Cycle decompositions of the Cartesian product of cycles

S.A. Tapadia Y.M. Borse B.N.Waphare
Department of Mathematics
Saviribai Phule Pune University
Pune-411007
India
tapadiasandhya@gmail.com ymborse11@gmail.com waphare@yahoo.com

Abstract

It is known that the r-dimensional hypercube Q_{r} can be decomposed into r-cycles and into $2 r$-cycles when r is even. We generalize these results to the class of the Cartesian product of cycles. We also prove that the k-ary r-cube Q_{r}^{k}, which is the Cartesian product of $r k$-cycles, can be decomposed into ($t k r / 2$)-cycles if t divides k and 4 divides t. Consequently, a decomposition of Q_{r} into $4 r$-cycles for any even $r \geq 4$, is obtained.

1 Introduction

The graphs considered in this paper are finite, simple and undirected. By a k-cycle we mean a cycle of length k, denoted by C_{k}. A decomposition of a graph G is a collection $H_{1}, H_{2}, \ldots, H_{r}$ of edge-disjoint subgraphs of G, such that every edge of G belongs to exactly one H_{i}. If all the subgraphs in the decomposition of G are isomorphic to a graph H, we say that G can be decomposed into H or G has an H-decomposition. The Cartesian product of two graphs G_{1} and G_{2} is a graph $G_{1} \square G_{2}$ with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$, where vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent if and only if either $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2}, or $u_{2}=v_{2}$ and u_{1} is adjacent to v_{1}.

An r-dimensional torus is the Cartesian product of r cycles. The torus $C_{k_{1}} \square C_{k_{2}} \square$ $\ldots \square C_{k_{r}}$ is a graph with $k_{1} k_{2} \ldots k_{r}$ vertices and $r k_{1} k_{2} \ldots k_{r}$ edges. In particular, the torus $\underbrace{C_{k} \square C_{k} \square \cdots \square C_{k}}_{r \text { factors }}$ is the k-ary r-cube, denoted by Q_{r}^{k}. The r-dimensional hypercube Q_{r} is the Cartesian product of r copies of the complete graph K_{2}. If r is even, then $Q_{r / 2}^{4}=Q_{r}$. The multidimensional tori, k-ary r-cubes and hypercubes are popular interconnection networks (see [9,13]).

Graph decomposition has been the focus of a great deal of research. In particular, cycle decompositions of the Cartesian product of cycles have a long history. In 1973, Kotzig [12] proved that the Cartesian product of two cycles is decomposable into Hamiltonian cycles. Foregger [11] guaranteed such a decomposition for the Cartesian product of three cycles while Aubert and Schneider [2] generalised this result for the Cartesian product of a 4-regular graph and a cycle. Alspach et al. [1] extended the result further and proved that the Cartesian product of a finite number of cycles has a Hamiltonian decomposition. The existence of Hamiltonian decompositions of the hypercube Q_{r}, for even r, is an immediate consequence of this result. Furthermore, decompositions of the hypercubes and Cartesian product of even cycles into regular, connected, subgraphs are studied in [3,5-8,16]. Recently, Bogdanowicz [4] obtained some interesting results on the decomposition of the Cartesian product of directed cycles into cycles of equal lengths.

In this paper, we mainly focus on cycle decompositions of the Cartesian product of cycles.

Note that the hypercube Q_{r} has 2^{r} vertices and $r 2^{r-1}$ edges. For even r, Ramras [15] proved that Q_{r} can be decomposed into r-cycles while Mollard and Ramras [14] obtained a decomposition of Q_{r} into $2 r$-cycles and posed the following problem.

Problem 1.1 ([14]) For which $k \geq 4$ dividing $r 2^{r-1}$ does the hypercube Q_{r} have a decomposition into k-cycles?

We consider this problem for the class of r - dimensional tori.
Problem 1.2 For which $k \geq 4$ dividing $r k_{1} k_{2} \ldots k_{r}$ does the torus $C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{r}}$ have a decomposition into k-cycles?

El-Zanati et al. [10] proved that the graph $C_{2^{k_{1}}} \square C_{2^{k_{2}}} \square \cdots \square C_{2^{k_{r}}}$ can be decomposed into 2^{t}-cycles for any given t with $2 \leq t \leq k_{1}+k_{2}+\cdots+k_{r}$. As a consequence, they proved the existence of a cycle decomposition of Q_{r} into 2^{t}-cycles, where r is even and $2 \leq t \leq r$ and thus solved Problem 1.1 for the case $k=2^{t}$.

In this paper, we obtain the following results.
Theorem 1.3 Let $r \geq 2, k_{i} \geq 3$ for $1 \leq i \leq r$ be integers such that k_{i} is even for at least two values of i and let G be the Cartesian product of cycles $C_{k_{1}}, C_{k_{2}}, \ldots, C_{k_{r}}$. Then G can be decomposed into cycles of length $2 r$ and further, an edge can be selected from each of these $2 r$-cycles to form a perfect matching of G.

Theorem 1.4 Let $r \geq 2, k_{i} \geq 3$ for $1 \leq i \leq r$ be integers such that k_{i} is even for at least two values of i and let G be the Cartesian product of cycles $C_{k_{1}}, C_{k_{2}}, \ldots, C_{k_{r}}$. Let $k \in\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$ be an even integer. Then G can be decomposed into cycles of length $k r$ and further, $k / 2$ edges can be chosen from each of these $k r$-cycles to form a perfect matching of G.

For even $r, Q_{r}=Q_{r / 2}^{4}$. Hence it follows that Q_{r} can be decomposed into r-cycles and into $2 r$-cycles from Theorems 1.3 and 1.4 respectively.

Theorem 1.5 Let t, k be positive integers such that 4 divides t and t divides k. Then the k-ary r-cube Q_{r}^{k} can be decomposed into (tkr/2)-cycles. Moreover, from each of these cycles, $k t / 4$ edges can be selected such that they together form a perfect matching of Q_{r}^{k}.

Corollary 1.6 For even $r \geq 4$, the hypercube Q_{r} can be decomposed into $4 r$-cycles.
This solves the Problem 1.1 for the case $k=4 r$.
As the structure of the Cartesian product of cycles is recursive, use of induction is effective in proving the results for such graphs. The proofs of all our results are based on induction on the number r of cycles involved in the product. In Section 2, we prove a general induction step that is used in the proofs of all the above three theorems. In Section 3, we prove Theorems 1.3 and 1.4 while Theorem 1.5 is proved in Section 4.

