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Abstract

A Gallai coloring is a coloring of the edges of a complete graph without
rainbow triangles, and a Gallai k-coloring is a Gallai coloring that uses at
most k colors. Given an integer k ≥ 1 and graphs H1, . . . , Hk, the Gallai-
Ramsey number GR(H1, . . . , Hk) is the least integer n such that every
Gallai k-coloring of the complete graph Kn contains a monochromatic
copy of Hi in color i for some i ∈ {1, 2, . . . , k}. When H = H1 = · · · =
Hk, we simply write GRk(H). We study Gallai-Ramsey numbers of even
cycles and paths. For all n ≥ 3 and k ≥ 2, let Gi = P2i+3 be a path
on 2i + 3 vertices for all i ∈ {0, 1, . . . , n − 2} and Gn−1 ∈ {C2n, P2n+1}.
Let ij ∈ {0, 1, . . . , n − 1} for all j ∈ {1, 2, . . . , k} with i1 ≥ i2 ≥ · · · ≥
ik. The first author recently conjectured that GR(Gi1 , Gi2, . . . , Gik) =

|Gi1 | +
∑k

j=2 ij . The truth of this conjecture implies that GRk(C2n) =
GRk(P2n) = (n− 1)k+n+1 for all n ≥ 3 and k ≥ 1, and GRk(P2n+1) =
(n − 1)k + n + 2 for all n ≥ 1 and k ≥ 1. In this paper, we prove
that the aforementioned conjecture holds for n ∈ {3, 4} and all k ≥ 2.
Our proof relies only on Gallai’s result and the classical Ramsey numbers
R(H1, H2), where H1, H2 ∈ {C8, C6, P7, P5, P3}. We believe the recoloring
method we develop here will be very useful for solving subsequent cases,
and perhaps the conjecture.

1 Introduction

In this paper we consider graphs that are finite, simple and undirected. Given a
graph G and a set A ⊆ V (G), we use |G| to denote the number of vertices of G,
and G[A] to denote the subgraph of G obtained from G by deleting all vertices in
V (G)\A. A graph H is an induced subgraph of G if H = G[A] for some A ⊆ V (G).
We use Pn, Cn and Kn to denote the path, cycle and complete graph on n vertices,
respectively. For any positive integer k, we write [k] for the set {1, 2, . . . , k}. We use
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the convention “A :=” to mean that A is defined to be the right-hand side of the
relation.

Given an integer k ≥ 1 and graphs H1, . . . , Hk, the classical Ramsey number
R(H1, . . . , Hk) is the least integer n such that every k-coloring of the edges of Kn

contains a monochromatic copy of Hi in color i for some i ∈ [k]. Ramsey numbers are
notoriously difficult to compute in general. In this paper, we study Ramsey numbers
of graphs in Gallai colorings, where a Gallai coloring is a coloring of the edges of a
complete graph without rainbow triangles (that is, a triangle with all its edges colored
differently). Gallai colorings naturally arise in several areas including: information
theory [19]; the study of partially ordered sets, as in Gallai’s original paper [12] (his
result was restated in [17] in the terminology of graphs); and the study of perfect
graphs [4]. There are now a variety of papers which consider Ramsey-type problems
in Gallai colorings (see, e.g., [1, 2, 3, 5, 10, 15, 16, 18]). These works mainly focus
on finding various monochromatic subgraphs in such colorings. More information on
this topic can be found in [9, 11].

AGallai k-coloring is a Gallai coloring that uses at most k colors. Given an integer
k ≥ 1 and graphsH1, . . . , Hk, the Gallai-Ramsey number GR(H1, . . . , Hk) is the least
integer n such that every Gallai k-coloring of Kn contains a monochromatic copy of
Hi in color i for some i ∈ [k]. When H = H1 = · · · = Hk, we simply write GRk(H)
and Rk(H). Clearly, GRk(H) ≤ Rk(H) for all k ≥ 1 and GR(H1, H2) = R(H1, H2).
In 2010, Gyárfás, Sárközy, Sebő and Selkow [16] proved the general behavior of
GRk(H).

Theorem 1.1 ([16]) Let H be a fixed graph with no isolated vertices and let k ≥ 1
be an integer. Then GRk(H) is exponential in k if H is not bipartite, linear in k if
H is bipartite but not a star, and constant (does not depend on k) when H is a star.

It turns out that for some graphs H (e.g., when H = C3), GRk(H) behaves nicely,
while the order of magnitude of Rk(H) seems hopelessly difficult to determine. It is
worth noting that finding exact values of GRk(H) is far from trivial, even when |H|
is small. We will utilize the following important structural result of Gallai [12] on
Gallai colorings of complete graphs.

Theorem 1.2 ([12]) For any Gallai coloring c of a complete graph G with |G| ≥ 2,
V (G) can be partitioned into nonempty sets V1, . . . , Vp with p > 1 so that at most
two colors are used on the edges in E(G)\(E(G[V1]) ∪ · · · ∪ E(G[Vp])) and only one
color is used on the edges between any fixed pair (Vi, Vj) under c.

