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Abstract

For an m-cycle C, an inside m-cycle of C is a cycle that is on the same
vertex set and edge-disjoint from C. In an m-cycle system, (X , C), if
inside m-cycles can be chosen -one for each cycle- to form anotherm-cycle
system, then (X , C) is called an inside perfect m-cycle system. Inside
perfect cycle systems can be considered as generalisations of i-perfect
cycle systems. Cycle packings are generalisations of cycle systems that
may have leaves after decomposition. In this paper, we prove that an
inside perfect maximum packing of Kn with 8-cycles of order n exists for
each n ≥ 8. We also construct a maximum 8-cycle packing of order n
which is not inside perfect for each n ≥ 10.
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1 Introduction

One of the oldest graph decomposition problems involves decomposing the complete
graph Kn into edge disjoint cycles. If all the cycles have uniform length, say m, then
this decomposition is called an m-cycle system. More formally, we denote an m-cycle
system of order n by a pair (X , C) where X is an n-element set and C is a collection
of edge-disjoint m-cycles which partitions the edge-set of Kn with vertex set X . To
have an m-cycle system of order n, we need n to be odd and m to divide the total
number of edges. Namely,

(i) n ≥ m ≥ 3,

(ii) n ≡ 1 (mod 2), and

(iii) n(n− 1)/(2m) is an integer.

These conditions are shown to be sufficient when n and m have the same parity in
[4], and when n and m have different parity in [16]. The interested reader is referred
to [6] for an alternative proof. Given m, the set of all n satisfying these conditions
is called the spectrum of the m-cycle system.

For a cycle C, let c(i) be the set of edges that connects the vertices that are
distance i apart in C. For example, if C is a 6-cycle (x1, x2, x3, x4, x5, x6) then c(2)
consists of two 3-cycles, namely; (x1, x3, x5) and (x2, x4, x6). If C is a 5-cycle, then
c(2) is another 5-cycle. Given an m-cycle system (X , C), if the collection of c(i)
related to each C forms another cycle system (not necessarily an m-cycle system),
then (X , C) is called an i-perfect m-cycle system. There are many results on i-perfect
m-cycle systems. The interested reader is referred to [1, 3, 5, 7, 8, 11, 14, 15] for
results on i-perfect cycle systems.

Observe that when gcd(i,m) = 1, in an i-perfect m-cycle system the c(i)s form an
m-cycle system too. When gcd(i,m) �= 1 then the cycles in c(i)s cannot be m-cycles.
That is why we will generalize the idea of i-perfect systems to inside perfect systems.
We want to replace each m-cycle C in the system with another m-cycle C ′ related
with C, and then to see if the collection of the new m-cycles still gives an m-cycle
system or not. We can for example relate C ′ with C by choosing it on the same
vertex set. Given an m-cycle C, an edge-disjoint m-cycle C ′ on the same vertex set
is called an inside m-cycle of C.

Anm-cycle system (X , C) is called an inside perfect m-cycle system if it is possible
to choose an inside m-cycle from each m-cycle in C, so that the resulting collection
of m-cycles is also an m-cycle system. For example, in [13] the authors found the
spectrum of inside perfect 6-cycle systems and named them as almost 2-perfect 6-
cycle systems.

As seen before, m-cycle systems do not exist for all orders. For all n not in the
spectrum of m-cycle systems, we consider maximum packings with m-cycles. A cycle
packing of the complete graph Kn is a triple (X , C,L) where X is the vertex set, C
is a collection of edge-disjoint cycles from Kn, and the leave L is the collection of
the edges in Kn not belonging to any of the cycles in C. When |L| is the smallest
possible, then (X , C,L) is called a maximum packing. If n is not in the spectrum
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of the m-cycle system, i.e; when it is not possible to decompose Kn completely into
m-cycles, we study maximum packings of m-cycles of Kn.

In [13], Lindner et al. also proved the existence of an inside perfect maximum
packing of Kn with 6-cycles for each admissible n. In [12], Lindner and Meszka
considered the existence of inside perfect minimum coverings of Kn with 6-cycles.

