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Abstract

Alspach [Bull. Inst. Combin. Appl. 52 (2008), 7–20] defined the max-
imal matching sequencibility of a graph G, denoted ms(G), to be the
largest integer s for which there is an ordering of the edges of G such
that every s consecutive edges form a matching. In this paper, we con-
sider the natural analogue for hypergraphs of this and related results and
determine ms(λKn1,...,nk

) where λKn1,...,nk
denotes the multi-k-partite k-

graph with edge multiplicity λ and parts of sizes n1, . . . , nk, respectively.
It turns out that these invariants may be given surprisingly precise and
somewhat elegant descriptions, in a much more general setting.

1 Introduction

Alspach [1] defined the (maximal) matching sequencibility of a graph G, denoted
ms(G), to be the maximum integer s such that there exist an ordering of the edges
of G so that each s consecutive edges form a matching. Alspach [1] determined the
value of ms(Kn), as follows.

Theorem 1.1. For an integer n ≥ 3,

ms(Kn) =

⌊
n− 1

2

⌋
.

Katona [4] implicitly considered the cyclic matching sequencibility cms(G) of a
graph G which is the natural analogue of the matching sequencibility for G when
cyclic orderings are allowed. Brualdi, Kiernan, Meyer and Schroeder [3] defined
this invariant explicitly and proved the cyclic analogue of Theorem 1.1, below, thus
strengthening a weaker result by Katona [4].
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Theorem 1.2 (Brualdi et al. [3]). For an integer n ≥ 4,

cms(Kn) =

⌊
n− 2

2

⌋
.

Let Kn,m be the complete bipartite graph with parts of cardinality n and m.
Brualdi et al. [3] also found the matching and cyclic matching sequencibility of com-
plete bipartite graphs, as follows.

Theorem 1.3. For integers n and m with 2 ≤ n ≤ m,

ms(Kn,m) = cms(Kn,m) =

{
n if n < m ;

n− 1 if n = m.

The aim of this paper is to generalise Theorem 1.3 considerably with respect to a
more general notion of matching sequencibility and a more general notion of graphs.
It turns out that the resulting invariants may be given surprisingly precise and some-
what elegant descriptions; see Theorem 1.4 below. We will consider the following
generalisation of matching sequencibility given in [6]. For a graph G, msr(G) denotes
the analogue of ms(G) where consecutive edges are required to form a graph with
maximal vertex degree at most r. Similarly, cmsr(G) is defined in analogy to msr(G)
where we allow cyclic orderings of G’s edges. A hypergraph H is a pair (V,E) where
V is a set and E is a multiset of subsets of V . The complete k-partite k-graph with
parts of cardinalities n1, . . . , nk, denoted Kn1,...,nk

, is the hypergraph whose vertex
set is the union of disjoint sets N1, . . . , Nk of cardinalities n1, . . . , nk, respectively,
and whose edge set is the family of every k-set containing exactly one member of
N1, . . . , Nk, respectively. For a hypergraph H = (V,E), we let msr(H) and cmsr(H)
denote the natural analogues of msr(G) and cmsr(G) for hypergraphs, respectively.
Furthermore, for any positive integer λ, let λH be the hypergraph H′ = (V,E ′)
where E ′ contains λ distinct copies of e for each e ∈ E. For r ≥ Δ(H), the maximal
vertex degree of H, these invariants trivially equal |E(H)|. We will extend the above
definitions of msr(H) and cmsr(H) for r < Δ(H) to non-trivial definitions of these
invariants for r ≥ 1. However, the details are technical and will be given later, in
Subsection 2.1.

The main result of this paper is the following theorem, which succeeds, perhaps
surprisingly, to precisely describe the values of msr(λKn1,...,nk

) and cmsr(λKn1,...,nk
).

Theorem 1.4. Let 1 ≤ n1 = n2 = · · · = nu < nu+1 ≤ · · · ≤ nk and r = r1λ
∏k

i=2 ni+

r2, for non-negative integers r1, r2 with 0 ≤ r2 ≤ λ
∏k

i=2 ni − 1. Then

msr(λKn1,...,nk
) =

{
rn1 if nu−1

1 | r2 or (1), below, holds ;

rn1 − 1 otherwise ,

and

cmsr(λKn1,...,nk
) =

{
rn1 if nu−1

1 | r2;
rn1 − 1 otherwise ,
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where (⌊
r2

nu−1
1

⌋
+ 1

)⌊
λ

r2

k∏
i=2

ni

⌋
≤ λ

k∏
i=u+1

ni ≤
⌊

r2

nu−1
1

⌋(⌊
λ

r2

k∏
i=2

ni

⌋
+ 1

)
. (1)

Theorem 1.4 includes Theorem 1.3 as a special case, which is more evident from
Theorem 1.4 when r = 1, given below.