The partition given in Theorem 1.2 is a Gallai partition of the complete graph
G under c. Given a Gallai partition V1, . . . , Vp of the complete graph G under c, let
vi ∈ Vi for all i ∈ [p] and let R := G[{v1, . . . , vp}]. Then R is the reduced graph of G
corresponding to the given Gallai partition under c. Clearly, R is isomorphic to Kp.
It is worth noting that R does not depend on the choice of v1, . . . , vp because R can
be obtained by first contracting each part Vi into a single vertex, say vi, and then
coloring every edge vivj by the color used on the edges between Vi and Vj under c. By
Theorem 1.2, all the edges in R are colored by at most two colors under c. One can
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see that any monochromatic copy of H in R under c will result in a monochromatic
copy of H in G under c. It is not surprising that Gallai-Ramsey numbers GRk(H) are
closely related to the classical Ramsey numbers R2(H). Recently, Fox, Grinshpun
and Pach [9] posed the following conjecture on GRk(H) when H is a complete graph.

Conjecture 1.3 ([9]) For all t ≥ 3 and k ≥ 1,

GRk(Kt) =

{
(R2(Kt)− 1)k/2 + 1 if k is even

(t− 1)(R2(Kt)− 1)(k−1)/2 + 1 if k is odd.

Recall that if n < Rk(K3), then there is a k-coloring c of the edges of Kn such
that edges of every triangle in Kn are colored by at least two colors under c. A
question of T. A. Brown (see [5]) asked: What is the largest number f(k) of vertices
of a complete graph can have such that it is possible to k-color its edges so that edges
of every triangle are colored by exactly two colors? Chung and Graham [5] answered
this question in 1983.

Theorem 1.4 ([5]) For all k ≥ 1, f(k) =

{
5k/2 if k is even

2 · 5(k−1)/2 if k is odd.

Clearly, GRk(K3) = f(k) + 1. By Theorem 1.4, Conjecture 1.3 holds for t = 3.
The proof of Theorem 1.4 does not rely on Theorem 1.2. A simpler proof of this
case using Theorem 1.2 can be found in [16]. The next open case, when t = 4, was
recently settled in [21]. Gallai-Ramsey number of H , where H ∈ {C4, P5, C6, P6},
has also been studied, as well as general upper bounds for GRk(Pn) and GRk(Cn)
that were first studied in [7, 10] and later improved in [18]. Gregory [14] proved in
his thesis that GRk(C8) = 3k+5, but the proof was incomplete. We list some results
in [7, 10, 18] below.

Theorem 1.5 ([7]) For all k ≥ 1,

(a) GRk(Pn) = �n−2
2
�k + 	n

2

 + 1 for n ∈ {3, 4, 5, 6}.

(b) GRk(C4) = k + 4.

Theorem 1.6 ([10]) For all k ≥ 1, GRk(C5) = 2k+1 + 1 and GRk(C6) = 2k + 4.

Theorem 1.7 ([18]) For all n ≥ 3 and k ≥ 1,

GRk(C2n) ≤ (n− 1)k + 3n and GRk(Pn) ≤
⌊
n− 2

2

⌋
k + 3

⌊n
2

⌋
.

More recently, Gallai-Ramsey numbers of odd cycles on at most 15 vertices have
been completely settled by Bruce and Song [3] for C7, Bosse and Song [1] for C9

and C11, and Bosse, Song and Zhang [2] for C13 and C15. Very recently, the exact
values of GRk(C2n+1) for n ≥ 8 has been solved by Zhang, Song and Chen [23]. We
summarize these results below.
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Theorem 1.8 ([1, 2, 3]) For n ∈ {3, 4, 5, 6, 7} and all k ≥ 1, GRk(C2n+1) = n ·
2k + 1.

In this paper, we study Gallai-Ramsey numbers of even cycles and paths. Note
that GRk(H) = |H| for any graph H when k = 1. For all n ≥ 3 and k ≥ 2, let
Gn−1 ∈ {C2n, P2n+1}, Gi := P2i+3 for all i ∈ {0, 1, . . . , n− 2}. We want to determine
the exact values of GR(Gi1 , . . . , Gik), where ij ∈ {0, 1, . . . , n− 1} for all j ∈ [k]. By
reordering colors if necessary, we assume that i1 ≥ i2 ≥ · · · ≥ ik. The construction
for establishing a lower bound for GR(Gi1, . . . , Gik) for all n ≥ 3 and k ≥ 2 is
similar to the construction given by Erdős, Faudree, Rousseau and Schelp in 1976
(see Section 2 in [6]) for classical Ramsey numbers of even cycles and paths. We
recall their construction in the proof of Proposition 1.12. We list below the results
on 2-colored Ramsey numbers of even cycles and paths that will be used in the proofs
of Proposition 1.12 and Theorem 1.15.

Theorem 1.9 ([22]) For all n ≥ 3, R2(C2n) = 3n− 1.

Theorem 1.10 ([8]) For all integers n,m satisfying 2n ≥ m ≥ 3, R(Pm, C2n) =
2n + �m

2
� − 1.

Theorem 1.11 ([13]) For all integers n,m satisfying n ≥ m ≥ 2, R(Pm, Pn) =
n + �m

2
� − 1.

Proposition 1.12 For all n ≥ 3 and k ≥ 2,

GR(Gi1 , . . . , Gik) ≥ |Gi1 |+
k∑

j=2

ij ,

where n− 1 ≥ i1 ≥ · · · ≥ ik ≥ 0.

