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Abstract

We study Hartnell’s firefighter problem on infinite trees and characterise
the branching number in terms of the firefighting game. Using our results
about trees, we give a partial answer to a question of Mart́ınez-Pedroza
concerning firefighting on Cayley graphs.

1 Introduction

In 1995 Hartnell [5] introduced the firefighting game which can be described as
follows. Before the first round of the game, an antagonist sets some subset of the
vertices of a graph G on fire. Then, in each round n, we can protect fn vertices
whereafter the fire spreads to all unprotected neighbours of burning vertices. Once a
vertex is burning or protected, it remains in that state for the rest of the game. This
can for example be seen as a model for the spread of a perfectly contagious disease
with no cure, see [1]. The act of protecting vertices at each time step, could then be
viewed as vaccinations.

There are several different goals that we might want to pursue, e.g. minimise
number of rounds or number of burnt vertices, or save a certain set of vertices or
a given fraction of the vertices from being burnt. The survey paper [3] gives an
overview on different lines of research concerning the firefighting game.

In this paper we focus on the question of containment. We say that a fire can be
contained on an infinite graph if we can prevent it from spreading to infinitely many
vertices. An infinite graph G satisfies fn-containment, if any finite initial fire can be
contained by protecting fn vertices in round n.

Containment was first studied in grids, the first results being that certain planar
grids satisfy constant containment, i.e. containment for fn ≡ c, see [1, 9]. Develin

∗ The author was supported by the Austrian Science Fund (FWF) Grant no. J 3850-N32

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License



F. LEHNER/AUSTRALAS. J. COMBIN. 75 (1) (2019), 66–72 67

and Hartke [1] showed that higher dimensional square grids do not satisfy constant
containment. However, it is easy to see that they satisfy polynomial containment,
that is, fn-containment for some polynomial fn. In fact, Dyer, Mart́ınez-Pedroza,
and Thorne [2] showed that if the balls of radius n around some (equivalently any)
vertex of G contain O(nd) vertices, then G has the fn-containment property for some
fn = O(nd−2).

We study the question of exponential containment. We say that a graph satisfies
exponential containment of rate λ ≥ 1 if it satisfies fn-containment for some fn =
O(λn). It is easy to see that for every graph G there is a threshold λF

c ∈ [1,∞]
such that for every λ > λF

c it satisfies exponential containment of rate λ whereas for
λ < λF

c it doesn’t.

We show that the critical containment rate λF
c of a tree T coincides with the

branching number brT of this tree (see the next section for a definition). It is worth
noting that the branching number also comes up as a threshold in different problems.
It marks the transition from transience to recurrence of the homesick random walk
on a tree and 1

brT
is the percolation threshold on an infinite tree, see [6].

As an application of our results about trees we make progress towards a question
of Mart́ınez-Pedroza [8]. He showed that Cayley graphs of non-amenable groups
do not satisfy polynomial containment and asked whether polynomial containment
always implies polynomial growth for Cayley graphs. We show that for a locally
finite Cayley graph with exponential growth of rate α > 1 we have λF

c = α. This
implies that such a Cayley graph can never satisfy polynomial containment, only
leaving open the notoriously difficult case of groups with intermediate growth.

2 Preliminaries

Throughout this paper G = (V,E) denotes a graph with vertex set V and edge
set E. All graphs considered will be connected and locally finite. For a set M of
vertices and edges of G, denote by G−M the subgraph of G obtained by removing
all elements of M from G. In case M contains vertices, we remove all edges incident
to these vertices as well.

Let r ∈ V and assume that G is rooted at r. For a vertex or edge x denote by
|x|r the length of a shortest path containing both r and x. For convenience we will
omit the subscript and simply write |x|, if the root is clear from the context. Define
the ball of radius k with center r by Br(k) = {v ∈ V | |v| ≤ k}.

The (exponential) growth rate of a graph is defined by grG = limk→∞ (|Br(k)|)
1
k

if the limit exists. Note that if the growth rate exists, then it does not depend on

the base point r. A graph has exponential growth if lim infk→∞ (|Br(k)|)
1
k > 1. In

particular, if the growth rate of G exists, then the graph has exponential growth if
and only if grG > 1.

For a tree T the branching number br T provides another measure for growth.
Its logarithm was first introduced by Furstenberg [4] as the Hausdorff-dimension of
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the boundary of T . Lyons [6] gave the following combinatorial definition of br T and
pointed out its close connections to random walks and percolation on trees. Let T
be a tree rooted at r and call a set Π of edges a cutset, if T −Π is disconnected. The
branching number is defined as

br T = sup

{
λ | inf

Π

∑
e∈Π

λ−|e| > 0

}
,

where the infimum runs over all cutsets Π ⊆ E whose removal leaves the root r
in a finite component. It is worth mentioning that the branching number does not
depend on the choice of the root. Note that if the degrees are unbounded, then it is
possible that brT is infinite.

