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Abstract

For k ≥ 1, a k-fair total dominating set (or just kFTD-set) in a graph
G is a total dominating set S such that |N(v) ∩ S| = k for every vertex
v ∈ V −S. The k-fair total domination number ofG, denoted by ftdk(G),
is the minimum cardinality of a kFTD-set. A fair total dominating set,
abbreviated FTD-set, is a kFTD-set for some integer k ≥ 1. The fair
total domination number, denoted by ftd(G), of G that is not the empty
graph, is the minimum cardinality of an FTD-set in G. In this paper, we
present upper bounds for the fair total domination number of trees and
unicyclic graphs, and characterize trees and unicyclic graphs achieving
equality for the upper bounds.
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1 Introduction

For notation and graph theory terminology not given here, we follow [13]. Specifically,
let G be a graph with vertex set V (G) = V of order |V | = n and let v be a vertex
in V . The open neighborhood of v is NG(v) = {u ∈ V | uv ∈ E(G)} and the closed
neighborhood of v is NG[v] = {v}∪NG(v). If the graph G is clear from the context, we
simply write N(v) rather than NG(v). The degree of a vertex v, is deg(v) = |N(v)|.
A vertex of degree one is called a leaf and its neighbor a support vertex. We denote
the set of leaves and support vertices of a graph G by L(G) and S(G), respectively.
A strong support vertex is a support vertex adjacent to at least two leaves, and a
weak support vertex is a support vertex adjacent to precisely one leaf. A double star
is a tree with precisely two vertices that are not leaves. For a set S ⊆ V , its open
neighborhood is the set N(S) = ∪v∈SN(v), and its closed neighborhood is the set
N [S] = N(S) ∪ S. The 2-corona 2 − cor(G) of a graph G is a graph obtained by
joining any vertex of G to a leaf of a path P2. The distance d(u, v) between two
vertices u and v in a graph G is the minimum number of edges of a path from u to
v. The diameter diam(G) of G, is maxu,v∈V (G) d(u, v). A path of length diam(G) is
called a diametrical path. For a vertex v in a rooted tree T , let C(v) denote the set
of children of v, D(v) denote the set of descendants of v and D[v] = D(v)∪{v}. The
maximal subtree at v is the subtree of T induced by D[v], and is denoted by Tv.

A subset S ⊆ V is a dominating set of G if every vertex not in S is adjacent
to a vertex in S. The domination number of G, denoted by γ(G), is the minimum
cardinality of a dominating set of G. A dominating set S in a graph with no isolated
vertex is a total dominating set of G if every vertex in S is adjacent to a vertex in S.
A subset S ⊆ V (G) is a double dominating set of G, if every vertex in V (G)−S has
at least two neighbors in S and every vertex of S has a neighbor in S. The double
domination number γ×2(G) is the minimum cardinality of a double dominating set
of G. The concept of double domination originally defined by Harary and Haynes
[10] and further studied in, for example, [4, 11].

Caro et al. [1] studied the concept of fair domination in graphs. For k ≥ 1, a
k-fair dominating set, abbreviated kFD-set, in G is a dominating set S such that
|N(v) ∩ D| = k for every vertex v ∈ V − D. The k-fair domination number of G,
denoted by fdk(G), is the minimum cardinality of a kFD-set. A kFD-set of G of
cardinality fdk(G) is called a fdk(G)-set. A fair dominating set, abbreviated FD-
set, in G is a kFD-set for some integer k ≥ 1. The fair domination number, denoted
by fd(G), of a graph G that is not the empty graph is the minimum cardinality
of an FD-set in G. An FD-set of G of cardinality fd(G) is called a fd(G)-set. A
perfect dominating set in a graph G is a dominating set S such that every vertex
in V (G) − S is adjacent to exactly one vertex in S. Hence a 1FD-set is precisely
a perfect dominating set. The concept of perfect domination was introduced by
Cockayne et al. in [5], and Fellows et al. [8] with a different terminology which they
called semiperfect domination. This concept was further studied in, for example,
[2, 3, 6, 7, 12].

Maravilla et al. [15] introduced the concept of fair total domination in graphs. For
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an integer k ≥ 1 and a graph G with no isolated vertex, a k-fair total dominating set,
abbreviated kFTD-set, is a total dominating set S ⊆ V (G) such that |N(u)∩S| = k
for every u ∈ V (G) − S. The k-fair total domination number of G, denoted by
ftdk(G), is the minimum cardinality of a kFTD-set. A kFTD-set of G of cardinality
ftdk(G) is called a ftdk(G)-set. A fair total dominating set, abbreviated FTD-set,
in G is a kFTD-set for some integer k ≥ 1. Thus, a fair total dominating set S of a
graph G is a total dominating set S of G such that for every two distinct vertices u
and v of V (G)− S, |N(u)∩ S| = |N(v)∩ S|; that is, S is both a fair dominating set
and a total dominating set of G. The fair total domination number of G, denoted
by ftd(G), is the minimum cardinality of an FTD-set. A fair total dominating set of
cardinality ftd(G) is called a minimum fair total dominating set or a ftd-set of G.

In this paper, we present upper bounds for the fair total domination number
of trees and unicyclic graphs, and characterize trees and unicyclic graphs achieving
equality for the upper bounds. The following observation is easily verified.

Observation 1.1 Any support vertex in a graph G with no isolated vertex belongs
to every kFTD-set for each integer k.

2 Trees

We begin with the following straightforward observation.

Observation 2.1 If a tree T of order n ≥ 4 is the 2-corona of a tree T ′, then
ftd1(T ) = 2n/3. Furthermore, both V (T )−L(T ) and S(T )∪L(T ) are ftd1(T )-sets.

Theorem 2.2 If T is a tree of order n ≥ 3, then ftd1(T ) ≤ 2n/3, with equality if
and only if T is the 2-corona of a tree.

Proof. Let T be a tree of order n ≥ 3. We use induction on n to show that
ftd1(T ) ≤ 2n/3. For the base step, if 3 ≤ n ≤ 6, then it can be easily checked that
ftd1(T ) ≤ 2n/3. Assume that the result holds for all trees T ′ of order n′ < n. Now
consider the tree T of order n ≥ 7. We root T at a leaf v0 of a diametrical path
v0v1 . . . vd, where d = diam(T ) such that deg(vd−1) is as large as possible. If d = 2,
then T is a star, and clearly ftd1(T ) = 2 < 2n/3, since n ≥ 7. If d = 3, then T is a
double-star, and it can be seen that ftd1(T ) = 2 < 2n/3. Thus assume for the next
that d ≥ 4.

Assume that degT (vd−1) ≥ 3. Let T ′ = T − {vd}. By the induction hypothesis,
ftd1(T

′) ≤ 2n′/3 = 2(n − 1)/3. Let S ′ be a ftd1(T
′)-set. By Observation 1.1,

vd−1 ∈ S ′. Then S ′ is a 1FTD-set in T , and so ftd1(T ) < 2n/3. Next assume that
degT (vd−1) = 2. Assume that degT (vd−2) = 2. Let T ′ = T − Tvd−2

. By the induction
hypothesis, ftd1(T

′) ≤ 2n′/3 = 2(n − 3)/3 = 2n/3 − 2. Let S ′ be a ftd1(T
′)-set.