Proof. By Theorem 1.9, Theorem 1.10 and Theorem 1.11, the statement is true
when k = 2. So we may assume that k ≥ 3. To show that GR(Gi1 , . . . , Gik) ≥
|Gi1 | +

∑k
j=2 ij , we recall the construction given in [6]. Let G be a complete graph

on (|Gi1 | − 1) +
∑k

j=2 ij vertices. Let V1, . . . , Vk be a partition of V (G) such that
|V1| = |Gi1| − 1 and |Vj| = ij for all j ∈ {2, 3, . . . , k}. Let c be a k-edge-coloring of
G by first coloring all the edges of G[Vj ] by color j for all j ∈ [k], and then coloring
all the edges between Vj+1 and

⋃j
�=1 V� by color j + 1 for all j ∈ [k − 1]. Then G

contains neither a rainbow triangle nor a monochromatic copy of Gij in color j for

all j ∈ [k] under c. Hence, GR(Gi1 , . . . , Gik) ≥ |G|+ 1 = |Gi1 |+
∑k

j=2 ij , as desired.

Motivated by the work developed in [14], the first author recently conjectured
that the lower bound established in Proposition 1.12 is also the desired upper bound
for GR(Gi1, . . . , Gik) for all n ≥ 3 and k ≥ 2. We state it below (note that Con-
jecture 1.13 was first mentioned at the 49th Southeastern International Conference
on Combinatorics, Graph Theory & Computing, Florida Atlantic University, Boca
Raton, FL, March 5-9, 2018).
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Conjecture 1.13 For all n ≥ 3 and k ≥ 2,

GR(Gi1 , . . . , Gik) = |Gi1 |+
k∑

j=2

ij ,

where n− 1 ≥ i1 ≥ · · · ≥ ik ≥ 0.

Clearly, GRk(C2n) ≥ GRk(P2n) and GRk(C2n) ≥ GRk(Mn), where Mn denotes
a matching of size n. It is worth noting that by letting i1 = · · · = ik = n − 1
and Gi1 = C2n, the construction given in the proof of Proposition 1.12 yields that
(n − 1)k + n + 1 ≤ GRk(P2n) and (n − 1)k + n + 1 ≤ GRk(Mn) for all n ≥ 3
and k ≥ 1 (the authors would like to thank Joseph Briggs, a Ph.D. student at the
Carnegie-Mellon University, for pointing this out for Mn, at the 49th Southeastern
International Conference on Combinatorics, Graph Theory & Computing, Florida
Atlantic University, Boca Raton, FL, March 5-9, 2018). The truth of Conjecture 1.13
implies that GRk(C2n) = GRk(P2n) = GRk(Mn) = (n−1)k+n+1 for all n ≥ 3 and
k ≥ 1 and GRk(P2n+1) = (n−1)k+n+2 for all n ≥ 1 and k ≥ 1. As observed in [18],
to completely solve Conjecture 1.13, one only needs to consider the case Gn−1 = C2n.
We prove this in Proposition 1.14. The proof of Proposition 1.14 is similar to the
proof of Theorem 7 given in [18]. We include a proof here for completeness.

Proposition 1.14 For all n ≥ 3 and k ≥ 2, if Conjecture 1.13 holds for Gn−1 =
C2n, then it also holds for Gn−1 = P2n+1.

Proof. By the assumed truth of Conjecture 1.13 for Gn−1 = C2n, we may assume
that Gi1 = P2n+1. Then i1 = n − 1. We may further assume that n − 1 = i1 =
· · · = it > it+1 ≥ · · · ≥ ik, where t ∈ [k]. By Proposition 1.12, GR(Gi1 , . . . , Gik) ≥
(2n+1)+

∑k
j=2 ij = 2+n+t(n−1)+

∑k
j=t+1 ij. We next show thatGR(Gi1 , . . . , Gik) ≤

2 + n + t(n− 1) +
∑k

j=t+1 ij.

Let G be a complete graph on 2 + n + t(n − 1) +
∑k

j=t+1 ij vertices and let
c : E(G) → [k] be any Gallai coloring of G. Suppose G does not contain a monochro-
matic copy of Gij in color j for all j ∈ [k]. By the assumed truth of Conjecture 1.13

for Gn−1 = C2n, GR(C2n, . . . , C2n, Git+1, . . . , Gik) = 2n+(t−1)(n−1)+
∑k

j=t+1 ij =

1+n+t(n−1)+
∑k

j=t+1 ij . Thus G must contain a monochromatic copy of H := C2n

in some color � ∈ [t] under c. We may assume that � = 1. Then for every vertex
u ∈ V (G)\V (H), all the edges between u and V (H) must be colored by exactly one
color j for some j ∈ {2, . . . , k}, because G contains neither a rainbow triangle nor a
monochromatic copy of P2n+1 in color 1 under c. Thus, V (G)\V (H) can be parti-
tioned into V2, V3, . . . , Vk such that all the edges between Vj and V (H) are colored
by color j for all j ∈ {2, . . . , k}. It follows that for all j ∈ {2, . . . , k}, |Vj| ≤ ij,
because G does not contain a monochromatic copy of Gij in color j. But then

|G| = |H| + ∑k
j=2 |Vj| ≤ 2n +

∑k
j=2 ij = 1 + n + t(n − 1) +

∑k
j=t+1 ij , contrary to

|G| = 2 + n+ t(n− 1) +
∑k

j=t+1 ij .

