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Abstract

A graph G is uniquely k-colorable if the chromatic number of G is k and
every two k-colorings of G produce the same partition of the vertex set
into k independent subsets (color classes). In this paper, we investigate
the existence of triangles in uniquely 3-colorable graphs on surfaces. It
is proved by Chartrand and Geller in 1969 that any uniquely 3-colorable
planar graph with at least four vertices contains at least two triangles, and
by Aksionov in 1977 that if the number of vertices is at least five, then
the uniquely 3-colorable planar graph contains at least three triangles.
On the other hand, for surfaces F 2 with non-positive Euler characteristic,
there exist uniquely 3-colorable graphs on F 2 without any triangle, which
are constructed by Chao and Chen in 1993. We prove that any uniquely
3-colorable graph on the projective plane contains at least one triangle.
Furthermore, we report the finiteness of uniquely 3-colorable graphs on
surfaces with high girth and a sufficient condition for the uniquely 3-
colorability of graphs on surfaces.

1 Introduction

In this paper, we only deal with finite undirected simple graphs unless otherwise
mentioned, and let Kn be a complete graph with n vertices. In particular, K3 is
called a triangle.

A k-coloring of a graph G is a map c : V (G) → {1, 2, . . . , k} such that for any
edge uv ∈ E(G), c(u) �= c(v), where V (G) and E(G) are the set of vertices and edges
of G, respectively. A graph G is k-colorable if there exists a k-coloring of G, and a
chromatic number of G, denoted by χ(G), is the minimum number k such that G is
k-colorable. Moreover, a graph G with χ(G) = k is called a k-chromatic graph.

In this paper, we consider a special vertex coloring, called a unique coloring.
A graph G is uniquely k-colorable if χ(G) = k and G has only one k-coloring up

ISSN: 2202-3518 c©The author(s)



N. MATSUMOTO/AUSTRALAS. J. COMBIN. 75 (1) (2019), 17–31 18

to permutation of the colors, where the coloring is called a unique k-coloring. In
other words, any uniquely k-colorable graph G has only one partition of V (G) into
k independent subsets. We denote the set of uniquely k-colorable graphs by UCk.
Clearly, Kn ∈ UCn.

Uniquely colorable graphs were defined and studied by Harary and Cartwright [17]
and Harary et al. [18], and the following necessary condition was given (for its proof,
see also [4, 34]). For two distinct colors i, j ∈ {1, 2, . . . , k} in a k-coloring c of a
graph G, define Gi,j to be the subgraph of G induced by c−1(i) ∪ c−1(j).

Theorem 1.1 ([17]). If c : V (G) → {1, 2, . . . , k} is a unique k-coloring of G ∈ UCk,
then the graph Gi,j is connected for all i �= j (i, j ∈ {1, 2, . . . , k}).

It is easy to see that for a graph G ∈ UCk, k = 1 if and only if E(G) = ∅, and
k = 2 if and only if G is bipartite and connected.

For a k-chromatic graph G, we define

Λ(G) = |E(G)| − |V (G)|(k − 1) +

(
k

2

)
.

This value is introduced by Bollobás [4], and he proposed the problem concerning
the minimum number for uniquely colorable graphs. It is independently proved
in [7, 34, 36] that Λ(G) ≥ 0. We intuitively think that if a uniquely k-colorable
graph G has a small number of edges, then G has to contain a large clique. In fact,
Xu [36] conjectured that any uniquely k-colorable graph G contains Kk if Λ(G) = 0.
However, this conjecture is disproved by Akbari et al. [1] using a computer. Further-
more, Truszczyński [34] and Chao and Chen [5, 6] independently investigated the
minimum number of vertices of uniquely k-colorable graphs without Kk. (Harary et
al. [18] made mention of those constructions of counterexamples for Xu’s conjecture,
but their construction is not correct.) See also [9, 10] for other topics about con-
structions of uniquely colorable graphs with small clique number, where the clique
number of a graph G is the maximum number k such that G contains Kk as its
subgraph.

As above, one challenging problem is to construct a uniquely k-colorable graph G
with small Λ(G) since such graphs satisfy some sparsity condition as well as a large
girth or a small clique number. Applying embeddability condition to graphs, we can
impose not only upper bounds on the number of edges but also structural restrictions
concerning topology (or geometry). So, by focusing on uniquely colorable graphs on
surfaces, it is expected that we can obtain good results being different from those of
abstract graphs.