If vd−3 ∈ S ′, then {vd−1, vd−2} ∪ S ′ is a 1FTD-set in T and so ftd1(T ) ≤ 2n/3
and if vd−3 /∈ S ′, then {vd−1, vd} ∪ S ′ is a 1FTD-set in T and so ftd1(T ) ≤ 2n/3.
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Thus assume that degT (vd−2) ≥ 3. Assume that vd−2 is a support vertex. Let
T ′ = T − Tvd−1

. By the induction hypothesis, ftd1(T
′) ≤ 2n′/3 = 2(n− 2)/3. Let S ′

be a ftd1(T
′)-set. By Observation 1.1, vd−2 ∈ S ′. Then {vd−1} ∪ S ′ is a 1FTD-set

in T and so ftd1(T ) ≤ 2n/3. Thus assume that vd−2 is not a support vertex of
T . Let x �= vd−1 be a child of vd−2. Clearly, x is a support vertex of T . By the
choice of the path v0v1 . . . vd, degT (x) = 2. Let y be the leaf adjacent to x, and
T ′ = T − {vd, vd−1, y}. By the induction hypothesis, ftd1(T

′) ≤ 2n′/3 = 2(n− 3)/3.
Let S ′ be a ftd1(T

′)-set. By Observation 1.1, vd−2 ∈ S ′, since vd−2 is a support
vertex of T ′. Then {vd−1, x} ∪ S ′ is a 1FTD-set in T , and thus ftd1(T ) ≤ 2n/3.

We next prove the equality part. We prove by induction on the order n of a tree
T with ftd1(T ) = 2n/3 to show that T is a 2-corona of a tree. For the base step, if
n = 3, then T = P3 which is 2-corona of the tree K1. Assume that the result holds
for all trees T ′ of order n′ < n with ftd1(T

′) = 2n′/3. Now consider the tree T of
order n ≥ 6 with ftd1(T ) = 2n/3. Clearly, 2n ≡ 0 (mod 3). Suppose that T has a
strong support vertex v, and v1, v2 are the leaves adjacent to v. Let T0 = T − v1. By
the first part of the proof, ftd1(T0) ≤ 2n(T0)/3 = 2(n− 1)/3. Let S be a ftd1(T0)-
set. By Observation 1.1, v ∈ S and thus S is a 1FTD-set in T , a contradiction. We
deduce that every support vertex of T is adjacent to precisely one leaf.

We root T at a leaf v0 of a diametrical path v0v1 . . . vd, where d = diam(T ) such
that deg(vd−1) is as large as possible. As it was seen in the first part of the proof, if
2 ≤ d ≤ 3, then T is a star or a double-star, and ftd1(T ) < 2n/3, a contradiction.
Thus, d ≥ 4. Observe that degT (vd−1) = 2, since T has no strong support vertex. We
show that degT (vd−2) = 2. Suppose to the contrary, that degT (vd−2) ≥ 3. Suppose
that vd−2 is a support vertex. Let T ′ = T − Tvd−1

. By the first part of the proof,
ftd1(T

′) ≤ 2n′/3 = 2(n−2)/3. Let S ′ be a ftd1(T
′)-set. By Observation 1.1, vd−2 ∈

S ′. Then {vd−1}∪S ′ is a 1FTD-set in T and so ftd1(T ) ≤ 2(n−2)/3+1 = (2n−1)/3,
a contradiction. Thus assume that vd−2 is not a support vertex of T . Let x �= vd−1

be a child of vd−2, and y be the leaf adjacent to x. Since y plays the same role as
vd, we find that degG(x) = 2. Let T ′ = T − {vd, vd−1, y}. By the first part of the
proof, ftd1(T

′) ≤ 2n′/3 = 2(n − 3)/3. Suppose that ftd1(T
′) = 2n′/3 = 2n/3 − 2.

By the induction hypothesis, T ′ is the 2-corona of a tree. By Observation 2.1,
S(T ′) ∪ L(T ′) is a ftd1(T

′)-set. Then S(T ′) ∪ L(T ′) ∪ {vd−1} is a 1FTD-set in
T , since x, vd−2 ∈ S(T ′) ∪ L(T ′). Then ftd1(T ) ≤ 2n/3 − 1, a contradiction. Thus
ftd1(T

′) < 2n′/3 = 2n/3−2. Let S ′ be a ftd1(T ′)-set. By Observation 1.1, vd−2 ∈ S ′,
since vd−2 is a support vertex of T ′. Then {vd−1, x} ∪ S ′ is a 1FTD-set in T and so
ftd1(T ) < 2n/3, a contradiction. We conclude that degT (vd−2) = 2.

Let T ′ = T − Tvd−2
. By the first part of the proof, ftd1(T

′) ≤ 2n′/3 = 2n/3− 2.
Assume that ftd1(T

′) < 2n′/3 = 2n/3 − 2. Let S ′ be a ftd1(T
′)-set. If vd−3 ∈ S ′,

then {vd−1, vd−2} ∪ S ′ is a 1FTD-set in T and so ftd1(T ) < 2n/3, a contradiction.
Thus we assume that vd−3 /∈ S ′. Then {vd−1, vd} ∪ S ′ is a 1FTD-set in T and
so ftd1(T ) < 2n/3, a contradiction. Thus ftd1(T

′) = 2n′/3 = 2n/3 − 2. By the
induction hypothesis T ′ is the 2-corona of a tree. Assume that degT (vd−3) = 2. Then
vd−4 is a support vertex of T ′. By Observation 2.1, V (T ′)− L(T ′) is a ftd1(T

′)-set.
Thus ((V (T ′)−L(T ′))−{vd−4})∪{vd−2, vd−1} is a 1FTD-set in T and so ftd1(T ) ≤
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2n/3−1, a contradiction. Thus degT (vd−3) ≥ 3. Assume that vd−3 is a support vertex
of T . Then vd−3 is a support vertex of T ′. Let z be the leaf adjacent to vd−3. By
Observation 2.1, S(T ′)∪L(T ′) is a ftd1(T ′)-set. Thus S(T ′)∪L(T ′)−{z}∪{vd−2, vd−1}
is a 1FTD-set in T and so ftd1(T ) ≤ 2n/3− 1, a contradiction. Thus vd−3 is not a
support vertices of T ′. Now, it is easy to check that T is the 2-corona of a tree, since
T ′ is the 2-corona of a tree. The converse follows by Observation 2.1.

We next present a constructive characterization of trees T with ftd1(T ) = (2n−
1)/3. For this purpose, we define a family of trees as follows: Let T be the class of
all trees T that can be obtained from a sequence T1, T2, . . . , Tk = T , of trees with
T1 = P5, and if k ≥ 2, then Ti+1 is obtained from Ti by applying one of the following
Operations O1 or O2, for i = 1, 2, . . . , k − 1.

Operation O1. Let v be a vertex of a tree Ti with deg(v) ≥ 2. Then Ti+1 is
obtained from Ti by adding a path P3 and joining v to a leaf of P3.

Operation O2. Let v be a support vertex of a tree Ti and let u be a leaf adjacent
to v. Then Ti+1 is obtained from Ti by adding a vertex u′ and a path P2, joining u
to u′ and joining v to a leaf of P2.

The following is straightforward.

Observation 2.3 Let T ∈ T be a tree of order n. Then
(1) 2n ≡ 1 (mod 3).
(2) |L(T )| = (n + 1)/3.
(3) T has no strong support vertex. Furthermore, no pair of support vertices is
adjacent.