In this paper, we prove that Conjecture 1.13 is true for n ∈ {3, 4} and all k ≥ 1.
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Theorem 1.15 For n ∈ {3, 4} and all k ≥ 2, let Gi = P2i+3 for all i ∈ {0, 1, . . . ,
n− 2}, Gn−1 = C2n, and ij ∈ {0, 1, . . . , n− 1} for all j ∈ [k] with i1 ≥ i2 ≥ · · · ≥ ik.
Then

GR(Gi1 , . . . , Gik) = |Gi1 |+
k∑

j=2

ij .

Theorem 1.15 strengthens the results listed in Theorem 1.5, Theorem 1.6 and
GRk(C8) = 3k + 5 given in [14]. Our proof relies only on Theorem 1.2 and Ramsey
numbers R(H1, H2), where H1, H2 ∈ {C8, C6, P7, P5, P3}. Theorem 1.15, together
with Proposition 1.14, implies that GRk(C2n) = GRk(P2n) = GRk(Mn) = (n −
1)k + n + 1 for n ∈ {3, 4} and all k ≥ 1, and GRk(P2n+1) = (n − 1)k + n + 2 for
n ∈ {1, 2, 3, 4} and all k ≥ 1. Hence, Theorem 1.15 yields a new and simpler proof
of the known results on Gallai-Ramsey numbers of C8, C6 and Pn with n ≤ 7. As
mentioned earlier, the proof of GRk(C8) = 3k + 5 given in [14] was incomplete. We
prove Theorem 1.15 in Section 2. In our completely new strategy, we developed an
extremely useful recoloring method (in the proof of Claim 6 in Section 2) which we
believe will assist in solving other cases, and possibly the conjecture. This method,
together with new ideas, has been applied in [20] to prove that Conjecture 1.13 is
true for n ∈ {5, 6} and all k ≥ 2. Note that the method we developed here for
even cycles and paths is very different from the method for odd cycles developed in
[1, 2, 3].

2 Proof of Theorem 1.15

We are ready to prove Theorem 1.15. Let n ∈ {3, 4} and k ≥ 2. By Proposition 1.12,
it suffices to show that GR(Gi1 , . . . , Gik) ≤ |Gi1 |+

∑k
j=2 ij .

By Theorem 1.9, Theorem 1.10 and Theorem 1.11, GR(Gi1, Gi2) = R(Gi1 , Gi2) =
|Gi1 |+ i2. We may assume that k ≥ 3. Let N := |Gi1|+

∑k
j=2 ij. Since GRk(P3) = 3,

we may assume that i1 ≥ 1 and so N ≥ 2i1 + 3 ≥ 5. Let G be a complete graph on
N vertices and let c : E(G) → [k] be any Gallai coloring of G such that all the edges
of G are colored by at least three colors under c. We next show that G contains
a monochromatic copy of Gij in color j for some j ∈ [k]. Suppose G contains no
monochromatic copy of Gij in color j for any j ∈ [k] under c. Such a Gallai k-
coloring c is called a bad coloring. Among all complete graphs on N vertices with a
bad coloring, we choose G with N minimum.

Consider a Gallai partition of G with parts A1, . . . , Ap, where p ≥ 2. We may
assume that |A1| ≥ · · · ≥ |Ap| ≥ 1. Let R be the reduced graph of G with vertices
a1, . . . , ap, where ai ∈ Ai for all i ∈ [p]. By Theorem 1.2, we may assume that every
edge of R is colored either red or blue. Since all the edges of G are colored by at least
three colors under c, we see that R �= G and so |A1| ≥ 2. By abusing the notation,
we use ib to denote ij when the color j is blue. Similarly, we use ir to denote ij when
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the color j is red. Let

Ar := {aj ∈ {a2, . . . , ap} | aja1 is colored red in R} and

Ab := {ai ∈ {a2, . . . , ap} | aia1 is colored blue in R}.
Let R :=

⋃
aj∈Ar

Aj and B :=
⋃

ai∈Ab
Ai. Then |A1| + |R| + |B| = |G| = N and

max{|B|, |R|} �= 0 because p ≥ 2. Thus G contains a blue P3 between B and A1 or
a red P3 between R and A1, and so max{ib, ir} ≥ 1. We next prove several claims.

Claim 1. Let r ∈ [k] and let s1, . . . , sr be nonnegative integers with s1+ · · ·+sr ≥ 1.
If ij1 ≥ s1, . . . , ijr ≥ sr for colors j1, j2, . . . , jr ∈ [k], then for any S ⊆ V (G) with
|S| ≥ N − (s1 + · · ·+ sr), G[S] must contain a monochromatic copy of Gi∗jq

in color

jq for some jq ∈ {j1, . . . , jr}, where i∗jq = ijq − sq.

Proof. Let i∗j1 := ij1 − s1, . . . , i
∗
jr := ijr − sr, and i∗j := ij for all j ∈ [k]\{j1, . . . , jr}.