For the spherical case, we can easily verify that any uniquely 3-colorable graph
contains a triangle as an exercise: Let G be a uniquely 3-colorable graph on the
sphere. Suppose that G contains no triangle. Since the boundary walk of any face
of G is at least 4, we have 2|E(G)| ≥ 4|F (G)|, where F (G) is the set of faces of G.
By Euler’s formula (|V (G)| − |E(G)|+ |F (G)| = 2), we have 2|V (G)| − 4 ≥ |E(G)|.
However, this contradicts to Λ(G) ≥ 0.
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Chartrand and Geller [8] proved a stronger result than the above and basic facts
for uniquely colorable planar graphs.

Theorem 1.2 ([8]).

(a) Any uniquely 3-colorable planar graph with |V (G)| ≥ 4 contains at least two
triangles.

(b) An outerplanar graph G with |V (G)| ≥ 3 is uniquely 3-colorable if and only if
it is maximal outerplanar.

(c) Every maximal planar graph G with χ(G) = 3 (i.e., an Eulerian triangulation)
is uniquely 3-colorable.

(d) Every uniquely 4-colorable planar graph is maximal planar (i.e., a triangula-
tion).

Aksionov [2] improved Theorem 1.2 (a) and gave a constructive characterization
of uniquely 3-colorable planar graphs with exactly three triangles. Let H be a plane
graph shown in Figure 1. Note that H ∈ UC3 and it has exactly three triangles.

Theorem 1.3 ([2]). Any uniquely 3-colorable planar graph with |V (G)| ≥ 5 contains
at least three triangles.

Theorem 1.4 ([2]). If G is a uniquely 3-colorable planar graph with |V (G)| ≥ 5 and
exactly three triangles, then G is obtained from H by adding a vertex v of degree 2
preserving the planarity, so that the two neighbors of v belong to two distinct color
classes.

Figure 1: The graph H

In [2], the following two conjectures are proposed:

• Any uniquely 3-colorable planar graph with at least four vertices contains two
triangles sharing an edge.

• If a graph G is edge-critical uniquely 3-colorable planar graph, i.e., G−e /∈ UC3

for any edge e ∈ E(G), then Λ(G) = 0, i.e., |E(G)| = 2|V (G)| − 3.
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Observe that the converse of the second statement is clearly true, however both
conjectures are disproved by Mel’nikov and Steinberg [28]. Then the study for the
minimum number of edges of an edge-critical uniquely 3-colorable planar graph be-
gins; the first non-trivial upper bound is obtained in [26] and it is recently improved
by Li et al. [24].

On the other hand, there exists a uniquely 3-colorable graph on the torus without
any triangle shown in Figure 2, which is constructed by Chao and Chen [5] (note
that the graph can be also embedded into the Klein bottle). Based on this graph,
for any surface F 2 with non-positive Euler characteristic, we can make a uniquely
3-colorable graph without any triangle which can be embedded into F 2, by adding
vertices of degree 2 suitably.
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Figure 2: A uniquely 3-colorable graph on the torus without any triangle

The following is our main result in this paper. As described above, the theorem
is best possible in the sense that for any other surface F 2 with non-positive Euler
characteristic, there exists a uniquely 3-colorable graph on F 2 without any triangle.

Theorem 1.5. Any uniquely 3-colorable graph on the projective plane contains a
triangle.

This paper is organized as follows: In the next section, we prepare terminologies
and propositions together with introduction of known results for 3-colorability of
graphs on surfaces. In Section 3, we shall prove Theorem 1.5. After that, in Section 4,
we provide a sufficient condition that a graph on a surface is uniquely 3-colorable,
and show the finiteness of a subclass of the uniquely 3-colorable graphs on surfaces.
In the final section, we give some remarks for uniquely 4-colorable graphs on surfaces.

2 Preliminaries

A surface means a compact 2-manifold without a boundary. In what follows, a graph
G on a surface F 2 means a 2-cell embedding of an abstract graph G on F 2. A face
of G on a surface F 2 is a connected component of F 2 −G, and a region of G is the
union of several faces. A k-face (respectively, a k-region) is a face (respectively, a
2-cell region) bounded by a k-cycle (respectively, a closed k-walk), and the boundary
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cycle (or a closed walk) of a face (or a region) f is denoted by ∂f . A cycle C in a
graph on a surface F 2 is trivial (respectively, essential) if C bounds (respectively,
does not bound) a 2-cell region on F 2.