Lemma 2.4 If T ∈ T , then every 1FTD-set in T contains every vertex of T of
degree at least 2.

Proof. Let T ∈ T . Then T is obtained from a sequence T1, T2, . . . , Tk = T ,
of trees with T1 = P5 and if k ≥ 2, then Ti+1 is obtained from Ti by one of the
operations O1 or O2, for i = 1, 2, . . . , k − 1. We prove the result by an induction on
k. For the base step of the induction, let k = 1, and so T = P5. Clearly, every vertex
of P5 of degree at least two is contained in every 1FTD-set of T . Assume that the
result holds for any k′ with 2 ≤ k′ < k. Now let T = Tk. Clearly, T is obtained from
Tk−1 by applying one of the Operations O1 or O2. Let S be a 1FTD-set for T .

Assume that T is obtained from Tk−1 by applying the Operation O1. Let x1x2x3

be a path and x1 be joined to y ∈ V (Tk−1), where degTk−1
(y) ≥ 2. By Observation

1.1, x2 ∈ S. Observe that {x1, x3} ∩ S �= ∅. If x1 �∈ S, then x3 ∈ S and y �∈ S.
Then S − {x2, x3} is a 1FTD-set for Tk−1 that does not contain y, a contradiction
to the induction hypothesis. Thus assume that x1 ∈ S. Assume that y �∈ S. Then
NTk−1

(y)∩S = ∅. Clearly, y is not a support vertex. Let y1 ∈ NTk−1
(y), and T ′ be the

component of Tk−1 − y containing y1. Then (S −{x1, x2, x3})∪ V (T ′) is a 1FTD-set
for Tk−1 that does not contain y, a contradiction to the induction hypothesis. Thus
y ∈ S. Clearly, S−{x1, x2, x3} is a 1FTD-set for Tk−1. By the induction hypothesis,
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S − {x1, x2, x3} contains every vertex of Tk−1 of degree at least two. Consequently,
S contains every vertex of Tk of degree at least two.

Next assume that Tk is obtained from Tk−1 by applying the Operation O2. Let
u be a support vertex of the tree Tk−1 and let v be the leaf of Tk−1 adjacent to u.
Let P2 : x1x2 be a path and x3 be a vertex that x1 is joined to u, and x3 is joined
to v according to the Operation O2. By Observation 1.1, x1, v ∈ S. Then u ∈ S,
and so S − {x1, v} is a 1FTD-set for Tk−1. By the induction hypothesis, S − {x1, v}
contains all vertices of Tk−1 of degree at least two. Consequently, S contains every
vertex of Tk of degree at least two.

Corollary 2.5 If T ∈ T is a tree of order n, then
(1) V (T )− L(T ) is the unique ftd1(T )-set.
(2) ftd1(T ) = (2n− 1)/3.

Theorem 2.6 If T is a tree of order n ≥ 3, then ftd1(T ) = (2n− 1)/3 if and only
if T ∈ T .

Proof. Let T be a tree of order n ≥ 3 with ftd1(T ) = (2n − 1)/3. Clearly,
2n ≡ 1 (mod 3). The proof is by induction on n. From 2n ≡ 1 (mod 3), we
obtain that n ≥ 5. For the base step of the induction, if n = 5, then it is easily
seen that T = P5 ∈ T . Assume that the result holds for all trees T ′ of order
n′ < n with ftd1(T

′) = (2n′ − 1)/3. Now consider the tree T of order n ≥ 6. We
root T at a leaf v0 of a diametrical path v0v1 . . . vd, where d = diam(T ) such that
degT (vd−1) is as large as possible. If d = 2 then T is a star, a contradiction, since
ftd1(T ) = 2 �= (2n − 1)/3. If d = 3, then T is a double star, a contradiction, since
ftd1(T ) = 2 �= (2n − 1)/3. Thus d ≥ 4. Suppose that T has a strong support
vertex x, and assume that x1 and x2 are two leaves adjacent to x. Let T0 = T − x1.
By Theorem 2.2, ftd1(T0) ≤ 2n(T0)/3 = 2(n − 1)/3. Let S be a ftd1(T0)-set. By
Observation 1.1, x ∈ S and thus S is a 1FTD-set in T , as well. This contradicts the
fact that ftd1(T ) = (2n− 1)/3. Thus we assume next that T has no strong support
vertex. In particular, degT (vd−1) = 2. We consider the following cases.

Case 1. degT (vd−2) ≥ 3. We show that vd−2 is not a support vertex of T . Suppose
that vd−2 is a support vertex. Let x be the leaf adjacent to vd−2, and T ′ = T −Tvd−1

.
By Theorem 2.2, ftd1(T

′) ≤ 2n′/3 = 2(n − 2)/3. Suppose that ftd1(T
′) = 2n′/3.

By Theorem 2.2, T is a 2-corona of a tree. Thus by Observation 2.1, S(T ′) ∪ L(T ′)
is a ftd1(T

′)-set. Then S(T ′) ∪ L(T ′)− {x} ∪ {vd−1} is a ftd1(T )-set of cardinality
at most 2(n − 2)/3, a contradiction. We deduce that ftd1(T

′) < 2n′/3. Let S ′ be
a ftd1(T

′)-set. By Observation 1.1, vd−2 ∈ S ′. Thus {vd−1} ∪ S ′ is a 1FTD-set
in T , and thus ftd1(T ) < 2n′/3 + 1 = (2n − 1)/3, a contradiction. Thus assume
that vd−2 is not a support vertex of T . Let x �= vd−1 be a child of vd−2, and y be
a child of x. Since y plays the same role as vd, we find that degT (x) = 2. Let
T ′ = T − {vd, vd−1, y}. By Theorem 2.2, ftd1(T

′) ≤ 2n′/3 = 2n/3 − 2. Thus
ftd1(T

′) ≤ (2n′ − 1)/3 = (2n − 1)/3 − 2, since 2n ≡ 1 (mod 3). Suppose that
ftd1(T

′) < (2n′ − 1)/3 = (2n− 1)/3− 2. Let S ′ be a ftd1(T
′)-set. By Observation
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1.1, vd−2 ∈ S ′, since vd−2 is a support vertex of T ′. Then {vd−1, x}∪S ′ is a 1FTD-set
in T , and so ftd1(T ) < (2n − 1)/3, a contradiction. Thus ftd1(T

′) = (2n′ − 1)/3.
By the induction hypothesis, T ′ ∈ T . Now T is obtained from T ′ by Operation O2,
and so T ∈ T .