The firefighting game is defined as follows: Let G be an infinite graph and let
(fn)n∈N be a sequence of non-negative integers. Before the first round, a finite set X0

of vertices of G are marked as burning. In round n, the player can pick fn vertices
which are not burning to mark as protected. Afterwards every unprotected vertex
which is adjacent to a burning vertex is marked as burning. Once a vertex is marked
as burning or protected, it remains in that state until the end of the game. The player
wins the game, if only finitely many vertices are marked as burning throughout the
game—in this case we say that the fire is contained. For locally finite graphs, an
equivalent condition is that after finitely many rounds no new vertices are marked
as burning.

An fn-strategy is a a map s from N to the power set of V such that |s(n)| ≤ fn.
Call an fn-strategy s legal for X0, if no vertex in s(n) is burning in round n provided
that the set of vertices initially on fire was X0, and s(i) is marked as protected in
round i for every i < n. Note that any legal fn-strategy for X0 is also legal for any
subset of X0. An fn-containment strategy for X0 is an fn-strategy which is legal for
X0 such that marking s(n) protected in round n leads to containment, provided the
set of vertices initially marked as burning was X0. A graph satisfies fn-containment,
if there is an fn-containment strategy for every finite set X0. The following result
tells us that we don’t need to check all sets though.

Lemma 2.1 Let G be a locally finite graph and let r be a vertex of G. Then G
satisfies fn-containment if and only if there is a fn-containment strategy for each
Br(k), k ∈ N.

Proof: If k is large enough that X0 ⊆ Br(k), then an fn-containment strategy for
Br(k) is also an fn-containment strategy for X0. �

On trees we can restrict the strategies even further. We say that a set V ′ of
vertices surrounds a finite set of vertices X0, if V

′ ∩X0 = ∅ and no vertex of X0 is
contained in an infinite component of G−V ′. Note that any fn-containment strategy
forX0 protects a set V

′ surrounding X0: LetX∞ be the (finite) set of burning vertices
at the end of the game and let V ′ be the set of vertices outside of X∞ which have
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a neighbour in X∞. Every vertex in V ′ is protected, otherwise the fire would have
spread further. Furthermore, V ′ surrounds the finite set X∞, and since X0 ⊆ X∞ it
also surrounds X0. Conversely, it is easy to see that any legal strategy which protects
a set V ′ surrounding X0 is a containment strategy. The following lemma tells us that
in the case of trees, a containment strategy for Br(k) is equivalent to the existence
of a set V ′ surrounding Br(k) which does not grow too quickly.

Lemma 2.2 A tree T satisfies fn-containment if and only if for some vertex r and
every k ∈ N there is V ′ ⊆ V such that V ′ surrounds Br(k), and V ′

≤n := {x ∈ V ′ |
|x| ≤ k + n} has size at most

∑
i≤n fi.

Proof: Any containment strategy for Br(k) protects such a set V ′. Conversely,
assume that such a set V ′ exists. Order the elements of V ′ by distance from r (with
ties broken arbitrarily) and let s(n) contain the fn smallest elements not contained
in s(i) for i < n. This strategy is legal for Br(k) due to the restriction on the size of
V ′
≤n and the fact that the set Xn−1 of burning vertices before step n is contained in

Br(k + n− 1). It is a containment strategy for Br(k) since V ′ surrounds Br(k) and
we conclude by Lemma 2.1. �

A graph G satisfies exponential containment of rate λ ≥ 1 if there is fn = O(λn)
such that G satisfies fn-containment. Clearly, if G satisfies exponential containment
of rate λ, then it also satisfies exponential containment of any rate λ′ > λ. Hence
there is a critical rate λF

c ∈ [1,∞] such that for 1 ≤ λ < λF
c , the graph G does not

satisfy exponential containment of rate λ, whereas for λ > λF
c it does. Note that

λF
c = ∞ means that G does not satisfy exponential containment of any rate. Further

note that we do not say anything about containment at the critical rate, in particular
λF
c = 1 only means that G satisfies exponential containment of any rate λ > 1, but

not necessarily exponential containment of rate 1 (i.e. constant containment).

3 Proof of the main result

In this section we determine the critical rate λF
c for exponential containment on trees.

It turns out that λF
c equals the branching number, hence our main theorem can be

used to define the branching number in terms of the firefighter game.

Theorem 3.1 If T is a locally finite tree, then λF
c = brT .

Proof: We first show that λF
c ≤ brT , that is, T satisfies exponential containment

of any rate λ > br T . If br T = ∞ there is nothing to show. Otherwise, let λ > br T
and let fn = �λn�. Pick and arbitrary k ∈ N and let ε = λ−k − λ−k−1. Note that
ε > 0 since br T is by definition always at least 1 and λ > br T . For n > k we have

ε · λn < λn−k − λn−k−1 ≤ λn−k − 1 ≤ �λn−k�.
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Since λ > br T , we can pick a cutset Π whose removal leaves r in a finite component
such that

∑
e∈Π λ−|e| < ε. The set Π does not contain any edge in Br(k) because

ε < λ−k. Hence the set V ′ containing the endpoint of each e ∈ Π which is further
away from r surrounds Br(k). Let V

′
n := {v ∈ V ′ : |v| = n}. Then

ε ≥
∑
e∈Π

λ−|e| =
∑
v∈V ′

λ−|v| >
∑
v∈V ′

n

λ−|v| = |V ′
n| · λ−n,

whence
|V ′

n| ≤ ε · λn < �λn−k� = fn.