In the literature, Grötzsch [15] proved that every planar graph without any tri-
angle is 3-colorable. After that, Grünbaum [16] improved the Grötzsch’s theorem so
that any planar graph G is 3-colorable if G has at most three triangles. Note that
this result is best possible since a complete graph K4 on the sphere has four triangles.
Thomassen [32] proved that every graph on the torus or the projective plane with
girth at least 5 is 3-colorable. In particular, Gimbel and Thomassen [13] character-
ized 3-chromatic graphs on the projective plane as follows. A quadrangulation on a
surface F 2 is a connected graph G on F 2 such that each face of G is quadrilateral,
and G is non-bipartite if χ(G) > 2.

Theorem 2.1 ([13]). Let G be a graph on the projective plane such that each trivial
cycle of G has length at least four. Then G is 3-colorable if and only if G does not
contain a non-bipartite quadrangulation as its subgraph.

In the above theorem, the “only if ” part immediately follows from the following
famous result by Youngs [37], implying the interesting fact that there eximplying ists
no 3-chromatic quadrangulation on the projective plane.

Theorem 2.2 ([37]). If G is a non-bipartite quadrangulation on the projective plane,
then χ(G) = 4.

We introduce a graph operation, called a face-contraction, which is defined as a
local operation in quadrangulations [29]. Let f = abcd be a 4-face of a graph on a
surface F 2. A face-contraction of f at {a, c} is to identify a and c and replace two
pairs of multiple edges {ab, bc} and {cd, da} with two single edges, respectively, as
shown in Figure 3. If this operation breaks the simplicity of graphs, then we do not
apply it. Moreover, the inverse operation is called a face-splitting.

a
c

b

d

f

b

d

a = c

Figure 3: A face-contraction of f at {a, c}

Lemma 2.1. Let G be a uniquely 3-colorable graph on a surface F 2 with a 4-face
f and let G′ be a graph obtained from G by a single face-contraction of f . If G′ is
3-colorable, then G′ is uniquely 3-colorable.
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Proof. If G′ is not uniquely 3-colorable, then there exist two distinct 3-colorings c
and c′ of G′. In this case, we can extend these 3-colorings to those of G by a single
face-splitting, a contradiction to G ∈ UC3.

In the end of this section, we introduce the following lemma which will be used
for almost all of the case-by-case argument in the proof of Theorem 1.5. For a region
R of a graph G on a surface, an inner vertex of R is a vertex in R but not on ∂R.
A k-vertex is a vertex of degree exactly k, and we denote the set of neighbors of a
vertex v by N(v). For a cycle C, a chord e of C is an edge connecting two vertices
on C but e /∈ E(C).

Lemma 2.2. Let D be a bipartite plane graph with the infinite face bounded by a
2k-cycle C = v0v1v2 . . . v2k−1 with k ≥ 2. Let B and W be the bipartition of D, i.e.,
V (D) = B ∪W and B ∩W = ∅, and let c : V (D) → {1, 2, 3} be a 3-coloring of D.
If all vertices in B ∩ V (C) are colored by the same color, then we have one of the
following:

(1) D contains no inner vertex (i.e., D contains only chords in its interior).

(2) All inner vertices are in B.

(3) D has two distinct 3-colorings extended by the 3-coloring of C.

Proof. It suffices to prove the statement (3) when D contains an inner vertex in W .
Without loss of generality, suppose that c(v) = 1 for each vertex v ∈ B ∩ V (C).
Then we construct two distinct 3-colorings f and g as follows:

c(u) = f(u) = g(u) for each vertex u ∈ V (C).

f(v) = g(v) = 1 for each vertex v ∈ B \ V (C).

f(w) = 2 and g(w) = 3 for each vertex w ∈ W \ V (C).

By the bipartiteness of D, f and g are proper, i.e., any two adjacent vertices have
distinct colors. Moreover, f cannot be obtained from g solely by permutations of the
colors by the coloring of vertices in W , and thus, they are distinct.

3 Proof of Theorem 1.5

We shall prove Theorem 1.5 using the above lemmas.