Let i∗� := max{i∗j : j ∈ [k]}. Then i∗� ≤ i1. Let N∗ := |Gi∗� | + [(
∑k

j=1 i
∗
j )− i∗� ]. Then

N∗ ≥ 3 and N∗ ≤ N − (s1 + · · · + sr) < N because s1 + · · · + sr ≥ 1. Since
|S| ≥ N − (s1+ · · ·+ sr) ≥ N∗ and G[S] does not have a monochromatic copy of Gij

in color j for all j ∈ [k]\{j1, . . . , jr} under c, by minimality of N , G[S] must contain
a monochromatic copy of Gi∗jq

in color jq for some jq ∈ {j1, . . . , jr}.

Claim 2. |A1| ≤ n− 1 and so G does not contain a monochromatic copy of a graph
on |A1|+ 1 ≤ n vertices in any color m ∈ [k] that is neither red nor blue.

Proof. Suppose |A1| ≥ n. We first claim that ib ≥ |B| and ir ≥ |R|. Suppose
ib ≤ |B| − 1 or ir ≤ |R| − 1. Then we obtain a blue Gib using the edges between
B and A1 or a red Gir using the edges between R and A1, a contradiction. Thus
ib ≥ |B| and ir ≥ |R|, as claimed. Let i∗b := ib − |B| and i∗r := ir − |R|. Since
|A1| = N − |B| − |R|, by Claim 1 applied to ib ≥ |B|, ir ≥ |R| and A1, G[A1] must
have a blue Gi∗b or a red Gi∗r , say the latter. Then ir > i∗r. Thus |R| > 0 and Gi∗r is
a red path on 2i∗r + 3 vertices. Note that

|A1| = |Gi1|+
k∑

j=2

ij − |B| − |R|

≥
{
|Gir |+ ib − |B| − |R| if ir ≥ ib

|Gib |+ ir − |B| − |R| if ir < ib,

≥
{
|Gir |+ i∗b − |R| if ir ≥ ib

2ib + 2 + ir − |B| − |R| ≥ i∗b + (2ir + 3)− |R| if ir < ib,

≥ |Gir | − |R|.
Then

|A1| − |Gi∗r | ≥ |Gir | − |Gi∗r | − |R|

=

{
(3 + 2ir)− (3 + 2i∗r)− |R| = |R| if ir ≤ n− 2

(2 + 2ir)− (3 + 2i∗r)− |R| = |R| − 1 if ir = n− 1.
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But thenG[A1∪R] contains a redGir using the edges of theGi∗r and the edges between
A1\V (Gi∗r) and R, a contradiction. This proves that |A1| ≤ n− 1. Next, let m ∈ [k]
be any color that is neither red nor blue. Suppose G contains a monochromatic copy
of a graph, say J , on |A1|+ 1 vertices in color m. Then V (J) ⊆ A� for some � ∈ [p].
But then |A�| ≥ |A1|+ 1, contrary to |A1| ≥ |A�|.

For two disjoint sets U,W ⊆ V (G), we say U is blue-complete (resp. red-
complete) to W if all the edges between U and W are colored blue (resp. red)
under c. For convenience, we say u is blue-complete (resp. red-complete) to W when
U = {u}.
Claim 3. min{|B|, |R|} ≥ 1, p ≥ 3 and B is neither red- nor blue-complete to R
under c.

Proof. Suppose B = ∅ or R = ∅. By symmetry, we may assume that R = ∅. Then
B �= ∅ and so ib ≥ 1. By Claim 2, |A1| ≤ n − 1 ≤ 3 because n ∈ {3, 4}. Then
|A1| ≤ ib + 2. If ib ≤ |A1| − 1, then ib ≤ n− 2 by Claim 2. Thus Gib is a blue path
on 2ib + 3 vertices and so

|B| = N − |A1| ≥ |Gib| − |A1| =
{
ib + 1 if |A1| = ib + 2

ib + 2 if |A1| = ib + 1.

But then we obtain a blue Gib using the edges between B and A1. Thus ib ≥ |A1|.
Let i∗b := ib − |A1|. By Claim 1 applied to ib ≥ |A1| and B, G[B] must have a blue
Gi∗b . Since

|B| − |Gi∗b | ≥ |Gib| − |Gi∗b | − |A1|

=

{
(3 + 2ib)− (3 + 2i∗b)− |A1| = |A1| if ib ≤ n− 2

(2 + 2ib)− (3 + 2i∗b)− |A1| = |A1| − 1 if ib = n− 1,

we see that G contains a blue Gib using the edges of the Gi∗b and the edges between
B\V (Gi∗b ) and A1, a contradiction. Hence R �= ∅ and so p ≥ 3 for any Gallai partition
of G. It follows that B is neither red- nor blue-complete to R, otherwise {B∪A1, R}
or {B,R ∪A1} yields a Gallai partition of G with only two parts.

Claim 4. Let m ∈ [k] be a color that is neither red nor blue. Then im ≤ 1. In
particular, if im = 1, then n = 4 and G contains a monochromatic copy of P3 in color
m under c.

Proof. By Claim 2, G contains no monochromatic copy of Pn in color m under c.
Suppose im ≥ 1. Let i∗m := im − 1. By Claim 1 applied to im ≥ 1 and V (G), G
must have a monochromatic copy of Gi∗m in color m under c. Since n ∈ {3, 4} and
G contains no monochromatic copy of Pn in color m, we see that n = 4 and i∗m = 0.
Thus im = 1 and G contains a monochromatic copy of P3 in color m under c.

