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Abstract

If a graph with non-zero edge weights has a non-singular adjacency matrix, one
may use the inverse matrix to define a (weighted) graph that may be viewed
as the inverse graph to the original one. It has been known that an adjacency
matrix of a weighted tree is non-singular if and only if the tree has a unique
perfect matching. In the opposite case one may use a pseudo-inverse (which, in
the symmetric case, coincides with Moore-Penrose, Drazin, or group inverse)
of the adjacency matrix to ‘invert’ a tree. A way of calculating entries of a
pseudo-inverse follows from the work of Britz, Olesky and van den Driessche
(2004), based on a determinant formula for entries of the Moore-Penrose inverse.
We give here a different proof of the result for calculating a pseudo-inverse of a
weighted tree, based solely on considering maximum matchings and alternating
paths.

1 Introduction

We will consider finite, undirected graphs with no multiple edges but we allow every vertex
to carry at most one loop (an edge whose both ends are the same vertex); such an object
will simply be referred to as a graph in this paper. We will further assume that each edge
e = uv of a graph G carries a non-zero real weight a(e) = a(uv), and the pair (G, a) will
be called an weighted graph. Let A be the adjacency matrix of (G, a), which means that
for any two vertices u, v of G the uv-th entry of A is a(e) if e = uv is an edge of G, and 0
otherwise.

If A is non-singular, the inverse of (G, a) is the weighted graph (H, b) determined by
the adjacency matrix equal to the inverse A−1 of A. We thus assume that G and H share
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the same vertex set, and e = uv is an edge of H if the uv-th entry of A−1 is non-zero, in
which case this uv-th entry is the weight b(e) of e. Obviously, the inverse defined this way
is unique up to graph isomorphism preserving weights on edges.

Inverses of weighted graphs as introduced above were studied, for example, in [2, 16,
17, 22]. Edge weights in [2, 17] were even allowed to be elements of a not necessarily com-
mutative ring, and a formula for an inverse graph to (G, a) was given in both papers in the
special case of a bipartite graphG with a unique perfect matching and with multiplicatively
invertible weights on matched edges.

Returning to real-valued weights, one may further restrict to graphs (G, a) in which
all weights on edges are positive. In such a case of a positively weighted graph with a
non-singular adjacency matrix, its inverse will typically contain both positive as well as
negative entries. A positively weighted graph (G, a) with a non-singular adjacency matrix
A is then positively invertible if A−1 is diagonally similar (signable, in the terminology
of [1]) to a non-negative matrix. Positively invertible graphs with integral edge weights
have been studied in detail in [3, 1, 12] and the last paper also contains a nice survey of
development in the study of inverses of graphs.

All this work, however, was initiated by the influential paper [10] on inverses of trees
with unit edge weights, extending earlier observations of [9]. By [11], an adjacency matrix
of a tree is invertible if and only if the tree has a (unique) perfect matching. In terms
of our definition, each such tree is automatically invertible. The much stronger result of
[10] says that every tree with a perfect matching is positively invertible and its positive
inverse is a simple graph (containing no loops) with every edge carrying the unit weight
again. A formula for determining the inverse of a tree with a perfect matching in terms of
alternating paths appeared later in [18] and was afterwards extended to bipartite graphs
with a unique perfect matching in [3, 1, 2, 12, 17]. For completeness, graphs arising as
inverses of trees with a perfect matching, and of bipartite graphs with a unique perfect
matching that remain bipartite after contracting the matching, were characterized in [15]
and [16], respectively, and self-inverse graphs in the latter family were classified in [20].
Also, Godsil’s problem of characterization of positively invertible bipartite graphs with a
unique perfect matching was recently solved in [21].

