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Abstract

It is known that the r-dimensional hypercube Qr can be decomposed
into r-cycles and into 2r-cycles when r is even. We generalize these
results to the class of the Cartesian product of cycles. We also prove
that the k-ary r-cube Qk

r , which is the Cartesian product of r k-cycles,
can be decomposed into (tkr/2)-cycles if t divides k and 4 divides t.
Consequently, a decomposition of Qr into 4r-cycles for any even r ≥ 4,
is obtained.

1 Introduction

The graphs considered in this paper are finite, simple and undirected. By a k-cycle
we mean a cycle of length k, denoted by Ck. A decomposition of a graph G is a
collection H1, H2, . . . , Hr of edge-disjoint subgraphs of G, such that every edge of
G belongs to exactly one Hi. If all the subgraphs in the decomposition of G are
isomorphic to a graph H , we say that G can be decomposed into H or G has an
H-decomposition. The Cartesian product of two graphs G1 and G2 is a graph G1�G2

with vertex set V (G1) × V (G2), where vertices (u1, u2) and (v1, v2) are adjacent if
and only if either u1 = v1 and u2 is adjacent to v2, or u2 = v2 and u1 is adjacent
to v1.

An r-dimensional torus is the Cartesian product of r cycles. The torus Ck1�Ck2�

· · ·�Ckr is a graph with k1k2 . . . kr vertices and rk1k2 . . . kr edges. In particular,
the torus Ck�Ck� · · ·�Ck︸ ︷︷ ︸

r factors

is the k-ary r-cube, denoted by Qk
r . The r-dimensional

hypercube Qr is the Cartesian product of r copies of the complete graph K2. If r is
even, then Q4

r/2 = Qr. The multidimensional tori, k-ary r-cubes and hypercubes are

popular interconnection networks (see [9, 13]).
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Graph decomposition has been the focus of a great deal of research. In particular,
cycle decompositions of the Cartesian product of cycles have a long history. In 1973,
Kotzig [12] proved that the Cartesian product of two cycles is decomposable into
Hamiltonian cycles. Foregger [11] guaranteed such a decomposition for the Cartesian
product of three cycles while Aubert and Schneider [2] generalised this result for the
Cartesian product of a 4-regular graph and a cycle. Alspach et al. [1] extended the
result further and proved that the Cartesian product of a finite number of cycles has
a Hamiltonian decomposition. The existence of Hamiltonian decompositions of the
hypercube Qr, for even r, is an immediate consequence of this result. Furthermore,
decompositions of the hypercubes and Cartesian product of even cycles into regular,
connected, subgraphs are studied in [3, 5–8, 16]. Recently, Bogdanowicz [4] obtained
some interesting results on the decomposition of the Cartesian product of directed
cycles into cycles of equal lengths.

In this paper, we mainly focus on cycle decompositions of the Cartesian product
of cycles.

Note that the hypercube Qr has 2
r vertices and r2r−1 edges. For even r, Ramras

[15] proved that Qr can be decomposed into r-cycles while Mollard and Ramras [14]
obtained a decomposition of Qr into 2r-cycles and posed the following problem.

Problem 1.1 ( [14]) For which k ≥ 4 dividing r2r−1 does the hypercube Qr have a
decomposition into k-cycles?

We consider this problem for the class of r- dimensional tori.

Problem 1.2 For which k≥4 dividing rk1k2 . . . kr does the torus Ck1�Ck2� · · ·�Ckr

have a decomposition into k-cycles?

El-Zanati et al. [10] proved that the graph C2k1�C2k2� · · ·�C2kr can be decom-
posed into 2t-cycles for any given t with 2 ≤ t ≤ k1+k2+ · · ·+kr. As a consequence,
they proved the existence of a cycle decomposition of Qr into 2t-cycles, where r is
even and 2 ≤ t ≤ r and thus solved Problem 1.1 for the case k = 2t.

In this paper, we obtain the following results.

Theorem 1.3 Let r ≥ 2, ki ≥ 3 for 1 ≤ i ≤ r be integers such that ki is even for at
least two values of i and let G be the Cartesian product of cycles Ck1 , Ck2, . . . , Ckr .
Then G can be decomposed into cycles of length 2r and further, an edge can be selected
from each of these 2r-cycles to form a perfect matching of G.

Theorem 1.4 Let r ≥ 2, ki ≥ 3 for 1 ≤ i ≤ r be integers such that ki is even for at
least two values of i and let G be the Cartesian product of cycles Ck1 , Ck2, . . . , Ckr .
Let k ∈ {k1, k2, . . . , kr} be an even integer. Then G can be decomposed into cycles of
length kr and further, k/2 edges can be chosen from each of these kr-cycles to form
a perfect matching of G.
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For even r, Qr = Q4
r/2. Hence it follows that Qr can be decomposed into r-cycles and

into 2r-cycles from Theorems 1.3 and 1.4 respectively.

