

20, 21, 22, 23, 23, 24, 25, 26, 27, 27, 28, 29, 30, 31, 31, 32, 33, 34, 35, 35, . . .
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