Bounds on the fair total domination number in trees and unicyclic graphs

Majid Hajian
Department of Mathematics
Shahrood University of Technology
Shahrood, Iran
majid_hajian2000@yahoo.com
Nader Jafari Rad
Department of Mathematics
Shahed University
Tehran, Iran
n.jafarirad@gmail.com
\section*{Lutz Volkmann}
Lehrstuhl II für Mathematik
RWTH Aachen University
Templergraben 55, 52056 Aachen
Germany
volkm@math2.rwth-aachen.de

Abstract

For $k \geq 1$, a k-fair total dominating set (or just k FTD-set) in a graph G is a total dominating set S such that $|N(v) \cap S|=k$ for every vertex $v \in V-S$. The k-fair total domination number of G, denoted by $f t d_{k}(G)$, is the minimum cardinality of a k FTD-set. A fair total dominating set, abbreviated FTD-set, is a k FTD-set for some integer $k \geq 1$. The fair total domination number, denoted by $f t d(G)$, of G that is not the empty graph, is the minimum cardinality of an FTD-set in G. In this paper, we present upper bounds for the fair total domination number of trees and unicyclic graphs, and characterize trees and unicyclic graphs achieving equality for the upper bounds.

1 Introduction

For notation and graph theory terminology not given here, we follow [13]. Specifically, let G be a graph with vertex set $V(G)=V$ of order $|V|=n$ and let v be a vertex in V. The open neighborhood of v is $N_{G}(v)=\{u \in V \mid u v \in E(G)\}$ and the closed neighborhood of v is $N_{G}[v]=\{v\} \cup N_{G}(v)$. If the graph G is clear from the context, we simply write $N(v)$ rather than $N_{G}(v)$. The degree of a vertex v, is $\operatorname{deg}(v)=|N(v)|$. A vertex of degree one is called a leaf and its neighbor a support vertex. We denote the set of leaves and support vertices of a graph G by $L(G)$ and $S(G)$, respectively. A strong support vertex is a support vertex adjacent to at least two leaves, and a weak support vertex is a support vertex adjacent to precisely one leaf. A double star is a tree with precisely two vertices that are not leaves. For a set $S \subseteq V$, its open neighborhood is the set $N(S)=\cup_{v \in S} N(v)$, and its closed neighborhood is the set $N[S]=N(S) \cup S$. The 2 -corona $2-\operatorname{cor}(G)$ of a graph G is a graph obtained by joining any vertex of G to a leaf of a path P_{2}. The distance $d(u, v)$ between two vertices u and v in a graph G is the minimum number of edges of a path from u to v. The diameter $\operatorname{diam}(G)$ of G, is $\max _{u, v \in V(G)} d(u, v)$. A path of length $\operatorname{diam}(G)$ is called a diametrical path. For a vertex v in a rooted tree T, let $C(v)$ denote the set of children of $v, D(v)$ denote the set of descendants of v and $D[v]=D(v) \cup\{v\}$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_{v}.

A subset $S \subseteq V$ is a dominating set of G if every vertex not in S is adjacent to a vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A dominating set S in a graph with no isolated vertex is a total dominating set of G if every vertex in S is adjacent to a vertex in S. A subset $S \subseteq V(G)$ is a double dominating set of G, if every vertex in $V(G)-S$ has at least two neighbors in S and every vertex of S has a neighbor in S. The double domination number $\gamma_{\times 2}(G)$ is the minimum cardinality of a double dominating set of G. The concept of double domination originally defined by Harary and Haynes [10] and further studied in, for example, [4, 11].

Caro et al. [1] studied the concept of fair domination in graphs. For $k \geq 1$, a k-fair dominating set, abbreviated k FD-set, in G is a dominating set S such that $|N(v) \cap D|=k$ for every vertex $v \in V-D$. The k-fair domination number of G, denoted by $f d_{k}(G)$, is the minimum cardinality of a k FD-set. A k FD-set of G of cardinality $f d_{k}(G)$ is called a $f d_{k}(G)$-set. A fair dominating set, abbreviated FDset, in G is a k FD-set for some integer $k \geq 1$. The fair domination number, denoted by $f d(G)$, of a graph G that is not the empty graph is the minimum cardinality of an FD-set in G. An FD-set of G of cardinality $f d(G)$ is called a $f d(G)$-set. A perfect dominating set in a graph G is a dominating set S such that every vertex in $V(G)-S$ is adjacent to exactly one vertex in S. Hence a 1FD-set is precisely a perfect dominating set. The concept of perfect domination was introduced by Cockayne et al. in [5], and Fellows et al. [8] with a different terminology which they called semiperfect domination. This concept was further studied in, for example, [2, 3, 6, 7, 12].

Maravilla et al. [15] introduced the concept of fair total domination in graphs. For
an integer $k \geq 1$ and a graph G with no isolated vertex, a k-fair total dominating set, abbreviated k FTD-set, is a total dominating set $S \subseteq V(G)$ such that $|N(u) \cap S|=k$ for every $u \in V(G)-S$. The k-fair total domination number of G, denoted by $f t d_{k}(G)$, is the minimum cardinality of a k FTD-set. A k FTD-set of G of cardinality $f t d_{k}(G)$ is called a $f t d_{k}(G)$-set. A fair total dominating set, abbreviated FTD-set, in G is a k FTD-set for some integer $k \geq 1$. Thus, a fair total dominating set S of a graph G is a total dominating set S of G such that for every two distinct vertices u and v of $V(G)-S,|N(u) \cap S|=|N(v) \cap S|$; that is, S is both a fair dominating set and a total dominating set of G. The fair total domination number of G, denoted by $f t d(G)$, is the minimum cardinality of an FTD-set. A fair total dominating set of cardinality $f t d(G)$ is called a minimum fair total dominating set or a $f t d$-set of G.

In this paper, we present upper bounds for the fair total domination number of trees and unicyclic graphs, and characterize trees and unicyclic graphs achieving equality for the upper bounds. The following observation is easily verified.

Observation 1.1 Any support vertex in a graph G with no isolated vertex belongs to every $k F T D$-set for each integer k.

2 Trees

We begin with the following straightforward observation.

Observation 2.1 If a tree T of order $n \geq 4$ is the 2 -corona of a tree T^{\prime}, then $f t d_{1}(T)=2 n / 3$. Furthermore, both $V(T)-L(T)$ and $S(T) \cup L(T)$ are $f t d_{1}(T)$-sets.

Theorem 2.2 If T is a tree of order $n \geq 3$, then $\operatorname{ftd}_{1}(T) \leq 2 n / 3$, with equality if and only if T is the 2-corona of a tree.

Proof. Let T be a tree of order $n \geq 3$. We use induction on n to show that $f t d_{1}(T) \leq 2 n / 3$. For the base step, if $3 \leq n \leq 6$, then it can be easily checked that $f t d_{1}(T) \leq 2 n / 3$. Assume that the result holds for all trees T^{\prime} of order $n^{\prime}<n$. Now consider the tree T of order $n \geq 7$. We root T at a leaf v_{0} of a diametrical path $v_{0} v_{1} \ldots v_{d}$, where $d=\operatorname{diam}(T)$ such that $\operatorname{deg}\left(v_{d-1}\right)$ is as large as possible. If $d=2$, then T is a star, and clearly $f t d_{1}(T)=2<2 n / 3$, since $n \geq 7$. If $d=3$, then T is a double-star, and it can be seen that $f t d_{1}(T)=2<2 n / 3$. Thus assume for the next that $d \geq 4$.

Assume that $\operatorname{deg}_{T}\left(v_{d-1}\right) \geq 3$. Let $T^{\prime}=T-\left\{v_{d}\right\}$. By the induction hypothesis, $f t d_{1}\left(T^{\prime}\right) \leq 2 n^{\prime} / 3=2(n-1) / 3$. Let S^{\prime} be a $f t d_{1}\left(T^{\prime}\right)$-set. By Observation 1.1, $v_{d-1} \in S^{\prime}$. Then S^{\prime} is a 1FTD-set in T, and so $f t d_{1}(T)<2 n / 3$. Next assume that $\operatorname{deg}_{T}\left(v_{d-1}\right)=2$. Assume that $\operatorname{deg}_{T}\left(v_{d-2}\right)=2$. Let $T^{\prime}=T-T_{v_{d-2}}$. By the induction hypothesis, $f t d_{1}\left(T^{\prime}\right) \leq 2 n^{\prime} / 3=2(n-3) / 3=2 n / 3-2$. Let S^{\prime} be a $f t d_{1}\left(T^{\prime}\right)$-set. If $v_{d-3} \in S^{\prime}$, then $\left\{v_{d-1}, v_{d-2}\right\} \cup S^{\prime}$ is a 1FTD-set in T and so $f t d_{1}(T) \leq 2 n / 3$ and if $v_{d-3} \notin S^{\prime}$, then $\left\{v_{d-1}, v_{d}\right\} \cup S^{\prime}$ is a 1FTD-set in T and so $f t d_{1}(T) \leq 2 n / 3$.

Thus assume that $\operatorname{deg}_{T}\left(v_{d-2}\right) \geq 3$. Assume that v_{d-2} is a support vertex. Let $T^{\prime}=T-T_{v_{d-1}}$. By the induction hypothesis, $f t d_{1}\left(T^{\prime}\right) \leq 2 n^{\prime} / 3=2(n-2) / 3$. Let S^{\prime} be a $f t d_{1}\left(T^{\prime}\right)$-set. By Observation 1.1, $v_{d-2} \in S^{\prime}$. Then $\left\{v_{d-1}\right\} \cup S^{\prime}$ is a 1FTD-set in T and so $f t d_{1}(T) \leq 2 n / 3$. Thus assume that v_{d-2} is not a support vertex of T. Let $x \neq v_{d-1}$ be a child of v_{d-2}. Clearly, x is a support vertex of T. By the choice of the path $v_{0} v_{1} \ldots v_{d}, \operatorname{deg}_{T}(x)=2$. Let y be the leaf adjacent to x, and $T^{\prime}=T-\left\{v_{d}, v_{d-1}, y\right\}$. By the induction hypothesis, $f t d_{1}\left(T^{\prime}\right) \leq 2 n^{\prime} / 3=2(n-3) / 3$. Let S^{\prime} be a $f t d_{1}\left(T^{\prime}\right)$-set. By Observation 1.1, $v_{d-2} \in S^{\prime}$, since v_{d-2} is a support vertex of T^{\prime}. Then $\left\{v_{d-1}, x\right\} \cup S^{\prime}$ is a 1FTD-set in T, and thus $f t d_{1}(T) \leq 2 n / 3$.