In this situation it is natural to ask what one can do in the case of weighted graphs with
a singular adjacency matrix. An equally natural move is to consider ‘inverting’ the matrix
by taking one of the generalizations of matrix inverses, such as the Moore-Penrose inverse,
or the Drazin inverse, or a special case of the latter known as the group inverse. In the
instance of a (square) symmetric matrix A all these inverses coincide and are commonly
called a pseudo-inverse of A, which we will denote by A∗ throughout. The pseudo-inverse of
a symmetricmatrix is easy to introduce as follows. Since a real symmetric n×n matrix A is
orthogonally diagonalizable, there is an orthogonal matrix P such that PAP T = D, where
D = diag(λ1, . . . , λk, 0, . . . , 0) is the diagonal matrix of eigenvalues of A, with k = rank(A)
non-zero eigenvalues λ1, . . . , λk. Letting D∗ = diag(λ−1

1 , . . . , λ−1
k , 0, . . . , 0), the pseudo-

inverse A∗ of A is simply given by A∗ = PD∗P T , that is, both A and A∗ are conjugate to
their corresponding diagonal matrices by the same orthogonal matrix P . Note that A∗ is
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again symmetric, and A∗ coincides with A−1 if A is non-singular.

Motivated by this, we define the pseudo-inverse of a weighted graph (G, a) with adja-
cency matrix A to be the weighted graph (G∗, a∗) with adjacency matrix A∗, the pseudo-
inverse of A. As before, G and G∗ are assumed to have the same vertex set, and e = uv
is an edge of G∗ if and only if the uv-th entry of A∗ is non-zero, and then this entry is
also the weight a∗(e) of e. And, again, note that G∗ is well defined up to isomorphism
preserving edge weights.

Observe that this way of defining pseudo-inverses of weighted graphs is in line with the
original motivation of considering graph inverses which comes from chemistry. Namely,
there appear to be fewer methods for estimating the smallest positive eigenvalue of a graph
in contrast to a larger number of techniques for bounding the largest positive eigenvalue.
For graphs representing structure of molecules, however, the smallest positive eigenvalue
is a meaningful parameter in quantum chemistry. If such a graph has an inverse, one may
hope to increase the number of techniques for estimating its smallest positive eigenvalue
by passing to bounds on the largest positive eigenvalue of the inverse graph. This feature
remains present also for our pseudo-inverses.

A formula for entries of the adjacency matrix of the pseudo-inverse of a tree with
arbitrary non-zero edge weights can be derived from a result of [7] stated in terms of
bipartite graphs associated with arbitrary matrices (with the vertex set being the union of
row and column indices of a matrix) in the special case when the graphs are acyclic. The
proof of the result of [7] is based on a determinant formula for entries of the Moore-Penrose
inverse that first appeared in a classical paper [14]; for more recent references see [4] or [5,
Appendix A].

In the present paper we give a different proof of a formula for calculating the pseudo-
inverse of an arbitrary weighted tree. Our proof does not refer to the formulae for entries
of the Moore-Penrose inverse and is based solely on considering maximum matchings and
alternating paths Also, the length of our completely elementary proof compares well to
the length of the proof of [7] combined with the length of the derivation of the associated
determinant formula (see e.g. a proof given in [13], using results of [6]).

To state the result we need to introduce a few concepts. Let (T, a) be a weighted tree;
for brevity we will often omit the symbol for the weight function in our exposition. For an
unordered pair of vertices u, v of distinct vertices of T we let M(u, v) denote the set of all
maximum matchings M of T with the property that edges of the (unique) u−v path in T
belong alternately to M and not to M , with the condition that both the first and the last
edge of the path (that is, those incident to u and v) belong to M . A necessary condition
for the set M(u, v) to be non-empty is that the distance between u and v be odd, but
note that this condition does not need to be sufficient; though, if uv is an edge of some
maximum matching, then the set M(u, v) is automatically non-empty. A pair of vertices
u, v for which M(u, v) �= ∅ will be called maximally matchable.