In this paper we study inside perfect 8-cycle systems. Even though for m = 5
each 5-cycle has a unique inside 5-cycle, when m > 5 there is an increasing number
of possible inside cycles for a given cycle. For example, there are three possible
inside 6-cycles for each 6-cycle (x1, x2, x3, x4, x5, x6), namely, (x1, x3, x5, x2, x6, x4),
(x1, x3, x6, x4, x2, x5) and (x1, x4, x2, x6, x3, x5). An 8-cycle has 177 possible inside
8-cycles. Let (X , C) be an 8-cycle system, and let C′ be a collection of inside 8-cycles,
one from each of the cycles in C. If (X , C′) is an 8-cycle system, we say that (X , C) is
inside perfect. Inside perfect m-cycle decompositions of other graphs may be defined
similarly.

Then we extend the problem to inside perfect maximum packings of Kn with
8-cycles by constructing a maximum packing (X , C,L) of Kn for every n ≥ 8 with
8-cycles so that (X , C′,L) is also a maximum packing, where C′ is a collection of
inside 8-cycles of the 8-cycles of C, and L is the leave of the maximum packing. We
call such a maximum packing of order n, an inside perfect maximum packing with
8-cycles.

For all n not in the spectrum of 8-cycle systems, we show the existence of inside
perfect maximum packings with 8-cycles in Theorem 3.14.

We also answer the opposite problem: given an 8-cycle maximum packing (X , C,
L), is it always possible to choose an inside 8-cycle for each 8-cycle in C so that the
resulting collection of inside 8-cycles is an 8-cycle maximum packing? In other words,
are all the 8-cycle maximum packings inside perfect? The answer to this question is
no, except for the orders n = 8 and n = 9.

In the third section, we construct inside perfect maximum packings of Kn with
8-cycles for all n ≥ 8, therefore we show that they exist for all admissible n. And in
the fourth section, proofs and observations from a comprehensive computer search
are given. We construct maximum packings of Kn with 8-cycles that are not inside
perfect for all n ≥ 10.

2 Preliminary results

We start by introducing the results that are used throughout the paper. From now
on, inside perfect is abbreviated as IP for brevity. Kn,m represents a bipartite graph
with parts of size n and m and Kr \Ks represents the graph difference of Kr and Ks,
that is the graph obtained from Kr by removing the edges of a subgraph isomorphic
to Ks. A bowtie is a 5-vertex connected graph consisting of two triangles with a
common vertex.

The following table gives leaves we used for the maximum packings with 8-cycles
(see [9] and [10]).



S. KÜÇÜKÇİFÇİ /AUSTRALAS. J. COMBIN. 75 (1) (2019), 146–157 149

Spectrum for maximum packing Leave
with 8-cycles

1 (mod 16) ∅

3 (mod 16) C3

5 (mod 16) K5

7 (mod 16) C5

9 (mod 16) C4

11 (mod 16) C3 ∪ C4

13 (mod 16) bowtie

15 (mod 16) C4 ∪ C5

0, 2, 8, 10 (mod 16) 1-factor

4, 6, 12, 14 (mod 16) K4 ∪ a 1-factor on the remaining vertices

Table 1: Maximum packings with 8-cycles

Throughout the paper when we list the corresponding inside 8-cycles in C′ we obey
the order of the original 8-cycles in C.

Lemma 2.1 There exists an IP 8-cycle decomposition of K4t,4s, for all t, s ∈ Z
+.

Proof Let X = {x0, x1, x2, x3} and Y = {y0, y1, y2, y3} be partitions of the vertex set
of K4,4. Consider C = {(x0, y0, x1, y1, x2, y2, x3, y3), (x0, y2, x1, y3, x2, y0, x3, y1)}, and
the inside cycles as C′ = {(x1, y2, x0, y1, x3, y0, x2, y3), (x1, y1, x2, y2, x3, y3, x0, y0)} to
get an IP 8-cycle decomposition of K4,4.

Next let X = {x0, x1, . . . , x4t−1} and Y = {y0, y1, . . . , y4s−1} be partitions of the
vertex set ofK4t,4s, where Xi = {x4i, x4i+1, x4i+2, x4i+3}, Yj = {y4j, y4j+1, y4j+2, y4j+3}
for i = 0, 1, 2, . . . , t − 1, j = 0, 1, . . . , s − 1 and t, s ∈ Z

+. Placing an IP 8-cycle
decomposition of K4,4 on the vertex set Xi ∪ Yj for each pair i, j gives us an IP
8-cycle decomposition of K4t,4s. �

Lemma 2.2 There exists an IP 8-cycle decomposition of K4t,4s+2, for all t, s ∈ Z
+.