We next prove the equality part. We prove by induction on the order n of a tree T with $\operatorname{ftd}_{1}(T)=2 n / 3$ to show that T is a 2 -corona of a tree. For the base step, if $n=3$, then $T=P_{3}$ which is 2 -corona of the tree K_{1}. Assume that the result holds for all trees T^{\prime} of order $n^{\prime}<n$ with $f t d_{1}\left(T^{\prime}\right)=2 n^{\prime} / 3$. Now consider the tree T of order $n \geq 6$ with $\operatorname{ftd}_{1}(T)=2 n / 3$. Clearly, $2 n \equiv 0(\bmod 3)$. Suppose that T has a strong support vertex v, and v_{1}, v_{2} are the leaves adjacent to v. Let $T_{0}=T-v_{1}$. By the first part of the proof, $f t d_{1}\left(T_{0}\right) \leq 2 n\left(T_{0}\right) / 3=2(n-1) / 3$. Let S be a $f t d_{1}\left(T_{0}\right)$ set. By Observation 1.1, $v \in S$ and thus S is a 1FTD-set in T, a contradiction. We deduce that every support vertex of T is adjacent to precisely one leaf.

We root T at a leaf v_{0} of a diametrical path $v_{0} v_{1} \ldots v_{d}$, where $d=\operatorname{diam}(T)$ such that $\operatorname{deg}\left(v_{d-1}\right)$ is as large as possible. As it was seen in the first part of the proof, if $2 \leq d \leq 3$, then T is a star or a double-star, and $f t d_{1}(T)<2 n / 3$, a contradiction. Thus, $d \geq 4$. Observe that $\operatorname{deg}_{T}\left(v_{d-1}\right)=2$, since T has no strong support vertex. We show that $\operatorname{deg}_{T}\left(v_{d-2}\right)=2$. Suppose to the contrary, that $\operatorname{deg}_{T}\left(v_{d-2}\right) \geq 3$. Suppose that v_{d-2} is a support vertex. Let $T^{\prime}=T-T_{v_{d-1}}$. By the first part of the proof, $f t d_{1}\left(T^{\prime}\right) \leq 2 n^{\prime} / 3=2(n-2) / 3$. Let S^{\prime} be a $f t d_{1}\left(T^{\prime}\right)$-set. By Observation 1.1, $v_{d-2} \in$ S^{\prime}. Then $\left\{v_{d-1}\right\} \cup S^{\prime}$ is a 1FTD-set in T and so $f t d_{1}(T) \leq 2(n-2) / 3+1=(2 n-1) / 3$, a contradiction. Thus assume that v_{d-2} is not a support vertex of T. Let $x \neq v_{d-1}$ be a child of v_{d-2}, and y be the leaf adjacent to x. Since y plays the same role as v_{d}, we find that $\operatorname{deg}_{G}(x)=2$. Let $T^{\prime}=T-\left\{v_{d}, v_{d-1}, y\right\}$. By the first part of the proof, $f t d_{1}\left(T^{\prime}\right) \leq 2 n^{\prime} / 3=2(n-3) / 3$. Suppose that $f t d_{1}\left(T^{\prime}\right)=2 n^{\prime} / 3=2 n / 3-2$. By the induction hypothesis, T^{\prime} is the 2-corona of a tree. By Observation 2.1, $S\left(T^{\prime}\right) \cup L\left(T^{\prime}\right)$ is a $f t d_{1}\left(T^{\prime}\right)$-set. Then $S\left(T^{\prime}\right) \cup L\left(T^{\prime}\right) \cup\left\{v_{d-1}\right\}$ is a 1FTD-set in T, since $x, v_{d-2} \in S\left(T^{\prime}\right) \cup L\left(T^{\prime}\right)$. Then $f t d_{1}(T) \leq 2 n / 3-1$, a contradiction. Thus $f t d_{1}\left(T^{\prime}\right)<2 n^{\prime} / 3=2 n / 3-2$. Let S^{\prime} be a $f t d_{1}\left(T^{\prime}\right)$-set. By Observation 1.1, $v_{d-2} \in S^{\prime}$, since v_{d-2} is a support vertex of T^{\prime}. Then $\left\{v_{d-1}, x\right\} \cup S^{\prime}$ is a 1 FTD-set in T and so $f t d_{1}(T)<2 n / 3$, a contradiction. We conclude that $\operatorname{deg}_{T}\left(v_{d-2}\right)=2$.

Let $T^{\prime}=T-T_{v_{d-2}}$. By the first part of the proof, $f t d_{1}\left(T^{\prime}\right) \leq 2 n^{\prime} / 3=2 n / 3-2$. Assume that $f t d_{1}\left(T^{\prime}\right)<2 n^{\prime} / 3=2 n / 3-2$. Let S^{\prime} be a $f t d_{1}\left(T^{\prime}\right)$-set. If $v_{d-3} \in S^{\prime}$, then $\left\{v_{d-1}, v_{d-2}\right\} \cup S^{\prime}$ is a 1FTD-set in T and so $f t d_{1}(T)<2 n / 3$, a contradiction. Thus we assume that $v_{d-3} \notin S^{\prime}$. Then $\left\{v_{d-1}, v_{d}\right\} \cup S^{\prime}$ is a 1FTD-set in T and so $\operatorname{ftd}_{1}(T)<2 n / 3$, a contradiction. Thus $f t d_{1}\left(T^{\prime}\right)=2 n^{\prime} / 3=2 n / 3-2$. By the induction hypothesis T^{\prime} is the 2 -corona of a tree. Assume that $\operatorname{deg}_{T}\left(v_{d-3}\right)=2$. Then v_{d-4} is a support vertex of T^{\prime}. By Observation 2.1, $V\left(T^{\prime}\right)-L\left(T^{\prime}\right)$ is a $f t d_{1}\left(T^{\prime}\right)$-set. Thus $\left(\left(V\left(T^{\prime}\right)-L\left(T^{\prime}\right)\right)-\left\{v_{d-4}\right\}\right) \cup\left\{v_{d-2}, v_{d-1}\right\}$ is a 1FTD-set in T and so $f t d_{1}(T) \leq$
$2 n / 3-1$, a contradiction. Thus $\operatorname{deg}_{T}\left(v_{d-3}\right) \geq 3$. Assume that v_{d-3} is a support vertex of T. Then v_{d-3} is a support vertex of T^{\prime}. Let z be the leaf adjacent to v_{d-3}. By Observation 2.1, $S\left(T^{\prime}\right) \cup L\left(T^{\prime}\right)$ is a $f t d_{1}\left(T^{\prime}\right)$-set. Thus $S\left(T^{\prime}\right) \cup L\left(T^{\prime}\right)-\{z\} \cup\left\{v_{d-2}, v_{d-1}\right\}$ is a 1 FTD-set in T and so $f t d_{1}(T) \leq 2 n / 3-1$, a contradiction. Thus v_{d-3} is not a support vertices of T^{\prime}. Now, it is easy to check that T is the 2 -corona of a tree, since T^{\prime} is the 2-corona of a tree. The converse follows by Observation 2.1.

We next present a constructive characterization of trees T with $f t d_{1}(T)=(2 n-$ $1) / 3$. For this purpose, we define a family of trees as follows: Let \mathcal{T} be the class of all trees T that can be obtained from a sequence $T_{1}, T_{2}, \ldots, T_{k}=T$, of trees with $T_{1}=P_{5}$, and if $k \geq 2$, then T_{i+1} is obtained from T_{i} by applying one of the following Operations \mathcal{O}_{1} or \mathcal{O}_{2}, for $i=1,2, \ldots, k-1$.

Operation \mathcal{O}_{1}. Let v be a vertex of a tree T_{i} with $\operatorname{deg}(v) \geq 2$. Then T_{i+1} is obtained from T_{i} by adding a path P_{3} and joining v to a leaf of P_{3}.

Operation \mathcal{O}_{2}. Let v be a support vertex of a tree T_{i} and let u be a leaf adjacent to v. Then T_{i+1} is obtained from T_{i} by adding a vertex u^{\prime} and a path P_{2}, joining u to u^{\prime} and joining v to a leaf of P_{2}.

The following is straightforward.
Observation 2.3 Let $T \in \mathcal{T}$ be a tree of order n. Then
(1) $2 n \equiv 1(\bmod 3)$.
(2) $|L(T)|=(n+1) / 3$.
(3) T has no strong support vertex. Furthermore, no pair of support vertices is adjacent.

Lemma 2.4 If $T \in \mathcal{T}$, then every $1 F T D$-set in T contains every vertex of T of degree at least 2.

Proof. Let $T \in \mathcal{T}$. Then T is obtained from a sequence $T_{1}, T_{2}, \ldots, T_{k}=T$, of trees with $T_{1}=P_{5}$ and if $k \geq 2$, then T_{i+1} is obtained from T_{i} by one of the operations \mathcal{O}_{1} or \mathcal{O}_{2}, for $i=1,2, \ldots, k-1$. We prove the result by an induction on k. For the base step of the induction, let $k=1$, and so $T=P_{5}$. Clearly, every vertex of P_{5} of degree at least two is contained in every 1FTD-set of T. Assume that the result holds for any k^{\prime} with $2 \leq k^{\prime}<k$. Now let $T=T_{k}$. Clearly, T is obtained from T_{k-1} by applying one of the Operations \mathcal{O}_{1} or \mathcal{O}_{2}. Let S be a 1FTD-set for T.

Assume that T is obtained from T_{k-1} by applying the Operation \mathcal{O}_{1}. Let $x_{1} x_{2} x_{3}$ be a path and x_{1} be joined to $y \in V\left(T_{k-1}\right)$, where $\operatorname{deg}_{T_{k-1}}(y) \geq 2$. By Observation 1.1, $x_{2} \in S$. Observe that $\left\{x_{1}, x_{3}\right\} \cap S \neq \emptyset$. If $x_{1} \notin S$, then $x_{3} \in S$ and $y \notin S$. Then $S-\left\{x_{2}, x_{3}\right\}$ is a 1FTD-set for T_{k-1} that does not contain y, a contradiction to the induction hypothesis. Thus assume that $x_{1} \in S$. Assume that $y \notin S$. Then $N_{T_{k-1}}(y) \cap S=\emptyset$. Clearly, y is not a support vertex. Let $y_{1} \in N_{T_{k-1}}(y)$, and T^{\prime} be the component of $T_{k-1}-y$ containing y_{1}. Then $\left(S-\left\{x_{1}, x_{2}, x_{3}\right\}\right) \cup V\left(T^{\prime}\right)$ is a 1FTD-set for T_{k-1} that does not contain y, a contradiction to the induction hypothesis. Thus $y \in S$. Clearly, $S-\left\{x_{1}, x_{2}, x_{3}\right\}$ is a 1FTD-set for T_{k-1}. By the induction hypothesis,
$S-\left\{x_{1}, x_{2}, x_{3}\right\}$ contains every vertex of T_{k-1} of degree at least two. Consequently, S contains every vertex of T_{k} of degree at least two.