2 General Induction Step

We first discuss the nature of the Cartesian product of two cycles for better understanding and set some notations which are used in the proofs.

We use the notation $[n]$ for the set $\{1,2, \ldots, n\}$. In what follows, by product we mean the Cartesian product.

Notation 2.1 Consider the Cartesian product $C_{m} \square C_{n}$ of two cycles C_{m} and C_{n}. Label the vertices of C_{m} by the set $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ so that v_{p} is adjacent to $v_{p+1}(\bmod m)$ and label the vertices of C_{n} by $\{1,2, \ldots, n\}$ so that j is adjacent to $j+1(\bmod n)$. So the vertex set of $C_{m} \square C_{n}$ is given by $\left\{\left(v_{p}, j\right): p \in[m]\right.$ and $\left.j \in[n]\right\}$. Denote (v_{p}, j) by v_{p}^{j} for convenience; the subscripts are computed modulo m with representatives in $[m]$ and superscripts are computed modulo n with representatives in $[n]$.

By the definition of the Cartesian product of graphs, the edge set of $C_{m} \square C_{n}$ consists of n copies of the cycle C_{m} (say) $C_{m}^{1}, C_{m}^{2}, \ldots, C_{m}^{n}$ and the edges joining the corresonding vertices in C_{m}^{j} and C_{m}^{j+1}, for each $j \in[n]$. Therefore the vertex v_{p}^{j} in C_{m}^{j} is adjacent to the corresponding vertex v_{p}^{j+1} in C_{m}^{j+1}, for all $p \in[m]$. For even m, let M_{1} and M_{2} be the disjoint perfect matchings of C_{m} with $M_{1}=$ $\left\{v_{p} v_{p+1}: p=1,3, \ldots, m-1\right\}$ and $M_{2}=\left\{v_{p} v_{p+1}: p=2,4, \ldots, m\right\}$. Let M_{1}^{j} and M_{2}^{j} be the matchings of the cycle C_{m}^{j} corresponding to M_{1} and M_{2}, respectively. Let e_{p}^{j} be the edge $v_{p}^{j} v_{p+1}^{j}$ of C_{m}^{j} and f_{p}^{j} be the cross edge $v_{p}^{j} v_{p}^{j+1}$ for $p \in[m]$ and $j \in[n]$. (See Figure 1 for better understanding.)

We prove the general induction step followed by its illustration.

Figure 1: $C_{m} \square C_{n}$

Theorem 2.2 (General Induction step). Let H be a graph which has a decomposition into cycles $C_{k_{1}}, C_{k_{2}}, \ldots, C_{k_{t}}$ and each $C_{k_{i}}$ contains a set M_{i} of $m_{i} \geq 0$ edges, such that $\bigcup_{i=1}^{t} M_{i}$ is a perfect matching of H. Let C_{r} be a cycle of length r. Then the graph $H \square C_{r}$ has a decomposition into cycles $C_{k_{1}+2 m_{1}}^{j}, C_{k_{2}+2 m_{2}}^{j}, \ldots, C_{k_{t}+2 m_{t}}^{j}$, for $1 \leq j \leq r$. Further, each $C_{k_{i}+2 m_{i}}^{j}$ contains a set F_{i}^{j} of m_{i} edges such that $\bigcup_{j=1}^{r} \bigcup_{i=1}^{t} F_{i}^{j}$ is a perfect matching of $H \square C_{r}$.

Proof. Let $G=H \square C_{r}$. The graph G consists of r copies $H^{1}, H^{2}, \ldots, H^{r}$ of H such that the vertices of H^{j} are adjacent to the corresponding vertices of H^{j+1} for $j \in[r]$, where the addition in the superscripts is taken modulo r. Let $C_{k_{i}}^{j}$ be the k_{i}-cycle in H^{j} corresponding to the cycle $C_{k_{i}}$ of H and let M_{i}^{j} be the matching of $C_{k_{i}}^{j}$ corresponding to the matching M_{i} of $C_{k_{i}}$, where $i \in[t]$ and $j \in[r]$. Then M_{i}^{j} consists of m_{i} edges $e_{i 1}^{j}, e_{i 2}^{j}, \ldots, e_{i m_{i}}^{j}$ of $C_{k_{i}}^{j}$. Let $M^{j}=\bigcup_{i=1}^{t} M_{i}^{j}=\left\{e_{i l}^{j}: l \in\left[m_{i}\right] ; i \in[t]\right\}$. Then M^{j} is a perfect matching of H^{j}. Let $u_{i l}^{j}$ and $v_{i l}^{j}$ be the end vertices of the edge $e_{i l}^{j}, l \in\left[m_{i}\right]$. Let $f_{i l}^{j}$ be the edge of G with end vertices $u_{i l}^{j}$ and $u_{i l}^{j+1}$ while $h_{i l}^{j}$ be the edge of G joining $v_{i l}^{j}$ to $v_{i l}^{j+1}$.
For every i and j, we construct a $\left(k_{i}+2 m_{i}\right)$-cycle $C_{k_{i}+2 m_{i}}^{j}$ in G from the cycle $C_{k_{i}}^{j}$ by deleting the matching M_{i}^{j} and adding the matching M_{i}^{j+1} of $C_{k_{i}}^{j+1}$ and also adding the edges $f_{i l}^{j}$ and $h_{i l}^{j}$ between these matchings. Let

$$
C_{k_{i}+2 m_{i}}^{j}=\left(C_{k_{i}}^{j}-M_{i}^{j}\right) \cup M_{i}^{j+1} \cup\left\{f_{i l}^{j}: l \in\left[m_{i}\right]\right\} \cup\left\{h_{i l}^{j}: l \in\left[m_{i}\right]\right\} \text { (see Figure 2). }
$$

Thus we have constructed $\left(k_{i}+2 m_{i}\right)$-cycles $C_{k_{1}+2 m_{1}}^{j}, C_{k_{2}+2 m_{2}}^{j}, \ldots, C_{k_{t}+2 m_{t}}^{j}$ of G, for each $j \in[r]$.
We prove that these cycles are edge-disjoint. For every i, the cycles $C_{k_{i}}^{1}, C_{k_{i}}^{2}, \ldots, C_{k_{i}}^{r}$ are vertex-disjoint and so are edge-disjoint in G. Further, for every j, the cycles