Theorem 1.5 Let t, k be positive integers such that 4 divides t and t divides k.
Then the k-ary r-cube Qk

r can be decomposed into (tkr/2)-cycles. Moreover, from
each of these cycles, kt/4 edges can be selected such that they together form a perfect
matching of Qk

r .

Corollary 1.6 For even r ≥ 4, the hypercube Qr can be decomposed into 4r-cycles.

This solves the Problem 1.1 for the case k = 4r.

As the structure of the Cartesian product of cycles is recursive, use of induction
is effective in proving the results for such graphs. The proofs of all our results are
based on induction on the number r of cycles involved in the product. In Section 2,
we prove a general induction step that is used in the proofs of all the above three
theorems. In Section 3, we prove Theorems 1.3 and 1.4 while Theorem 1.5 is proved
in Section 4.

2 General Induction Step

We first discuss the nature of the Cartesian product of two cycles for better under-
standing and set some notations which are used in the proofs.

We use the notation [n] for the set {1, 2, . . . , n}. In what follows, by product we
mean the Cartesian product.

Notation 2.1 Consider the Cartesian product Cm�Cn of two cycles Cm and Cn. La-
bel the vertices of Cm by the set {v1, v2, . . . , vm} so that vp is adjacent to vp+1 (mod m)

and label the vertices of Cn by {1, 2, . . . , n} so that j is adjacent to j + 1 (mod n).
So the vertex set of Cm�Cn is given by {(vp, j) : p ∈ [m] and j ∈ [n]}. Denote (vp, j)
by vjp for convenience; the subscripts are computed modulo m with representatives
in [m] and superscripts are computed modulo n with representatives in [n].

By the definition of the Cartesian product of graphs, the edge set of Cm�Cn

consists of n copies of the cycle Cm (say) C1
m, C

2
m, . . . , C

n
m and the edges joining

the corresonding vertices in Cj
m and Cj+1

m , for each j ∈ [n]. Therefore the vertex
vjp in Cj

m is adjacent to the corresponding vertex vj+1
p in Cj+1

m , for all p ∈ [m].
For even m, let M1 and M2 be the disjoint perfect matchings of Cm with M1 =
{vpvp+1 : p = 1, 3, . . . , m − 1} and M2 = {vpvp+1 : p = 2, 4, . . . , m}. Let M j

1 and M j
2

be the matchings of the cycle Cj
m corresponding to M1 and M2, respectively. Let e

j
p

be the edge vjpv
j
p+1 of Cj

m and f j
p be the cross edge vjpv

j+1
p for p ∈ [m] and j ∈ [n].

(See Figure 1 for better understanding.)

We prove the general induction step followed by its illustration.
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Figure 1: Cm�Cn

Theorem 2.2 (General Induction step). Let H be a graph which has a de-
composition into cycles Ck1, Ck2, . . . , Ckt and each Cki contains a set Mi of mi ≥ 0
edges, such that

⋃t
i=1Mi is a perfect matching of H. Let Cr be a cycle of length r.

Then the graph H�Cr has a decomposition into cycles Cj
k1+2m1

, Cj
k2+2m2

, . . . , Cj
kt+2mt

,

for 1 ≤ j ≤ r. Further, each Cj
ki+2mi

contains a set F j
i of mi edges such that⋃r

j=1

⋃t
i=1 F

j
i is a perfect matching of H�Cr.

Proof. Let G = H�Cr. The graph G consists of r copies H1, H2, . . . , Hr of H
such that the vertices of Hj are adjacent to the corresponding vertices of Hj+1 for
j ∈ [r], where the addition in the superscripts is taken modulo r. Let Cj

ki
be the

ki-cycle in Hj corresponding to the cycle Cki of H and let M j
i be the matching of Cj

ki

corresponding to the matching Mi of Cki, where i ∈ [t] and j ∈ [r]. Then M j
i consists

of mi edges eji1, e
j
i2, . . . , e

j
imi

of Cj
ki
. Let M j =

⋃t
i=1M

j
i = {ejil : l ∈ [mi]; i ∈ [t]}.

Then M j is a perfect matching of Hj. Let uj
il and vjil be the end vertices of the edge

ejil, l ∈ [mi]. Let f
j
il be the edge of G with end vertices uj

il and uj+1
il while hj

il be the
edge of G joining vjil to vj+1

il .

For every i and j, we construct a (ki+2mi)-cycle C
j
ki+2mi

in G from the cycle Cj
ki
by

deleting the matching M j
i and adding the matching M j+1

i of Cj+1
ki

and also adding

the edges f j
il and hj

il between these matchings. Let

Cj
ki+2mi

= (Cj
ki
−M j

i ) ∪M j+1
i ∪ {f j

il : l ∈ [mi]} ∪ {hj
il : l ∈ [mi]} (see Figure 2).