By Claim 3, B �= ∅ and R �= ∅. Since |A1| ≥ 2, we see that G has a blue P3

using edges between B and A1, and a red P3 using edges between R and A1. Thus
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ib ≥ 1 and ir ≥ 1. Then |Gi1 | ≥ 5 and so N = |Gi1 | +
∑k

j=2 ij ≥ 6. By Claim 2,
|A1| ≤ n−1. If |B| = |R| = 1, then N = |A1|+|B|+|R| ≤ n+1 ≤ 5, a contradiction.
Thus |B| ≥ 2 or |R| ≥ 2. Since B is neither red- nor blue-complete to R, we see that
G contains either a blue P5 or a red P5. Thus i1 ≥ max{ib, ir} ≥ 2 ≥ n− 2 because
n ∈ {3, 4}. By Claim 4, we may assume that {ib, ir} = {i1, i2}. Then

|Gi1| =
{
2i1 + 2 = 1 + n+ i1 if i1 = n− 1

2i1 + 3 = 1 + n+ i1 if i1 = n− 2.

Therefore N = |Gi1|+
∑k

j=2 ij = 1 + n +
∑k

j=1 ij ≥ 1 + n+ ib + ir.

Claim 5. |B| ≤ n− 1 or |R| ≤ n− 1.

Proof. Suppose |B| ≥ n and |R| ≥ n. Let H = (B,R) be the complete bipartite
graph obtained from G[B ∪ R] by deleting all the edges with both ends in B or
both ends in R. Then H has no blue P2n−3 with both ends in B, else, we obtain
a blue C2n because |A1| ≥ 2. Similarly, H has no red P2n−3 with both ends in
R. For every vertex v ∈ B ∪ R, let db(v) := |{u : uv is colored blue in H}| and
dr(v) := |{u : uv is colored red in H}|. Let x1, . . . , xn ∈ B, y1, . . . , yn ∈ R and
a1, a

∗
1 ∈ A1 be all distinct. We next claim that dr(v) ≤ n − 2 for all v ∈ B.

Suppose, say, dr(x1) ≥ n − 1. Then n = 4 because H has no red P2n−3 with
both ends in R. We may assume that x1 is red-complete to {y1, y2, y3}. Since H
has no red P5 with both ends in R, we see that for all i ∈ {2, 3, 4} and every
W ⊆ {y1, y2, y3} with |W | = 2, no xi is red-complete to W . We may further assume
that x2y1, x2y2, x3y1 are colored blue. Then x4y2 must be colored red, else, H has a
blue P5 with vertices x3, y1, x2, y2, x4 in order. Thus x4y1, x4y3 are colored blue. But
then H has a blue P5 with vertices x2, y2, x3, y1, x4 in order (when x3y2 is colored
blue) or vertices x2, y1, x3, y3, x4 in order (when x3y3 is colored blue), a contradiction.
Thus dr(v) ≤ n − 2 for all v ∈ B. Similarly, db(u) ≤ n − 2 for all u ∈ R. Then
|B||R| = |E(H)| = ∑

v∈B dr(v) +
∑

u∈R db(u) ≤ (n − 2)|B| + (n − 2)|R|. Using
inequality of arithmetic and geometric means, we obtain that n = 4, |B| = |R| = 4
and dr(v) = db(v) = 2 for each v ∈ B ∪ R. Thus the set of all the blue edges in H
induces a 2-regular spanning subgraph of H . Since H has no blue C8, we see that
H must contain two vertex-disjoint copies of blue C4. We may assume that y1 is
blue-complete to {x1, x2} and y2 is blue-complete to {x3, x4}. But then G contains
a blue C8 with vertices a1, x1, y1, x2, a

∗
1, x3, y2, x4 in order, a contradiction.

Claim 6. |A1| = 3 and n = 4.

Proof. By Claim 2, |A1| ≤ n − 1 ≤ 3 because n ∈ {3, 4}. Note that |A1| = 3
only when n = 4. Suppose |A1| = 2. By Claim 2, G has no monochromatic copy
of P3 in color j for any j ∈ {3, . . . , k} under c. By Claim 4, i3 = · · · = ik = 0 and
so N = 1 + n +

∑k
j=1 ij = 1 + n + ib + ir. We may assume that A1, . . . , At are all

the parts of order two in the Gallai partition A1, . . . , Ap of G, where t ∈ [p]. Let
Ai := {ai, bi} for all i ∈ [t]. By reordering if necessary, each of A1, . . . , At can be
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chosen as the largest part in the Gallai partition A1, . . . , Ap of G. For all i ∈ [t], let

Ai
b := {aj ∈ V (R) | ajai is colored blue in R} and

Ai
r := {aj ∈ V (R) | ajai is colored red in R}.