Proof Let X = {x0, x1, x2, x3} and Y = {y0, y1, y2, y3, y4, y5} be partitions of the ver-
tex set ofK4,6. Consider C = {(x0, y4, x1, y1, x2, y2, x3, y3), (x0, y0, x1, y3, x2, y4, x3, y5),
(x0, y1, x3, y0, x2, y5, x1, y2)} and C′ = {(x1, y2, x0, y1, x3, y4, x2, y3), (x1, y4, x0, y3, x3,
y0, x2, y5), (x1, y1, x2, y2, x3, y5, x0, y0)} to get an IP 8-cycle decomposition of K4,6.

Next, let X = {x0, x1, . . . , x4t−1} and Y = {y0, y1, . . . , y4s+1} be partitions of the
vertex set of K4t,4s+2, where Xi = {x4i, x4i+1, x4i+2, x4i+3}, Y0 = {y0, y1, y2, y3, y4, y5},
Yj = {y4j+2, y4j+3, y4j+4, y4j+5} for i = 1, . . . , t− 1, j = 1, 2, . . . , s− 1 and t, s ∈ Z

+.
Placing an IP 8-cycle decomposition of K4,4 on the vertex set Xi ∪ Yj for each pair
i = 0, 1, . . . , t− 1, j = 1, 2, . . . , s− 1 and an IP 8-cycle decomposition of K4,6 on the
vertex set Xi ∪ Y0 for each i = 0, 1, . . . , t− 1 gives us an IP 8-cycle decomposition of
K4t,4s+2. �

Lemma 2.3 If there exist an IP 8-cycle system of order r + 1 and an IP 8-cycle
decomposition of Kr,s, then there exists an IP 8-cycle decomposition of Kr+s+1\Ks+1.
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Proof Let X = {∞} ∪ {x1, x2, . . . , xr} ∪ {y1, y2, . . . , ys}. Placing an IP 8-cycle
system of order r + 1 on {∞} ∪ {x1, x2, . . . , xr} and an IP 8-cycle decomposition of
Kr,s on {x1, x2, . . . , xr}∪{y1, y2, . . . , ys} gives an IP maximum 8-cycle decomposition
of Kr+s+1 \Ks+1, where the vertex set of Ks+1 is {∞} ∪ {y1, y2, . . . , ys}. �

Lemma 2.4 If there exist an IP maximum 8-cycle packing of order r and of order
s with a 1-factor leave and an IP 8-cycle decomposition of Kr,s, then there exists an
IP maximum 8-cycle packing of order r + s with a 1-factor leave.

Proof Let X = {x1, x2, . . . , xr} ∪ {y1, y2, . . . , ys}. Placing an IP maximum 8-cycle
packing of order r on {x1, x2, . . . , xr}, an IP maximum 8-cycle packing of order s
on {y1, y2, . . . , ys}, and an IP 8-cycle decomposition of Kr,s on {x1, x2, . . . , xr} ∪
{y1, y2, . . . , ys} gives an IP maximum 8-cycle packing of order r + s. The leave is
the union of the 1-factor leaves of packings on {x1, x2, . . . , xr} and {y1, y2, . . . , ys},
which is clearly a 1-factor. �

Lemma 2.5 If there exist an IP maximum 8-cycle packing of order r and an IP
8-cycle decomposition of Kr,s, then there exists an IP maximum 8-cycle packing of
Kr+s \Ks.

Proof Let X = {x1, x2, . . . , xr} ∪ {y1, y2, . . . , ys}. Placing an IP maximum 8-cycle
packing of order r on {x1, x2, . . . , xr} and an IP 8-cycle decomposition of Kr,s on
{x1, x2, . . . , xr} ∪ {y1, y2, . . . , ys} gives an IP maximum 8-cycle packing of Kr \ Ks.

�

Now we can present the main construction that we used to construct inside perfect
maximum 8-cycle packings.

Main Construction

Let H be a finite set with cardinality h and k be a positive integer. Then, let
X = H ∪ {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ 16}.
(1) On H ∪ {(1, j) | 1 ≤ j ≤ 16}, place an IP maximum 8-cycle packing of order

16 + h.

(2) On each set H ∪ {(i, j) | 1 ≤ j ≤ 16}, for 2 ≤ i ≤ k, place an IP maximum
8-cycle packing of K16+h \Kh.