Next assume that T_{k} is obtained from T_{k-1} by applying the Operation \mathcal{O}_{2}. Let u be a support vertex of the tree T_{k-1} and let v be the leaf of T_{k-1} adjacent to u. Let $P_{2}: x_{1} x_{2}$ be a path and x_{3} be a vertex that x_{1} is joined to u, and x_{3} is joined to v according to the Operation \mathcal{O}_{2}. By Observation 1.1, $x_{1}, v \in S$. Then $u \in S$, and so $S-\left\{x_{1}, v\right\}$ is a 1FTD-set for T_{k-1}. By the induction hypothesis, $S-\left\{x_{1}, v\right\}$ contains all vertices of T_{k-1} of degree at least two. Consequently, S contains every vertex of T_{k} of degree at least two.

Corollary 2.5 If $T \in \mathcal{T}$ is a tree of order n, then
(1) $V(T)-L(T)$ is the unique $f t d_{1}(T)$-set.
(2) $f t d_{1}(T)=(2 n-1) / 3$.

Theorem 2.6 If T is a tree of order $n \geq 3$, then $\operatorname{ftd}_{1}(T)=(2 n-1) / 3$ if and only if $T \in \mathcal{T}$.

Proof. Let T be a tree of order $n \geq 3$ with $f t d_{1}(T)=(2 n-1) / 3$. Clearly, $2 n \equiv 1(\bmod 3)$. The proof is by induction on n. From $2 n \equiv 1(\bmod 3)$, we obtain that $n \geq 5$. For the base step of the induction, if $n=5$, then it is easily seen that $T=P_{5} \in \mathcal{T}$. Assume that the result holds for all trees T^{\prime} of order $n^{\prime}<n$ with $f t d_{1}\left(T^{\prime}\right)=\left(2 n^{\prime}-1\right) / 3$. Now consider the tree T of order $n \geq 6$. We root T at a leaf v_{0} of a diametrical path $v_{0} v_{1} \ldots v_{d}$, where $d=\operatorname{diam}(T)$ such that $\operatorname{deg}_{T}\left(v_{d-1}\right)$ is as large as possible. If $d=2$ then T is a star, a contradiction, since $f t d_{1}(T)=2 \neq(2 n-1) / 3$. If $d=3$, then T is a double star, a contradiction, since $f d_{1}(T)=2 \neq(2 n-1) / 3$. Thus $d \geq 4$. Suppose that T has a strong support vertex x, and assume that x_{1} and x_{2} are two leaves adjacent to x. Let $T_{0}=T-x_{1}$. By Theorem 2.2, $f t d_{1}\left(T_{0}\right) \leq 2 n\left(T_{0}\right) / 3=2(n-1) / 3$. Let S be a $f t d_{1}\left(T_{0}\right)$-set. By Observation 1.1, $x \in S$ and thus S is a 1FTD-set in T, as well. This contradicts the fact that $\operatorname{ftd}_{1}(T)=(2 n-1) / 3$. Thus we assume next that T has no strong support vertex. In particular, $\operatorname{deg}_{T}\left(v_{d-1}\right)=2$. We consider the following cases.

Case 1. $\operatorname{deg}_{T}\left(v_{d-2}\right) \geq 3$. We show that v_{d-2} is not a support vertex of T. Suppose that v_{d-2} is a support vertex. Let x be the leaf adjacent to v_{d-2}, and $T^{\prime}=T-T_{v_{d-1}}$. By Theorem 2.2, $\operatorname{ftd}_{1}\left(T^{\prime}\right) \leq 2 n^{\prime} / 3=2(n-2) / 3$. Suppose that $f t d_{1}\left(T^{\prime}\right)=2 n^{\prime} / 3$. By Theorem 2.2, T is a 2 -corona of a tree. Thus by Observation 2.1, $S\left(T^{\prime}\right) \cup L\left(T^{\prime}\right)$ is a $f t d_{1}\left(T^{\prime}\right)$-set. Then $S\left(T^{\prime}\right) \cup L\left(T^{\prime}\right)-\{x\} \cup\left\{v_{d-1}\right\}$ is a $f t d_{1}(T)$-set of cardinality at most $2(n-2) / 3$, a contradiction. We deduce that $f t d_{1}\left(T^{\prime}\right)<2 n^{\prime} / 3$. Let S^{\prime} be a $f t d_{1}\left(T^{\prime}\right)$-set. By Observation 1.1, $v_{d-2} \in S^{\prime}$. Thus $\left\{v_{d-1}\right\} \cup S^{\prime}$ is a 1FTD-set in T, and thus $\operatorname{ftd}_{1}(T)<2 n^{\prime} / 3+1=(2 n-1) / 3$, a contradiction. Thus assume that v_{d-2} is not a support vertex of T. Let $x \neq v_{d-1}$ be a child of v_{d-2}, and y be a child of x. Since y plays the same role as v_{d}, we find that $\operatorname{deg}_{T}(x)=2$. Let $T^{\prime}=T-\left\{v_{d}, v_{d-1}, y\right\}$. By Theorem 2.2, $f t d_{1}\left(T^{\prime}\right) \leq 2 n^{\prime} / 3=2 n / 3-2$. Thus $\operatorname{ftd}_{1}\left(T^{\prime}\right) \leq\left(2 n^{\prime}-1\right) / 3=(2 n-1) / 3-2$, since $2 n \equiv 1(\bmod 3)$. Suppose that $f t d_{1}\left(T^{\prime}\right)<\left(2 n^{\prime}-1\right) / 3=(2 n-1) / 3-2$. Let S^{\prime} be a $f t d_{1}\left(T^{\prime}\right)$-set. By Observation
1.1, $v_{d-2} \in S^{\prime}$, since v_{d-2} is a support vertex of T^{\prime}. Then $\left\{v_{d-1}, x\right\} \cup S^{\prime}$ is a 1FTD-set in T, and so $f t d_{1}(T)<(2 n-1) / 3$, a contradiction. Thus $f t d_{1}\left(T^{\prime}\right)=\left(2 n^{\prime}-1\right) / 3$. By the induction hypothesis, $T^{\prime} \in \mathcal{T}$. Now T is obtained from T^{\prime} by Operation \mathcal{O}_{2}, and so $T \in \mathcal{T}$.

Case 2. $\operatorname{deg}_{T}\left(v_{d-2}\right)=2$. We show that $\operatorname{deg}_{T}\left(v_{d-3}\right) \geq 3$. Suppose that $\operatorname{deg}_{T}\left(v_{d-3}\right)$ $=2$. Let $T^{\prime}=T-T_{v_{d-3}}$. By Theorem 2.2, $f t d_{1}\left(T^{\prime}\right) \leq 2 n^{\prime} / 3=2(n-4) / 3=$ $(2 n-2) / 3-2$. Let S^{\prime} be a $f t d_{1}\left(T^{\prime}\right)$-set. If $v_{d-4} \in S^{\prime}$, then $\left\{v_{d-1}, v_{d}\right\} \cup S^{\prime}$ is a 1FTDset in T of cardinality at most $2(n-2) / 3$, a contradiction. Thus $v_{d-4} \notin S^{\prime}$. Then $\left\{v_{d-1}, v_{d-2}\right\} \cup S^{\prime}$ is a 1FTD-set in T of cardinality at most $2(n-2) / 3$, a contradiction. We deduce that $\operatorname{deg}_{T}\left(v_{d-3}\right) \geq 3$. Let $T^{\prime}=T-T_{v_{d-2}}$. By Theorem 2.2, ftd $\left(T^{\prime}\right) \leq$ $2 n^{\prime} / 3=2(n-3) / 3=2 n / 3-2$. Then $f t d_{1}\left(T^{\prime}\right) \leq\left(2 n^{\prime}-1\right) / 3=(2 n-1) / 3-2$, since $2 n \equiv 1(\bmod 3)$. Suppose that $f t d_{1}\left(T^{\prime}\right)<\left(2 n^{\prime}-1\right) / 3=(2 n-1) / 3-2$. Let S^{\prime} be a $f t d_{1}\left(T^{\prime}\right)$-set. If $v_{d-3} \in S^{\prime}$, then $\left\{v_{d-1}, v_{d-2}\right\} \cup S^{\prime}$ is a 1 FTD-set in T, and so $f t d_{1}(T)<(2 n-1) / 3$, a contradiction. Thus $v_{d-3} \notin S^{\prime}$. Then $\left\{v_{d-1}, v_{d}\right\} \cup S^{\prime}$ is a 1FTD-set in T, and so $f t d_{1}(T)<(2 n-1) / 3$, a contradiction. We deduce that $f t d_{1}\left(T^{\prime}\right)=\left(2 n^{\prime}-1\right) / 3$. By the induction hypothesis, $T^{\prime} \in \mathcal{T}$. Now T is obtained from T^{\prime} by Operation \mathcal{O}_{1}, and so $T \in \mathcal{T}$.

The converse follows by Corollary 2.5 .
Lemma 2.7 (Chellali [4]) If T is a nontrivial tree of order n, with ℓ leaves and s support vertices, then $\gamma_{\times 2}(T) \geq(2 n+\ell-s+2) / 3$.

Proposition 2.8 In a tree T, every $f t d_{1}$-set is a ftd-set.
Proof. If S is a k FTD-set for T for some $k \geq 2$, then $|N(x) \cap S|=k \geq 2$ for all $x \in V(T)-S$. Thus every vertex of S has a neighbor in S, implying that S is a double dominating set, and thus $|S| \geq \gamma_{\times 2}(T)$. By Lemma 2.7, we have $\gamma_{\times 2}(T) \geq(2 n+2) / 3$. By Theorem 2.2, $f t d_{1}(T) \leq 2 n / 3$. Thus, $f t d(T)<f t d_{k}(T)$ for each $k \geq 2$.

We are now ready to state the main theorems of this section.
Theorem 2.9 If T is a tree of order $n \geq 3$, then $f t d(T) \leq 2 n / 3$, with equality if and only if T is the 2 -corona of a tree.

Theorem 2.10 If T is a tree of order $n \geq 3$, then $f t d(T)=(2 n-1) / 3$ if and only if $T \in \mathcal{T}$.

We propose characterization of trees T of order $n \geq 3$ with $f t d(T)=(2 n-2) / 3$ as a problem.

3 Unicyclic graphs

The following is easily verified.