Let Bi :=
⋃

aj∈Ai
b
Aj and Ri :=

⋃
aj∈Ai

r
Aj. Then |Bi| + |Ri| = N − |A1| = n +

ib + ir − 1 ≥ n + 2, because max{ib, ir} ≥ 2 and min{ib, ir} ≥ 1. Since each of
A1, . . . , At can be chosen as the largest part in the Gallai partition A1, . . . , Ap of
G, by Claim 5, either |Bi| ≤ n − 1 or |Ri| ≤ n − 1 for all i ∈ [t]. We claim that
|Bi| �= |Ri| for all i ∈ [t]. Suppose |Bi| = |Ri| for some i ∈ [t]. By Claim 5,
n + 2 ≤ |Bi| + |Ri| ≤ 2(n− 1) ≤ 6. It follows that |Bi| = |Ri| = 3 and n = 4. Thus
G has a blue P5 between Bi and Ai and a red P5 between Ri and Ai. It follows that
min{ib, ir} ≥ 2. But then |Bi| + |Ri| = n + ib + ir − 1 ≥ 7, a contradiction. This
proves that |Bi| �= |Ri| for all i ∈ [t]. Let

EB := {aibi | i ∈ [t] and |Ri| < |Bi|} and ER := {aibi | i ∈ [t] and |Ri| > |Bi|}.

We next apply the recoloring method. Let c∗ be an edge-coloring of G obtained from
c by recoloring all the edges in EB blue and all the edges in ER red. Then every edge
of G is colored either red or blue under c∗. Since |G| = 1 + n+ ib + ir ≥ R(Gib , Gir)
by Theorem 1.9, Theorem 1.10 and Theorem 1.11, we see that G must contain a blue
Gib or a red Gir under c

∗. By symmetry, we may assume that G has a blue H := Gib

under c∗. Then H contains no edges of ER but must contain at least one edge of
EB, else, we obtain a blue Gib in G under c. We choose H so that |E(H) ∩ EB| is
minimal. We may further assume that a1b1 ∈ E(H). By the choice of c∗, |R1| ≤ n−1
and |R1| < |B1|. Then |B1| ≥ 2 and so G has a blue P5 under c because B1 is not
red-complete to R1. Thus ib ≥ 2. Let W := V (G)\V (H).

We next claim that ib = n − 1. Suppose 2 ≤ ib ≤ n − 2. Then n = 4, ib = 2,
H = P7 and |G| = 1 + n + ib + ir = 7 + ir. Thus |W | = ir. Let x1, . . . , x7

be the vertices of H in order. By symmetry, we may assume that x�x�+1 = a1b1
for some � ∈ [3]. Then W ∪ {x7} must be red-complete to {a1, b1} under c, else,
say a vertex u ∈ W ∪ {x7}, is blue-complete to {a1, b1} under c, then we obtain
a blue H ′ := P7 under c∗ with vertices x1, . . . , x�, u, x�+1, . . . , x6 in order such that
|E(H ′)∩EB | < |E(H)∩EB|, contrary to the choice of H . Thus W ∪{x7} ⊆ R1 and
so |R1| ≥ |W ∪ {x7}| = ir + 1 ≥ 2. Note that G contains a red P5 under c because
|R1| ≥ 2 and R1 is not blue-complete to B1. Thus ir ≥ 2. Then 3 ≤ ir+1 ≤ |R1| ≤ 3,
which implies that ir = 2 and R1 = W ∪ {x7}. Thus {a1, b1} is blue-complete to
V (H)\{x�, x�+1, x7}. But then we obtain a blue H ′ := P7 under c∗ with vertices
x1, . . . , x�, x�+2, x�+1, x�+3, . . . , x7 in order such that |E(H ′) ∩ EB| < |E(H) ∩ EB|, a
contradiction. This proves that ib = n− 1.

Since ib = n − 1, we see that H = C2n. Then |G| = 1 + n + ib + ir = 2n + ir
and so |W | = ir. Let a1, x1, . . . , x2n−2, b1 be the vertices of H in order and let
W = V (G)\V (H) := {w1, . . . , wir}. Then x1b1 and a1x2n−2 are colored blue un-
der c because {a1, b1} = A1. Suppose {xj , xj+1} is blue-complete to {a1, b1} under
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c for some j ∈ [2n − 3]. Then G has a blue H ′ := C2n under c∗ with vertices
a1, x1, . . . , xj , b1, x2n−2, . . . , xj+1 in order such that |E(H ′)∩EB | < |E(H)∩EB|, con-
trary to the choice of H . Thus, for all j ∈ [2n − 3], {xj , xj+1} is not blue-complete
to {a1, b1}. Since {x1, x2n−2} is blue-complete to {a1, b1} under c, we see that
x2, x2n−3 ∈ R1 and then |R1 ∩ {x2, . . . , x2n−3}| = |R1| = n− 1. Thus R1 = {x2, x3}
when n = 3. By symmetry, we may assume that R1 = {x2, x3, x5} when n = 4.
Then W ⊆ B1. Thus R1 is red-complete to {a1, b1} and W is blue-complete to
{a1, b1} under c. It follows that for any wj ∈ W and xm ∈ R1, {xm, wj} �= Ai for all
i ∈ [t]. Then x2 must be red-complete to W under c, else, say x2w1 is colored blue
under c, then we obtain a blue H ′ := C2n under c∗ with vertices a1, x1, x2, w1, b1, x4

(when n = 3) and vertices a1, x1, x2, w1, b1, x4, x5, x6 (when n = 4) in order such that
|E(H ′)∩EB | < |E(H)∩EB|, a contradiction. Similarly, x3 is red-complete to W un-
der c, else, say x3w1 is colored blue under c, then we obtain a blue H ′ := C2n under c∗

with vertices b1, x4, x3, w1, a1, x1 (when n = 3) and vertices b1, x6, x5, x4, x3, w1, a1, x1