(3) For each x, y ∈ {1, 2, . . . , k} with x < y, place an IP 8-cycle decomposition of
K16,16 on {(x, j) | 1 ≤ j ≤ 16} ∪ {(y, j) | 1 ≤ j ≤ 16}.

One can easily check that combining (1), (2), and (3) gives an IP maximum
8-cycle packing of order 16k + h. �

Since a 3-perfect 8-cycle system of order n is an IP 8-cycle system of order n,
the case n ≡ 1 (mod 16) is immediate from [2]. So we analyze the rest of the cases
given in Table 1 to prove the existence of an IP maximum 8-cycle packing for each
case. We first provide examples for small packings which are then used in the Main
Construction.
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3 Inside perfect maximum packings with 8-cycles

Example 3.1 An IP maximum 8-cycle packing of order 8 exists.

Let X = Z8 and consider the maximum 8-cycle packing C = {(1, 4, 3, 6, 5, 2, 0, 7),
(1, 3, 2, 4, 7, 5, 0, 6), (1, 2, 7, 6, 4, 5, 3, 0)} with the leave L = {{1, 5}, {3, 7}, {2, 6},
{4, 0}}. Then the inside cycles C ′ = {(1, 3, 2, 4, 7, 5, 0, 6), (1, 0, 3, 5, 4, 6, 7, 2), (1, 7, 0,
2, 5, 6, 3, 4)} with the same leave forms another maximum packing. Hence (X , C,L)
is an IP maximum 8-cycle packing.

Example 3.2 An IP maximum 8-cycle packing of order 9 exists.

Let X = Z9, and consider C = {(0, 2, 4, 1, 5, 6, 7, 8), (0, 4, 3, 1, 6, 8, 5, 7), (0, 5, 2, 7, 3,
8, 4, 6), (1, 7, 4, 5, 3, 6, 2, 8)}, with the leave L = {(0, 1, 2, 3)}. Then choose the
inside cycles as C ′ = {(0, 4, 5, 2, 8, 6, 1, 7), (0, 6, 4, 1, 8, 7, 3, 5), (0, 2, 6, 3, 4, 7, 5, 8),
(1, 5, 6, 7, 2, 4, 8, 3)}.

Example 3.3 An IP maximum 8-cycle packing of order 10 exists.

Let X =Z10 and consider a maximum packing on X given by C={(0, 1, 3, 2, 4, 5, 8, 6),
(0, 2, 5, 1, 4, 7, 9, 3), (0, 4, 6, 3, 8, 9, 2, 7), (0, 5, 3, 7, 6, 9, 1, 8), (1, 6, 2, 8, 4, 9, 5, 7)} with
the leave L = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 0}}.

Then one can choose the following inside cycles: C′ = {(0, 4, 1, 5, 3, 6, 2, 8),
(0, 5, 4, 9, 2, 3, 7, 1), (0, 3, 9, 7, 6, 8, 4, 2), (0, 7, 5, 9, 8, 3, 1, 6), (1, 8, 5, 2, 7, 4, 6, 9)}.

Example 3.4 An IP maximum 8-cycle packing of order 11 exists.

Let X = Z11 and consider C = {(0, 3, 1, 4, 2, 5, 7, 6), (0, 4, 6, 1, 5, 8, 9, 10), (0, 5, 3, 2,
8, 10, 7, 9), (0, 7, 1, 9, 2, 10, 3, 8), (1, 8, 6, 9, 3, 7, 4, 10), (2, 6, 10, 5, 9, 4, 8, 7)} with the
leave L = {(0, 1, 2), (3, 4, 5, 6)}.

Then we can choose the following inside cycles: C′ = {(0, 4, 6, 2, 3, 5, 1, 7), (0, 6, 8,
4, 10, 1, 9, 5), (0, 3, 7, 5, 10, 2, 9, 8), (0, 9, 3, 1, 8, 2, 7, 10), (1, 6, 10, 3, 8, 7, 9, 4), (2, 5, 8,
10, 9, 6, 7, 4)}.

Example 3.5 There exist IP maximum 8-cycle packings of orders 12, 14, 20 and 22.