Figure 2: Construction of $\left(k_{i}+2 m_{i}\right)$-cycles in $G=H \square C_{r}$
$C_{k_{1}}^{j}, C_{k_{2}}^{j}, \ldots, C_{k_{t}}^{j}$ are edge-disjoint in H^{j} and their matchings $M_{1}^{j}, M_{2}^{j}, \ldots, M_{t}^{j}$ are vertex-disjoint. This implies that the cycles $C_{k_{1}+2 m_{1}}^{j}, C_{k_{2}+2 m_{2}}^{j}, \ldots, C_{k_{t}+2 m_{t}}^{j}$ are edgedisjoint in G. Thus the cycles $C_{k_{i}+2 m_{i}}^{j}$, where $i \in[t]$ and $j \in[r]$, are edge-disjoint. These cycles together decompose the graph G as

$$
\begin{aligned}
\sum_{j=1}^{r} \sum_{i=1}^{t}\left|C_{k_{i}+2 m_{i}}^{j}\right| & =r\left[\left(k_{1}+k_{2}+\cdots+k_{t}\right)+2\left(m_{1}+m_{2}+\cdots+m_{t}\right)\right] \\
& =r[|E(H)|+|V(H)|]=|E(G)|
\end{aligned}
$$

Now we need to select m_{i} edges from each cycle $C_{k_{i}+2 m_{i}}^{j}$ that will form a perfect matching of G. Let $F_{i}^{j}=M_{i}^{j+1}$, for $i \in[t], j \in[r]$. Since $\bigcup_{i=1}^{t} M_{i}^{j}$ is a perfect
matching of H^{j} and the graphs H^{j} are vertex-disjoint,

$$
M=\bigcup_{j=1}^{r} \bigcup_{i=1}^{t} F_{i}^{j}=\bigcup_{j=1}^{r} \bigcup_{i=1}^{t} M_{i}^{j+1}=\bigcup_{j=1}^{r} \bigcup_{i=1}^{t} M_{i}^{j}
$$

is a matching in G. In fact, M is a perfect matching of the graph G since

$$
|M|=\sum_{j=1}^{r} \sum_{i=1}^{t}\left|M_{i}^{j}\right|=\sum_{j=1}^{r} \frac{|V(H)|}{2}=r \frac{|V(H)|}{2}=\frac{|V(G)|}{2} .
$$

This completes the proof.
Illustration 2.3 Let $H=C_{4}$. Then H trivially has a cycle decomposition. Let $\left\{e_{1}, e_{2}\right\}$ be a perfect matching of H. The graph $H \square C_{3}$ consists of three copies C_{4}^{1}, C_{4}^{2} and C_{4}^{3} of C_{4} and the edges joining the corresonding vertices in C_{4}^{j} and $C_{4}^{j+1(\bmod 3)}$, for each $j \in[3]$. This graph decomposes into 8-cycles $C_{8}^{1}, C_{8}^{2}, C_{8}^{3}$ such that each C_{8}^{j} contains the matching $\left\{e_{1}^{j+1(\bmod 3)}, e_{2}^{j+1(\bmod 3)}: j \in[3]\right\}$. Clearly, the set $\left\{e_{1}^{j}, e_{2}^{j}: j \in[3]\right\}$ forms a perfect matching of $H \square C_{3}$.

Figure 3: Decomposition of $C_{4} \square C_{3}$ into 8-cycles

3 Decomposition into small cycles

In this section, we prove Theorems 1.3 and 1.4. As the proofs are based on induction on the number of cycles involved in the product, we need to prove the basis steps for both the theorems.

The following lemma serves as the basis step for Theorem 1.3.
Lemma 3.1 Suppose C_{m} and C_{n} are cycles of even length. Then the graph $C_{m} \square C_{n}$ can be decomposed into 4-cycles. Moreover, from each of these 4-cycles, one edge can be selected such that the collection of these edges together forms a perfect matching of $C_{m} \square C_{n}$.

Proof. Recall Notation 2.1. The vertices of the graph $G=C_{m} \square C_{n}$ are labelled by $\left(v_{p}, j\right)=v_{p}^{j}$, where $v_{p} \in V\left(C_{m}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $j \in V\left(C_{n}\right)=\{1,2, \ldots, n\}$. The graph G consists of n copies $C_{m}^{1}, C_{m}^{2}, \ldots, C_{m}^{n}$ of the cycle C_{m}, where the corresponding vertex v_{p}^{j} in C_{m}^{j} is adjacent to v_{p}^{j+1} in C_{m}^{j+1}, for all $p \in[m]$. Let M_{1} and M_{2} be the disjoint perfect matchings of C_{m} with $M_{1}=\left\{v_{p} v_{p+1}: p=1,3, \ldots, m-1\right\}$ and $M_{2}=\left\{v_{p} v_{p+1}: p=2,4, \ldots, m\right\}$. Let M_{1}^{j} and M_{2}^{j} be the matchings of the cycle C_{m}^{j} corresponding to M_{1} and M_{2}, respectively. Let e_{p}^{j} be the edge $v_{p}^{j} v_{p+1}^{j}$ of C_{m}^{j} and let f_{p}^{j} be the cross edge $v_{p}^{j} v_{p}^{j+1}$ for $p \in[m]$ and $j \in[n]$.
We construct 4-cycles which decompose the graph G by using the four edges e_{p}^{j}, e_{p}^{j+1}, f_{p}^{j} and f_{p+1}^{j}. Note that for every p and j, these four edges induce a 4 -cycle in G. So in terms of the vertices, the 4 -cycles are $\left(v_{p}^{j}, v_{p+1}^{j}, v_{p+1}^{j+1}, v_{p}^{j+1}, v_{p}^{j}\right)$.

For both p and j odd, denote such a 4 -cycle by Z_{p}^{j} while for both p and j even, denote it by W_{p}^{j}. It follows that the cycles Z_{p}^{j} are mutually vertex-disjoint. Similarly, the cycles W_{p}^{j} are mutually vertex-disjoint. Let $Z=\left\{Z_{p}^{j}: p=1,3, \ldots m-1 ; j=\right.$ $1,3, \ldots n-1\}$ and $W=\left\{W_{p}^{j}: p=2,4, \ldots m ; j=2,4, \ldots n\right\}$ be the collections of 4-cycles. Then $|V(Z)|=|V(W)|=4 \times \frac{m}{2} \frac{n}{2}=m n=|V(G)|$. So the union of all cycles in Z forms a spanning subgraph of G. Similar is the case for W. Further, from the construction it is clear that each W_{p}^{j} is edge-disjoint from all the cycles Z_{p}^{j}. Therefore the collection of 4-cycles $Z \cup W$ decomposes the graph G. An illustration of such a decomposition is given in Figure 4.