(when n = 4) in order such that |E(H ′)∩EB| < |E(H)∩EB|, a contradiction. Thus
{x2, x3} is red-complete to W under c. Then for any wj ∈ W , {x1, wj} �= Ai for all
i ∈ [t] since x2x1 is colored blue and x2 is red-complete to W under c. If x1wj is
colored blue under c for some wj ∈ W , then we obtain a blue H ′ := C2n under c∗

with vertices a1, wj, x1, . . . , x2n−2 in order such that |E(H ′) ∩ EB| < |E(H) ∩ EB|, a
contradiction. Thus {x1, x2, x3} is red-complete to W under c. Then |W | = ir ≥ 2
because G contains a red P5 under c with vertices x1, w1, x2, a1, x3 in order. But then
we obtain a red C2n under c with vertices a1, x2, w1, x1, w2, x3 in order (when n = 3)
and a1, x2, w1, x1, w2, x3, b1, x5 in order (when n = 4), a contradiction.

By Claim 6, |A1| = 3 and n = 4. Then |B∪R| = N−|A1| ≥ 2+ib+ir ≥ 5 because
max{ib, ir} ≥ 2 and min{ib, ir} ≥ 1. By symmetry, we may assume that |B| ≥ |R|.
Then |B| ≥ 3 and so G has a blue P7 because |A1| = 3 and B is not red-complete
to R. Thus ib = 3. By Claim 5, |R| ≤ 3. Then ir ≥ |R|, else, we obtain a red Gir

because |A1| = 3 and R is not blue-complete to B. Then |B| ≥ 2+ ib + ir − |R| ≥ 5.
Thus G[B∪R] has no blue P3 with both ends in B, else, we obtain a blue C8 because
|A1| = 3 and |B| ≥ 5. Let i∗b := 0 and i∗r := ir − |R| ≤ 2. By Claim 1 applied
to ib = |A1|, ir ≥ |R| and B, G[B] must contain a red P2i∗r+3 with vertices, say
x1, . . . , x2i∗r+3, in order. Let R := {y1, . . . , y|R|}. Then no yj ∈ R is blue-complete to
any W ⊆ B with |W | = 2, in particular, when W = {x1, x2i∗r+3}, because G[B ∪ R]
has no blue P3 with both ends in B. We may assume that x1y1 is colored red. Note
that G[R ∪A1] has a red P2|R| with y1 as an end. Then G[{x1, . . . , x2i∗r+3} ∪R∪A1]
has a red P2ir+3. It follows that ir = 3. Let a∗1 ∈ A1\{a1}.

Suppose first that x2i∗r+3 is blue-complete to R = {y1, . . . , y|R|}. Since G[B ∪ R]
has no blue P3 with both ends in B, we see that {x2i∗r+3} = A� for some � ∈ [p],
B\{x2i∗r+3} is red-complete to {y1, . . . , y|R|}, and x2i∗r+3 is adjacent to at most one
vertex, say w ∈ B, such that wx2i∗r+3 is colored blue. Thus x2i∗r+3 is red-complete
to B\{w, x2i∗r+3}. Let w∗ ∈ B\{x1, x2, x3, w}. Since B\{x2i∗r+3} is red-complete
to {y1, . . . , y|R|}, we see that {x1, . . . , x2i∗r+2} is red-complete to {y1, . . . , y|R|}. If
w /∈ {x2, . . . , x2i∗r+1}, then we obtain a red C8 with vertices y1, x1, x2, x7, x3, . . . , x6

(when i∗r = 2), vertices a1, y1, x1, x2, x5, x3, x4, y2 (when i∗r = 1), and vertices
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a1, y1, x2, x3, w
∗, y2, a∗1, y3 (when i∗r = 0) in order, a contradiction. Thus w ∈ {x2, . . . ,

x2i∗r+1}. Then i∗r ≥ 1 and x1x2i∗r+1 is colored red. But then we obtain a red C8 with
vertices y1, x2, x3, x4, x5, x6, x7, x1 (when i∗r = 2) and vertices a1, y1, x2, x3, x4, x5, x1, y2
(when i∗r = 1) in order, a contradiction. This proves that x2i∗r+3 is not blue-complete
to R. Then |R| ≥ 2, else, |R| = 1, i∗r = 2 and x7y1 is colored red, which yields
a red C8 with vertices y1, x1, . . . , x7 in order, a contradiction. Thus i∗r ≤ 1. Next,
suppose x2i∗r+3 is not blue-complete to {y2, . . . , y|R|}, say x2i∗r+3y2 is colored red. By
assumption, x1y1 is red. We then obtain a red C8 with vertices a1, y1, x1, . . . , x5, y2
(when i∗r = 1) and vertices a1, y1, x1, x2, x3, y2, a

∗
1, y3 (when i∗r = 0) in order, a con-

tradiction. Thus x2i∗r+3 is blue-complete to {y2, . . . , y|R|} and so x2i∗r+3y1 is colored
red. By symmetry of x1 and x2i∗r+3, x1 must be blue-complete to {y2, . . . , y|R|}. But
then G[B ∪ R] has a blue P3 with vertices x1, y2, x2i∗r+3 in order, a contradiction.

This completes the proof of Theorem 1.15.
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