Applying Lemma 2.5 for r = 8, 10, 16 and 18 with s = 4, we get an IP maximum
8-cycle packings of K12 \K4, K14 \K4, K20 \K4 and K22 \K4 with 1-factor leaves.
But this is an IP maximum 8-cycle packing of orders 12, 14, 20 and 22, where the
leave is a K4 and a set of independent edges saturating the remaining vertices.

Example 3.6 An IP maximum 8-cycle packing of order 13 exists.
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To show this, let X = {∞} ∪ {x1, x2, . . . , x8} ∪ {y1, y2, y3, y4}. Place an IP maxi-
mum 8-cycle packing of order 9 (by Example 3.2) on {∞} ∪ {x1, x2, . . . , x8}, with
the 4-cycle leave (x1, x2, x3, x4). Then place an IP maximum 8-cycle packing of or-
der 8 (by Example 3.1) on {x1, x2, x3, x4} ∪ {y1, y2, y3, y4} with the 1-factor leave
{{x1, x3}, {x2, x4}, {y1, y3}, {y2, y4}}. Then, place an IP 8-cycle decomposition of
K4,4 on {x5, x6, x7, x8} ∪ {y1, y2, y3, y4} by Lemma 2.1. The leave is the bowtie
(y1, y3,∞), (y2, y4,∞).

Example 3.7 An IP maximum 8-cycle packing of order 15 exists.

To see this, let X = Z15 and consider the maximum packing C =

{(0, 1, 8, 14, 4, 5, 6, 12), (0, 2, 11, 3, 10, 13, 4, 9), (0, 3, 6, 1, 5, 12, 7, 4),
(0, 5, 8, 13, 7, 3, 9, 6), (0, 8, 2, 6, 13, 9, 1, 10), (0, 11, 14, 12, 2, 9, 5, 13),
(9, 12, 3, 1, 4, 10, 2, 14), (1, 13, 2, 4, 8, 10, 5, 14), (0, 7, 1, 11, 4, 6, 10, 14),
(1, 2, 3, 5, 7, 11, 10, 12), (2, 5, 11, 13, 3, 8, 6, 7), (3, 4, 12, 8, 11, 9, 7, 14)},

with the leave L = {(6, 11, 12, 13, 14), (7, 8, 9, 10)}.
Now we can choose the inside cycles as C′ =
{(0, 4, 6, 8, 12, 1, 14, 5), (0, 11, 4, 10, 2, 9, 13, 3), (0, 1, 3, 4, 12, 6, 5, 7),
(0, 8, 3, 5, 9, 7, 6, 13), (0, 2, 1, 13, 8, 10, 6, 9), (0, 14, 9, 11, 13, 2, 5, 12),
(9, 1, 10, 12, 14, 3, 2, 4), (1, 8, 2, 14, 10, 13, 4, 5), (0, 6, 1, 4, 14, 7, 11, 10),
(1, 7, 2, 12, 3, 10, 5, 11), (2, 11, 8, 5, 13, 7, 3, 6), (3, 11, 14, 8, 4, 7, 12, 9)}.

Example 3.8 There exist IP maximum 8-cycle packings of orders 16 and 18.

There exist IP maximum 8-cycle packings of orders 8 and 10 with 1-factor leaves by
Examples 3.1 and 3.3 respectively. There also exist IP 8-cycle decomposition of K8,8

and K8,10 by Lemmas 2.1 and 2.2, respectively. Considering Lemma 2.4 for r = 8
with s = 8 for the order 16 and with s = 10 for the order 18 gives an IP maximum
8-cycle packing of orders 16 and 18 with a 1-factor leave.

Example 3.9 An IP maximum 8-cycle packing of order 19 exists.

Let X = {∞1,∞2,∞3} ∪ {x1, x2, . . . , x8} ∪ {y1, y2, . . . , y8}. Place a copy of an IP
maximum 8-cycle packing of order 11 on {∞1,∞2,∞3} ∪ {x1, x2, . . . , x8} and on
{∞1,∞2,∞3}∪ {y1, y2, . . . , y8}, where the 3-cycle in the leaves is (∞1,∞2,∞3) and
the 4-cycles are (x1, x2, x3, x4) and (y1, y2, y3, y4), respectively. Then place an IP max-
imum 8-cycle packing of order 8 on {x1, x2, x3, x4} ∪ {y1, y2, y3, y4} with the 1-factor
leave {{x1, x3}, {x2, x4}, {y1, y3}, {y2, y4}}, and place IP 8-cycle decompositions of
K4,4 on {x1, x2, x3, x4} ∪ {y5, y6, y7, y8}, on {x5, x6, x7, x8} ∪ {y1, y2, y3, y4} and on
{x5, x6, x7, x8} ∪ {y5, y6, y7, y8}. The necessary examples exist by Lemma 2.1 and
Examples 3.1, 3.4.