Further, for any maximally matchable pair of vertices u, v and a maximum matching
M ∈ M(u, v) let αu,v(M) denote the product of all the weights a(e), ranging over all edges
e of M that are not contained in the unique u−v path P in T . (The line over the pair
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of vertices u, v in the subscript indicates that edges of M ∩ P are not considered in the
product; a product over an empty set is considered to be equal to 1.) Also, for the same
pair of vertices u, v let α(u, v) be the product of all the values of a(e) taken over all the
edges e in the path P (necessarily of odd length), and multiplied by +1 or −1 depending
on whether the distance between u and v is congruent to +1 or −1 mod 4; if u, v are not
maximally matchable we set α(u, v) = 0. With this in hand we may associate with any
maximally matchable pair of vertices u, v of T the value

μT (u, v) = α(u, v) ·
∑

M∈M(u,v)

(αu,v(M))2 ; (1)

it follows that μT (u, v) = 0 if u, v is not a maximally matchable pair (which includes the
case u = v). Finally, letting M be the set of all maximum matchings in T , for every
M ∈ M let α(M) be the product of the weights a(e) taken over all edges e of M , and let

m(T ) =
∑
M∈M

(α(M))2 . (2)

In this terminology and notation we have:

Theorem 1 Let (T, a) be a weighted tree with vertex set V . Then, its pseudo-inverse
(T ∗, a∗) has two distinct vertices u, v ∈ V joined by an edge e if and only if u, v is a
maximally matchable pair in T , with weight of e given by

a∗(e) = a∗(uv) =
μT (u, v)

m(T )
. (3)

We note that this formula is equivalent to the one given in [7] in the language of acyclic
bipartite matrices, and that it generalizes the original findings of [18] on inverses of trees
with unit edge weights having a (unique) perfect matching.

2 Proof of the pseudo-inversion formula for trees

The way we introduced the pseudo-inverse A∗ of a symmetric matrix A is not new and it was
used e.g. in [5, Ch. 4.3] in a more general context of diagonalizable matrices, along with the
observation that A commutes with A∗ as a consequence of simultaneous diagonalization.
The latter is exactly the property we will use in deriving a characterization of pseudo-
inverses of symmetric matrices (which is likely to be known to specialists).

Proposition 1 A pair of symmetric matrices A and B of the same dimension are pseudo-
inverses of each other if and only if they commute and ABA = A.

Proof. Necessity follows immediately from the way pseudo-inverses of symmetric matrices
have been introduced. For sufficiency we invoke the well-known result from linear algebra
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that a pair of commuting symmetric matrices are simultaneously orthogonally diagonaliz-
able, see e.g. [19, Ch. 2.5]. The simultaneously diagonalized form of the equation ABA = A
implies that for every non-zero eigenvalue λ of A its inverse λ−1 is an eigenvalue of B and
vice versa, including equality of the corresponding eigenspaces. It follows that A and B
are mutually pseudo-inverse. �

With this tool in hand the strategy of proving our main result is clear. In the ter-
minology and notation introduced before the statement of Theorem 1, for every weighted
tree (T, a) with adjacency matrix A we need to show that if B is a matrix (indexed the
same way as A) with uv-th entry equal to μT (u, v)/m(T ), then B = A∗. In the light of
Proposition 1 our task reduces to proving that AB = BA and ABA = A, which we will do
next. In both auxiliary results that follow we let N(x) be the set of neighbours of a vertex
z of our tree T , and we will omit the subscript T in the symbol μT (u, v) in the proofs.

Proposition 2 Let (T, a) be a weighted tree with vertex set V and with adjacency matrix
A, and let B be the matrix (indexed as A) with uv-th entry equal to μT (u, v)/m(T ) for
every u, v ∈ V . Then, AB = BA.

Proof. The equation AB = BA has the following equivalent form:∑
r∈V

a(ur)μ(r, v) =
∑
s∈V

μ(u, s)a(sv) for every u, v ∈ V . (4)

Note that (4) is vacuously true if v is at an odd distance from u, and also in the case
when v = u. Assume therefore that the vertex v has a positive even distance from u. Let
ux . . . yv be the (unique) u−v path in T ; note that y = x if u and v are at distance two.
Further, let M(u, v̂) be the set of maximum matchings M ∈ M(u, y) not containing v, so
that

M(u, y) = ∪z∈N(v)\{y}M(u, z) ∪M(u, v̂) . (5)