Observation 3.1 For $n \geq 3$, $f t d\left(C_{n}\right)=\gamma_{t}\left(C_{n}\right)$ unless $n \equiv 3(\bmod 4)$ and $n \geq 5$ in which case $\operatorname{ftd}\left(C_{n}\right)=\gamma_{t}\left(C_{n}\right)+1$.

For a unicyclic graph G with the cycle C, any vertex of degree 2 on C is called the special vertex of G. We prove that $f t d_{1}(G) \leq(2 n+1) / 3$ for any unicyclic graphs G of order n, and then present a constructive characterization of unicyclic graphs G of order n with $\operatorname{ftd}_{1}(G)=(2 n+1) / 3$. For this purpose, we define a family of unicyclic graphs as follows. Let \mathcal{C}_{1} be the class of all graphs G that can be obtained from the 2-corona of a cycle $C_{k}(k \geq 3)$ by removing precisely one support vertex v and the leaf adjacent to v. Let \mathcal{G} be the class of all unicyclic graphs G that can be obtained from a sequence $G_{1}, G_{2}, \ldots, G_{k}=G$, of unicyclic graphs, where $G_{1} \in \mathcal{C}_{1}$, and if $k \geq 2$, then G_{i+1} is obtained from G_{i} by one of the following Operations \mathcal{O}_{1} or \mathcal{O}_{2}, for $i=1,2, \ldots, k-1$.

Operation \mathcal{O}_{1}. Let v be a vertex of a unicyclic graph G_{i} with $\operatorname{deg}_{G_{i}}(v) \geq 2$ such that v is not a special vertex. Then G_{i+1} is obtained from G_{i} by adding a path P_{3} and joining v to a leaf of P_{3}.

Operation \mathcal{O}_{2}. Let v be a support vertex of a unicyclyc graph G_{i} and let u be a leaf adjacent to v. Then G_{i+1} is obtained from G_{i} by adding a vertex u^{\prime} and a path P_{2}, joining u to u^{\prime} and joining v to a leaf of P_{2}.

The following observation is straightforward.
Observation 3.2 (1) Each graph $G \in \mathcal{G}$ has precisely one special vertex.
(2) If $G \in \mathcal{G}$ is a unicyclic graph of order n, then $|L(G)|=(n-1) / 3$.
(3) If C is the cycle of a graph $G \in \mathcal{G}$, then no vertex of C is a support vertex of G.

Lemma 3.3 If $G \in \mathcal{G}$, then every $1 F T D$-set in G contains every vertex of G of degree at least 2.

Proof. Let $G \in \mathcal{G}$. Then G is obtained from a sequence $G_{1}, G_{2}, \ldots, G_{k}=G$, of unicyclic graphs, where $G_{1} \in \mathcal{C}_{1}$, and if $k \geq 2$, then G_{i+1} is obtained from G_{i} by one of the operations \mathcal{O}_{1} or \mathcal{O}_{2}, for $i=1,2, \ldots, k-1$. Let C be the cycle of G. We prove the result by induction on k. For the base step of the induction, let $k=1$. Clearly, $V\left(G_{1}\right)-L\left(G_{1}\right)$ is contained in every 1FTD-set of G. Assume that the result holds for each k^{\prime} with $2 \leq k^{\prime}<k$. Now let $G=G_{k}$. Clearly, G is obtained from G_{k-1} by applying one of the Operations \mathcal{O}_{1} or \mathcal{O}_{2}. Let S be a 1FTD-set for G.

Assume that G is obtained from G_{k-1} by applying Operation \mathcal{O}_{1}. Let $x_{1} x_{2} x_{3}$ be a path and x_{1} be joined to $y \in V\left(G_{k-1}\right)$, where $\operatorname{deg}_{G_{k-1}}(y) \geq 2$ and y is not a special vertex of G_{k-1}. By Observation 1.1, $x_{2} \in S$. Observe that $\left\{x_{3}, x_{1}\right\} \cap S \neq \emptyset$. If $x_{1} \notin S$ then $x_{3} \in S$ and $y \notin S$. Then $S-\left\{x_{2}, x_{3}\right\}$ is a 1FTD-set for G_{k-1} that does not contain y, a contradiction to the induction hypothesis. Thus assume that $x_{1} \in S$. Assume that $y \notin S$. Then $N_{G_{k-1}}(y) \cap S=\emptyset$. Clearly, y is not a support vertex. Note that $G_{k-1}-y$ has a component G^{\prime} with $V\left(G^{\prime}\right) \cap V(C)=\emptyset$. Let $y_{1} \in N_{G_{k-1}}(y) \cap V\left(G^{\prime}\right)$. Then $\left(S-\left\{x_{1}, x_{2}, x_{3}\right\}\right) \cup V\left(G^{\prime}\right)$ is a 1FTD-set for G_{k-1} that does not contain y, a contradiction to the induction hypothesis. Thus $y \in S$. Clearly, $S-\left\{x_{1}, x_{2}, x_{3}\right\}$ is
a 1FTD-set for G_{k-1}. By the induction hypothesis $S-\left\{x_{1}, x_{2}, x_{3}\right\}$ contains every vertex of G_{k-1} of degree at least two. Consequently, S contains every vertex of G_{k} of degree at least two.

Next assume that G is obtained from G_{k-1} by applying Operation \mathcal{O}_{2}. Let u be a support vertex of a unicyclic graph G_{k-1} and let v be the leaf adjacent to u. Let $x_{1} x_{2}$ be a path and x_{1} be joined to u, and let x_{3} be a vertex that is joined to v according to the Operation \mathcal{O}_{2}. By Observation 1.1, $x_{1}, v \in S$. Thus $u \in S$, and so $S-\left\{x_{1}\right\}$ is a 1FTD-set for G_{k-1}. By the induction hypothesis, S contains all vertices of G_{k-1} of degree at least two. Consequently, S contains every vertex of G_{k} of degree at least two.

As a consequence of Observation 3.2 (2) and Lemma 3.3, we obtain the following.
Corollary 3.4 If $G \in \mathcal{G}$ is a unicyclic graph of order n, then $V(G)-L(G)$ is the unique $\mathrm{ftd}_{1}(G)$-set.

We recall the following result of [14].
Theorem 3.5 ([14]) For $n \geq 3, \gamma_{t}\left(C_{n}\right)=\lfloor n / 2\rfloor+\lceil n / 4\rceil-\lfloor n / 4\rfloor$.
Theorem 3.6 If G is a unicyclic graph of order $n \geq 4$, then $f t d_{1}(G) \leq(2 n+1) / 3$, with equality if and only if $G=C_{7}$ or $G \in \mathcal{G}$.

Proof. Let G be a unicyclic graph of order $n \geq 4$. We first use induction on n to show that $f t d_{1}(G) \leq(2 n+1) / 3$. For the base step of the induction note that if $n=4$, then $G=C_{4}$ or G is obtained from C_{3} by adding a leaf to a vertex of C_{3}, and we can see that $f d_{1}(G)=2 \leq(2 n+1) / 3$. Assume that the result holds for all unicyclic graphs G^{\prime} of order $n^{\prime}<n$. Now consider the unicyclic graph G of order $n \geq 5$. Let $C=u_{1}, u_{2}, . ., u_{k}, u_{1}$ be the cycle of G. If $G=C$, then by Observation 3.1, $f t d_{1}(G) \leq \gamma_{t}(G)+1$, and so by Theorem $3.5 \operatorname{ftd}_{1}(G) \leq(2 n(G)+1) / 3$ if $n \neq 5,6$. However, for $n=5,6$, we have $f t d_{1}(G) \leq \gamma_{t}(G) \leq(2 n(G)+1) / 3$. Thus assume that $G \neq C$. Let v_{d} be a vertex of G such that $d\left(v_{d}, C\right)$ is as large as possible and $\operatorname{deg}\left(v_{d-1}\right)$ is as large as possible, where v_{d-1} is the neighbor of v_{d} on the shortest path from v_{d} to C. Let $v_{0} v_{1} \ldots v_{d}$ be the shortest path from v_{d} to C, where v_{0} is the common vertex of this path with C.

Assume that $d \geq 3$. Assume that $\operatorname{deg}_{G}\left(v_{d-1}\right) \geq 3$. Let $G^{\prime}=G-\left\{v_{d}\right\}$. By the induction hypothesis, $f t d_{1}\left(G^{\prime}\right) \leq\left(2 n^{\prime}+1\right) / 3=(2 n-1) / 3$. Let S^{\prime} be a $f t d_{1}\left(G^{\prime}\right)$-set. By Observation 1.1, $v_{d-1} \in S^{\prime}$. Clearly, S^{\prime} is a 1FTD-set in G, and so $\operatorname{ftd}_{1}(G)<$ $(2 n+1) / 3$. Thus assume that $\operatorname{deg}_{G}\left(v_{d-1}\right)=2$. Assume that $\operatorname{deg}_{G}\left(v_{d-2}\right)=2$. Let $G^{\prime}=G-\left\{v_{d}, v_{d-1}, v_{d-2}\right\}$. By the induction hypothesis, $f t d_{1}\left(G^{\prime}\right) \leq\left(2 n^{\prime}+1\right) / 3=$ $(2 n-5) / 3$. Let S^{\prime} be a $f t d_{1}\left(G^{\prime}\right)$-set. If $v_{d-3} \in S^{\prime}$, then $\left\{v_{d-1}, v_{d-2}\right\} \cup S^{\prime}$ is a 1FTD-set in G, and so $f t d_{1}(G) \leq(2 n+1) / 3$, and if $v_{d-3} \notin S^{\prime}$, then $\left\{v_{v-1}, v_{d}\right\} \cup S^{\prime}$ is a 1FTD-set in G and so $\operatorname{ftd}_{1}(G) \leq(2 n+1) / 3$. Thus assume that $\operatorname{deg}_{G}\left(v_{d-2}\right) \geq 3$. Assume that v_{d-2} is a support vertex. Let $G^{\prime}=G-\left\{v_{d-1}, v_{d}\right\}$. By the induction hypothesis, $f t d_{1}\left(G^{\prime}\right) \leq\left(2 n^{\prime}+1\right) / 3=(2 n-3) / 3$. Let S^{\prime} be a $f t d_{1}\left(G^{\prime}\right)$-set. By Observation 1.1,
$v_{d-2} \in S^{\prime}$. Then $\left\{v_{d-1}\right\} \cup S^{\prime}$ is a 1FTD-set in G and so $f t d_{1}(T) \leq(2 n+1) / 3$. Thus assume that v_{d-2} is not a support vertex of G. Let $x \neq v_{d-1}, v_{d-3}$ be a support vertex of G such that $x \in N\left(v_{d-2}\right)$. By the choice of the path $v_{0} v_{1} \ldots v_{d}$, (the part "deg $\left(v_{d-1}\right)$ is as large as possible") $\operatorname{deg}_{G}(x)=2$. Let y be the leaf adjacent to x, and $G^{\prime}=$ $G-\left\{v_{d}, v_{d-1}, y\right\}$. By the induction hypothesis $f t d_{1}\left(G^{\prime}\right) \leq\left(2 n^{\prime}+1\right) / 3=(2 n-5) / 3$. Let S^{\prime} be a $f t d_{1}\left(G^{\prime}\right)$-set. By Observation 1.1, $v_{d-2} \in S^{\prime}$, since v_{d-2} is a support vertex of G^{\prime}. Then $\left\{v_{d-1}, x\right\} \cup S^{\prime}$ is a 1 FTD-set in G, and so $f t d_{1}(G) \leq(2 n+1) / 3$.