Proof of Theorem 1.5. We can easily check that any uniquely 3-colorable graph on
the projective plane with at most five vertices has a triangle. Hence, let G be a
minimal counterexample to Theorem 1.5 with at least six vertices, that is, G has
no triangle, G ∈ UC3 and G is embedded on the projective plane. Let c : V (G) →
{1, 2, 3} be a unique 3-coloring of G. We first show the following claims. We denote
by Δ(G) and δ(G) the maximum degree and the minimum degree of G, respectively.
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Claim 3.1. G satisfies the following:

(i) |E(G)| = 2|V (G)| − 3.

(ii) Gi,j is a tree for each two distinct colors i, j ∈ {1, 2, 3}.
(iii) δ(G) ≥ 3 and the number of 3-vertices is at least six.

Proof. Since G ∈ UC3, |E(G)| ≥ 2|V (G)| − 3. Moreover, |E(G)| ≤ 2|V (G)| − 2
by Euler’s formula since G has no triangle. Observe that if |E(G)| = 2|V (G)| −
2 (i.e., 2|E(G)| = 4|F (G)|), then G is a quadrangulation. Since no 3-chromatic
quadrangulation on the projective plane exists by Theorem 2.2, statement (i) holds
and also (ii) holds by Theorem 1.1.

We next show (iii). Since G ∈ UC3, δ(G) ≥ 2. We first suppose that G has
a 2-vertex v. Let G′ = G − v be a graph obtained from G by removing v. Note
that G′ has no triangle and is uniquely 3-colorable (cf. [18]), which contradicts the
minimality of G. Hence, δ(G) ≥ 3. Let pk be the number of k-vertices in G and then

|V (G)| = ∑Δ(G)
i=3 pi and 2|E(G)| = ∑Δ(G)

i=3 ipi. By (i), we have

6 =
Δ∑
i=3

pi(4− i) = p3 − p5 − 2p6 − · · · − (Δ− 4)pΔ.

Therefore statement (iii) holds since p3 ≥ 6.

Claim 3.2. Let Q = v1v2v3v4 be a 4-face in G with c(v1) = c(v3) and c(v2) �= c(v4).
Then there exists a path v1xyv3 with {x, y} ∩ {v2, v4} = ∅.
Proof. By Claim 3.1 (ii), there exists no path v1uv3 with u /∈ {v2, v4} since otherwise
G has a cycle induced by two color sets, v1uv3v2 or v1uv3v4. Furthermore, if no
desired path v1xyv3 exists in G, then by applying a face-contraction of Q at {v1, v3},
we can obtain a smaller counterexample by Lemma 2.1, a contradiction.

By Claim 3.1 (i), G has exactly one 6-face and each other face is quadrilateral,
or it has exactly two 5-faces and each other face is quadrilateral. So each vertex of
G is shared by at least one 4-face.

Claim 3.3. G has no 3-vertex shared by exactly three 4-faces.

Proof. For contradiction, we suppose that G has a 3-vertex v shared by exactly
three 4-faces vx1y1x2, vx2y2x3 and vx3y3x1. By symmetry, we may suppose that
c(v) = c(y1) = c(y3) = 1, c(x2) = c(x3) = 2 and c(x1) = c(y2) = 3 by Claim 3.1 (ii).
By Claim 3.2, there exist two paths y1ux3v and y3u

′x2v with c(u) = c(u′) = 3.
If u = u′, it contradicts to Claim 3.1 (ii) since uy1x1y3 is a cycle in G1,3. So we
have u �= u′, and both cycles vx1y1ux3 and vx1y3u

′x2 are essential. Thus G has a
6-region R6 and a 8-region R8 with ∂R6 = y1x2u

′y3x3u and ∂R8 = x1y1ux3y2x2u
′y3,

respectively.
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Observe that all inner faces in one of these two regions are quadrilateral even
if G has two 5-faces, otherwise, by cutting along the boundary cycle of R6 and
embedding R6 on the plane, the resulting plane graph has exactly one 5-face, which
contradicts to the Handshaking Lemma. Furthermore, all inner faces of R6 cannot
be quadrangular since now each antipodal pair of ∂R6 has the same color [3]. (This
fact can be proved by the Winding Number ; see also [21, 37]). Thus we may suppose
that each face of R8 is quadrangular.