Figure 4: Decomposition of $C_{6} \square C_{4}$ into 4-cycles

Further, we select a set of edges

$$
\mathcal{M}_{1}=\left\{e_{p}^{j} \in E\left(Z_{p}^{j}\right): p=1,3, \ldots m-1 ; j=1,3, \ldots n-1\right\}
$$

from the cycles Z_{p}^{j} while from the cycles W_{p}^{j}, we select

$$
\mathcal{M}_{2}=\left\{e_{p}^{j} \in E\left(W_{p}^{j}\right): p=2,4, \ldots m ; j=2,4, \ldots n\right\}
$$

Clearly, $\mathcal{M}_{1} \cup \mathcal{M}_{2}$ forms a matching of G. In fact,

$$
\left|\mathcal{M}_{1}\right|+\left|\mathcal{M}_{2}\right|=\frac{m n}{4}+\frac{m n}{4}=\frac{m n}{2}=\frac{\left|V\left(C_{m} \square C_{n}\right)\right|}{2} .
$$

Therefore $\mathcal{M}_{1} \cup \mathcal{M}_{2}$ forms a perfect matching of G.
We now give a formal Proof of Theorem 1.3.
Proof. We proceed by induction on the number of cycles r. The case $r=2$ follows from Lemma 3.1. Suppose $r \geq 3$. Assume that the statement holds for the product of $r-1$ cycles. Write G as $G=H \square C$, where C is a cycle and H is the product of $r-1$ cycles, at least two of which are even. H is 2(r-1)-regular graph and so $|E(H)|=(r-1)|V(H)|$. By induction, H can be decomposed into cycles of length $2(r-1)$ (say) $Z_{1}, Z_{2}, \ldots, Z_{t}$, where $t=\frac{|E(H)|}{2(r-1)}=\frac{|V(H)|}{2}$. Moreover, each Z_{i} contains an edge e_{i} such that $\left\{e_{i}: i=1,2, \ldots, t\right\}$ is a perfect matching of H. By Theorem 2.2, G can be decomposed into $2 r$-cycles $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{t^{\prime}}$. Then $t^{\prime}=\frac{|E(G)|}{2 r}=\frac{2 r|V(G)|}{2} \frac{1}{2 r}=$ $\frac{|V(H)| \dot{\mid} C \mid}{2}=t|C|$. Moreover, every Γ_{i} contains an edge f_{i} such that $\left\{f_{i}: i=1,2, \ldots, t^{\prime}\right\}$ is a perfect matching of G.

The following lemma is the basis step for the proof of Theorem 1.4.
Lemma 3.2 Let C_{m} and C_{n} be cycles of even lengths and let $l \in\{2 m, 2 n\}$. Then the graph $C_{m} \square C_{n}$ can be decomposed into l-cycles. Moreover, from each of these lcycles, $l / 4$ edges can be selected such that the collection of these edges form a perfect matching of $C_{m} \square C_{n}$.

Proof. Without loss of generality, we construct a decomposition of $C_{m} \square C_{n}$ into cycles of length $2 m$.
Recall Notation 2.1. The $2 m$-cycles in the decomposition of $C_{m} \square C_{n}$ are as follows.

$$
\begin{aligned}
& \text { For odd } j \text {, let } Z^{j}=M_{1}^{j} \cup M_{2}^{j+1} \cup\left\{f_{p}^{j}: p \in[m]\right\} \\
& \text { and for even } j \text {, let } W^{j}=M_{1}^{j} \cup M_{2}^{j+1} \cup\left\{f_{p}^{j}: p \in[m]\right\} \text {. }
\end{aligned}
$$

The $2 m$-cycles Z^{j} (similarly, W^{j}) are mutually vertex-disjoint and together form a 2-regular spanning subgraph (say) F_{1} (similarly, F_{2}) of $C_{m} \square C_{n}$. Moreover, from the construction, it follows that F_{1} and F_{2} are edge-disjoint. Now

$$
\left|E\left(F_{1}\right)\right|+\left|E\left(F_{2}\right)\right|=\frac{n}{2} \times 2 m+\frac{n}{2} \times 2 m=2 m n=\left|E\left(C_{m} \square C_{n}\right)\right|
$$

Figure 5: Decomposition of $C_{6} \square C_{4}$ into 12-cycles

Thus the collection $F_{1} \cup F_{2}=\left\{Z^{j}: j=1,3, \ldots n-1\right\} \cup\left\{W^{j}: j=2,4, \ldots n\right\}$ gives an edge decomposition of $C_{m} \square C_{n}$ into $2 m$-cycles.
Now we select the set of edges $\mathcal{M}_{1}=\left\{f_{p}^{j}=v_{p}^{j} v_{p}^{j+1}: p=1,3, \ldots m-1\right\}$ from Z^{j}, where $j=1,3, \ldots n-1$ and the set of edges $\mathcal{M}_{2}=\left\{f_{p}^{j}=v_{p}^{j} v_{p}^{j+1}: p=2,4, \ldots m\right\}$ from W^{j}, where $j=2,4, \ldots n$. As the cycles Z^{j} (similarly, W^{j}) are vertex-disjoint, \mathcal{M}_{1} (similarly, \mathcal{M}_{2}) is a matching in $C_{m} \square C_{n}$. Also, note that in \mathcal{M}_{1}, we have chosen the edges from odd levels while in \mathcal{M}_{2}, the edges are taken from even levels. So $\mathcal{M}_{1} \cup \mathcal{M}_{2}$ forms a matching of $C_{m} \square C_{n}$. In fact, $\left|\mathcal{M}_{1}\right|+\left|\mathcal{M}_{2}\right|=\frac{m n}{4}+\frac{m n}{4}=\frac{m n}{2}=$ $\frac{\left|V\left(C_{m} \square C_{n}\right)\right|}{2}$. So $\mathcal{M}_{1} \cup \mathcal{M}_{2}$ is a perfect matching of $C_{m} \square C_{n}$, as desired. (See Figure 5 for illustration.)