Thus we have constructed (ki + 2mi)-cycles C
j
k1+2m1

, Cj
k2+2m2

, . . . , Cj
kt+2mt

of G, for
each j ∈ [r].

We prove that these cycles are edge-disjoint. For every i, the cycles C1
ki
, C2

ki
, . . . , Cr

ki

are vertex-disjoint and so are edge-disjoint in G. Further, for every j, the cycles
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Figure 2: Construction of (ki + 2mi)-cycles in G = H�Cr

Cj
k1
, Cj

k2
, . . . , Cj

kt
are edge-disjoint in Hj and their matchings M j

1 ,M
j
2 , . . . ,M

j
t are

vertex-disjoint. This implies that the cycles Cj
k1+2m1

, Cj
k2+2m2

, . . . , Cj
kt+2mt

are edge-

disjoint in G. Thus the cycles Cj
ki+2mi

, where i ∈ [t] and j ∈ [r], are edge-disjoint.
These cycles together decompose the graph G as

r∑
j=1

t∑
i=1

|Cj
ki+2mi

| = r[(k1 + k2 + · · ·+ kt) + 2(m1 +m2 + · · ·+mt)]

= r[|E(H)|+ |V (H)|] = |E(G)|.
Now we need to select mi edges from each cycle Cj

ki+2mi
that will form a perfect

matching of G. Let F j
i = M j+1

i , for i ∈ [t], j ∈ [r]. Since
⋃t

i=1M
j
i is a perfect
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matching of Hj and the graphs Hj are vertex-disjoint,

M =
r⋃

j=1

t⋃
i=1

F j
i =

r⋃
j=1

t⋃
i=1

M j+1
i =

r⋃
j=1

t⋃
i=1

M j
i

is a matching in G. In fact, M is a perfect matching of the graph G since

|M | =
r∑

j=1

t∑
i=1

|M j
i | =

r∑
j=1

|V (H)|
2

= r
|V (H)|

2
=

|V (G)|
2

.

This completes the proof. �

Illustration 2.3 Let H = C4. Then H trivially has a cycle decomposition. Let
{e1, e2} be a perfect matching of H . The graph H�C3 consists of three copies
C1

4 , C
2
4 and C3

4 of C4 and the edges joining the corresonding vertices in Cj
4 and

C
j+1 (mod 3)
4 , for each j ∈ [3]. This graph decomposes into 8-cycles C1

8 , C
2
8 , C

3
8 such

that each Cj
8 contains the matching {ej+1 (mod 3)

1 , e
j+1 (mod 3)
2 : j ∈ [3]}. Clearly, the

set {ej1, ej2 : j ∈ [3]} forms a perfect matching of H�C3.

e11

e12

e21

e22

e31

e32

C1
4

C2
4 C3

4

Figure 3: Decomposition of C4�C3 into 8-cycles

3 Decomposition into small cycles

In this section, we prove Theorems 1.3 and 1.4. As the proofs are based on induction
on the number of cycles involved in the product, we need to prove the basis steps for
both the theorems.

The following lemma serves as the basis step for Theorem 1.3.

Lemma 3.1 Suppose Cm and Cn are cycles of even length. Then the graph Cm�Cn

can be decomposed into 4-cycles. Moreover, from each of these 4-cycles, one edge can
be selected such that the collection of these edges together forms a perfect matching
of Cm�Cn.
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Proof. Recall Notation 2.1. The vertices of the graph G = Cm�Cn are labelled by
(vp, j) = vjp, where vp ∈ V (Cm) = {v1, v2, . . . , vm} and j ∈ V (Cn) = {1, 2, . . . , n}.
The graph G consists of n copies C1

m, C
2
m, . . . , C

n
m of the cycle Cm, where the corre-

sponding vertex vjp in Cj
m is adjacent to vj+1

p in Cj+1
m , for all p ∈ [m]. Let M1 and

M2 be the disjoint perfect matchings of Cm with M1 = {vpvp+1 : p = 1, 3, . . . , m− 1}
and M2 = {vpvp+1 : p = 2, 4, . . . , m}. Let M j

1 and M j
2 be the matchings of the cycle

Cj
m corresponding to M1 and M2, respectively. Let e

j
p be the edge vjpv

j
p+1 of Cj

m and
let f j

p be the cross edge vjpv
j+1
p for p ∈ [m] and j ∈ [n].