Case 2. degT (vd−2) = 2. We show that degT (vd−3) ≥ 3. Suppose that degT (vd−3)
= 2. Let T ′ = T − Tvd−3

. By Theorem 2.2, ftd1(T
′) ≤ 2n′/3 = 2(n − 4)/3 =

(2n−2)/3−2. Let S ′ be a ftd1(T
′)-set. If vd−4 ∈ S ′, then {vd−1, vd}∪S ′ is a 1FTD-

set in T of cardinality at most 2(n − 2)/3, a contradiction. Thus vd−4 /∈ S ′. Then
{vd−1, vd−2}∪S ′ is a 1FTD-set in T of cardinality at most 2(n−2)/3, a contradiction.
We deduce that degT (vd−3) ≥ 3. Let T ′ = T − Tvd−2

. By Theorem 2.2, ftd1(T
′) ≤

2n′/3 = 2(n − 3)/3 = 2n/3 − 2. Then ftd1(T
′) ≤ (2n′ − 1)/3 = (2n − 1)/3 − 2,

since 2n ≡ 1 (mod 3). Suppose that ftd1(T
′) < (2n′ − 1)/3 = (2n − 1)/3 − 2. Let

S ′ be a ftd1(T
′)-set. If vd−3 ∈ S ′, then {vd−1, vd−2} ∪ S ′ is a 1FTD-set in T , and

so ftd1(T ) < (2n − 1)/3, a contradiction. Thus vd−3 /∈ S ′. Then {vd−1, vd} ∪ S ′ is
a 1FTD-set in T , and so ftd1(T ) < (2n − 1)/3, a contradiction. We deduce that
ftd1(T

′) = (2n′ − 1)/3. By the induction hypothesis, T ′ ∈ T . Now T is obtained
from T ′ by Operation O1, and so T ∈ T .

The converse follows by Corollary 2.5.

Lemma 2.7 (Chellali [4]) If T is a nontrivial tree of order n, with � leaves and s
support vertices, then γ×2(T ) ≥ (2n+ �− s+ 2)/3.

Proposition 2.8 In a tree T , every ftd1-set is a ftd-set.

Proof. If S is a kFTD-set for T for some k ≥ 2, then |N(x) ∩ S| = k ≥ 2
for all x ∈ V (T ) − S. Thus every vertex of S has a neighbor in S, implying that
S is a double dominating set, and thus |S| ≥ γ×2(T ). By Lemma 2.7, we have
γ×2(T ) ≥ (2n + 2)/3. By Theorem 2.2, ftd1(T ) ≤ 2n/3. Thus, ftd(T ) < ftdk(T )
for each k ≥ 2.

We are now ready to state the main theorems of this section.

Theorem 2.9 If T is a tree of order n ≥ 3, then ftd(T ) ≤ 2n/3, with equality if
and only if T is the 2-corona of a tree.

Theorem 2.10 If T is a tree of order n ≥ 3, then ftd(T ) = (2n− 1)/3 if and only
if T ∈ T .

We propose characterization of trees T of order n ≥ 3 with ftd(T ) = (2n− 2)/3
as a problem.

3 Unicyclic graphs

The following is easily verified.
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Observation 3.1 For n ≥ 3, ftd(Cn) = γt(Cn) unless n ≡ 3 (mod 4) and n ≥ 5 in
which case ftd(Cn) = γt(Cn) + 1.

For a unicyclic graph G with the cycle C, any vertex of degree 2 on C is called
the special vertex of G. We prove that ftd1(G) ≤ (2n+1)/3 for any unicyclic graphs
G of order n, and then present a constructive characterization of unicyclic graphs
G of order n with ftd1(G) = (2n + 1)/3. For this purpose, we define a family of
unicyclic graphs as follows. Let C1 be the class of all graphs G that can be obtained
from the 2-corona of a cycle Ck (k ≥ 3) by removing precisely one support vertex v
and the leaf adjacent to v. Let G be the class of all unicyclic graphs G that can be
obtained from a sequence G1, G2, . . . , Gk = G, of unicyclic graphs, where G1 ∈ C1,
and if k ≥ 2, then Gi+1 is obtained from Gi by one of the following Operations O1

or O2, for i = 1, 2, . . . , k − 1.

Operation O1. Let v be a vertex of a unicyclic graph Gi with degGi
(v) ≥ 2 such

that v is not a special vertex. Then Gi+1 is obtained from Gi by adding a path P3

and joining v to a leaf of P3.

Operation O2. Let v be a support vertex of a unicyclyc graph Gi and let u be a
leaf adjacent to v. Then Gi+1 is obtained from Gi by adding a vertex u′ and a path
P2, joining u to u′ and joining v to a leaf of P2.

The following observation is straightforward.

Observation 3.2 (1) Each graph G ∈ G has precisely one special vertex.
(2) If G ∈ G is a unicyclic graph of order n, then |L(G)| = (n− 1)/3.
(3) If C is the cycle of a graph G ∈ G, then no vertex of C is a support vertex of G.

Lemma 3.3 If G ∈ G, then every 1FTD-set in G contains every vertex of G of
degree at least 2.

Proof. Let G ∈ G. Then G is obtained from a sequence G1, G2, . . . , Gk = G, of
unicyclic graphs, where G1 ∈ C1, and if k ≥ 2, then Gi+1 is obtained from Gi by one
of the operations O1 or O2, for i = 1, 2, . . . , k−1. Let C be the cycle of G. We prove
the result by induction on k. For the base step of the induction, let k = 1. Clearly,
V (G1) − L(G1) is contained in every 1FTD-set of G. Assume that the result holds
for each k′ with 2 ≤ k′ < k. Now let G = Gk. Clearly, G is obtained from Gk−1 by
applying one of the Operations O1 or O2. Let S be a 1FTD-set for G.

Assume that G is obtained from Gk−1 by applying Operation O1. Let x1x2x3 be
a path and x1 be joined to y ∈ V (Gk−1), where degGk−1

(y) ≥ 2 and y is not a special
vertex of Gk−1. By Observation 1.1, x2 ∈ S. Observe that {x3, x1}∩S �= ∅. If x1 �∈ S
then x3 ∈ S and y �∈ S. Then S − {x2, x3} is a 1FTD-set for Gk−1 that does not
contain y, a contradiction to the induction hypothesis. Thus assume that x1 ∈ S.
Assume that y �∈ S. Then NGk−1

(y)∩S = ∅. Clearly, y is not a support vertex. Note
that Gk−1−y has a component G′ with V (G′)∩V (C) = ∅. Let y1 ∈ NGk−1

(y)∩V (G′).
Then (S − {x1, x2, x3}) ∪ V (G′) is a 1FTD-set for Gk−1 that does not contain y, a
contradiction to the induction hypothesis. Thus y ∈ S. Clearly, S − {x1, x2, x3} is
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a 1FTD-set for Gk−1. By the induction hypothesis S − {x1, x2, x3} contains every
vertex of Gk−1 of degree at least two. Consequently, S contains every vertex of Gk

of degree at least two.

Next assume that G is obtained from Gk−1 by applying Operation O2. Let u be a
support vertex of a unicyclic graph Gk−1 and let v be the leaf adjacent to u. Let x1x2

be a path and x1 be joined to u, and let x3 be a vertex that is joined to v according
to the Operation O2. By Observation 1.1, x1, v ∈ S. Thus u ∈ S, and so S−{x1} is
a 1FTD-set for Gk−1. By the induction hypothesis, S contains all vertices of Gk−1 of
degree at least two. Consequently, S contains every vertex of Gk of degree at least
two.

As a consequence of Observation 3.2 (2) and Lemma 3.3, we obtain the following.

Corollary 3.4 If G ∈ G is a unicyclic graph of order n, then V (G) − L(G) is the
unique ftd1(G)-set.

We recall the following result of [14].

Theorem 3.5 ([14]) For n ≥ 3, γt(Cn) = �n/2�+ n/4� − �n/4�.

Theorem 3.6 If G is a unicyclic graph of order n ≥ 4, then ftd1(G) ≤ (2n+ 1)/3,
with equality if and only if G = C7 or G ∈ G.