We are all set to prove Theorem 1.4.
Proof of Theorem 1.4. The proof is by induction on the number of cycles r in the product. Without loss of generality, assume that k_{1}, k_{2} are even. Suppose $r=2$. Then $G=C_{k_{1}} \square C_{k_{2}}$ and $k \in\left\{k_{1}, k_{2}\right\}$. Now the result follows by taking $l=2 k$ in the above lemma. Suppose $r \geq 3$. Let $H=C_{k_{1}} \square C_{k_{2}} \square \ldots \square C_{k_{r-1}}$. Then $G=H \square C_{k_{r}}$. By induction hypothesis, H can be decomposed into cycles of length $k(r-1)$ (say) $Z_{1}, Z_{2}, \ldots, Z_{t}$, where $t=|E(H)| / k(r-1)$. Moreover, each Z_{i} contains $k / 2$ edges $e_{i 1}, e_{i 2}, \ldots, e_{i k / 2}$ such that $\left\{e_{i j}: i \in[t], j \in[k / 2]\right\}$ is a perfect matching of H. By Theorem 2.2, G can be decomposed into $k r$-cycles $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{t^{\prime}}$ with $t^{\prime}=t k_{r}$. Further, every Γ_{i} contains $k / 2$ edges $f_{i 1}, f_{i 2}, \ldots, f_{i k / 2}$ such that $\left\{f_{i j}: i \in\left[t^{\prime}\right], j \in\right.$ $[k / 2]\}$ is a perfect matching of G.

4 Decomposition of Q_{r}^{k}

In this section, we prove Theorem 1.5 using induction on r. The non-trivial part of the proof is to prove the basis step. The basis step consists of two parts; the first part deals with the decomposition of $C_{k} \square C_{k}$ into $t k$-cycles and the second deals with finding a perfect matching from the cycle decomposition.

It follows from the definition of the Cartesian product that the graph $C_{k} \square C_{k}$ can be decomposed into k-cycles. In the following lemma, we construct $t k$-cycles, for any divisor $t \geq 2$ of k, giving a decomposition of this graph. Our construction is similar to the construction of Hamiltonian cycles giving a decomposition of $C_{m} \square C_{n}$ due to Kotzig [12] (also see Mollard and Ramras [14]).

Lemma 4.1 Suppose $t \geq 2$ and $k \geq 4$ be integers such that t divides k. Then the graph $C_{k} \square C_{k}$ can be decomposed into tk-cycles.

Proof. Let $V\left(C_{k}\right)=\mathbb{Z}_{k}$, with i adjacent to $i+1$ modulo k and let $G=C_{k} \square C_{k}$. Then $V(G)=\mathbb{Z}_{k} \times \mathbb{Z}_{k}$. Two vertices of G are adjacent if their corresponding 2-tuples differ in exactly one component by ± 1 modulo k. We call an edge horizontal with direction 1 , if its end vertices are $(x, y),(x+1, y)$, where $x, y \in \mathbb{Z}_{k}$. Similarly, we say that an edge is vertical with direction 2 , if its end vertices are $(x, y),(x, y+1)$.
We construct a $t k$-cycle viz. Φ_{1} as follows.

$$
\begin{gathered}
\Phi_{1}=\langle(0,0),(1,0), \ldots,(t-1,0) \\
(t-1,1),(t, 1), \ldots,(2(t-1), 1) \\
(2(t-1), 2),(2(t-1)+1,2), \ldots,(3(t-1), 2), \\
\vdots \\
((k-1)(t-1), k-1),((k-1)(t-1)+1, k-1), \ldots,(k(t-1), k-1),(k(t-1), k)=(0,0)\rangle
\end{gathered}
$$ since $k \equiv 0(\bmod k)$.

One can observe that Φ_{1} consists of k vertical edges with direction 2 , and $(t-1) k$ horizontal edges with direction 1 forming k horizontal paths each of length $t-1$. Alternately, we write $\Phi_{1}=\langle(0,0), S\rangle$, where the initial vertex of Φ_{1} is $(0,0)$ and its edge-direction sequence is $S=(\underbrace{1,1, \ldots, 1}_{t-1 \text { terms }}, 2,1,1, \ldots, 1,2, \ldots, 1,1, \ldots, 1,2)$. Note that the string $1,1, \ldots, 1,2$ of length t is repeated k times in S. For convenience, we say that Φ_{1} is a horizontal cycle. (See Figure 6(a).)
Similarly,

$$
\begin{gathered}
\Gamma_{1}=\langle(0,0),(0,1),(0,2), \ldots,(0, t-1), \\
(1, t-1),(1,(t-1)+1), \ldots,(1,2(t-1)) \\
(2,2(t-1)),(2,2(t-1)+1),(2,2(t-1)+2), \ldots,(2,3(t-1)) \\
\vdots \\
(k-1,(k-1)(t-1)),(k-1,(k-1)(t-1)+1), \ldots,(k-1, k(t-1)),(k, k(t-1))=(0,0)\rangle
\end{gathered}
$$

is a vertical cycle. The initial vertex of Γ_{1} is $(0,0)$ and its edge-direction sequence is given by $S^{\prime}=(\underbrace{2,2, \ldots, 2}_{t-1 \text { terms }}, 1,2,2, \ldots, 2,1, \ldots, 2,2, \ldots, 2,1)$. The cycle Γ_{1} consists of k horizontal edges and k vertical paths each of length $t-1$. (See Figure 6(b).)

We decompose $C_{k} \square C_{k}$ into $t k$-cycles using the horizontal cycles and the vertical cycles constructed from Φ_{1} and Γ_{1}. Since t divides k, we have $k=t m$ for some $m \geq 1$.
The remainder of the proof is split into three steps as follows.
(I). We construct horizontal cycles from Φ_{1} by using graph-isomorphisms.

For $i \in[m]$, let $\phi^{i}: V\left(C_{k} \square C_{k}\right) \rightarrow V\left(C_{k} \square C_{k}\right)$ be defined by $\phi^{i}((x, y))=(x+(i-$ $1) t, y)$. It follows that ϕ^{i} is a graph-isomorphism. Let $\Phi_{i}=\phi^{i}\left(\Phi_{1}\right)$. Then Φ_{i} is a $t k$-cycle with initial vertex $((i-1) t, 0)$ and edge-direction sequence S.
For example, the cycle Φ_{2} is given by $((t, 0), S)$, where $(t, 0)$ is the initial vertex and S is the direction sequence previously defined. So

$$
\begin{gathered}
\Phi_{2}=\langle(t, 0),(t+1,0), \ldots,(2 t-1,0), \\
(2 t-1,1),(2 t, 1), \ldots,(3 t-2,1), \\
(3 t-2,2),(3 t-1,2), \ldots,(4 t-3,2), \\
\vdots \\
((k-1)(t-1)+1, k-2),((k-1)(t-1)+2, k-2), \ldots,(k(t-1)+1, k-2)=(1, k-2), \\
(1, k-1),(2, k-1), \ldots,(t, k-1),(t, 0)\rangle
\end{gathered}
$$

Observe that $V\left(\Phi_{1}\right)=\left\{(y(t-1)+s, y): y \in \mathbb{Z}_{k}, s \in\{0,1, \ldots, t-1\}\right\}$.
Hence

$$
V\left(\Phi_{i}\right)=\left\{(y(t-1)+(i-1) t+s, y): y \in \mathbb{Z}_{k}, s \in\{0,1, \ldots, t-1\}\right\}
$$

Note that the horizontal edges in the cycle Φ_{i} are of the form $<(x, y),(x+1, y)>$, where $x=y(t-1)+(i-1) t+s$, and the vertical edges in Φ_{i} are of the form $<(x, y),(x, y+1)>$, where $x=(y+1)(t-1)+(i-1) t$.