Since R8 can be regarded as a bipartite plane graph and c(y1) = c(y3) = 1,
c(x2) = c(x3) = 2 and c(x1) = c(y2) = c(u) = c(u′) = 3, we apply Lemma 2.2 to R8,
where B = {x1, y2, u, u

′} is arranged in Lemma 2.2. Since G ∈ UC3, Lemma 2.2 (3)
does not occur. If R8 has a chord in the interior or all inner vertices are in B, then
G has a triangle or Gi,j has a cycle for some i, j ∈ {1, 2, 3} since each vertex of G is
of degree at least 3, a contradiction.

Now we shall complete the proof by considering the following two cases.

Case 1. There exists a 6-face f in G.

Let ∂f = u0u1u2u3u4u5. By Claim 3.3, all 3-vertices lie on ∂f , and hence, G
has exactly six 3-vertices and others are of degree exactly 4 (by the equality of the
proof of Claim 3.1 (iii)). Let u′

k ∈ N(uk) \ V (∂f) for each k, and then there exists a
4-face uiui+1u

′
i+1u

′
i for each i, where the subscripts are modulo 6. Note that ∂f has

no chord (i.e., ui �= u′
j for each pair i, j) since G has no triangle and the 3-coloring

of ∂f is cyclic, where a 3-coloring of a cycle with length 3k (k ≥ 1) is cyclic if three
colors cyclically appear on the cycle, i.e., 1, 2, 3, 1, 2, 3 and so on (if the 3-coloring of
∂f is not cyclic, then we can obtain a 3-chromatic quadrangulation only by adding
an edge to f). Moreover, u′

i �= u′
j for each pair i, j ∈ {0, 1, . . . , 5} with i �= j since

G has no triangle and u′
0u

′
1 · · ·u′

5 is cyclically colored in this order by the coloring of
∂f . Thus G has the 6-cycle C = u′

0u
′
1u

′
2u

′
3u

′
4u

′
5 along ∂f .

We can repeatedly apply the above argument to the non-2-cell region bounded by
C. Therefore, we can infinitely find new 6-cycles with a cyclic 3-coloring as above, a
contradiction to the finiteness of G.

Case 2. There exist two 5-faces f and f ′ in G.

By Claims 3.1 (iii) and 3.3, we may suppose that G has a 3-vertex v which
is shared by two 4-faces vx1y1x2, vx3y2x1 and a 5-face f = vx2z1z2x3. Without
loss of generality, we suppose that c(v) = c(y1) = 1, c(x1) = 2, c(x2) = 3, and let
L(v) = {x1, x2, x3, y1, y2, z1, z2}.

We show that there exist two paths P1 = y1d1x3v and P2 = y2d2x2v, where di
may be in L(v) for i = 1, 2. By Claim 3.2, P1 exists. Moreover, if c(y2) = 1, then P2

also exists. So, we may suppose that c(y2) = 3, and then c(x3) = 2.

Let G′ be the graph obtained from G by a face-contraction of vx3y2x1 at {v, y2},
and we suppose that G′ has no triangle. If χ(G′) = 3, then G′ is also uniquely 3-
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colorable by Lemma 2.1, a contradiction to the minimality of G. Thus χ(G′) = 4 and
then G′ contains a non-bipartite quadrangulation as its subgraph by Theorem 2.1.

Let Q be a maximal non-bipartite quadrangulation in G′, that is, G′ contains no
non-bipartite quadrangulation Q′ with V (Q) � V (Q′) and E(Q) � E(Q′). Observe
that x2y2 ∈ E(Q) (otherwise, Q is also a subgraph of G). So, there exist two 4-faces
of Q sharing x2y2, and hence, the 4-face x1y1x2y2 of G′ is also a face of Q by the
maximality of Q. Let fQ = x2s1s2y2 be the other 4-face. Since G has P1, we have
s2 = x3, and so, x3y2 ∈ E(Q) (otherwise, G has a triangle x3s2y2 or y1x2s1). Thus,
we have a non-bipartite quadrangulation QG which is a subgraph of G, as follows.

V (QG) = V (Q) ∪ {v} and E(QG) = (E(Q) \ {x2y2}) ∪ {vx1, vx2, vx3}.