Example 3.10 An IP maximum 8-cycle packing of order 21 exists.
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Since an IP 8-cycle decomposition of K16,4 exists by Lemma 2.1, considering r = 16
and s = 4 in Lemma 2.3 gives an IP 8-cycle decomposition of K21 \K5, which is the
IP maximum 8-cycle packing of order 21 with a K5 leave on {∞}∪ {y1, y2, y3, y4} as
required.

Example 3.11 An IP maximum 8-cycle packing of order 23 exists.

Let X = {∞}∪{x1, x2, . . . , x8}∪{y1, y2, . . . , y14}. Place a copy of an IP maximum 8-
cycle packing of order 9 on {∞}∪{x1, x2, . . . , x8} (using Example 3.2) and of order 15
on {∞}∪{y1, y2, . . . , y14} (using Example 3.7) with the 4-cycle leaves (x1, x2, x3, x4)
and (y1, y2, y3, y4) and the 5-cycle leave (y9, y10, y11, y12, y13). Then place an IP
maximum 8-cycle packing of order 8 on {x1, x2, x3, x4} ∪ {y1, y2, y3, y4} (by Exam-
ple 3.1) with the 1-factor leave {{x1, x3}, {x2, x4}, {y1, y3}, {y2, y4}}, place an IP
8-cycle decomposition of K4,4 on {x1, x2, x3, x4}∪{y5, y6, y7, y8}, on {x5, x6, x7, x8}∪
{y1, y2, y3, y4}, and on {x5, x6, x7, x8}∪{y5, y6, y7, y8}, and finally place an IP 8-cycle
decomposition of K4,6 on {x1, x2, x3, x4} ∪ {y9, y10, . . . , y14} and on {x5, x6, x7, x8} ∪
{y9, y10, . . . , y14} which exists by Lemma 2.2.

Lemma 3.12 For every n ≡ 3, 5, 7, 9, 11, 13, 15 (mod 16) with n ≥ 9, there exists an
IP maximum 8-cycle packing of order n.

Proof

n ≡ 3 (mod 16): There exists an IP maximum 8-cycle packing of order 19 with
a 3-cycle leave given by Example 3.9 which is also an IP 8-cycle decomposition of
K19 \K3. An IP 8-cycle decomposition of K16,16 also exists by Lemma 2.1 as before,
and the result follows by the Main Construction considering h = 3.

n ≡ 5 (mod 16): There exists an IP maximum 8-cycle packing of order 21 with a
K5 leave given in Example 3.10. Then the result follows by the Main Construction
considering h = 5.

n ≡ 7 (mod 16): There exist an IP maximum 8-cycle packing of order 23 with
a 5-cycle leave by Example 3.11 and an IP 8-cycle decomposition of K23 \ K7 by
replacing r = 16 and s = 6 in Lemma 2.3. Then the result follows by the Main
Construction considering h = 7.

n ≡ 9 (mod 16): There exist an IP maximum 8-cycle packing of order 9 with a
4-cycle leave by Example 3.2 and an IP 8-cycle decomposition of K25 \K9 by Lemma
2.3 with r = 16 and s = 8. The result follows by the Main Construction considering
h = 9.

n ≡ 11 (mod 16): There exist an IP maximum 8-cycle packing of order 11 with
a 3-cycle and a 4-cycle leave by Example 3.4 and an IP 8-cycle decomposition of
K27 \ K11 by Lemma 2.3 with r = 16 and s = 10. The result follows by the Main
Construction considering h = 11.

n ≡ 13 (mod 16): There exist an IP maximum 8-cycle packing of order 13 with
a bowtie leave by Example 3.6 and an IP 8-cycle decomposition of K29 \ K13 by
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Lemma 2.3 with r = 16 and s = 12. The result follows by the Main Construction
considering h = 13.

n ≡ 15 (mod 16): There exist an IP maximum 8-cycle packing of order 15 with
a 4-cycle and a 5-cycle leave by Example 3.7 and an IP 8-cycle decomposition of
K31 \ K15 by Lemma 2.3 with r = 16 and s = 14. Then the result follows by the
Main Construction considering h = 15. �

Lemma 3.13 For every even n with n ≥ 8, there exists an IP maximum 8-cycle
packing of order n.