Proof. Let G be a unicyclic graph of order n ≥ 4. We first use induction on n
to show that ftd1(G) ≤ (2n + 1)/3. For the base step of the induction note that if
n = 4, then G = C4 or G is obtained from C3 by adding a leaf to a vertex of C3,
and we can see that ftd1(G) = 2 ≤ (2n + 1)/3. Assume that the result holds for
all unicyclic graphs G′ of order n′ < n. Now consider the unicyclic graph G of order
n ≥ 5. Let C = u1, u2, .., uk, u1 be the cycle of G. If G = C, then by Observation 3.1,
ftd1(G) ≤ γt(G) + 1, and so by Theorem 3.5 ftd1(G) ≤ (2n(G) + 1)/3 if n �= 5, 6.
However, for n = 5, 6, we have ftd1(G) ≤ γt(G) ≤ (2n(G) + 1)/3. Thus assume
that G �= C. Let vd be a vertex of G such that d(vd, C) is as large as possible and
deg(vd−1) is as large as possible, where vd−1 is the neighbor of vd on the shortest
path from vd to C. Let v0v1 . . . vd be the shortest path from vd to C, where v0 is the
common vertex of this path with C.

Assume that d ≥ 3. Assume that degG(vd−1) ≥ 3. Let G′ = G − {vd}. By the
induction hypothesis, ftd1(G

′) ≤ (2n′ +1)/3 = (2n− 1)/3. Let S ′ be a ftd1(G
′)-set.

By Observation 1.1, vd−1 ∈ S ′. Clearly, S ′ is a 1FTD-set in G, and so ftd1(G) <
(2n + 1)/3. Thus assume that degG(vd−1) = 2. Assume that degG(vd−2) = 2. Let
G′ = G − {vd, vd−1, vd−2}. By the induction hypothesis, ftd1(G

′) ≤ (2n′ + 1)/3 =
(2n−5)/3. Let S ′ be a ftd1(G′)-set. If vd−3 ∈ S ′, then {vd−1, vd−2}∪S ′ is a 1FTD-set
in G, and so ftd1(G) ≤ (2n+1)/3, and if vd−3 /∈ S ′, then {vv−1, vd}∪S ′ is a 1FTD-set
in G and so ftd1(G) ≤ (2n+ 1)/3. Thus assume that degG(vd−2) ≥ 3. Assume that
vd−2 is a support vertex. Let G′ = G − {vd−1, vd}. By the induction hypothesis,
ftd1(G

′) ≤ (2n′ + 1)/3 = (2n− 3)/3. Let S ′ be a ftd1(G
′)-set. By Observation 1.1,
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vd−2 ∈ S ′. Then {vd−1} ∪ S ′ is a 1FTD-set in G and so ftd1(T ) ≤ (2n+ 1)/3. Thus
assume that vd−2 is not a support vertex of G. Let x �= vd−1, vd−3 be a support vertex
of G such that x ∈ N(vd−2). By the choice of the path v0v1 . . . vd, (the part “deg(vd−1)
is as large as possible”) degG(x) = 2. Let y be the leaf adjacent to x, and G′ =
G− {vd, vd−1, y}. By the induction hypothesis ftd1(G

′) ≤ (2n′ + 1)/3 = (2n− 5)/3.
Let S ′ be a ftd1(G

′)-set. By Observation 1.1, vd−2 ∈ S ′, since vd−2 is a support
vertex of G′. Then {vd−1, x} ∪ S ′ is a 1FTD-set in G, and so ftd1(G) ≤ (2n+ 1)/3.

Next assume that d = 2. Assume that deg(ui) ≥ 3 for every i with 1 ≤ i ≤ k.
Let D = S(G)− V (C). Clearly, vd−1 ∈ D. Then n ≥ 2k+ |D|. Clearly, V (C)∪D is
a 1FTD-set in G of cardinality k+ |D| ≤ (2n+1)/3. Thus assume that degG(uj) = 2
for some j ∈ {1, 2, . . . , k}. Assume that uj and uj+1 are two consecutive vertices
on C such that degG(uj) = 2 and degG(uj+1) ≥ 3. Then T = G − uj−1uj is a tree.
Let S ′ be a ftd1(T )-set. By Theorem 2.2, ftd1(T

′) ≤ 2n/3. Clearly, T is not a
2-corona of a tree, and so by Theorem 2.2, ftd1(T ) < 2n/3. Observe that uj+1 is
either a strong support vertex of T or is adjacent to at least one support vertex of
T . Thus by Observation 2.3, T /∈ T . Then by Theorem 2.6, ftd1(T ) < (2n − 1)/3
and so ftd1(T ) ≤ (2n − 2)/3. By Observation 1.1, uj+1 ∈ S ′. If | S ′ ∩ {uj, uj−1} |∈
{0, 2}, then S ′ is a 1FTD-set for G of cardinality at most 2n/3. Assume that |
S ′ ∩ {uj, uj−1} |= 1. If uj−1 ∈ S ′, then S ′ ∪ {uj} is a 1FTD-set for G of cardinality
at most (2n+ 1)/3, and so ftd1(G) ≤ (2n + 1)/3. Thus assume that uj ∈ S ′. Then
uj+1 is not adjacent to a support vertex of T and so uj+1 is a strong support vertex
of T . Let z �= uj be a leaf adjacent to uj+1. Then S − {uj} ∪ {z} is a 1FTD-set for
G of cardinality at most (2n+ 1)/3, and so ftd1(G) ≤ (2n+ 1)/3.

Now assume that d = 1. If degG(ui) ≥ 3 for each i with 1 ≤ i ≤ k, then V (C) is a
1FTD-set in G of cardinality at most n/2, and so ftd1(G) ≤ n

2
< (2n+1)/3. Assume

deg(ui) = 2 for some i ∈ {1, 2, . . . , k}. Let uj and uj+1 be two consecutive vertices on
C such that degG(uj) = 2 and degG(uj+1) ≥ 3. Then T = G−uj−1uj is a tree. Let S

′

be a ftd1(T )-set. By Theorem 2.2, ftd1(T ) ≤ 2n/3. Clearly, T is not a 2-corona of
a tree, since uj+1 is a strong support vertex of T . By Theorem 2.2, ftd1(T ) < 2n/3.
Then by Observation 2.3, T /∈ T . By Theorem 2.6, ftd1(T ) < (2n − 1)/3 and so
ftd1(T ) ≤ (2n− 2)/3. By Observation 1.1, uj+1 ∈ S ′. If | S ′ ∩ {uj, uj−1} |∈ {0, 2},
then S ′ is a 1FTD-set for G of cardinality at most (2n−2)/3, and so ftd1(G) ≤ (2n+
1)/3. Thus assume that | S ′∩{uj, uj−1} |= 1. Assume that uj−1 ∈ S ′. Then S ′∪{uj}
is a 1FTD-set for G of cardinality at most (2n+ 1)/3, and so ftd1(G) ≤ (2n+ 1)/3.
Next assume that uj ∈ S ′. Let z �= uj be a leaf adjacent to uj+1. Then S ′−{uj}∪{z}
is a 1FTD-set for G of cardinality at most (2n+ 1)/3, and so ftd1(G) ≤ (2n+ 1)/3.