Observe that Q can be obtained from QG by the face-contraction of vx3y2x1 at
{v, y2}, and hence, χ(G) ≥ 4 since a face-contraction preserves the bipartiteness of
quadrangulations [29], a contradiction to χ(G) = 3. Thus, G contains both P1 and
P2.

Similarly to the proof of Claim 3.3, G has one of the following structures:

(1) di /∈ L(v) for i = 1, 2 and d1 = d2.

(2) di /∈ L(v) for i = 1, 2 and d1 �= d2.

(3) di ∈ L(v) for i = 1, 2, i.e., d1 = z2 and d2 = z1.

(4) Exactly one of di’s belongs to L(v).

In the structure (1), since c(v) = c(y1) = 1, c(x1) = 2, c(x2) = 3, we have c(d1) =
2, c(x3) = 3 and c(y2) = 1, and then G1,2 has a cycle, a contradiction. For any other
cases (2), (3) and (4), two cycles vx1y1d1x3 and vx1y2d2x2 must be essential. Thus,
similarly to the proof of Claim 3.3, G has a 6-region R6 outside of the 2-cell region
bounded by L(v) in each case. Moreover, all inner faces of R6 are quadrangular by
the Handshaking Lemma. However, since the 3-coloring of ∂R6 is cyclic or satisfies
the condition in Lemma 2.2 (i.e., all vertices on ∂R belonging to one partite set B
are colored by the same color), we have a contradiction similarly to Case 1 or the
proof of Claim 3.3.

4 Sufficient conditions and finiteness

As described in the Introduction, there are several necessary conditions for uniquely
colorable graphs. Similarly, a number of sufficient conditions for the graphs exist.
In the literature, Osterweil [30] gave a sufficient condition for uniquely 3-colorable
graphs, using a construction with a six clique ring which is obtained from six complete
graphs by adding several edges to them forming a 6-cycle or a 6-walk. A few years
later, Bollobás [4] provided two non-trivial sufficient conditions, as follows, and he
also proved that both results are best possible.
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Theorem 4.1 ([4]). Let G be a k-colorable graph with n vertices. If δ(G) > 3k−5
3k−2

n,
then G is uniquely k-colorable.

Theorem 4.2 ([4]). Let G be a graph with n vertices. If G has a k-coloring in
which the induced subgraph by the union of any two color classes is connected, then
δ(G) >

(
1− 1

k−1

)
n which implies that G is uniquely k-colorable.

From another viewpoint, Hillar and Windfeldt [19] gave an algebraic character-
ization of uniquely colorable graphs. However, as far as we know, there exists no
sufficient condition for uniquely k-colorable graphs concerning the embeddability of
graphs. So we provide a new sufficient condition for uniquely 3-colorable graphs on
surfaces.

Theorem 4.3. Let G be a 3-colorable simple graph on a surface F 2. If G has at
least 2|V (G)| − 2ε(F 2) − 3 triangular faces, where ε(F 2) is the Euler characteristic
of F 2, then G is uniquely 3-colorable.

Proof. Let G be a 3-colorable graph on a surface F 2 with n vertices and t ≥ 2n −
2ε(F 2) − 3 triangular faces, and we may suppose that n ≥ 4 and t ≥ 1. If t =
2n− 2ε(F 2), then G must be a triangulation. It is known that a triangulation on a
surface is 3-colorable if and only if it is Eulerian, and every Eulerian triangulation is
uniquely 3-colorable (cf. [22, 23]). (Note that even if an Eulerian triangulation has
multiple edges, it is uniquely 3-colorable.) So we suppose that t ≤ 2n− 2ε(F 2)− 1.
Observe that we can transform G into a triangulation (which might have multiple
edges) only by adding edges to non-triangular faces. Conversely, we obtain G by
removing edges of some triangulation on F 2 (which might have multiple edges).
Further, removing edge e of a graph reduces the number of triangular faces by exactly
two if the edge e is shared by two triangular faces. Thus, there exists no graph with
exactly t = 2n − 2ε(F 2) − 1 triangular faces since the removing an edge from a
triangulation produces a graph with exactly 2n− 2ε(F 2)− 2 triangular faces. So it
suffices to consider the following two cases.

Case 1. t = 2n− 2ε(F 2)− 2.

As described above, G has exactly one 4-face f bounded by a 4-cycle u0u1u2u3.
For contradiction, we suppose that G is not uniquely 3-colorable. There exist three
types of a 3-colorings c of G:

(i) c(u0) = c(u2) and colors of other two vertices are distinct.