We construct 4-cycles which decompose the graph G by using the four edges ejp, e
j+1
p ,

f j
p and f j

p+1. Note that for every p and j, these four edges induce a 4-cycle in G. So

in terms of the vertices, the 4-cycles are (vjp, v
j
p+1, v

j+1
p+1, v

j+1
p , vjp).

vjp

vjp+1 vj+1
p+1

vj+1
p

ejp ej+1
p

f j
p

f j
p+1

For both p and j odd, denote such a 4-cycle by Zj
p while for both p and j even,

denote it by W j
p . It follows that the cycles Z

j
p are mutually vertex-disjoint. Similarly,

the cycles W j
p are mutually vertex-disjoint. Let Z = {Zj

p : p = 1, 3, . . .m − 1; j =
1, 3, . . . n − 1} and W = {W j

p : p = 2, 4, . . .m; j = 2, 4, . . . n} be the collections of
4-cycles. Then |V (Z)| = |V (W )| = 4×m

2
n
2
= mn = |V (G)|. So the union of all cycles

in Z forms a spanning subgraph of G. Similar is the case for W. Further, from the
construction it is clear that each W j

p is edge-disjoint from all the cycles Zj
p . Therefore

the collection of 4-cycles Z ∪W decomposes the graph G. An illustration of such a
decomposition is given in Figure 4.

v11 v21 v31 v41

v16 v46

v11 v21 v31 v41

v16 v46

(a). 4-cycles Zj
p (b). 4-cycles W j

p
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e46

Figure 4: Decomposition of C6�C4 into 4-cycles
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Further, we select a set of edges

M1 = {ejp ∈ E(Zj
p) : p = 1, 3, . . .m− 1; j = 1, 3, . . . n− 1}

from the cycles Zj
p while from the cycles W j

p , we select

M2 = {ejp ∈ E(W j
p ) : p = 2, 4, . . .m; j = 2, 4, . . . n}.

Clearly, M1 ∪M2 forms a matching of G. In fact,

|M1|+ |M2| = mn

4
+

mn

4
=

mn

2
=

|V (Cm�Cn)|
2

.

Therefore M1 ∪M2 forms a perfect matching of G. �

We now give a formal Proof of Theorem 1.3.

Proof. We proceed by induction on the number of cycles r. The case r = 2 follows
from Lemma 3.1. Suppose r ≥ 3. Assume that the statement holds for the product
of r − 1 cycles. Write G as G = H�C, where C is a cycle and H is the product
of r − 1 cycles, at least two of which are even. H is 2(r − 1)-regular graph and so
|E(H)| = (r − 1)|V (H)|. By induction, H can be decomposed into cycles of length

2(r − 1) (say) Z1, Z2, . . . , Zt, where t = |E(H)|
2(r−1)

= |V (H)|
2

. Moreover, each Zi contains

an edge ei such that {ei : i = 1, 2, . . . , t} is a perfect matching of H. By Theorem 2.2,

G can be decomposed into 2r-cycles Γ1,Γ2, . . . ,Γt′. Then t′ = |E(G)|
2r

= 2r|V (G)|
2

1
2r

=
|V (H)||̇C|

2
= t|C|. Moreover, every Γi contains an edge fi such that {fi : i = 1, 2, . . . , t′}

is a perfect matching of G. �

The following lemma is the basis step for the proof of Theorem 1.4.

Lemma 3.2 Let Cm and Cn be cycles of even lengths and let l ∈ {2m, 2n}. Then
the graph Cm�Cn can be decomposed into l-cycles. Moreover, from each of these l-
cycles, l/4 edges can be selected such that the collection of these edges form a perfect
matching of Cm�Cn.

Proof. Without loss of generality, we construct a decomposition of Cm�Cn into
cycles of length 2m.
Recall Notation 2.1. The 2m-cycles in the decomposition of Cm�Cn are as follows.

For odd j, let Zj = M j
1 ∪M j+1

2 ∪ {f j
p : p ∈ [m]}

and for even j, let W j = M j
1 ∪M j+1

2 ∪ {f j
p : p ∈ [m]}.

The 2m-cycles Zj (similarly, W j) are mutually vertex-disjoint and together form a
2-regular spanning subgraph (say) F1 (similarly, F2) of Cm�Cn. Moreover, from the
construction, it follows that F1 and F2 are edge-disjoint. Now

|E(F1)|+ |E(F2)| = n

2
× 2m+

n

2
× 2m = 2mn = |E(Cm�Cn)|.
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Figure 5: Decomposition of C6�C4 into 12-cycles

Thus the collection F1∪F2 = {Zj : j = 1, 3, . . . n−1} ∪{W j : j = 2, 4, . . . n} gives
an edge decomposition of Cm�Cn into 2m-cycles.