We next prove the equality part. We prove by induction on the order n of
a unicyclic graph G �= C7 with ftd1(G) = (2n + 1)/3 to show that G ∈ G. If
4 ≤ n ≤ 7, then by a directly checking of all possible unicyclic graphs, we find that
G ∈ G. Assume that the result holds for all unicyclic graph G′ �= C7 of order n′ < n
with ftd1(G

′) = (2n′ + 1)/3. Now consider a unicyclic graph G �= C7 of order n
with ftd1(G) = (2n + 1)/3. Clearly, 2n + 1 ≡ 0 (mod 3). Suppose that G has a
strong support vertex v, and assume that v1 and v2 are two leaves adjacent to v. Let
G′ = G− v1. By the first part of the proof, ftd1(G

′) ≤ (2n(G′) + 1)/3 = (2n− 1)/3.
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Let S be a ftd1(G
′)-set. By Observation 1.1, v ∈ S and thus S is a 1FTD-set in G,

as well. This contradicts the fact that ftd1(G) = (2n+1)/3. Thus we assume for the
next that G has no strong support vertex. Let C = u1, u2, .., uk, u1 be the cycle of G.
By Observation 3.1, G �= C. Let vd be a vertex of G such that d(vd, C) is as large as
possible, deg(vd−1) is as large as possible, and degG(v0) is as large as possible, where
v0v1 . . . vd is the shortest path from vd to C, where v0 ∈ C is the common vertex of
this path with C.

Suppose that d = 1. Assume that degG(ui) ≥ 3 for each i with 1 ≤ i ≤ k.
Then V (C) is a 1FTD-set G of cardinality at most n/2, a contradiction. Thus
degG(uj) = 2 for some j with 1 ≤ j ≤ k. Let D0 = {ui| degG(ui) = 2} and
D1 = {ui|ui is a support vertex of V (C)}. We show that if degG(uj) = 2, then
degG(uj+1) = 3 and degG(uj−1) = 3. Suppose that degG(uj) = degG(uj+1) = 2 for
some 1 ≤ j ≤ k. Among such vertices choose uj and uj+1 such that degG(uj−1) = 3.
Let T = G − uj. By Theorem 2.2, ftd1(T ) ≤ 2n(T )/3. Assume that ftd1(T ) =
2n(T )/3. By Theorem 2.2, V (T )− L(T ) is a ftd1(T )-set (Note that degT (uj−1) = 2
and degT (uj+1) = 1). Then V (T )− L(T ) is a 1FTD-set in G of cardinality at most
(2n − 2)/3, a contradiction. Thus ftd1(T ) < 2n(T )/3. Let S be a ftd1(T )-set. By
Observation 1.1, uj−1, uj+2 ∈ S. If uj+1 /∈ S, then S is a 1FTD-set in G of cardinality
at most (2n − 2)/3, a contradiction. Thus uj+1 ∈ S. Then S ∪ {uj} is a 1FTD-set
in G, and so ftd1(G) < (2n + 1)/3, a contradiction. Thus if degG(uj) = 2 then
degG(uj+1) = 3 and degG(uj−1) = 3. Thus | D0 |≤| D1 |, and so V (C) is a 1FTD-set
in G of cardinality at most 2n/3, a contradiction. Thus, assume that d ≥ 2. Clearly,
degG(vd−1) = 2, since G has no strong support vertex. We consider the following
cases.

Case 1. d ≥ 4. Assume that degG(vd−2) ≥ 3. Suppose that vd−2 is a support
vertex. Let x be the leaf adjacent to vd−2, and G′ = G − {vd−1, vd}. By the first
part of the proof, ftd1(G

′) ≤ (2n(G′) + 1)/3 = (2n − 3)/3. Let S ′ be a ftd1(G
′)-

set. By Observation 1.1, vd−2 ∈ S ′. Then S ′ ∪ {vd−1} is a 1FTD-set in G and so
ftd1(G) < (2n+1)/3, a contradiction. Thus assume that vd−2 is not a support vertex
of G. Let x �= vd−1, vd−3 be a support vertex of G such that x ∈ N(vd−2). By the
choice of the path v0v1 . . . vd , (the part “deg(vd−1) is as large as possible”), we have
degG(x) = 2. Let y be the leaf adjacent to x. Let G′ = G − {vd, vd−1, y}. By the
first part of the proof, ftd1(G

′) ≤ (2n(G′) + 1)/3 = (2n + 1)/3 − 2. If ftd1(G
′) <

(2n(G′) + 1)/3 = (2n + 1)/3 − 2 and S ′ is a ftd1(G
′)-set, then by Observation 1.1,

vd−2 ∈ S ′, since vd−2 is a support vertex of G′. Then {vd−1, x} ∪ S ′ is a 1FTD-set in
G and so ftd1(T ) < (2n + 1)/3, a contradiction. Thus ftd1(G

′) = (2n(G′) − 1)/3.
By the induction hypothesis, G′ ∈ G. Thus G is obtained from G′ by Operation O2

and so G ∈ G.
Assume next that degG(vd−2) = 2. Suppose that degG(vd−3) = 2. Let G′ =

G − {vd, vd−1, vd−2, vd−3}. By the first part of the proof, ftd1(G
′) ≤ (2n(G′) +

1)/3 = (2n − 7)/3. Let S ′ be a ftd1(G
′)-set. If vd−4 ∈ S ′, then {vd−1, vd} ∪ S ′ is a

1FTD-set in G of cardinality at most (2n− 1)/3 , a contradiction. Thus vd−4 /∈ S ′,
and so {vd−1, vd−2} ∪ S ′ is a 1FTD-set in G of cardinality at most (2n − 1)/3, a
contradiction. We deduce that degG(vd−3) ≥ 3. Let G′ = G − {vd, vd−1, vd−2}. By
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the first part of the proof, ftd1(G
′) ≤ (2n(G′) + 1)/3 = (2n − 5)/3. Suppose that

ftd1(G
′) < (2n(G′) + 1)/3 = (2n− 5)/3. Let S ′ be a ftd1(G

′)-set. If vd−3 ∈ S ′, then
{vd−1, vd−2} ∪ S ′ is a 1FTD-set in G, and so ftd1(G) < (2n+ 1)/3, a contradiction.
Thus vd−3 /∈ S ′. Then {vd−1, vd}∪S ′ is a 1FTD-set in G, and so ftd1(G) < (2n−1)/3,
a contradiction. Thus ftd1(G

′) = (2n(G′) + 1)/3. By the induction hypothesis,
G′ ∈ G. Clearly, vd−3 is not a special vertex of G′, since d ≥ 4. Thus G is obtained
from G′ by Operation O1 and so G ∈ G.

Case 2. d = 3. Observe that degG(v2) = 2, since G has no strong support vertex.

Assume that degG(v1) ≥ 3. Suppose that v1 is a support vertex. Let G′ =
G−{v2, v3}. By the first part of the proof, ftd1(G

′) ≤ (2n(G′) + 1)/3 = (2n− 3)/3.
Let S ′ be a ftd1(G

′)-set. By Observation 1.1, v1 ∈ S ′. Then S ′ ∪ {v2} is a 1FTD-set
in G, and so ftd1(G) < (2n + 1)/3, a contradiction. Thus assume that v1 is not a
support vertex of G. Let x �= v2, v0 be a support vertex of G such that x ∈ N(v1).
By the choice of the path v0v1 . . . vd, (the part “deg(vd−1) is as large as possible”)
degG(x) = 2. Let y be the leaf adjacent to x. Let G′ = G − {v3, v2, y}. By the
first part of the proof, ftd1(G

′) ≤ (2n(G′) + 1)/3 = (2n + 1)/3 − 2. If ftd1(G
′) <

(2n(G′) + 1)/3 = (2n + 1)/3 − 2 and S ′ is a ftd1(G
′)-set, then by Observation 1.1,

v1 ∈ S ′, since v1 is a support vertex of G′. Then {v2, x} ∪S ′ is a 1FTD-set in G and
so ftd1(T ) < (2n + 1)/3, a contradiction. Thus ftd1(G

′) = (2n(G′)− 1)/3. By the
induction hypothesis G′ ∈ G. Then G is obtained from G′ by Operation O2, and so
G ∈ G.