By repeatedly using (1) and the definition of the values of α on paths, and (5) at an
appropriate place, one successively obtains

μ(u, y) · a(yv) = a(yv)

⎛⎝α(u, y)
∑

M∈M(u,y)

(αu,y(M))2

⎞⎠
= α(u, y)a(yv)

⎛⎝ ∑
z∈N(v)\{y}

(a(vz))2
∑

M∈M(u,z)

(αu,z(M))2 +
∑

M∈M(u,v̂)

(αu,y(M))2

⎞⎠
= −

∑
z∈N(v)\{y}

a(vz)

⎛⎝α(u, z)
∑

M∈M(u,z)

(αu,z(M))2

⎞⎠+ α(u, y)a(yv)
∑

M∈M(u,v̂)

(αu,y(M))2

= −
∑

z∈N(v)\{y}
a(vz)μ(u, z) + α(u, y)a(yv)

∑
M∈M(u,v̂)

(αu,y(M))2 .



S. PAVLÍKOVÁ /AUSTRALAS. J. COMBIN. 75 (2) (2019), 246–255 251

Rearranging terms, the above calculation implies that∑
s∈V

μ(u, s)a(sv) = α(u, y)a(yv)
∑

M∈M(u,v̂)

(αu,y(M))2 . (6)

By the same token, just interchanging the roles of u and v (and x and y) and letting
M(v, û) denote the set of all M ∈ M(v, x) not containing u, one obtains∑

r∈V
a(ur)μ(r, v) = α(v, x)a(xu)

∑
M∈M(v,û)

(αv,x(M))2 . (7)

Since α(u, y)a(yv) = α(v, x)a(xu), (6) and (7) imply that (4) holds if and only if∑
M∈M(u,v̂)

(αu,y(M))2 =
∑

M∈M(v,û)

(αv,x(M))2 . (8)

Note, however, that there is a bijection θ : M(u, v̂) → M(v, û) which, to every maximum
matching M ∈ M(u, v̂) of T assigns a maximum matching Mθ ∈ M(v, û) obtained from
M by trading the matched edges on the unique u−v path of T by the unmatched ones. In
addition, by definition of α on matchings making particular pairs of vertices matchable, it
is clear that this bijection satisfies αu,y(M) = αv,x(M

θ). This establishes the validity of
(8), and hence of Proposition 2. �

Proposition 3 Let (T, a) be a weighted tree with vertex set V and with adjacency matrix
A, and let B be the matrix (indexed as A) with uv-th entry equal to μT (u, v)/m(T ) for
every u, v ∈ V . Then, ABA = A.

Proof. By Proposition 2 we may equally well prove that AAB = A, or, equivalently,

∑
x∈V

a(ux)
∑
y∈V

a(xy)μ(y, v) =

{
a(uv)m(T ) if u ∈ N(v),

0 if u /∈ N(v).
(9)

Let S be the left-hand side of (9). Then, S = 0 if u is at an even distance from v.
In what follows we thus assume that the distance between u and v is odd. Let uz . . . v
be the unique u−v path in T , possibly with v = z. Now, S may be written in the form
S = S(z) + S(u, ẑ) + S(û, ẑ) with the first two terms corresponding to taking x = z in the
first sum, and letting x ∈ N(u)\{z} but putting y = u in the second sum in (9), i.e.,

S(z) = a(uz)
∑

y∈N(z)

a(zy)μ(y, v) , S(u, ẑ) =
∑

x∈N(u)\{z}
a(ux)2μ(u, v) , (10)

with the remaining part S(û, ẑ) =
∑

x∈N(u)\{z}
a(ux)

∑
y∈N(x)\{u}

a(xy)μ(y, v) . (11)
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We begin by evaluating S(û, ẑ). To do so, for any neighbour x ∈ N(u)\{z} we denote
by Mx(u, v) and Mx̂(u, v) the sets of maximum matchings M ∈ M(u, v) in which the
vertex x is matched and unmatched, respectively, so that M(u, v) = Mx(u, v)∪Mx̂(u, v).
Using (1) and the definition of α for the paths yxuz . . . v we step by step obtain