Next assume that $d=2$. Assume that $\operatorname{deg}\left(u_{i}\right) \geq 3$ for every i with $1 \leq i \leq k$. Let $D=S(G)-V(C)$. Clearly, $v_{d-1} \in D$. Then $n \geq 2 k+|D|$. Clearly, $V(C) \cup D$ is a 1FTD-set in G of cardinality $k+|D| \leq(2 n+1) / 3$. Thus assume that $\operatorname{deg}_{G}\left(u_{j}\right)=2$ for some $j \in\{1,2, \ldots, k\}$. Assume that u_{j} and u_{j+1} are two consecutive vertices on C such that $\operatorname{deg}_{G}\left(u_{j}\right)=2$ and $\operatorname{deg}_{G}\left(u_{j+1}\right) \geq 3$. Then $T=G-u_{j-1} u_{j}$ is a tree. Let S^{\prime} be a $f t d_{1}(T)$-set. By Theorem 2.2, $f t d_{1}\left(T^{\prime}\right) \leq 2 n / 3$. Clearly, T is not a 2 -corona of a tree, and so by Theorem 2.2, $\operatorname{ftd}_{1}(T)<2 n / 3$. Observe that u_{j+1} is either a strong support vertex of T or is adjacent to at least one support vertex of T. Thus by Observation 2.3, $T \notin \mathcal{T}$. Then by Theorem 2.6, $\operatorname{ftd}_{1}(T)<(2 n-1) / 3$ and so $f t d_{1}(T) \leq(2 n-2) / 3$. By Observation 1.1, $u_{j+1} \in S^{\prime}$. If $\left|S^{\prime} \cap\left\{u_{j}, u_{j-1}\right\}\right| \in$ $\{0,2\}$, then S^{\prime} is a 1FTD-set for G of cardinality at most $2 n / 3$. Assume that | $S^{\prime} \cap\left\{u_{j}, u_{j-1}\right\} \mid=1$. If $u_{j-1} \in S^{\prime}$, then $S^{\prime} \cup\left\{u_{j}\right\}$ is a 1FTD-set for G of cardinality at most $(2 n+1) / 3$, and so $\operatorname{ftd}_{1}(G) \leq(2 n+1) / 3$. Thus assume that $u_{j} \in S^{\prime}$. Then u_{j+1} is not adjacent to a support vertex of T and so u_{j+1} is a strong support vertex of T. Let $z \neq u_{j}$ be a leaf adjacent to u_{j+1}. Then $S-\left\{u_{j}\right\} \cup\{z\}$ is a 1FTD-set for G of cardinality at most $(2 n+1) / 3$, and so $\operatorname{ftd}_{1}(G) \leq(2 n+1) / 3$.

Now assume that $d=1$. If $\operatorname{deg}_{G}\left(u_{i}\right) \geq 3$ for each i with $1 \leq i \leq k$, then $V(C)$ is a 1FTD-set in G of cardinality at most $n / 2$, and so $f t d_{1}(G) \leq \frac{n}{2}<(2 n+1) / 3$. Assume $\operatorname{deg}\left(u_{i}\right)=2$ for some $i \in\{1,2, \ldots, k\}$. Let u_{j} and u_{j+1} be two consecutive vertices on C such that $\operatorname{deg}_{G}\left(u_{j}\right)=2$ and $\operatorname{deg}_{G}\left(u_{j+1}\right) \geq 3$. Then $T=G-u_{j-1} u_{j}$ is a tree. Let S^{\prime} be a $f t d_{1}(T)$-set. By Theorem 2.2, $f t d_{1}(T) \leq 2 n / 3$. Clearly, T is not a 2 -corona of a tree, since u_{j+1} is a strong support vertex of T. By Theorem 2.2, $f t d_{1}(T)<2 n / 3$. Then by Observation 2.3, $T \notin \mathcal{T}$. By Theorem 2.6, $\operatorname{ftd}_{1}(T)<(2 n-1) / 3$ and so $f t d_{1}(T) \leq(2 n-2) / 3$. By Observation 1.1, $u_{j+1} \in S^{\prime}$. If $\left|S^{\prime} \cap\left\{u_{j}, u_{j-1}\right\}\right| \in\{0,2\}$, then S^{\prime} is a 1FTD-set for G of cardinality at most $(2 n-2) / 3$, and so $\operatorname{ftd}_{1}(G) \leq(2 n+$ 1)/3. Thus assume that $\left|S^{\prime} \cap\left\{u_{j}, u_{j-1}\right\}\right|=1$. Assume that $u_{j-1} \in S^{\prime}$. Then $S^{\prime} \cup\left\{u_{j}\right\}$ is a 1FTD-set for G of cardinality at most $(2 n+1) / 3$, and so $f t d_{1}(G) \leq(2 n+1) / 3$. Next assume that $u_{j} \in S^{\prime}$. Let $z \neq u_{j}$ be a leaf adjacent to u_{j+1}. Then $S^{\prime}-\left\{u_{j}\right\} \cup\{z\}$ is a 1 FTD-set for G of cardinality at most $(2 n+1) / 3$, and so $f t d_{1}(G) \leq(2 n+1) / 3$.

We next prove the equality part. We prove by induction on the order n of a unicyclic graph $G \neq C_{7}$ with $f t d_{1}(G)=(2 n+1) / 3$ to show that $G \in \mathcal{G}$. If $4 \leq n \leq 7$, then by a directly checking of all possible unicyclic graphs, we find that $G \in \mathcal{G}$. Assume that the result holds for all unicyclic graph $G^{\prime} \neq C_{7}$ of order $n^{\prime}<n$ with $f t d_{1}\left(G^{\prime}\right)=\left(2 n^{\prime}+1\right) / 3$. Now consider a unicyclic graph $G \neq C_{7}$ of order n with $\operatorname{ftd}_{1}(G)=(2 n+1) / 3$. Clearly, $2 n+1 \equiv 0(\bmod 3)$. Suppose that G has a strong support vertex v, and assume that v_{1} and v_{2} are two leaves adjacent to v. Let $G^{\prime}=G-v_{1}$. By the first part of the proof, $f t d_{1}\left(G^{\prime}\right) \leq\left(2 n\left(G^{\prime}\right)+1\right) / 3=(2 n-1) / 3$.

Let S be a $f t d_{1}\left(G^{\prime}\right)$-set. By Observation 1.1, $v \in S$ and thus S is a $1 F T D$-set in G, as well. This contradicts the fact that $f t d_{1}(G)=(2 n+1) / 3$. Thus we assume for the next that G has no strong support vertex. Let $C=u_{1}, u_{2}, . ., u_{k}, u_{1}$ be the cycle of G. By Observation 3.1, $G \neq C$. Let v_{d} be a vertex of G such that $d\left(v_{d}, C\right)$ is as large as possible, $\operatorname{deg}\left(v_{d-1}\right)$ is as large as possible, and $\operatorname{deg}_{G}\left(v_{0}\right)$ is as large as possible, where $v_{0} v_{1} \ldots v_{d}$ is the shortest path from v_{d} to C, where $v_{0} \in C$ is the common vertex of this path with C.

Suppose that $d=1$. Assume that $\operatorname{deg}_{G}\left(u_{i}\right) \geq 3$ for each i with $1 \leq i \leq k$. Then $V(C)$ is a 1 FTD-set G of cardinality at most $n / 2$, a contradiction. Thus $\operatorname{deg}_{G}\left(u_{j}\right)=2$ for some j with $1 \leq j \leq k$. Let $D_{0}=\left\{u_{i} \mid \operatorname{deg}_{G}\left(u_{i}\right)=2\right\}$ and $D_{1}=\left\{u_{i} \mid u_{i}\right.$ is a support vertex of $\left.V(C)\right\}$. We show that if $\operatorname{deg}_{G}\left(u_{j}\right)=2$, then $\operatorname{deg}_{G}\left(u_{j+1}\right)=3$ and $\operatorname{deg}_{G}\left(u_{j-1}\right)=3$. Suppose that $\operatorname{deg}_{G}\left(u_{j}\right)=\operatorname{deg}_{G}\left(u_{j+1}\right)=2$ for some $1 \leq j \leq k$. Among such vertices choose u_{j} and $u_{j+1} \operatorname{such}$ that $\operatorname{deg}_{G}\left(u_{j-1}\right)=3$. Let $T=G-u_{j}$. By Theorem 2.2, $f t d_{1}(T) \leq 2 n(T) / 3$. Assume that $f t d_{1}(T)=$ $2 n(T) / 3$. By Theorem 2.2, $V(T)-L(T)$ is a $f t d_{1}(T)$-set (Note that $\operatorname{deg}_{T}\left(u_{j-1}\right)=2$ and $\operatorname{deg}_{T}\left(u_{j+1}\right)=1$). Then $V(T)-L(T)$ is a 1FTD-set in G of cardinality at most $(2 n-2) / 3$, a contradiction. Thus $f t d_{1}(T)<2 n(T) / 3$. Let S be a $f t d_{1}(T)$-set. By Observation 1.1, $u_{j-1}, u_{j+2} \in S$. If $u_{j+1} \notin S$, then S is a 1FTD-set in G of cardinality at most $(2 n-2) / 3$, a contradiction. Thus $u_{j+1} \in S$. Then $S \cup\left\{u_{j}\right\}$ is a 1FTD-set in G, and so $f t d_{1}(G)<(2 n+1) / 3$, a contradiction. Thus if $\operatorname{deg}_{G}\left(u_{j}\right)=2$ then $\operatorname{deg}_{G}\left(u_{j+1}\right)=3$ and $\operatorname{deg}_{G}\left(u_{j-1}\right)=3$. Thus $\left|D_{0}\right| \leq\left|D_{1}\right|$, and so $V(C)$ is a 1FTD-set in G of cardinality at most $2 n / 3$, a contradiction. Thus, assume that $d \geq 2$. Clearly, $\operatorname{deg}_{G}\left(v_{d-1}\right)=2$, since G has no strong support vertex. We consider the following cases.