Summing up over n shows that V ′ satisfies the properties required by Lemma 2.2.
Since k and λ > br T were arbitrary, Lemma 2.1 shows that T satisfies exponential
containment of rate λ for any λ > br T and consequently λF

c ≤ br T .

It remains to show that λF
c ≥ br T . If br T = 1, then there is nothing to show. Hence

assume that brT > 1, let 1 < λ < br T and let fn = K · �λn�. Let C = Kλ
λ−1

. Then

n∑
i=1

K · �λi� ≤ C · λn.

Choose μ such that λ < μ < br T . Note that since μ < br T , there is some ε > 0
such that for every cutset Π whose removal leaves r in a finite component we have∑

e∈Π
μ−|e| > ε.

Finally let k be such that

C ·
∞∑

n=k+1

(
λ

μ

)n

< ε.

We now claim that there is no set V ′ satisfying the assertions of Lemma 2.2 for k
chosen as above. Assume there was one, and let Π ⊆ E be the set containing for
every v′ ∈ V ′ the first edge of the path from v′ to r. Then Π is a cutset whose
removal leaves r in a finite component.

Let V ′
n := {v ∈ V ′ : |v| = n}. Then

|V ′
n| ≤

n−k∑
i=1

K · �λi� ≤ C · λn.

Furthermore |V ′
n| = 0 for n ≤ k because V ′ surrounds Br(k). Putting all of the above

together we get

ε <
∑
e∈Π

μ−|e| =
∑
v∈V ′

μ−|v| =
∞∑

n=k+1

|V ′
n| · μ−n ≤ C ·

∞∑
n=k+1

(
λ

μ

)n

< ε,

which is a contradiction. Hence T does not satisfy fn-containment, and thus it does
not satisfy exponential containment of rate λ. Since this holds for any λ < br T it
follows that λF

c ≥ br T . �
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4 Cayley graphs

In this section we use the main result of the previous section as well as some known
results about Cayley graphs to determine the exponential containment threshold λF

c

for Cayley graphs.

For this purpose we need the following definition. Let T be a tree rooted at r.
For a vertex v define Tv as the subtree induced by all vertices x such that the unique
path from r to x in T uses v, and root Tv at v. The tree T is called subperiodic, if
there is k ∈ N such that for every v there is v′ with |v′| ≤ k and Tv embeds into Tv′

as a subtree in a way that maps v to v′.

It is known that for a subperiodic tree the growth rate exists and coincides with
the branching number, see [6] for a proof.

Let Γ be a finitely generated group and let G be a Cayley graph of Γ with respect
to the finite generating set {x1, . . . , xk}. The following construction due to Lyons [7]
gives a subperiodic spanning tree of G with the same exponential growth rate as G:
Fix an arbitrary total order on {x1, . . . , xk}. For every v ∈ Γ there is a unique word
[v] = (xi1 , . . . , xil) such that

• xi1 · · ·xil = v,

• l is the distance from v to id in G, and

• [v] is lexicographically minimal among all words with the first two properties.

Let T be the graph with vertex set Γ and an edge from v to w if [v] is an extension of
[w] by one letter (or vice versa). Then T is easily seen to be a subperiodic spanning
tree, rooted at id. Furthermore balls with the same radius centred at the identity in
G and T contain the same elements, and consequently the branching number of T
equals the growth rate of G (and in particular, grG exists). From this we can now
deduce the following result.

Theorem 4.1 For any connected locally finite Cayley graph G we have λF
c = grG.

Proof: We first show that G satisfies exponential containment of any rate λ > gr T .
Let fn = �λn�. By Lemma 2.1 it is sufficient to give an fn-containment strategy for
Br(k). If we decide to not mark any vertices as protected, then at step n, the set
of burning vertices is Br(k + n). Wait until �λn� is larger than the boundary of
Br(k + n), then pick all vertices in this boundary at once. This is possible since λn

asymptotically grows quicker than |Br(k + n + 1)| and hence also faster than the
boundary of the ball of radius k + n.

For the proof of λF
c < grG note that if G satisfies exponential containment of some

rate λ, then so does every subgraph of G. But the subperiodic spanning tree T of G
with brT = grG does not satisfy exponential containment of any rate λ < grG by
Theorem 3.1. �
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Corollary 4.2 A Cayley graph of a group with exponential growth never satisfies
polynomial containment.

Proof: For any d ∈ N and λ > 1 we have nd = o(λn). �
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