Next assume that degG(v1) = 2. We show that deg(v0) ≥ 4. Suppose that
deg(v0) = 3. Let G′ = G − {v1, v2, v3}. Assume that ftd1(G

′) = (2n(G′) + 1)/3.
By the induction hypothesis G′ ∈ G. By Observation 3.2(1), v0 is the unique
special vertex of G′, since degG′(v0) = 2. We show that degG′(x) = 3, for each
x ∈ {u1, . . . , uk}−{v0}. Assume that degG′(uj) ≥ 4 for some uj ∈ {u1, . . . , uk}−{v0}.
If there is a vertex w ∈ V (G) − C such that d(w,C) = d(w, uj) = 3, then w plays
the same role of vd, and thus deg(uj) = 3, a contradiction. Thus there is no vertex
w ∈ V (G)− C such that d(w,C) = d(w, uj) = 3. Then any vertex of N(uj)− C is
a leaf or a weak support vertex. Assume that N(uj) − C contains t1 leaves and t2
support vertices, where t1 + t2 ≥ 2. By Observation 3.2(3), t1 = 0, since G′ ∈ G.
Thus t2 ≥ 2. Let z1 and z2 be two weak support vertices in N(uj)− C. Let z′1 and
z′2 be the leaves adjacent to z1 and z2, respectively. (We switch for a while to G.)
Let G′′ = G−{z1, z′1, z′2}. By the first part of the proof, ftd1(G

′′) ≤ (2n(G′′) + 1)/3.
Suppose that ftd1(G

′′) = (2n(G′) + 1)/3. By the induction hypothesis, G′′ ∈ G.
Clearly, degG′′(uj) ≥ 3, since v0 is the unique special vertex of G′, a contradiction
(by Observation 3.2(1)). Thus ftd1(G

′′) < (2n(G′) + 1)/3 = (2n − 5)/3. Let S ′′ be
a ftd1(G

′′)-set. By Observation 1.1, uj ∈ S ′′. Then S ′′ ∪ {z1, z2} is a 1FTD-set of
G, and so ftd1(G) < (2n(G) + 1)/3, a contradiction. We deduce that degG′(x) = 3
for each x ∈ {u1, . . . , uk} − {v0}. Note that by Observation 3.2, ui is not a support
vertex for each i with 1 ≤ i ≤ k in G′, since G′ ∈ G. (We switch for a while to
G.) Let F = ∪k

i=1(NG(ui)) − {u1, . . . ., uk}. Clearly, |F | = k, since degG′(ui) = 3
for each ui ∈ {u1, . . . , uk} − {v0} and degG(v0) = 3. Let F = {u′

1, u
′
2, . . . , u

′
k}.

Clearly, degG(u
′
i) ≥ 2, for each i with 1 ≤ i ≤ k, since ui is not a support vertex
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for 1 ≤ i ≤ k in G′. Clearly, u′
i is not a strong support vertex of G for 1 ≤ i ≤ k.

If u′
i is adjacent to a support vertex u′′

i ∈ V (G) − C, for some integer i, then since
the leaf of u′′

i plays the role of v3, we obtain that deg(u′
i) = 2. Since degG(u

′
i) ≥ 2,

for each i with 1 ≤ i ≤ k, we find that degG(u
′
i) = 2, for each i with 1 ≤ i ≤ k.

Let F ′ = ∪r
i=1NG(u

′
i)− {u1, . . . ., uk}. Clearly, |F ′| = k, since degG(u

′
i) = 2, for each

u′
i ∈ {u′

1, . . . , u
′
k}. Clearly, F ∪ F ′ is a 1FTD-set in G of cardinality at most 2n/3, a

contradiction. We deduce that ftd1(G
′) < (2n(G′) + 1)/3. Let S ′ be a ftd1(G

′)-set.
If v0 ∈ S ′, then S ′ ∪ {v1, v2} is a 1FTD-set in G, and so ftd1(G) < (2n + 1)/3,
a contradiction. Thus assume that v0 /∈ S ′. Then S ′ ∪ {v2, v3} is a 1FTD-set
in G, and so ftd1(G) < (2n + 1)/3, a contradiction. Thus deg(v0) ≥ 4. Let
G′ = G − {v1, v2, v3}. By the first part of the proof, ftd1(G

′) ≤ (2n(G′) + 1)/3.
Assume that ftd1(G

′) < (2n(G′) + 1)/3. Let S ′ be a ftd1(G
′)-set. If v0 ∈ S ′, then

S = S ′ ∪ {v1, v2} is a 1FTD-set for G and so ftd1(G) < (2n+ 1)/3, a contradiction.
Thus assume that v0 /∈ S ′. Then S = S ′ ∪ {v2, v3} is a 1FTD-set for G and so
ftd1(G) < (2n + 1)/3, a contradiction. Hence, ftd1(G

′) = (2n(G′) + 1)/3. By the
induction hypothesis, G′ ∈ G. Since deg(v0) ≥ 4, v0 is not a special vertex of G′.
Thus G is obtained from G′ by Operation O1 and so G ∈ G.

Case 3. d = 2. We show that degG(v0) = 3. Suppose that degG(v0) ≥ 4. Assume
that v0 is a support vertex. Let G′ = G − {v1, v2}. By the first part of the proof,
ftd1(G

′) ≤ (2n(G′) + 1)/3 = (2n− 3)/3. Let S ′ be a ftd1(G
′)-set. By Observation

1.1, v0 ∈ S ′. Then S ′ ∪ {vd−1} is a 1FTD-set in G, and so ftd1(G) < (2n + 1)/3,
a contradiction. Thus assume that v0 is not a support vertex of G. Let x �= v1
be a support vertex of G such that x ∈ N(v0) − V (C). By the choice of the path
v0v1 . . . vd, (the part “deg(vd−1) is as large as possible”), degG(x) = 2. Let y be the
leaf adjacent to x, and G′ = G−{v2, v1, y}. By the first part of the proof, ftd1(G

′) ≤
(2n(G′)+1)/3 = (2n+1)/3−2. Let ftd1(G

′) < (2n(G′)+1)/3 = (2n+1)/3−2. Let
S ′ be a ftd1(G

′)-set. By Observation 1.1, v0 ∈ S ′, since v0 is a support vertex of G′.
Then {v1, x} ∪ S ′ is a 1FTD-set in G, and so ftd1(T ) < (2n+ 1)/3, a contradiction.
Thus ftd1(G

′) = (2n(G′)−1)/3. By the induction hypothesis, G′ ∈ G, a contradiction
by Observation 3.2 (3), since v0 is a support vertex of G′. Thus degG(v0) = 3.
Observe that G has no strong support vertex. If ui is adjacent to a support vertex u′

i

of N(ui)−C for some i, then the leaf of u′
i plays the role of v2, and thus deg(ui) = 3.