(ii) c(u1) = c(u3) and colors of other two vertices are distinct.

(iii) c(u0) = c(u2) and c(u1) = c(u3).

Let c and c′ be two distinct 3-colorings of G. If both c and c′ have the type (i)
(respectively, (ii)), then by adding the edge u1u3 (respectively, u0u2), we can obtain
an Eulerian triangulation (which might have multiple edges) with two distinct 3-
colorings, a contradiction. (It is well-known that every 3-colorable triangulation
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on a surface is Eulerian and uniquely 3-colorable [22]). If they have the type (iii),
then similar to the above, we have a contradiction by adding a 4-vertex v into f with
N(v) = {u0, u1, u2, u3} since v can be colored by the third color. If they have distinct
types, then we can obtain a 3-colorable triangulation which is not Eulerian (i.e., the
graph has a vertex of odd degree) since we can transform G into the 3-colorable
triangulation by two distinct operations in the above three operations, u0u2, u1u3 or
a 4-vertex v, a contradiction (since one of resultant triangulations is not Eulerian).

Case 2. t = 2n− 2ε(F 2)− 3.

By the assumption of t, G is obtained from a graph on F 2 with exactly 2n −
2ε(F 2) − 2 triangular faces by removing an edge shared by a triangular face and
a quadrangular face, that is, G has exactly one 5-face f bounded by a 5-cycle
u0u1u2u3u4. Observe that for any 3-coloring of G, exactly one of five vertices on
∂f is colored by a color which is not used for any other vertex on ∂f . Let c and c′ be
two distinct 3-colorings of G, and let p and p′ be vertices with a unique color on ∂f
as above. If p = p′, say p = u0 by symmetry, then we can obtain an Eulerian trian-
gulation (which might have multiple edges) with two distinct 3-colorings by adding
two edges u0u2 and u0u3, a contradiction. Otherwise, say p = u0 and p′ = u1 (or
u2), u0, u1 and u4 are of even degree since we have an Eulerian triangulation (which
might have multiple edges) by adding two edges u0u2 and u0u3. However, similar to
Case 1, we can obtain a 3-colorable triangulation which is not Eulerian by adding
u1u3 and u1u4 (or u2u4 and u2u0), contradicting Theorem 1.2 (c).

Now we introduce a construction of graphs which imply the sharpness of Theo-
rem 4.3. We prepare a 3-colorable graph H on a surface F 2 with 2m − 2ε(F 2) − 2
triangular faces and exactly one quadrangular face f bounded by a cycle abcd, where
m = |V (H)|. Let D be a plane graph obtained from the double wheel by removing
an edge on the rim, where a 4-cycle xyzw bounds the infinite face (see Figure 4).
Suppose that a and c have the same color in any 3-coloring of H . Let G be the
3-chromatic graph with n vertices obtained from H by embedding D into f so
that a = x and c = z, that is, G has exactly two 4-faces awcd and abcy, where
n = m+ |V (D)| − 2. Observe the number of triangular faces of G is

2m− 2ε(F 2)− 2 + 2|V (D)| − 4− 2 = 2n− 2ε(F 2)− 4.

Furthermore, since there exists a 3-coloring of H such that a and c have the same
color, we can obtain two distinct 3-colorings of G based on the coloring of H by
the permutation of colors of vertices in V (D) \ {x, z}. Therefore, the bound of
Theorem 4.3 is best possible.

We conclude this section by considering the number of uniquely colorable graphs
with restrictions. In general, there are infinitely many uniquely colorable graphs on
a surface without any additional restriction, but we guess that the embeddability of
graphs into a fixed surface F 2 limits the number of uniquely colorable graphs G to
finite since the number of vertices (also edges) of such a graph is bounded by two
powerful inequalities: Euler’s formula and Λ(G) ≥ 0. For this problem, it is known
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Figure 4: The graph D

that for any integer k ≥ 5, the number of uniquely k-colorable graphs on a fixed
surface F 2 is finite [27]. As far as we know, no result for the finiteness of uniquely
3-colorable graphs on surfaces has been proved. We shall show the finiteness of the
set of uniquely 3-colorable graphs with high girth, where the girth of a graph G is
the length of a shortest cycle in G.