Claim: The cycles $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{m}$ are mutually vertex-disjoint.
On the contrary assume that for $i<j$, the cycles Φ_{i} and Φ_{j} have a vertex v in common. Being a vertex in Φ_{i}, for some $y \in \mathbb{Z}_{k}$ and $s \in\{0,1, \ldots, t-1\}$,

$$
v=(y(t-1)+(i-1) t+s, y) .
$$

Similarly, as a vertex in Φ^{j}, for some $y^{\prime} \in \mathbb{Z}_{k}$ and $s^{\prime} \in\{0,1, \ldots, t-1\}$,

$$
v=\left(y^{\prime}(t-1)+(j-1) t+s^{\prime}, y^{\prime}\right)
$$

Therefore we get

$$
y(t-1)+(i-1) t+s=y^{\prime}(t-1)+(j-1) t+s^{\prime}
$$

in \mathbb{Z}_{k} and $y=y^{\prime}$. This implies that

$$
s-s^{\prime} \equiv(j-i) t \quad(\bmod k) .
$$

As $k=t m$ with $1 \leq j-i<m$, we have $s-s^{\prime} \equiv 0(\bmod t)$. But $0 \leq s, s^{\prime}<t$ gives $s=s^{\prime}$. Hence $(j-i) t \equiv 0(\bmod k)$. This implies that $j-i \equiv 0(\bmod m)$, which is a contradiction as $1 \leq j-i<m$. Thus the cycles $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{m}$ are mutually vertex-disjoint.
Further, the subgraph $\bigcup_{i=1}^{m} \Phi_{i}$ has $m t k=k^{2}=\left|V\left(C_{k} \square C_{k}\right)\right|$ vertices and so it spans the graph $C_{k} \square C_{k}$.
(II). We now construct the vertical cycles.

The map $R: V\left(C_{k} \square C_{k}\right) \rightarrow V\left(C_{k} \square C_{k}\right)$ defined by $R((x, y))=(y, x)$ is a graphisomorphism. Note that $\Gamma_{1}=R\left(\Phi_{1}\right)$. Let $\Gamma_{j}=R\left(\Phi_{j}\right)$, for $j \in[m]$. Then Γ_{j} is the cycle of length $t k$ with initial vertex $(0,(j-1) t)$ and edge-direction sequence S^{\prime}. Since the horizontal cycles Φ_{i} are vertex-disjoint, the vertical cycles Γ_{j} are also vertex-disjoint and together they too span the graph $C_{k} \square C_{k}$
Note that as Γ_{j} is obtained from Φ_{j} just by reversing the co-ordinates of the vertices, the horizontal (similarly, vertical) edges in Γ_{j} are obtained from the vertical (similarly, horizontal) edges in Φ_{j}, just by reversing the co-ordinates of the end vertices. (See an illustration in Figure 6.)
(III). We prove that the cycles Φ_{i} and Γ_{j} are edge-disjoint for any i and j.

Without loss of generality assume that $i=1$. Suppose if possible Φ_{1} and Γ_{j} have an edge (say) e in common. Then the edge e is either horizontal or vertical.
Suppose e is horizontal. Then the end vertices of e are (x, y) and $(x+1, y)$ for some $x, y \in \mathbb{Z}_{k}$. As e is an edge in Φ_{1}, from equation (\star), we have $x=y(t-1)+s$ for some $s \in\{0,1, \ldots, t-2\}$. Also, e is a horizontal edge in Γ_{j}. Therefore $y=$ $(x+1)(t-1)+(j-1) t$ in \mathbb{Z}_{k}. This gives

$$
y \equiv y(t-1)^{2}+(s+1)(t-1)+(j-1) t \quad(\bmod k) .
$$

As t divides k, we have

$$
y \equiv y(0-1)^{2}+(s+1)(0-1)+(j-1) 0 \quad(\bmod t)
$$

This implies that $s+1 \equiv 0(\bmod t)$. Therefore t divides $s+1$, a contradiction to the fact that $0 \leq s \leq t-2$.
Suppose e is a vertical edge. Then the end-vertices of e are (x, y) and $(x, y+1)$ for some $x, y \in \mathbb{Z}_{k}$. As e is a vertical edge in Φ_{1}, we have $x=(y+1)(t-1)$. Since $e \in E\left(\Gamma_{j}\right), y=x(t-1)+(j-1) t+s$ for some $s \in\{0,1, \ldots, t-2\}$. Hence

$$
y \equiv(y+1)(t-1)^{2}+(j-1) t+s \quad(\bmod k)
$$

As t divides k,

$$
y \equiv y+1+s \quad(\bmod t)
$$

giving $s+1 \equiv 0(\bmod t)$, a contradiction. Therefore the cycles Φ_{i} and Γ_{j} are edge-disjoint, for any i, j.

(a). Horizontal cycles $\Phi_{1}, \Phi_{2}, \Phi_{3}$

(b). Vertical cycles $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$

Figure 6: Decomposition of $C_{12} \square C_{12}$ into $t k$-cycles, with $t=4, k=12$

Thus $\bigcup_{i=1}^{m} \Phi_{i}$ and $\bigcup_{i=1}^{m} \Gamma_{i}$ are 2-regular edge-disjoint spanning subgraphs of the graph $C_{k} \square C_{k}$. Hence the collection of $t k$-cycles $\left\{\Phi_{i}: i=1,2, \ldots, m\right\} \cup\left\{\Gamma_{i}: i=1,2, \ldots, m\right\}$ decompose the graph $C_{k} \square C_{k}$.

In the following lemma, we prove that if t is a multiple of 4 , then the $t k$-cycles Φ_{i} and Γ_{i} that are constructed in the above lemma also satisfy an additional condition related to a perfect matching.