Proof

n ≡ 0, 2, 8 and 10 (mod 16): There exist an IP maximum 8-cycle packing of or-
ders 8, 10, 16 and 18 by Examples 3.1, 3.3, and 3.8, respectively. An IP maximum
8-cycle packing of orders 24 and 26 exist by Lemma 2.4 for r = 16 with s = 8 and
s = 10, respectively. For the same r and s in Lemma 2.5 we get IP maximum 8-cycle
packings of K24 \K8 and K26 \K10, respectively. K18 \K2 comes from the packing
of order 18 with a 1-factor leave. Now we have all the ingredients to use the Main
Construction with h = 0, 2, 8 and 10.

n ≡ 4, 6, 12 and 14 (mod 16): There exist an IP maximum 8-cycle packing of
order 12, 14, 20 and 22 by Example 3.5 and an IP maximum 8-cycle packing of
K20 \ K4, K22 \ K6, K28 \ K12 and K30 \ K14 by Lemma 2.5 for r = 16 with s =
4, 6, 12, and 14, respectively. Then, the result follows by the Main Construction with
h = 4, 6, 12, 14. �

Next we have the main result of this section.

Theorem 3.14 There exists an IP maximum 8-cycle packing of order n for every
n ≥ 8.

Proof Follows from Lemmas 3.12 and 3.13.

4 8-cycle packings that are not inside perfect

Computer search shows that not all maximum packings with 8-cycles are inside
perfect. Even though all maximum packings with 8-cycles for orders 8 and 9 are
inside perfect, starting at order 10, there are an increasing number of maximum
packings with 8-cycles which do not carry this property. We generated about 2
million maximum packings with 8-cycles of order 10, and only 0.35% of them were
not inside perfect. On the other hand, from our computer search for several small
cases we observed that when n gets large, the percentage of 8-cycle packings which
are not inside perfect tends to increase.

Below we give examples of 8-cycle maximum packings which are not inside perfect
for small orders, then use these constructions to obtain 8-cycle maximum packings
which are not inside perfect for all orders n ≥ 10. The following examples were
checked by exhaustive computer search.
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Example 4.1 There exist 8-cycle maximum packings which are not IP of orders 10,
11, 12, 13, 15, 16 and 17.

These packings of order n are given on the set {0, . . . , n− 1} for each n.