Now we select the set of edges M1 = {f j
p = vjpv

j+1
p : p = 1, 3, . . .m − 1} from Zj,

where j = 1, 3, . . . n − 1 and the set of edges M2 = {f j
p = vjpv

j+1
p : p = 2, 4, . . .m}

from W j, where j = 2, 4, . . . n. As the cycles Zj (similarly, W j) are vertex-disjoint,
M1 (similarly, M2) is a matching in Cm�Cn. Also, note that in M1, we have chosen
the edges from odd levels while in M2, the edges are taken from even levels. So
M1 ∪ M2 forms a matching of Cm�Cn. In fact, |M1| + |M2| = mn

4
+ mn

4
= mn

2
=

|V (Cm�Cn)|
2

. So M1 ∪M2 is a perfect matching of Cm�Cn, as desired. (See Figure 5
for illustration.) �

We are all set to prove Theorem 1.4.
Proof of Theorem 1.4. The proof is by induction on the number of cycles r in
the product. Without loss of generality, assume that k1, k2 are even. Suppose r = 2.
Then G = Ck1�Ck2 and k ∈ {k1, k2}. Now the result follows by taking l = 2k in the
above lemma. Suppose r ≥ 3. Let H = Ck1�Ck2� . . .�Ckr−1. Then G = H�Ckr .
By induction hypothesis, H can be decomposed into cycles of length k(r − 1) (say)
Z1, Z2, . . . , Zt, where t = |E(H)|/k(r − 1). Moreover, each Zi contains k/2 edges
ei1, ei2, . . . , eik/2 such that {eij : i ∈ [t], j ∈ [k/2]} is a perfect matching of H.
By Theorem 2.2, G can be decomposed into kr-cycles Γ1,Γ2, . . . ,Γt′ with t′ = tkr.
Further, every Γi contains k/2 edges fi1, fi2, . . . , fik/2 such that {fij : i ∈ [t′], j ∈
[k/2]} is a perfect matching of G. �

4 Decomposition of Qk
r

In this section, we prove Theorem 1.5 using induction on r. The non-trivial part of
the proof is to prove the basis step. The basis step consists of two parts; the first
part deals with the decomposition of Ck�Ck into tk-cycles and the second deals with
finding a perfect matching from the cycle decomposition.
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It follows from the definition of the Cartesian product that the graph Ck�Ck can
be decomposed into k-cycles. In the following lemma, we construct tk-cycles, for any
divisor t ≥ 2 of k, giving a decomposition of this graph. Our construction is similar
to the construction of Hamiltonian cycles giving a decomposition of Cm�Cn due to
Kotzig [12] (also see Mollard and Ramras [14]).

Lemma 4.1 Suppose t ≥ 2 and k ≥ 4 be integers such that t divides k. Then the
graph Ck�Ck can be decomposed into tk-cycles.

Proof. Let V (Ck) = Zk, with i adjacent to i + 1 modulo k and let G = Ck�Ck.
Then V (G) = Zk×Zk. Two vertices of G are adjacent if their corresponding 2-tuples
differ in exactly one component by ±1 modulo k. We call an edge horizontal with
direction 1, if its end vertices are (x, y), (x+1, y), where x, y ∈ Zk. Similarly, we say
that an edge is vertical with direction 2, if its end vertices are (x, y), (x, y + 1).

We construct a tk-cycle viz. Φ1 as follows.

Φ1 = 〈(0, 0), (1, 0), . . . , (t− 1, 0),

(t− 1, 1), (t, 1), . . . , (2(t− 1), 1),

(2(t− 1), 2), (2(t− 1) + 1, 2), . . . , (3(t− 1), 2),

...

((k−1)(t−1), k−1), ((k−1)(t−1)+1, k−1), . . . , (k(t−1), k−1), (k(t−1), k) = (0, 0)〉,
since k ≡ 0 (mod k).

One can observe that Φ1 consists of k vertical edges with direction 2, and (t − 1)k
horizontal edges with direction 1 forming k horizontal paths each of length t − 1.
Alternately, we write Φ1 = 〈(0, 0), S〉, where the initial vertex of Φ1 is (0, 0) and
its edge-direction sequence is S = (1, 1, . . . , 1︸ ︷︷ ︸

t−1 terms

, 2, 1, 1, . . . , 1, 2, . . . , 1, 1, . . . , 1, 2). Note

that the string 1, 1, . . . , 1, 2 of length t is repeated k times in S. For convenience, we
say that Φ1 is a horizontal cycle. (See Figure 6(a).)

Similarly,
Γ1 = 〈(0, 0), (0, 1), (0, 2), . . . , (0, t− 1),

(1, t− 1), (1, (t− 1) + 1), . . . , (1, 2(t− 1)),

(2, 2(t− 1)), (2, 2(t− 1) + 1), (2, 2(t− 1) + 2), . . . , (2, 3(t− 1)),

...

(k−1, (k−1)(t−1)), (k−1, (k−1)(t−1)+1), . . . , (k−1, k(t−1)), (k, k(t−1)) = (0, 0)〉
is a vertical cycle. The initial vertex of Γ1 is (0, 0) and its edge-direction sequence is
given by S ′ = (2, 2, . . . , 2︸ ︷︷ ︸

t−1 terms

, 1, 2, 2, . . . , 2, 1, . . . , 2, 2, . . . , 2, 1). The cycle Γ1 consists of

k horizontal edges and k vertical paths each of length t− 1. (See Figure 6(b).)
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We decompose Ck�Ck into tk-cycles using the horizontal cycles and the vertical
cycles constructed from Φ1 and Γ1. Since t divides k, we have k = tm for some
m ≥ 1.