S(û, ẑ) =
∑

x∈N(u)\{z}
a(ux)

∑
y∈N(x)\{u}

a(xy) (−a(yx)a(xu)α(u, v))
∑

M∈M(y,v)

αy,v(M)2

= −
∑

x∈N(u)\{z}
a(xu)2α(u, v)

∑
y∈N(x)\{u}

a(yx)2
∑

M∈M(y,v)

αy,v(M)2

= −
∑

x∈N(u)\{z}
a(xu)2α(u, v)

∑
M∈Mx(u,v)

αu,v(M)2 .

For the sum S(u, ẑ) appearing on the right-hand side of (10) we simply have, by (1),

S(u, ẑ) =
∑

x∈N(u)\{z}
a(xu)2α(u, v)

∑
M∈M(u,v)

αu,v(M)2 ,

and from the two derivations it follows that

S(u, ẑ) + S(û, ẑ) =
∑

x∈N(u)\{z}
a(xu)2α(u, v)

∑
M∈Mx̂(u,v)

αu,v(M)2 . (12)

Now let u ∈ N(v), that is, let z = v; we evaluate S(z) = S(v) from the left-hand part
of (10). Using the symbol M(v) to denote the set of all maximum matchings in T in which
the vertex v is matched, we obtain

S(v) = a(uv)
∑

y∈N(v)

a(vy)

⎛⎝a(yv)
∑

M∈M(y,v)

αy,v(M)2

⎞⎠ = a(uv)
∑

M∈M(v)

α(M)2 . (13)

The equation (12) for z = v gives, after a rearrangement and with α(u, v) = a(uv),

S(u, v̂) + S(û, v̂) = a(uv)
∑

x∈N(u)\{v}

⎛⎝ ∑
M∈Mx̂(u,v)

a(xu)2αu,v(M)2

⎞⎠ . (14)

The set Mx̂(u, v) consists of the maximum matchings M in T that contain the edge uv
but avoid the vertex x ∈ N(u)\{v} on the path xuv. For any such matching M the term
a(xu)2αu,v(M)2 in the last sum of (14) is equal to α(M ′)2 for the maximum matching M ′

in T obtained from M by trading the edge uv ∈ M for the edge xu ∈ M ′. The assignment
M → M ′ is clearly a bijection from the set Mx̂(u, v) onto the set M(v̂) of the maximum
matchings of T that avoid the vertex v. Therefore, the double sum on the right-hand side
of (14) is equal to the sum of the squares of the α-values on matchings in M(v̂), that is,

S(u, v̂) + S(û, v̂) = a(uv)
∑

M∈M(v̂)

α(M)2 . (15)
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From (15) and (13) we now obtain, for z = v and hence for u ∈ N(v),

S = S(v)+S(u, v̂)+S(û, v̂) = a(uv)

⎛⎝ ∑
M∈M(v)

α(M)2+
∑

M∈M(v̂)

α(M)2

⎞⎠ = a(uv)m(T )

which proves the first part of our claim.

It remains to consider the case u /∈ N(v), that is, z �= v, in the evaluation of S(z)
by (10). As z and v are assumed to be at even distance, we now have a (unique) odd-
length path of the form uzw . . . v in T and we will deal with neighbours y ∈ T (z), including
y ∈ {u, w}. For the vertex z we will also use the symbols Mz(w, v) and Mẑ(w, v) to denote
the set of maximum matchings in T inducing a perfect matching on the path w . . . v and,
respectively, containing z and avoiding z. By calculations similar to the earlier ones we
obtain

S(z)

a(uz)
= a(zw)μ(w, v) +

∑
y∈N(z)\{w}

a(zy)μ(y, v)

= a(zw)μ(w, v) +
∑

y∈N(z)\{w}
a(zy) (−a(yz)a(zw)α(w, v))

∑
M∈M(y,v)

αy,v(M)2

= a(zw)α(w, v)
∑

M∈M(w,v)