Case 1. $d \geq 4$. Assume that $\operatorname{deg}_{G}\left(v_{d-2}\right) \geq 3$. Suppose that v_{d-2} is a support vertex. Let x be the leaf adjacent to v_{d-2}, and $G^{\prime}=G-\left\{v_{d-1}, v_{d}\right\}$. By the first part of the proof, $\operatorname{ftd}_{1}\left(G^{\prime}\right) \leq\left(2 n\left(G^{\prime}\right)+1\right) / 3=(2 n-3) / 3$. Let S^{\prime} be a $f t d_{1}\left(G^{\prime}\right)$ set. By Observation 1.1, $v_{d-2} \in S^{\prime}$. Then $S^{\prime} \cup\left\{v_{d-1}\right\}$ is a 1FTD-set in G and so $f t d_{1}(G)<(2 n+1) / 3$, a contradiction. Thus assume that v_{d-2} is not a support vertex of G. Let $x \neq v_{d-1}, v_{d-3}$ be a support vertex of G such that $x \in N\left(v_{d-2}\right)$. By the choice of the path $v_{0} v_{1} \ldots v_{d}$, (the part " $\operatorname{deg}\left(v_{d-1}\right)$ is as large as possible"), we have $\operatorname{deg}_{G}(x)=2$. Let y be the leaf adjacent to x. Let $G^{\prime}=G-\left\{v_{d}, v_{d-1}, y\right\}$. By the first part of the proof, $f t d_{1}\left(G^{\prime}\right) \leq\left(2 n\left(G^{\prime}\right)+1\right) / 3=(2 n+1) / 3-2$. If $f t d_{1}\left(G^{\prime}\right)<$ $\left(2 n\left(G^{\prime}\right)+1\right) / 3=(2 n+1) / 3-2$ and S^{\prime} is a $f t d_{1}\left(G^{\prime}\right)$-set, then by Observation 1.1, $v_{d-2} \in S^{\prime}$, since v_{d-2} is a support vertex of G^{\prime}. Then $\left\{v_{d-1}, x\right\} \cup S^{\prime}$ is a 1FTD-set in G and so $f t d_{1}(T)<(2 n+1) / 3$, a contradiction. Thus $f t d_{1}\left(G^{\prime}\right)=\left(2 n\left(G^{\prime}\right)-1\right) / 3$. By the induction hypothesis, $G^{\prime} \in \mathcal{G}$. Thus G is obtained from G^{\prime} by Operation \mathcal{O}_{2} and so $G \in \mathcal{G}$.

Assume next that $\operatorname{deg}_{G}\left(v_{d-2}\right)=2$. Suppose that $\operatorname{deg}_{G}\left(v_{d-3}\right)=2$. Let $G^{\prime}=$ $G-\left\{v_{d}, v_{d-1}, v_{d-2}, v_{d-3}\right\}$. By the first part of the proof, $f t d_{1}\left(G^{\prime}\right) \leq\left(2 n\left(G^{\prime}\right)+\right.$ 1) $/ 3=(2 n-7) / 3$. Let S^{\prime} be a $f t d_{1}\left(G^{\prime}\right)$-set. If $v_{d-4} \in S^{\prime}$, then $\left\{v_{d-1}, v_{d}\right\} \cup S^{\prime}$ is a 1FTD-set in G of cardinality at most $(2 n-1) / 3$, a contradiction. Thus $v_{d-4} \notin S^{\prime}$, and so $\left\{v_{d-1}, v_{d-2}\right\} \cup S^{\prime}$ is a 1FTD-set in G of cardinality at most $(2 n-1) / 3$, a contradiction. We deduce that $\operatorname{deg}_{G}\left(v_{d-3}\right) \geq 3$. Let $G^{\prime}=G-\left\{v_{d}, v_{d-1}, v_{d-2}\right\}$. By
the first part of the proof, $f t d_{1}\left(G^{\prime}\right) \leq\left(2 n\left(G^{\prime}\right)+1\right) / 3=(2 n-5) / 3$. Suppose that $f t d_{1}\left(G^{\prime}\right)<\left(2 n\left(G^{\prime}\right)+1\right) / 3=(2 n-5) / 3$. Let S^{\prime} be a $f t d_{1}\left(G^{\prime}\right)$-set. If $v_{d-3} \in S^{\prime}$, then $\left\{v_{d-1}, v_{d-2}\right\} \cup S^{\prime}$ is a 1 FTD-set in G, and so $f t d_{1}(G)<(2 n+1) / 3$, a contradiction. Thus $v_{d-3} \notin S^{\prime}$. Then $\left\{v_{d-1}, v_{d}\right\} \cup S^{\prime}$ is a 1 FTD-set in G, and so $f t d_{1}(G)<(2 n-1) / 3$, a contradiction. Thus $\mathrm{ftd}_{1}\left(G^{\prime}\right)=\left(2 n\left(G^{\prime}\right)+1\right) / 3$. By the induction hypothesis, $G^{\prime} \in \mathcal{G}$. Clearly, v_{d-3} is not a special vertex of G^{\prime}, since $d \geq 4$. Thus G is obtained from G^{\prime} by Operation \mathcal{O}_{1} and so $G \in \mathcal{G}$.

Case 2. $d=3$. Observe that $\operatorname{deg}_{G}\left(v_{2}\right)=2$, since G has no strong support vertex.
Assume that $\operatorname{deg}_{G}\left(v_{1}\right) \geq 3$. Suppose that v_{1} is a support vertex. Let $G^{\prime}=$ $G-\left\{v_{2}, v_{3}\right\}$. By the first part of the proof, $\operatorname{ftd}_{1}\left(G^{\prime}\right) \leq\left(2 n\left(G^{\prime}\right)+1\right) / 3=(2 n-3) / 3$. Let S^{\prime} be a $f t d_{1}\left(G^{\prime}\right)$-set. By Observation 1.1, $v_{1} \in S^{\prime}$. Then $S^{\prime} \cup\left\{v_{2}\right\}$ is a 1FTD-set in G, and so $\operatorname{ftd}_{1}(G)<(2 n+1) / 3$, a contradiction. Thus assume that v_{1} is not a support vertex of G. Let $x \neq v_{2}, v_{0}$ be a support vertex of G such that $x \in N\left(v_{1}\right)$. By the choice of the path $v_{0} v_{1} \ldots v_{d}$, (the part " $\operatorname{deg}\left(v_{d-1}\right)$ is as large as possible") $\operatorname{deg}_{G}(x)=2$. Let y be the leaf adjacent to x. Let $G^{\prime}=G-\left\{v_{3}, v_{2}, y\right\}$. By the first part of the proof, $f t d_{1}\left(G^{\prime}\right) \leq\left(2 n\left(G^{\prime}\right)+1\right) / 3=(2 n+1) / 3-2$. If $f t d_{1}\left(G^{\prime}\right)<$ $\left(2 n\left(G^{\prime}\right)+1\right) / 3=(2 n+1) / 3-2$ and S^{\prime} is a $f t d_{1}\left(G^{\prime}\right)$-set, then by Observation 1.1, $v_{1} \in S^{\prime}$, since v_{1} is a support vertex of G^{\prime}. Then $\left\{v_{2}, x\right\} \cup S^{\prime}$ is a 1FTD-set in G and so $\mathrm{ftd}_{1}(T)<(2 n+1) / 3$, a contradiction. Thus $f t d_{1}\left(G^{\prime}\right)=\left(2 n\left(G^{\prime}\right)-1\right) / 3$. By the induction hypothesis $G^{\prime} \in \mathcal{G}$. Then G is obtained from G^{\prime} by Operation \mathcal{O}_{2}, and so $G \in \mathcal{G}$.