Lemma 4.2 Let k, t be positive integers, t divides k and 4 divides t. Then the graph $C_{k} \square C_{k}$ can be decomposed into tk-cycles. Further, from every $t k$-cycle in the decomposition, $k t / 4$ edges can be chosen to form a perfect matching of $C_{k} \square C_{k}$.

Proof. Suppose $k=t m$ for some $m \geq 1$. Consider the horizontal $t k$-cycles Φ_{i}, $i \in[m]$, that are constructed in the proof of Lemma 4.1. Observe that for each $y \in \mathbb{Z}_{k}=\{0,1,2, \ldots, k-1\}$, every cycle Φ_{i} contains a unique horizontal path, $P_{i}^{y}=\langle(x, y),(x+1, y), \ldots,(x+(t-1), y)\rangle$ of length $t-1$, with $x=y(t-1)+$ $(i-1) t$. Denote by $e_{i s}^{y}$ the edge of the path P_{i}^{y} with end vertices $(x+s, y)$ a nd $(x+s+1, y), s=0,1, \ldots, t-2$. Amongst the $t-1$ edges of P_{i}^{y}, choose $t / 4$ edges alternately starting from the first edge $e_{i 0}^{y}$, and denote this set by M_{i}^{y}. Thus $M_{i}^{y}=\left\{e_{i 0}^{y}, e_{i 2}^{y}, e_{i 4}^{y}, \ldots, e_{i(t / 2-2)}^{y}\right\}$ is a matching. Let $M_{i}=\bigcup_{y=0}^{k-1} M_{i}^{y}$. Since P_{i}^{y} is vertex-disjoint with $P_{i}^{y^{\prime}}$ for $y \neq y^{\prime}, M_{i}$ is a matching in $C_{k} \square C_{k}$ consisting of $k\left|M_{i}^{y}\right|=$ $k t / 4=k^{2} / 4 m$ edges of Φ_{i}. Let $M=\bigcup_{i=1}^{m} M_{i}$. Since the cycles Φ_{i} are mutually vertex-disjoint, M is a matching in $C_{k} \square C_{k}$ consisting of $m\left|M_{i}\right|=k^{2} / 4$ edges.
Similarly, for each $x \in \mathbb{Z}_{k}$, every vertical $t k$-cycle Γ_{i} contains a unique vertical path of length $t-1$ given by $P_{i}^{x}=\langle(x, y),(x, y+1),(x, y+2), \ldots,(x, y+(t-1))\rangle$ with $y=x(t-1)+(i-1) t$. Denote by $f_{i s}^{x}$ the edge of the path P_{i}^{x} with end vertices $(x, y+s)$ and $(x, y+s+1)$. Select $t / 4$ edges alternately from the path P_{i}^{x}, starting from the $t / 2^{t h}$ edge $f_{i(t / 2)}^{x}$. Therefore the set $\left\{f_{i(t / 2)}^{x}, f_{i(t / 2+2)}^{x}, f_{i(t / 2+4)}^{x}, \ldots, f_{i(t-2)}^{x}\right\}$, denoted by N_{i}^{x}, is a matching. Let $N_{i}=\bigcup_{x=0}^{k-1} N_{i}^{x}$ and let $N=\bigcup_{i=1}^{m} N_{i}$. Clearly, $N=\left\{f_{i s^{\prime}}^{x}: s^{\prime}\right.$ is even and $\left.\mathrm{t} / 2 \leq \mathrm{s}^{\prime} \leq \mathrm{t}-2\right\}$ is a matching of $C_{k} \square C_{k}$ consisting of $|N|=k^{2} / 4$ edges from the cycles Γ_{i}.

Claim: $M \cup N$ is a matching of $C_{k} \square C_{k}$.
Let $V(M)$ and $V(N)$ be the set of end vertices of the edges in M and the edges in N, respectively. Since M and N are matchings of $C_{k} \square C_{k}$, it is sufficient to prove that $V(M) \cap V(N)=\phi$.
Assume that $V(M) \cap V(N) \neq \phi$. Let $v \in V(M) \cap V(N)$. As $v \in V(M)$, we have $v=(x+s, y)$ or $(x+s+1, y)$ with $x=y(t-1)+(j-1) t$, for some $y \in\{0,1, \ldots, k-1\}$, $s \in\{0,2,4, \ldots, t / 2-2\}$ and $j \in[m]$. Also $v \in V(N)$ implies that $v=\left(x^{\prime}, y^{\prime}+s^{\prime}\right)$ or $\left(x^{\prime}, y^{\prime}+s^{\prime}+1\right)$ with $y^{\prime}=x^{\prime}(t-1)+(i-1) t$, for some $x^{\prime} \in\{0,1, \ldots, k-1\}$, $s^{\prime} \in\{t / 2, t / 2+2, \ldots, t-2\}$ and $i \in[m]$.
Thus we get two cases as follows. Observe that because $v \in V(M) \cap V(N)$, each case involves two possible pairs for v. Also, it suffices to workout the contradiction for any one pair in each case.

Case 1. $v=(x+s, y)$ and $v=\left(x^{\prime}, y^{\prime}+s^{\prime}\right)$, or $v=(x+s+1, y)$ and $v=\left(x^{\prime}, y^{\prime}+s^{\prime}+1\right)$.
Without loss of generality, assume that $v=(x+s, y)$ and $v=\left(x^{\prime}, y^{\prime}+s^{\prime}\right)$. Then $x+s=x^{\prime}$ and $y=y^{\prime}+s^{\prime}$ in \mathbb{Z}_{k}. Since $y^{\prime}=x^{\prime}(t-1)+(i-1) t$ and $x=y(t-1)+(j-1) t$, we have

$$
\begin{aligned}
y & \equiv x^{\prime}(t-1)+(i-1) t+s^{\prime}(\bmod k) \\
& \equiv(x+s)(t-1)+(i-1) t+s^{\prime}(\bmod k) \\
& \equiv y(t-1)^{2}+(j-1) t(t-1)+s(t-1)+(i-1) t+s^{\prime}(\bmod k) \\
& \equiv y-s+s^{\prime}(\bmod t) \ldots(\operatorname{as} t \text { divides } k) .
\end{aligned}
$$

Therefore $s^{\prime} \equiv s(\bmod t)$. Hence t divides $s^{\prime}-s$. However, $0 \leq s<s^{\prime} \leq t-2$ gives $0<s^{\prime}-s \leq t-2<t$, a contradiction.