αw,v(M)2 − a(zw)α(w, v)
∑

M∈Mz(w,v)

αw,v(M)2

which implies that, for z �= v,

S(z) = a(uz)a(zw)α(w, v)
∑

M∈Mẑ(w,v)

αw,v(M)2 . (16)

Revisiting the equation (12) and reducing its right-hand side further yields

S(u, ẑ) + S(û, ẑ) =
∑

x∈N(u)\{z}
a(xu)2 (−a(uz)a(zw)α(w, v))

∑
M∈Mx̂(u,v)

αu,v(M)2

= − a(uz)a(zw)α(w, v)
∑

x∈N(u)\{z}

∑
M∈Mx̂(u,v)

α(xu)2αu,v(M)2 .

We now argue as done after the equation (12). The set Mx̂(u, v) consists of the maximum
matchings M in T that induce a perfect matching on the path uzw . . . v but avoid the
vertex x on the path xuzw . . . v. Given any such matching M , the product a(xu)2αu,v(M)2

in the last sum above is equal to α(M ′)2 for the maximum matching M ′ in T inducing a
perfect matching on the path w . . . v, obtained from M by trading the edge uz ∈ M for
the edge xu ∈ M ′, so that M ′ avoids the vertex z. But the latter precisely means that
M ′ belongs to the set Mẑ(w, v). It can be seen that the assignment M → M ′ defines
a bijection between the sets Mx̂(u, v) and Mẑ(w, v). The last double sum above is thus
equal to the sum of the squares of the α-values on matchings in Mẑ(w, v), that is,

S(u, ẑ) + S(û, ẑ) = −a(uz)a(zw)α(w, v)
∑

M∈Mẑ(w,v)

αw,v(M)2 . (17)
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Comparing (17) with (16) shows that S = 0 for u /∈ T (v), which completes our proof. �

The proof of Theorem 1 now follows immediately from Propositions 1, 2 and 3.

3 Conclusion

We have mentioned equivalence of our formula (3) from Theorem 1 with that of [7], but the
reader wanting to check details will have observed that the latter refers to the rank of the
adjacency matrix (in a slightly different form) whereas our result makes no such reference.
The reason in our case is that, by a formula for evaluation of coefficients of a characteristic
polynomial in terms of certain subgraphs of the corresponding weighted graph [8, formula
(1.35)’], the rank of the adjacency matrix of a weighted tree is equal to the size of its
maximum matchings (independently on the values of the non-zero edge weights).

We believe that our method may furnish extensions of Theorem 1 to broader classes
of graphs, at the very least in a similar way Godsil’s inversion theorem for trees with a
perfect matching [10] and the subsequent formula for inverses of such trees [18] have been
extended to bipartite graphs with a unique perfect matching in [1, 2, 3, 12, 17, 21].

Acknowledgements

The authors would like to thank the anonymous referees for carefully reading the original
manuscript and making useful comments. Our special thanks go to the referee whose
comments on treating null-spaces led (after appropriate modifications) to a substantial
shortening of the manuscript.

Both authors acknowledge support by the APVV research grants 15-0220 and 17-0428,
and by the VEGA research grants 1/0142/17 and 1/0238/19.

References

[1] S. Akbari and S. J. Kirkland, On unimodular graphs, Lin. Alg. Appl. 421 (2007), 3–15.

[2] R.B. Bapat and E. Ghorbani, Inverses of triangular matrices and bipartite graphs,
Lin. Alg. Appl. 447 (2014), 68–73.

[3] S. Barik, M. Neumann and S. Pati, On nonsingular trees and a reciprocal eigenvalue
property, Lin. Multilin. Alg. 54 (6) (2006), 453–465.

[4] A. Ben-Israel, The Moore of the Moore-Penrose inverse, Electron. J. Lin. Alg. 9 (2002),
150–157.

[5] A. Ben-Israel and T.N.E. Greville, Generalized inverses, Theory and Applications,
2nd ed., Springer, 2003.

[6] J.W. Blattner, Bordered matrices, SIAM J. 10 (2) (1962), 528–536.
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