Next assume that $\operatorname{deg}_{G}\left(v_{1}\right)=2$. We show that $\operatorname{deg}\left(v_{0}\right) \geq 4$. Suppose that $\operatorname{deg}\left(v_{0}\right)=3$. Let $G^{\prime}=G-\left\{v_{1}, v_{2}, v_{3}\right\}$. Assume that $f t d_{1}\left(G^{\prime}\right)=\left(2 n\left(G^{\prime}\right)+1\right) / 3$. By the induction hypothesis $G^{\prime} \in \mathcal{G}$. By Observation 3.2(1), v_{0} is the unique special vertex of G^{\prime}, since $\operatorname{deg}_{G^{\prime}}\left(v_{0}\right)=2$. We show that $\operatorname{deg}_{G^{\prime}}(x)=3$, for each $x \in\left\{u_{1}, \ldots, u_{k}\right\}-\left\{v_{0}\right\}$. Assume that $\operatorname{deg}_{G^{\prime}}\left(u_{j}\right) \geq 4$ for some $u_{j} \in\left\{u_{1}, \ldots, u_{k}\right\}-\left\{v_{0}\right\}$. If there is a vertex $w \in V(G)-C$ such that $d(w, C)=d\left(w, u_{j}\right)=3$, then w plays the same role of v_{d}, and thus $\operatorname{deg}\left(u_{j}\right)=3$, a contradiction. Thus there is no vertex $w \in V(G)-C$ such that $d(w, C)=d\left(w, u_{j}\right)=3$. Then any vertex of $N\left(u_{j}\right)-C$ is a leaf or a weak support vertex. Assume that $N\left(u_{j}\right)-C$ contains t_{1} leaves and t_{2} support vertices, where $t_{1}+t_{2} \geq 2$. By Observation 3.2(3), $t_{1}=0$, since $G^{\prime} \in \mathcal{G}$. Thus $t_{2} \geq 2$. Let z_{1} and z_{2} be two weak support vertices in $N\left(u_{j}\right)-C$. Let z_{1}^{\prime} and z_{2}^{\prime} be the leaves adjacent to z_{1} and z_{2}, respectively. (We switch for a while to G.) Let $G^{\prime \prime}=G-\left\{z_{1}, z_{1}^{\prime}, z_{2}^{\prime}\right\}$. By the first part of the proof, $f t d_{1}\left(G^{\prime \prime}\right) \leq\left(2 n\left(G^{\prime \prime}\right)+1\right) / 3$. Suppose that $f t d_{1}\left(G^{\prime \prime}\right)=\left(2 n\left(G^{\prime}\right)+1\right) / 3$. By the induction hypothesis, $G^{\prime \prime} \in \mathcal{G}$. Clearly, $\operatorname{deg}_{G^{\prime \prime}}\left(u_{j}\right) \geq 3$, since v_{0} is the unique special vertex of G^{\prime}, a contradiction (by Observation 3.2(1)). Thus $f t d_{1}\left(G^{\prime \prime}\right)<\left(2 n\left(G^{\prime}\right)+1\right) / 3=(2 n-5) / 3$. Let $S^{\prime \prime}$ be a $f t d_{1}\left(G^{\prime \prime}\right)$-set. By Observation 1.1, $u_{j} \in S^{\prime \prime}$. Then $S^{\prime \prime} \cup\left\{z_{1}, z_{2}\right\}$ is a 1FTD-set of G, and so $\mathrm{ftd}_{1}(G)<(2 n(G)+1) / 3$, a contradiction. We deduce that $\operatorname{deg}_{G^{\prime}}(x)=3$ for each $x \in\left\{u_{1}, \ldots, u_{k}\right\}-\left\{v_{0}\right\}$. Note that by Observation 3.2, u_{i} is not a support vertex for each i with $1 \leq i \leq k$ in G^{\prime}, since $G^{\prime} \in \mathcal{G}$. (We switch for a while to G.) Let $F=\cup_{i=1}^{k}\left(N_{G}\left(u_{i}\right)\right)-\left\{u_{1}, \ldots, u_{k}\right\}$. Clearly, $|F|=k$, since $\operatorname{deg}_{G^{\prime}}\left(u_{i}\right)=3$ for each $u_{i} \in\left\{u_{1}, \ldots, u_{k}\right\}-\left\{v_{0}\right\}$ and $\operatorname{deg}_{G}\left(v_{0}\right)=3$. Let $F=\left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{k}^{\prime}\right\}$. Clearly, $\operatorname{deg}_{G}\left(u_{i}^{\prime}\right) \geq 2$, for each i with $1 \leq i \leq k$, since u_{i} is not a support vertex
for $1 \leq i \leq k$ in G^{\prime}. Clearly, u_{i}^{\prime} is not a strong support vertex of G for $1 \leq i \leq k$. If u_{i}^{\prime} is adjacent to a support vertex $u_{i}^{\prime \prime} \in V(G)-C$, for some integer i, then since the leaf of $u_{i}^{\prime \prime}$ plays the role of v_{3}, we obtain that $\operatorname{deg}\left(u_{i}^{\prime}\right)=2$. Since $\operatorname{deg}_{G}\left(u_{i}^{\prime}\right) \geq 2$, for each i with $1 \leq i \leq k$, we find that $\operatorname{deg}_{G}\left(u_{i}^{\prime}\right)=2$, for each i with $1 \leq i \leq k$. Let $F^{\prime}=\cup_{i=1}^{r} N_{G}\left(u_{i}^{\prime}\right)-\left\{u_{1}, \ldots, u_{k}\right\}$. Clearly, $\left|F^{\prime}\right|=k$, since $\operatorname{deg}_{G}\left(u_{i}^{\prime}\right)=2$, for each $u_{i}^{\prime} \in\left\{u_{1}^{\prime}, \ldots, u_{k}^{\prime}\right\}$. Clearly, $F \cup F^{\prime}$ is a 1FTD-set in G of cardinality at most $2 n / 3$, a contradiction. We deduce that $f t d_{1}\left(G^{\prime}\right)<\left(2 n\left(G^{\prime}\right)+1\right) / 3$. Let S^{\prime} be a $f t d_{1}\left(G^{\prime}\right)$-set. If $v_{0} \in S^{\prime}$, then $S^{\prime} \cup\left\{v_{1}, v_{2}\right\}$ is a 1FTD-set in G, and so $f t d_{1}(G)<(2 n+1) / 3$, a contradiction. Thus assume that $v_{0} \notin S^{\prime}$. Then $S^{\prime} \cup\left\{v_{2}, v_{3}\right\}$ is a 1FTD-set in G, and so $\operatorname{ftd}_{1}(G)<(2 n+1) / 3$, a contradiction. Thus $\operatorname{deg}\left(v_{0}\right) \geq 4$. Let $G^{\prime}=G-\left\{v_{1}, v_{2}, v_{3}\right\}$. By the first part of the proof, $\operatorname{ftd}_{1}\left(G^{\prime}\right) \leq\left(2 n\left(G^{\prime}\right)+1\right) / 3$. Assume that $f t d_{1}\left(G^{\prime}\right)<\left(2 n\left(G^{\prime}\right)+1\right) / 3$. Let S^{\prime} be a $f t d_{1}\left(G^{\prime}\right)$-set. If $v_{0} \in S^{\prime}$, then $S=S^{\prime} \cup\left\{v_{1}, v_{2}\right\}$ is a 1FTD-set for G and so $f t d_{1}(G)<(2 n+1) / 3$, a contradiction. Thus assume that $v_{0} \notin S^{\prime}$. Then $S=S^{\prime} \cup\left\{v_{2}, v_{3}\right\}$ is a 1FTD-set for G and so $f t d_{1}(G)<(2 n+1) / 3$, a contradiction. Hence, $f t d_{1}\left(G^{\prime}\right)=\left(2 n\left(G^{\prime}\right)+1\right) / 3$. By the induction hypothesis, $G^{\prime} \in \mathcal{G}$. Since $\operatorname{deg}\left(v_{0}\right) \geq 4, v_{0}$ is not a special vertex of G^{\prime}. Thus G is obtained from G^{\prime} by Operation \mathcal{O}_{1} and so $G \in \mathcal{G}$.

Case 3. $d=2$. We show that $\operatorname{deg}_{G}\left(v_{0}\right)=3$. Suppose that $\operatorname{deg}_{G}\left(v_{0}\right) \geq 4$. Assume that v_{0} is a support vertex. Let $G^{\prime}=G-\left\{v_{1}, v_{2}\right\}$. By the first part of the proof, $f t d_{1}\left(G^{\prime}\right) \leq\left(2 n\left(G^{\prime}\right)+1\right) / 3=(2 n-3) / 3$. Let S^{\prime} be a $\operatorname{ftd}_{1}\left(G^{\prime}\right)$-set. By Observation 1.1, $v_{0} \in S^{\prime}$. Then $S^{\prime} \cup\left\{v_{d-1}\right\}$ is a 1FTD-set in G, and so $f t d_{1}(G)<(2 n+1) / 3$, a contradiction. Thus assume that v_{0} is not a support vertex of G. Let $x \neq v_{1}$ be a support vertex of G such that $x \in N\left(v_{0}\right)-V(C)$. By the choice of the path $v_{0} v_{1} \ldots v_{d}$, (the part " $\operatorname{deg}\left(v_{d-1}\right)$ is as large as possible"), $\operatorname{deg}_{G}(x)=2$. Let y be the leaf adjacent to x, and $G^{\prime}=G-\left\{v_{2}, v_{1}, y\right\}$. By the first part of the proof, $f t d_{1}\left(G^{\prime}\right) \leq$ $\left(2 n\left(G^{\prime}\right)+1\right) / 3=(2 n+1) / 3-2$. Let $\operatorname{ftd}_{1}\left(G^{\prime}\right)<\left(2 n\left(G^{\prime}\right)+1\right) / 3=(2 n+1) / 3-2$. Let S^{\prime} be a $f t d_{1}\left(G^{\prime}\right)$-set. By Observation 1.1, $v_{0} \in S^{\prime}$, since v_{0} is a support vertex of G^{\prime}. Then $\left\{v_{1}, x\right\} \cup S^{\prime}$ is a 1 FTD-set in G, and so $f t d_{1}(T)<(2 n+1) / 3$, a contradiction. Thus $\mathrm{ftd}_{1}\left(G^{\prime}\right)=\left(2 n\left(G^{\prime}\right)-1\right) / 3$. By the induction hypothesis, $G^{\prime} \in \mathcal{G}$, a contradiction by Observation 3.2 (3), since v_{0} is a support vertex of G^{\prime}. Thus $\operatorname{deg}_{G}\left(v_{0}\right)=3$. Observe that G has no strong support vertex. If u_{i} is adjacent to a support vertex u_{i}^{\prime} of $N\left(u_{i}\right)-C$ for some i, then the leaf of u_{i}^{\prime} plays the role of v_{2}, and thus $\operatorname{deg}\left(u_{i}\right)=3$. Thus we may assume that $\operatorname{deg}_{G}\left(u_{i}\right) \leq 3$ for each i with $i=1,2, \ldots, k$. Assume that $\operatorname{deg}_{G}\left(u_{i}\right)=3$ for each i with $1 \leq i \leq k$. Let D_{1} be the set of support vertices of C and D_{2} be the set of non-support vertices of C. Let $D_{2}^{\prime}=N\left(D_{2}\right)-C$. Then $S=V(C) \cup D_{2}^{\prime}$ is a 1FTD-set in G of cardinality at most $2 n / 3$, a contradiction. Thus $\operatorname{deg}_{G}\left(u_{j}\right)=2$ for some j with $1 \leq j \leq k$.

Claim 1.: If $\operatorname{deg}_{G}\left(u_{j}\right)=2$ for some j with $1 \leq j \leq k$, then $\operatorname{deg}_{G}\left(u_{j+1}\right)=3$ and $\operatorname{deg}_{G}\left(u_{j-1}\right)=3$

Proof of Claim 1. Assume that $\operatorname{deg}_{G}\left(u_{j}\right)=\operatorname{deg}_{G}\left(u_{j+1}\right)=2$ for some j with $1 \leq$ $j \leq k$, and among such vertices choose u_{j} such that $\operatorname{deg}_{G}\left(u_{j-1}\right)=3$. Let $T=G-u_{j}$. By Theorem 2.2, $f t d_{1}(T) \leq 2 n(T) / 3$. Assume that $f t d_{1}(T)=2 n(T) / 3$. By Theorem 2.2, $V(T)-L(T)$ is a $\operatorname{ftd}_{1}(T)$-set (Note that $\operatorname{deg}_{T}\left(u_{j-1}\right)=2$ and $\operatorname{deg}_{T}\left(u_{j+1}\right)=$ 1). Then $V(T)-L(T)$ is a 1 FTD-set in G of cardinality at most $(2 n-2) / 3$, a
contradiction. Thus we assume that $f t d_{1}(T)<2 n(T) / 3$. Let S be a $f t d_{1}(T)$-set. If $\left|\left\{u_{j-1}, u_{j+1}\right\} \cap S\right|=1$, then S is a 1FTD-set in G of cardinality at most $(2 n-2) / 3$, a contradiction. Thus $\left|\left\{u_{j-1}, u_{j+1}\right\} \cap S\right| \in\{0,2\}$. If $\left|\left\{u_{j-1}, u_{j+1}\right\} \cap S\right|=0$, then $S \cup\left\{u_{j+1}\right\}$ a 1FTD-set in G and so $f t d_{1}(T)<(2 n+1) / 3$, a contradiction. Thus $\left|\left\{u_{j-1}, u_{j+1}\right\} \cap S\right|=2$. Now $S \cup\left\{u_{j}\right\}$ a 1FTD-set in G and so $\operatorname{ftd}_{1}(G)<(2 n+1) / 3$, a contradiction.