Case 2. $v=(x+s, y)$ and $v=\left(x^{\prime}, y^{\prime}+s^{\prime}+1\right)$, or $v=(x+s+1, y)$ and $v=\left(x^{\prime}, y^{\prime}+s^{\prime}\right)$.
Again, without loss of generality, assume that $v=(x+s, y)$ and $v=\left(x^{\prime}, y^{\prime}+s^{\prime}+1\right)$. Then $x+s=x^{\prime}$ and $y=y^{\prime}+s^{\prime}+1$ in \mathbb{Z}_{k}. Since $y^{\prime}=x^{\prime}(t-1)+(i-1) t$ and $x=y(t-1)+(j-1) t$, we have

$$
\begin{aligned}
y & \equiv x^{\prime}(t-1)+(i-1) t+s^{\prime}+1(\bmod k) \\
& \equiv(x+s)(t-1)+(i-1) t+s^{\prime}+1(\bmod k) \\
& \equiv y(t-1)^{2}+(j-1) t(t-1)+s(t-1)+(i-1) t+s^{\prime}+1(\bmod k) \\
& \equiv y+0-s+0+s^{\prime}+1(\bmod t) \ldots(\operatorname{as} t \text { divides } k) .
\end{aligned}
$$

Therefore $s^{\prime}-s+1 \equiv 0(\bmod t)$. Hence t divides $s^{\prime}-s+1$. But, $0 \leq s<s^{\prime} \leq t-2$ gives $1 \leq s^{\prime}-s+1 \leq t-1<t$, a contradiction.
Thus $M \cup N$ is a matching of $C_{k} \square C_{k}$.
The number of edges in $M \cup N$ is given by,

$$
|M \cup N|=|M|+|N|=\frac{k^{2}}{4}+\frac{k^{2}}{4}=\frac{k^{2}}{2}=\frac{\left|V\left(C_{k} \square C_{k}\right)\right|}{2} .
$$

Hence $M \cup N$ is a perfect matching of the graph $C_{k} \square C_{k}$.
Thus the $t k$-cycles Φ_{i} and $\Gamma_{i}, i=1,2, \ldots, m$, together decompose the graph $C_{k} \square C_{k}$ and $k t / 4$ edges can be selected from each of these cycles in order to form a perfect matching of $C_{k} \square C_{k}$.

We now prove Theorem 1.5, which is restated below for convenience.
Statement of Theorem 1.5. Let t, k be positive integers such that t divides k and 4 dividest. Then the k-ary r-cube Q_{r}^{k} can be decomposed into (tkr/2)-cycles. Moreover, from each of these cycles, kt/4 edges can be selected such that they together form a perfect matching of Q_{r}^{k}.

Proof. We prove the result by induction on r. The result holds for $r=2$ by Lemmas 4.1. and 4.2. Suppose $r \geq 3$. Assume that the statement holds for Q_{r-1}^{k}. Now $Q_{r}^{k}=Q_{r-1}^{k} \square C_{k}$. By induction, Q_{r-1}^{k} can be decomposed into cycles of lengths $t k(r-1) / 2$, (say) $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{s}$, such that each Φ_{i} contains a matching M_{i} of $k t / 4$ edges so that $\bigcup_{i=1}^{s} M_{i}$ is a perfect matching of Q_{r-1}^{k}. Then, by Theorem 2.2, Q_{r}^{k} can be decomposed into cycles of length $t k r / 2$, (say) $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{s^{\prime}}$, such that each Γ_{i} contains a matching N_{i} of $t k / 4$ edges such that $\bigcup_{i=1}^{s^{\prime}} N_{i}$ is a perfect matching of Q_{r}^{k}.

Acknowledgements

The authors are thankful to the anonymous referees for their valuable comments, in turn making this paper more readable.

References

[1] B. Alspach, J.-C. Bermond and D. Sotteau, Decomposition into cycles I: Hamilton decompositions, Proc. NATO Advanced Research Workshop on Cycles and Rays (1990), 9-18.
[2] J. Aubert and B. Schneider, Decompositions de la somme Cartesienne d'un cycle et de l'union de cycles Hamitoniens, Discrete Math. 37 (1981), 19-27.
[3] D. W. Bas and I.H. Sudborough, Hamiltonian decomposition and ($n / 2$)factorizations of hypercubes, J. Graph Algorithms Appl. 7(1) (2003), 79-98.
[4] Z. R. Bogdanowicz, On decomposition of Cartesian product of directed cycles into cycles of equal lengths, Discrete Appl. Math. 229 (2017), 148-150.
[5] Y. M. Borse and S. A. Kandekar, Decomposition of hypercubes into regular connected bipancyclic subgraphs, Discrete Math. Algorithms Appl. 7(3) (2015), Art. 1550033, 10pp.
[6] Y. M. Borse, A. V. Sonawane and S. R. Shaikh, Connected bipancyclic isomorphic m-factorizations of the Cartesian product of graphs, Australas. J. Combin. 66 (1) (2016), 120-129.
[7] Y. M. Borse, A. V. Sonawane and S. R. Shaikh, Factorizations of the product of cycles, AKCE Int. J. Graphs Comb. (2018), https://doi.org/10.1016/j.akcej.2018.06.003.
[8] Y. M. Borse and S. R. Shaikh, Decomposition of the product of cycles based on degree partition, Discuss. Math. Graph Theory 39 (1) (2019), 241-256.
[9] X. B. Chen, Panconnectivity and edge-pancyclicity of multidimensional torus, Discrete Appl. Math. 178 (2014), 33-45.
[10] S. El-Zanati and C. Vanden Eynden, Cycle factorizations of cycle products, Discrete Math. 189 (1998), 267-275.
[11] M. F. Foregger, Hamiltonian decompositions of product of cycles, Discrete Math. 24 (1978), 251-260.
[12] A. Kotzig, Every Cartesian product of two circuits is decomposable into two Hamiltonian circuits, Centre de Recheches Mathematiques, Montreal, Rapport 233, (1973).
[13] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, 1992.
[14] M. Mollard and M. Ramras, Edge decompositions of hypercubes by paths and by cycles, Graphs Combin. 31 (3) (2015), 729-741.
[15] M. Ramras, Symmetric edge-decomposition of hypercubes, Graphs Combin. 7 (1991), 65-87.
[16] A.V. Sonawane and Y. M. Borse, Decomposing hypercubes into regular connected subgraphs, Discrete Math. Algorithms Appl. 7 (4) (2016), Art. 1650065, 6 pp .