The remainder of the proof is split into three steps as follows.

(I). We construct horizontal cycles from Φ1 by using graph-isomorphisms.

For i ∈ [m], let φi : V (Ck�Ck) → V (Ck�Ck) be defined by φi((x, y)) = (x + (i −
1)t, y). It follows that φi is a graph-isomorphism. Let Φi = φi(Φ1). Then Φi is a
tk-cycle with initial vertex ((i− 1)t, 0) and edge-direction sequence S.

For example, the cycle Φ2 is given by ((t, 0), S), where (t, 0) is the initial vertex and
S is the direction sequence previously defined. So

Φ2 = 〈(t, 0), (t+ 1, 0), . . . , (2t− 1, 0),

(2t− 1, 1), (2t, 1), . . . , (3t− 2, 1),

(3t− 2, 2), (3t− 1, 2), . . . , (4t− 3, 2),

...

((k−1)(t−1)+1, k−2), ((k−1)(t−1)+2, k−2), . . . , (k(t−1)+1, k−2) = (1, k−2),

(1, k − 1), (2, k − 1), . . . , (t, k − 1), (t, 0)〉.
Observe that V (Φ1) = {(y(t− 1) + s, y) : y ∈ Zk, s ∈ {0, 1, . . . , t− 1}}.
Hence

V (Φi) = {(y(t− 1) + (i− 1)t+ s, y) : y ∈ Zk, s ∈ {0, 1, . . . , t− 1}}. (�)

Note that the horizontal edges in the cycle Φi are of the form < (x, y), (x+ 1, y) >,
where x = y(t − 1) + (i − 1)t + s, and the vertical edges in Φi are of the form
< (x, y), (x, y + 1) >, where x = (y + 1)(t− 1) + (i− 1)t.

Claim: The cycles Φ1,Φ2, . . . ,Φm are mutually vertex-disjoint.

On the contrary assume that for i < j, the cycles Φi and Φj have a vertex v in
common. Being a vertex in Φi, for some y ∈ Zk and s ∈ {0, 1, . . . , t− 1},

v = (y(t− 1) + (i− 1)t+ s, y).

Similarly, as a vertex in Φj , for some y′ ∈ Zk and s′ ∈ {0, 1, . . . , t− 1},
v = (y′(t− 1) + (j − 1)t+ s′, y′).

Therefore we get

y(t− 1) + (i− 1)t+ s = y′(t− 1) + (j − 1)t+ s′

in Zk and y = y′. This implies that

s− s′ ≡ (j − i)t (mod k).
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As k = tm with 1 ≤ j − i < m, we have s− s′ ≡ 0 (mod t). But 0 ≤ s, s′ < t gives
s = s′. Hence (j − i)t ≡ 0 (mod k). This implies that j − i ≡ 0 (mod m), which
is a contradiction as 1 ≤ j − i < m. Thus the cycles Φ1,Φ2, . . . ,Φm are mutually
vertex-disjoint.

Further, the subgraph
m⋃
i=1

Φi has mtk = k2 = |V (Ck�Ck)| vertices and so it spans

the graph Ck�Ck.

(II). We now construct the vertical cycles.

The map R : V (Ck�Ck) → V (Ck�Ck) defined by R((x, y)) = (y, x) is a graph-
isomorphism. Note that Γ1 = R(Φ1). Let Γj = R(Φj), for j ∈ [m]. Then Γj is
the cycle of length tk with initial vertex (0, (j − 1)t) and edge-direction sequence
S ′. Since the horizontal cycles Φi are vertex-disjoint, the vertical cycles Γj are also
vertex-disjoint and together they too span the graph Ck�Ck

Note that as Γj is obtained from Φj just by reversing the co-ordinates of the vertices,
the horizontal (similarly, vertical) edges in Γj are obtained from the vertical (simi-
larly, horizontal) edges in Φj , just by reversing the co-ordinates of the end vertices.
(See an illustration in Figure 6.)

(III). We prove that the cycles Φi and Γj are edge-disjoint for any i and j.

Without loss of generality assume that i = 1. Suppose if possible Φ1 and Γj have an
edge (say) e in common. Then the edge e is either horizontal or vertical.

Suppose e is horizontal. Then the end vertices of e are (x, y) and (x + 1, y) for
some x, y ∈ Zk. As e is an edge in Φ1, from equation (�), we have x = y(t− 1) + s
for some s ∈ {0, 1, . . . , t − 2}. Also, e is a horizontal edge in Γj. Therefore y =
(x+ 1)(t− 1) + (j − 1)t in Zk. This gives

y ≡ y(t− 1)2 + (s+ 1)(t− 1) + (j − 1)t (mod k).