Claim 2.: If $\operatorname{deg}_{G}\left(u_{j_{1}}\right)=\operatorname{deg}_{G}\left(u_{j_{2}}\right)=2$ for some j_{1} and j_{2} with $j_{1}<j_{2}$, then there is an integer j^{\prime} with $j_{1} \leq j^{\prime} \leq j_{2}$ such that $u_{j^{\prime}}$ is a support vertex of G.

Proof of Claim 2. Assume that $\operatorname{deg}_{G}\left(u_{j_{1}}\right)=\operatorname{deg}_{G}\left(u_{j_{2}}\right)=2$ for some j_{1} and j_{2} with $j_{1}<j_{2}$. By Claim 1, $j_{1} \leq j_{2}-2$. Among such vertices choose $u_{j_{1}}$ and $u_{j_{2}}$ such that there is no vertex u_{i} with $\operatorname{deg}\left(u_{i}\right)=2$ and $j_{1}<i<j_{2}$. Suppose to the contrary, that u_{i} is not a support vertex of G for each i with $j_{1}<i<j_{2}$. By Claim 1, $\operatorname{deg}_{G}\left(u_{j_{1}-1}\right)=\operatorname{deg}_{G}\left(u_{j_{2}+1}\right)=3$. Let $T=G-u_{j_{1}} u_{j_{1}+1}-u_{j_{2}} u_{j_{2}+1}$, T^{\prime} be the component of T such that $u_{j_{2}} \in V\left(T^{\prime}\right)$, and $T^{\prime \prime}$ be the component of T such that $u_{j_{1}} \in V\left(T^{\prime \prime}\right)$. By Theorem 2.2, $f t d_{1}\left(T^{\prime \prime}\right) \leq 2 n\left(T^{\prime \prime}\right) / 3$. Assume that $f t d_{1}\left(T^{\prime \prime}\right)=2 n\left(T^{\prime \prime}\right) / 3$. By Theorem 2.2, $S=V\left(T^{\prime \prime}\right)-L\left(T^{\prime \prime}\right)$ is a $f t d_{1}\left(T^{\prime \prime}\right)$-set (Note that $\operatorname{deg}_{T^{\prime \prime}}\left(u_{j_{1}}\right)=1$ and $\left.\operatorname{deg}_{T^{\prime \prime}}\left(u_{j_{2}+1}\right)=2\right)$. Then $S \cup\left(V\left(T^{\prime}\right)-V(C)\right)$ is a 1FTD-set in G of cardinality at most $(2 n-2) / 3$, a contradiction. Thus $f t d_{1}\left(T^{\prime \prime}\right)<2 n\left(T^{\prime \prime}\right) / 3$. Let S be a $f t d_{1}\left(T^{\prime \prime}\right)$-set. Suppose that $u_{j_{1}} \in S$. If $u_{j_{2}+1} \notin S$, then $S \cup\left(V\left(T^{\prime}\right)-L\left(T^{\prime}\right)\right)$ is a 1 FTD-set in G, and so $\operatorname{ftd}_{1}(G)<(2 n+1) / 3$, a contradiction, and if $u_{j_{2}+1} \in S$, then $S \cup\left(V\left(T^{\prime}\right)-L\left(T^{\prime}\right)\right) \cup\left\{u_{j_{2}}\right\}$ is a 1FTD-set in G, and so $f t d_{1}(G)<(2 n+1) / 3$, a contradiction. Thus, $u_{j_{1}} \notin S$. If $u_{j_{2}+1} \in S$, then $S \cup\left(V\left(T^{\prime}\right)-V(C)\right)$ is a 1FTDset in G, and so $\operatorname{ftd}_{1}(G)<(2 n+1) / 3$, a contradiction. Thus, $u_{j_{2}+1} \notin S$. Then $S \cup\left(V\left(T^{\prime}\right)-L\left(T^{\prime}\right)\right) \cup\left\{u_{j_{1}}\right\}$ is a 1FTD-set in G, and so $f t d_{1}(G)<(2 n+1) / 3$, a contradiction.

Let $D_{0}=\left\{u_{i} \mid \operatorname{deg}_{G}\left(u_{i}\right)=2\right\}, D_{1}=\left\{u_{i} \mid u_{i}\right.$ is a support vertex of $\left.\mathrm{V}(\mathrm{C})\right\}, D_{2}=$ $\left\{u_{i} \mid u_{i}\right.$ is a not support vertex of $V(C)$ such that $\left.\operatorname{deg}_{G}\left(u_{i}\right)=3\right\}$ and $D_{2}^{\prime}=N\left(D_{2}\right)-$ $V(C)$. If $\left|D_{0}\right| \leq\left|D_{1}\right|$, then $V(C) \cup D_{2}^{\prime}$ is a 1FTD-set G of cardinality at most $2 n / 3$, a contradiction. Thus $\left|D_{1}\right|<\left|D_{0}\right|$. Then by Claims 1 and 2 we obtain that $\left|D_{0}\right|=1$ and $\left|D_{1}\right|=0$. Thus G is obtained from 2-corona of a cycle C by removal of a support vertex and its leaf. Consequently, $G \in \mathcal{G}$.

For the converse, if $G \neq C_{7}$, then by Corollary 3.4, $V(G)-L(G)$ is the unique $f t d_{1}(G)$-set. Now Observation 3.2 implies that $f t d_{1}(G)=(2 n+1) / 3$. The result for C_{7} is obvious.

Theorem 3.7 If G is a unicyclic graph of order $n \geq 4$, then $\gamma_{\times 2}(G) \geq 2 n / 3$.
Proof. Let G be a unicyclic graph of order n, and let S be a $\gamma_{\times 2}(G)$-set. Assume that $C=u_{1} u_{2} \ldots u_{k} u_{1}$ be the cycle of G. If $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \subseteq S$ then S is a double dominating set of the tree $T=G-u_{1} u_{2}$, and thus by a result of Chellali [4], $|S| \geq \gamma_{\times 2}(T) \geq(2 n+2) / 3$. Thus $\gamma_{\times 2}(G) \geq(2 n+2) / 3$. Next assume that $u_{j} \notin S$ for some $1 \leq j \leq k$. Let $T_{1}^{\prime}, T_{2}^{\prime}, \ldots, T_{r}^{\prime}$ be $r \geq 1$ components of $G-u_{j}$. Clearly, $S \cap T_{i}^{\prime}$ is a double dominating set of the tree T_{i}^{\prime} for each $1 \leq i \leq r$. Then by a result of Chellali [4], $|S| \geq(2(n-1)+2 r) / 3 \geq 2 n / 3$ and so $\gamma_{\times 2}(G) \geq 2 n / 3$.

Corollary 3.8 In a unicyclic graph of order $n \geq 4$, every $f t d_{1}$-set is a ftd-set.
Proof. If S is a k FTD-set for a unicyclic graph G for some $k \geq 2$, then $\mid N(x) \cap$ $S \mid=k \geq 2$ for all $x \in V-S$. Thus every vertex of S has a neighbor in S, implying that S is a double dominating set, and thus $|S| \geq \gamma_{\times 2}(G)$. By Theorem 3.7, $|S| \geq 2 n / 3$. Assume that $2 n \equiv 1,2(\bmod 3)$. Then $|S| \geq(2 n+1) / 3$. By Theorem 3.6, $f t d_{1}(G) \leq(2 n+1) / 3$ and so $f t d_{1}(G) \leq f t d_{k}(G)$, for each $k \geq 2$. Next assume that $2 n \equiv 0(\bmod 3)$. Then by Theorem 3.6, $\operatorname{ftd}_{1}(G)<(2 n+1) / 3$ and so $f t d_{1}(G) \leq 2 n / 3$ and $f t d_{1}(G) \leq f t d_{k}(G)$ for each $k \geq 2$.

We are now ready to state the main theorem of this section.
Theorem 3.9 If G is a unicyclic graph of order $n \geq 4$, then $\operatorname{ftd}(G) \leq(2 n+1) / 3$, with equality if and only if $G=C_{7}$ or $G \in \mathcal{G}$.

References

[1] Y. Caro, A. Hansberg and M. A. Henning, Fair domination in graphs, Discrete Math. 312 (2012), 2905-2914.
[2] B. Chaluvaraju, M. Chellali and K. A. Vidya, Perfect k-domination in graphs, Australas. J. Combin. 48 (2010), 175-184.
[3] B. Chaluvaraju and K. A. Vidya, Perfect dominating set graph of a graph, Adv. Appl. Discrete Math. 2 (2008), 49-57.
[4] M. Chellali, A note on the double domination number in trees, AKCE J. Graphs. Combin. 3 (2) (2006), 147-150.
[5] E. J. Cockayne, B. L. Hartnell, S. T. Hedetniemi and R. Laskar, Perfect domination in graphs, J. Combin. Inform. System Sci. 18 (1993), 136-148.
[6] I. J. Dejter, Perfect domination in regular grid graphs, Australas. J. Combin. 42 (2008), 99-114.
[7] I. J. Dejter and A. A. Delgado, Perfect domination in rectangular grid graphs, J. Combin. Math. Combin. Comput. 70 (2009), 177-196.
[8] M. R. Fellows and M. N. Hoover, P erfect domination, Australas. J. Combin. 3 (1991), 141-150.
[9] M. Hajian and N. Jafari Rad, Fair domination number in cactus graphs, Discuss. Math. Graph Theory 39 (2019), 489-503.
[10] F. Harary and T. W. Haynes, Double domination in graphs, Ars Combin. 55 (2000), 201-213.
[11] J. Harant and M. A. Henning, On Double Domination in Graph, Discuss. Math. Graph Theory 25 (1-2) (2005), 29-34.
[12] H. Hatami and P. Hatami, Perfect dominating sets in the Cartesian products of prime cycles, Electron. J. Combin. 14 (2007), 7pp.
[13] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, (1998).
[14] M. A. Henning and A. Yeo, A transition from total domination in graphs to transversals in hypergraphs, Quaestiones Math. 30 (2007), 417-436.
[15] E. C. Maravilla, R. T. Isla and S. R. Canoy Jr., Fair Total Domination in the Join, Corona, and Composition of Graphs, Int. J. Math. Analysis 8 (54) (2014), 2677-2685.