Thus we may assume that degG(ui) ≤ 3 for each i with i = 1, 2, . . . , k. Assume that
degG(ui) = 3 for each i with 1 ≤ i ≤ k. Let D1 be the set of support vertices of
C and D2 be the set of non-support vertices of C. Let D′

2 = N(D2) − C. Then
S = V (C) ∪ D′

2 is a 1FTD-set in G of cardinality at most 2n/3, a contradiction.
Thus degG(uj) = 2 for some j with 1 ≤ j ≤ k.

Claim 1.: If degG(uj) = 2 for some j with 1 ≤ j ≤ k, then degG(uj+1) = 3 and
degG(uj−1) = 3

Proof of Claim 1. Assume that degG(uj) = degG(uj+1) = 2 for some j with 1 ≤
j ≤ k, and among such vertices choose uj such that degG(uj−1) = 3. Let T = G−uj .
By Theorem 2.2, ftd1(T ) ≤ 2n(T )/3. Assume that ftd1(T ) = 2n(T )/3. By Theorem
2.2, V (T ) − L(T ) is a ftd1(T )-set (Note that degT (uj−1) = 2 and degT (uj+1) =
1). Then V (T ) − L(T ) is a 1FTD-set in G of cardinality at most (2n − 2)/3, a
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contradiction. Thus we assume that ftd1(T ) < 2n(T )/3. Let S be a ftd1(T )-set. If
| {uj−1, uj+1} ∩ S |= 1, then S is a 1FTD-set in G of cardinality at most (2n− 2)/3,
a contradiction. Thus | {uj−1, uj+1} ∩ S |∈ {0, 2}. If | {uj−1, uj+1} ∩ S |= 0, then
S ∪ {uj+1} a 1FTD-set in G and so ftd1(T ) < (2n + 1)/3, a contradiction. Thus
| {uj−1, uj+1}∩S |= 2. Now S ∪{uj} a 1FTD-set in G and so ftd1(G) < (2n+1)/3,
a contradiction. �

Claim 2.: If degG(uj1) = degG(uj2) = 2 for some j1 and j2 with j1 < j2, then
there is an integer j′ with j1 ≤ j′ ≤ j2 such that uj′ is a support vertex of G.

Proof of Claim 2. Assume that degG(uj1) = degG(uj2) = 2 for some j1 and
j2 with j1 < j2. By Claim 1, j1 ≤ j2 − 2. Among such vertices choose uj1 and
uj2 such that there is no vertex ui with deg(ui) = 2 and j1 < i < j2. Suppose
to the contrary, that ui is not a support vertex of G for each i with j1 < i < j2.
By Claim 1, degG(uj1−1) = degG(uj2+1) = 3. Let T = G − uj1uj1+1 − uj2uj2+1,
T ′ be the component of T such that uj2 ∈ V (T ′), and T ′′ be the component of
T such that uj1 ∈ V (T ′′). By Theorem 2.2, ftd1(T

′′) ≤ 2n(T ′′)/3. Assume that
ftd1(T

′′) = 2n(T ′′)/3. By Theorem 2.2, S = V (T ′′)− L(T ′′) is a ftd1(T
′′)-set (Note

that degT ′′(uj1) = 1 and degT ′′(uj2+1) = 2). Then S ∪ (V (T ′)− V (C)) is a 1FTD-set
in G of cardinality at most (2n− 2)/3, a contradiction. Thus ftd1(T

′′) < 2n(T ′′)/3.
Let S be a ftd1(T

′′)-set. Suppose that uj1 ∈ S. If uj2+1 /∈ S, then S∪(V (T ′)−L(T ′))
is a 1FTD-set in G, and so ftd1(G) < (2n + 1)/3, a contradiction, and if uj2+1 ∈ S,
then S ∪ (V (T ′)− L(T ′)) ∪ {uj2} is a 1FTD-set in G, and so ftd1(G) < (2n+ 1)/3,
a contradiction. Thus, uj1 /∈ S. If uj2+1 ∈ S, then S ∪ (V (T ′)− V (C)) is a 1FTD-
set in G, and so ftd1(G) < (2n + 1)/3, a contradiction. Thus, uj2+1 /∈ S. Then
S ∪ (V (T ′) − L(T ′)) ∪ {uj1} is a 1FTD-set in G, and so ftd1(G) < (2n + 1)/3, a
contradiction. �

Let D0 = {ui| degG(ui) = 2}, D1 = {ui|ui is a support vertex of V(C)}, D2 =
{ui|ui is a not support vertex of V (C) such that degG(ui) = 3} and D′

2 = N(D2)−
V (C). If | D0 |≤| D1 |, then V (C) ∪ D′

2 is a 1FTD-set G of cardinality at most
2n/3, a contradiction. Thus |D1| < |D0|. Then by Claims 1 and 2 we obtain that
| D0 |= 1 and | D1 |= 0. Thus G is obtained from 2-corona of a cycle C by removal
of a support vertex and its leaf. Consequently, G ∈ G.

For the converse, if G �= C7, then by Corollary 3.4, V (G) − L(G) is the unique
ftd1(G)-set. Now Observation 3.2 implies that ftd1(G) = (2n+1)/3. The result for
C7 is obvious.

Theorem 3.7 If G is a unicyclic graph of order n ≥ 4, then γ×2(G) ≥ 2n/3.

Proof. Let G be a unicyclic graph of order n, and let S be a γ×2(G)-set. Assume
that C = u1u2 . . . uku1 be the cycle of G. If {u1, u2, . . . , uk} ⊆ S then S is a double
dominating set of the tree T = G − u1u2, and thus by a result of Chellali [4],
|S| ≥ γ×2(T ) ≥ (2n+2)/3. Thus γ×2(G) ≥ (2n+2)/3. Next assume that uj /∈ S for
some 1 ≤ j ≤ k. Let T ′

1, T
′
2, . . . , T

′
r be r ≥ 1 components of G− uj. Clearly, S ∩ T ′

i

is a double dominating set of the tree T ′
i for each 1 ≤ i ≤ r. Then by a result of

Chellali [4], |S| ≥ (2(n− 1) + 2r)/3 ≥ 2n/3 and so γ×2(G) ≥ 2n/3.
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Corollary 3.8 In a unicyclic graph of order n ≥ 4, every ftd1-set is a ftd-set.

Proof. If S is a kFTD-set for a unicyclic graph G for some k ≥ 2, then |N(x) ∩
S| = k ≥ 2 for all x ∈ V − S. Thus every vertex of S has a neighbor in S,
implying that S is a double dominating set, and thus |S| ≥ γ×2(G). By Theorem
3.7, |S| ≥ 2n/3. Assume that 2n ≡ 1, 2(mod 3). Then |S| ≥ (2n + 1)/3. By
Theorem 3.6, ftd1(G) ≤ (2n+1)/3 and so ftd1(G) ≤ ftdk(G), for each k ≥ 2. Next
assume that 2n ≡ 0(mod 3). Then by Theorem 3.6, ftd1(G) < (2n + 1)/3 and so
ftd1(G) ≤ 2n/3 and ftd1(G) ≤ ftdk(G) for each k ≥ 2.

We are now ready to state the main theorem of this section.

Theorem 3.9 If G is a unicyclic graph of order n ≥ 4, then ftd(G) ≤ (2n + 1)/3,
with equality if and only if G = C7 or G ∈ G.
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