As t divides k, we have

y ≡ y(0− 1)2 + (s+ 1)(0− 1) + (j − 1)0 (mod t).

This implies that s + 1 ≡ 0 (mod t). Therefore t divides s + 1, a contradiction to
the fact that 0 ≤ s ≤ t− 2.

Suppose e is a vertical edge. Then the end-vertices of e are (x, y) and (x, y + 1) for
some x, y ∈ Zk. As e is a vertical edge in Φ1, we have x = (y + 1)(t − 1). Since
e ∈ E(Γj), y = x(t− 1) + (j − 1)t+ s for some s ∈ {0, 1, . . . , t− 2}. Hence

y ≡ (y + 1)(t− 1)2 + (j − 1)t+ s (mod k)

As t divides k,
y ≡ y + 1 + s (mod t),

giving s + 1 ≡ 0 (mod t), a contradiction. Therefore the cycles Φi and Γj are
edge-disjoint, for any i, j.
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(0, 0) (t − 1, 0) (k − 1, 0)

(0, 1)

(0, k − 1) (k − 1, k − 1)

Φ2 Φ3Φ1

(a). Horizontal cycles Φ1,Φ2,Φ3

(0, 0) (k − 1, 0)

(0, t − 1)

(0, k − 1) (k − 1, k − 1)

Γ1

Γ2

Γ3

(b). Vertical cycles Γ1,Γ2,Γ3

Figure 6: Decomposition of C12�C12 into tk-cycles, with t = 4, k = 12
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Thus
⋃m

i=1Φi and
⋃m

i=1 Γi are 2-regular edge-disjoint spanning subgraphs of the graph
Ck�Ck. Hence the collection of tk-cycles {Φi : i = 1, 2, . . . , m}∪{Γi : i = 1, 2, . . . , m}
decompose the graph Ck�Ck. �

In the following lemma, we prove that if t is a multiple of 4, then the tk-cycles Φi

and Γi that are constructed in the above lemma also satisfy an additional condition
related to a perfect matching.

Lemma 4.2 Let k, t be positive integers, t divides k and 4 divides t. Then the graph
Ck�Ck can be decomposed into tk-cycles. Further, from every tk-cycle in the decom-
position, kt/4 edges can be chosen to form a perfect matching of Ck�Ck.

Proof. Suppose k = tm for some m ≥ 1. Consider the horizontal tk-cycles Φi,
i ∈ [m], that are constructed in the proof of Lemma 4.1. Observe that for each
y ∈ Zk = {0, 1, 2, . . . , k − 1}, every cycle Φi contains a unique horizontal path,
P y
i = 〈(x, y), (x + 1, y), . . . , (x + (t − 1), y)〉 of length t − 1, with x = y(t − 1) +

(i − 1)t. Denote by eyis the edge of the path P y
i with end vertices (x + s, y) a

nd (x + s + 1, y), s = 0, 1, . . . , t − 2. Amongst the t − 1 edges of P y
i , choose t/4

edges alternately starting from the first edge eyi0, and denote this set by My
i . Thus

My
i = {eyi0, eyi2, eyi4, . . . , eyi(t/2−2)} is a matching. Let Mi =

⋃k−1
y=0 M

y
i . Since P y

i is

vertex-disjoint with P y′
i for y 
= y′, Mi is a matching in Ck�Ck consisting of k|My

i | =
kt/4 = k2/4m edges of Φi. Let M =

⋃m
i=1Mi. Since the cycles Φi are mutually

vertex-disjoint, M is a matching in Ck�Ck consisting of m|Mi| = k2/4 edges.

Similarly, for each x ∈ Zk, every vertical tk-cycle Γi contains a unique vertical path
of length t − 1 given by P x

i = 〈(x, y), (x, y + 1), (x, y + 2), . . . , (x, y + (t − 1))〉 with
y = x(t − 1) + (i − 1)t. Denote by fx

is the edge of the path P x
i with end vertices

(x, y + s) and (x, y + s+ 1). Select t/4 edges alternately from the path P x
i , starting

from the t/2th edge fx
i(t/2). Therefore the set {fx

i(t/2), f
x
i(t/2+2), f

x
i(t/2+4), . . . , f

x
i(t−2)},

denoted by Nx
i , is a matching. Let Ni =

⋃k−1
x=0N

x
i and let N =

⋃m
i=1Ni. Clearly,

N = {fx
is′ : s

′ is even and t/2 ≤ s′ ≤ t − 2} is a matching of Ck�Ck consisting of
|N | = k2/4 edges from the cycles Γi.

Claim: M ∪N is a matching of Ck�Ck.