Theorem 4.4. For any surface F 2, the number of uniquely 3-colorable graphs on F 2

with girth at least 5 is finite.

Proof. Let F 2 be a surface with Euler characteristic ε(F 2), and let G be a uniquely
3-colorable graph on F 2 with girth at least 5. Then we have |E(G)| ≥ 2|V (G)| − 3
and 2|E(G)| ≥ 5|F (G)|. Thus, by Euler’s formula, we have

5|V (G)| − 3|E(G)| ≥ 5|V (G)| − 5|E(G)|+ 5|F (G)| = 5ε(F 2),

5|V (G)| − 5ε(F 2) ≥ 3|E(G)| ≥ 6|V (G)| − 9, and hence,

9− 5ε(F 2) ≥ |V (G)|.

Therefore, since the number of vertices of G is bounded by a constant depending
only on ε(F 2), the number of such graphs G is finite.

5 Note on uniquely 4-colorable graphs on surfaces

Remember that Λ(G) ≥ 0 for any uniquely k-colorable graph G, and any uniquely
4-colorable graph with n ≥ 3 vertices has at least 3n − 6 edges. This means that
any uniquely 4-colorable graph on the sphere must be a triangulation on the sphere
since for every planar graph G with n vertices, |E(G)| ≤ 3n − 6 with equality if
and only if G is a triangulation on the sphere. On the other hand, for any other
surface F 2, a uniquely 4-colorable graph on F 2 is not necessarily a triangulation on
F 2. For example, the projective plane admits the embedding of K4 with each face
quadrilateral. Hence the following problem remains, but it seems to be difficult.

Problem 5.1. Give a characterization of uniquely 4-colorable graphs on a fixed sur-
face.
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For the spherical case, a famous conjecture is proposed in [11] (or see [20, pp. 48–
49]): Any uniquely 4-colorable planar graph can be obtained from K4 on the sphere
by repeated applications of adding a vertex of degree 3 into a triangular face so
that the vertex is adjacent to all vertices on the boundary of the corresponding face.
Fowler [12] gave a positive solution for the conjecture by using a computer; however,
the conjecture has not been completely solved yet.

The dual of a uniquely 4-colorable plane graph is a uniquely 3-edge-colorable cu-
bic planar graph, where a graph G is uniquely 3-edge-colorable if the chromatic index
of G is three and every two 3-edge-colorings of G produce the same partition of E(G)
into three independent subsets (matchings). The above conjecture for uniquely 4-
colorable planar graphs is equivalent to the fact that any uniquely 3-edge-colorable
cubic planar graph contains a triangle. Furthermore, Cantoni’s Conjecture [35] im-
plies that a cubic planar graph G is uniquely 3-edge-colorable if and only if G has
exactly three Hamiltonian cycles [33, Problem 2.16], where Thomason [31] verified
that the condition of planarity cannot be removed. It is very interesting to prove the
above statements directly using properties of uniquely 3-edge-colorable graphs. For
more details of uniquely edge-colorable graphs, see [14, 25].

Incidentally, by a similar proof to Theorem 4.4, we can easily obtain the following.

Theorem 5.1. For any surface F 2, the number of uniquely 4-colorable graphs on F 2

with girth at least 4 is finite.

As a corollary, any uniquely 4-colorable graph on a fixed surface contains a tri-
angle with finite exceptions. We conclude the paper with the following conjecture
according to Theorem 1.5.

Conjecture 5.1. Any uniquely 4-colorable graph on the projective plane contains
K4 as its subgraph.
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[34] M. Truszczyński, Some results on uniquely colorable graphs, Finite and infi-
nite sets I, II, Colloq. Math. Soc. János Bolyai 37, North-Holland, Amsterdam
(1984), 733–748.

[35] W.T. Tutte, Hamiltonian circuits, Colloquio Internazional sulle Teorie Com-
binatorics, Atti dei Convegni Lincei. 17, Accad. Naz. Lincei, Roma I (1976),
193–199.

[36] S. J. Xu, The size of uniquely colorable graphs, J. Combin. Theory Ser. B 50
(1990), 319–320.

[37] D.A. Youngs, 4-chromatic projective graphs, J. Graph Theory 21 (1996), 219–
227.

(Received 13 Sep 2017; revised 27 Jan 2019, 26 June 2019)