Order 10: C = {(0, 2, 1, 3, 4, 6, 5, 7), (0, 3, 5, 1, 4, 8, 2, 9), (0, 4, 2, 7, 9, 3, 6, 8), (0, 5, 8,
3, 7, 1, 9, 6), (1, 6, 2, 5, 9, 4, 7, 8)} with leave {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}}.
Order 11: C = {(0, 3, 1, 4, 2, 5, 7, 6), (0, 4, 6, 1, 5, 8, 9, 10), (0, 5, 3, 2, 8, 10, 7, 9),
(0, 7, 1, 9, 2, 10, 4, 8), (1, 8, 6, 9, 4, 7, 3, 10), (2, 6, 10, 5, 9, 3, 8, 7)} with leave
{{0, 1}, {1, 2}, {0, 2}, {3, 4}, {4, 5}, {5, 6}, {3, 6}}.
Order 12: C = {(0, 11, 5, 1, 7, 8, 10, 9), (0, 4, 6, 2, 9, 11, 3, 10), (0, 5, 2, 4, 1, 6, 3, 7),
(0, 6, 5, 3, 4, 7, 2, 8), (1, 8, 3, 9, 4, 10, 2, 11), (1, 9, 5, 7, 11, 8, 6, 10), (4, 8, 5, 10, 7, 9, 6, 11)}
with leave K4 on {0, 1, 2, 3} and edges {{4, 5}, {6, 7}, {8, 9}, {10, 11}}.
Order 13: C = {(0, 11, 5, 1, 7, 8, 10, 9), (0, 4, 6, 2, 9, 11, 3, 10), (0, 2, 4, 1, 3, 5, 6, 7),
(0, 3, 6, 1, 8, 2, 5, 12), (0, 6, 9, 1, 10, 2, 12, 8), (1, 11, 2, 7, 3, 8, 4, 12),
(3, 9, 4, 7, 5, 10, 11, 12), (4, 10, 6, 8, 9, 12, 7, 11), (5, 8,11,6, 12, 10, 7, 9)} with leave
{{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {0, 5}}.
Order 15: C = {(0, 1, 8, 14, 4, 5, 6, 12), (0, 2, 11, 3, 10, 13, 4, 9), (0, 3, 6, 1, 5, 12, 7, 4),
(0, 5, 8, 13, 7, 3, 9, 6), (0, 8, 2, 6, 13, 9, 1, 10), (0, 11, 14, 12, 2, 9, 5, 13),
(9, 12, 3, 1, 4, 10, 2, 14), (1, 13, 2, 4, 8, 10, 5, 14), (0, 7, 1, 11, 4, 6, 10, 14),
(1, 2, 3, 5, 7, 11, 8, 12), (2, 5, 11, 13, 3, 8, 6, 7), (3, 4, 12, 10, 11, 9, 7, 14)} with leave
{{7, 8}, {8, 9}, {9, 10}, {7, 10}, {11, 12}, {12, 13}, {13, 14}, {14, 6}, {6, 11}}.
Order 16: Place a copy of the 8-cycle packing of order 12 given above on {0, . . . , 11}
with the leave K4 on {0, 1, 2, 3} and edges {{4, 5}, {6, 7}, {8, 9}, {10, 11}}, and place
a copy of any 8-cycle packing of order 8 on points {0, 1, 2, 3, 12, 13, 14, 15} with a 1-
factor leave. Finally, place a copy of an 8-cycle decomposition ofK8,4 on the bipartite
graph with parts {4, 5, 6, 7, 8, 9, 10, 11} and {12, 13, 14, 15}.
Order 17: The cyclic 8-cycle system with base block {0, 16, 1, 4, 8, 13, 2, 9}.

Lemma 4.2 If an 8-cycle packing (X , C,L) contains a subpacking (X0, C0,L0) with
L0 ⊆ L which is not IP, then the packing (X , C,L) is also not IP.

Proof Let (X , C,L) be an IP 8-cycle packing with inside 8-cycle packing (X , C′,L).
Let (X0, C0,L0) be a subpacking of (X , C,L) and C′

0 be the collection of inside 8-cycles
of C0 in C′. Then (X0, C′

0,L0) should be a subpacking of (X , C′,L); as both C0 and
C ′

0 are on the same vertex set X0, they both have the same number of 8-cycles and
L0 ⊆ L. So if (X0, C0,L0) is not IP then (X , C,L) cannot be IP. �

Example 4.3 There exist 8-cycle maximum packings of orders 14, 18, 20, 21 and 22
that are not IP.
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While obtaining an 8-cycle maximum packing of order 18 as in Example 3.8, use
an 8-cycle packing of order 10 given in Example 4.1 that is not IP. While obtaining
8-cycle maximum packings of orders 14, 20 and 22 as in Example 3.5, use 8-cycle
packings of orders 10, 16 and 18 that are not IP. And finally, as in Example 3.10,
while obtaining an 8-cycle maximum packing of order 21, use an 8-cycle packing of
order 16 that is not IP. By Lemma 4.2, these constructions will give 8-cycle maximum
packings of orders 14, 18, 20, 21 and 22 that are not IP.

Example 4.4 There exist 8-cycle maximum packings of orders 19 and 23 that are
not IP.

When we consider the packings of orders 11 and 15 in Example 4.1, even if we let
the edges in the leave be used in the inside cycles in these packings (in other words
have different leaves in the two packings), any collection of the inside 8-cycles cannot
form an 8-cycle packing of orders 11 or 15. This fact is checked by a computer
search. Therefore by replacing the packings of orders 11 and 15 in the constructions
of Example 3.9 and Example 3.11, respectively with the packings of orders 11 and
15 given in Example 4.1, one can construct packings that are not IP for the orders
19 and 23.

Theorem 4.5 There exists an 8-cycle packing which is not IP for each n ≥ 10.

Proof Using Examples 4.1, 4.3 and 4.4 above for the constructions in Section 2
instead of the examples given in Section 3, one may construct an 8-cycle maximum
packing which are not IP for each n ≥ 10 by Lemma 4.2. �
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