Let V (M) and V (N) be the set of end vertices of the edges in M and the edges in
N , respectively. Since M and N are matchings of Ck�Ck, it is sufficient to prove
that V (M) ∩ V (N) = φ.

Assume that V (M) ∩ V (N) 
= φ. Let v ∈ V (M) ∩ V (N). As v ∈ V (M), we have
v = (x+s, y) or (x+s+1, y) with x = y(t−1)+(j−1)t, for some y ∈ {0, 1, . . . , k−1},
s ∈ {0, 2, 4, . . . , t/2 − 2} and j ∈ [m]. Also v ∈ V (N) implies that v = (x′, y′ + s′)
or (x′, y′ + s′ + 1) with y′ = x′(t − 1) + (i − 1)t, for some x′ ∈ {0, 1, . . . , k − 1},
s′ ∈ {t/2, t/2 + 2, . . . , t− 2} and i ∈ [m].

Thus we get two cases as follows. Observe that because v ∈ V (M) ∩ V (N), each
case involves two possible pairs for v. Also, it suffices to workout the contradiction
for any one pair in each case.
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Case 1. v = (x+s, y) and v = (x′, y′+s′), or v = (x+s+1, y) and v = (x′, y′+s′+1).

Without loss of generality, assume that v = (x + s, y) and v = (x′, y′ + s′). Then
x+s = x′ and y = y′+s′ in Zk. Since y

′ = x′(t−1)+(i−1)t and x = y(t−1)+(j−1)t,
we have

y ≡ x′(t− 1) + (i− 1)t+ s′ (mod k)
≡ (x+ s)(t− 1) + (i− 1)t+ s′ (mod k)
≡ y(t− 1)2 + (j − 1)t(t− 1) + s(t− 1) + (i− 1)t+ s′ (mod k)
≡ y − s+ s′ (mod t) . . . (as t divides k).

Therefore s′ ≡ s (mod t). Hence t divides s′ − s. However, 0 ≤ s < s′ ≤ t − 2 gives
0 < s′ − s ≤ t− 2 < t, a contradiction.

Case 2. v = (x+s, y) and v = (x′, y′+s′+1), or v = (x+s+1, y) and v = (x′, y′+s′).

Again, without loss of generality, assume that v = (x+ s, y) and v = (x′, y′+ s′ +1).
Then x + s = x′ and y = y′ + s′ + 1 in Zk. Since y′ = x′(t − 1) + (i − 1)t and
x = y(t− 1) + (j − 1)t, we have

y ≡ x′(t− 1) + (i− 1)t+ s′ + 1 (mod k)
≡ (x+ s)(t− 1) + (i− 1)t+ s′ + 1 (mod k)
≡ y(t− 1)2 + (j − 1)t(t− 1) + s(t− 1) + (i− 1)t+ s′ + 1 (mod k)
≡ y + 0− s+ 0 + s′ + 1 (mod t) . . . (as t divides k).

Therefore s′ − s+ 1 ≡ 0 (mod t). Hence t divides s′ − s+ 1. But, 0 ≤ s < s′ ≤ t− 2
gives 1 ≤ s′ − s+ 1 ≤ t− 1 < t, a contradiction.

Thus M ∪N is a matching of Ck�Ck.

The number of edges in M ∪N is given by,

|M ∪N | = |M |+ |N | = k2

4
+

k2

4
=

k2

2
=

|V (Ck�Ck)|
2

.

Hence M ∪N is a perfect matching of the graph Ck�Ck.

Thus the tk-cycles Φi and Γi, i = 1, 2, . . . , m, together decompose the graph Ck�Ck

and kt/4 edges can be selected from each of these cycles in order to form a perfect
matching of Ck�Ck. �

We now prove Theorem 1.5, which is restated below for convenience.

Statement of Theorem 1.5. Let t, k be positive integers such that t divides k and 4
divides t. Then the k-ary r-cube Qk

r can be decomposed into (tkr/2)-cycles. Moreover,
from each of these cycles, kt/4 edges can be selected such that they together form a
perfect matching of Qk

r .
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Proof. We prove the result by induction on r. The result holds for r = 2 by
Lemmas 4.1. and 4.2. Suppose r ≥ 3. Assume that the statement holds for Qk

r−1.
Now Qk

r = Qk
r−1�Ck. By induction, Qk

r−1 can be decomposed into cycles of lengths
tk(r − 1)/2, (say) Φ1,Φ2, . . . ,Φs, such that each Φi contains a matching Mi of kt/4
edges so that

⋃s
i=1Mi is a perfect matching of Qk

r−1. Then, by Theorem 2.2, Qk
r can

be decomposed into cycles of length tkr/2, (say) Γ1,Γ2, . . . ,Γs′, such that each Γi

contains a matching Ni of tk/4 edges such that
⋃s′

i=1Ni is a perfect matching of Qk
r .
�
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