Corollary 1.5. Let n1 ≤ n2 ≤ · · · ≤ nk. Then

ms(λKn1,...,nk
) = cms(λKn1,...,nk

) =

{
rn1 if n1 < n2 ;

rn1 − 1 otherwise .

Section 2 contains definitions and auxiliary results. The rest of the paper is mostly
dedicated to proving Theorem 1.4. The proof of Theorem 1.4 is divided into three
technical sections and a concluding section, namely, Sections 3-6. Section 7 concludes
the paper with examples of interest to the auxiliary results in Section 2 as well as
a conjecture on the value of ms(Ks(n)) and cms(Ks(n)) for complete multi-partite
graphs Ks(n).

2 Preliminary definitions and auxiliary results

For technical reasons we will, contrary to the introduction, define hypergraphs with-
out the use of “multisets” in the following manner. A hypergraph H = (V,E) is
a pair consisting of two sets, the set of vertices V of H and the set of edges E of
H, where each edge e ∈ E has associated to it a prescribed set of vertices. Each
such associated vertex v ∈ V is said to be incident with e ∈ E and this is denoted
by v ∈ e. Here, the two distinct edges e, e′ ∈ E can be incident with the same set
of vertices, in which case e and e′ are parallel. We can thus view the edges of a
hypergraph as a family of distinctly labelled sets comprising not necessarily distinct
collections of vertices.

For an integer n, let [n] := {0, 1, . . . , n− 1}. An ordering or labelling of a hyper-
graph H = (V,E) is a bijective function � : E → [|E|]. The image of e under � is
called the label of e. A sequence of edges e0, . . . , es−1 is consecutive in � if the labels
of e0, . . . , es−1 are consecutive integers, respectively. For a sequence S of edges, de-
fine H(S) to be the hypergraph whose edges are those in the sequence S and whose
vertices are the vertices incident with these edges.

For an ordering � of a hypergraph H, let msr(�) denote the maximum integer s
such that, for every sequence S of s consecutive edges of �, Δ(H(S)) ≤ r. Define
the r-matching sequencibility of H, denoted by msr(H), to be the maximum value
of msr(�) over all orderings � of H. In particular, the special case ms1(H), which we
denote as ms(H), is the same invariant as presented in the Introduction.

A sequence of edges e0, . . . , es−1 of a hypergraph H = (V,E) is cyclically consecu-
tive in � if the labels of e0, . . . , es−1 are consecutive integers modulo |E|, respectively.
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We define cmsr(�) and cmsr(H) analogously to msr(�) and msr(H), respectively,
where we now consider sequences of cyclically consecutive edges. We first consider
cases when r < Δ(H), as the cases when r ≥ Δ(H) are somewhat different and will
be dealt with in Subsection 2.1. The following lemma was presented in [6] and we
shall give a proof for completeness.

Lemma 2.1. For a hypergraph H with ordering � and integers r1, r2 with r1r2 <
Δ(H),

r2 msr1(H) ≤ msr1r2(H) and r2 cmsr1(H) ≤ cmsr1r2(H) .

Proof. Let � be a labelling of H such that cmsr1(�) = cmsr1(H). Any sequence S of
r2 cmsr1(�) cyclically consecutive edges of � consists of r2 subsequences of cmsr1(�)
cyclically consecutive edges of � and each subsequence forms a hypergraph for which
every vertex has degree at most r1. Thus, every vertex has degree at most r1r2 in
H(S). Hence,

cmsr1r2(H) ≥ cmsr1r2(�) ≥ r2 cmsr1(�) = r2 cmsr1(H) .

The non-cyclic case is similar and, therefore, omitted.

For edge-disjoint hypergraphs H0, . . . ,Ha−1 on the same vertex set V , with la-
bellings �0, . . . , �a−1, respectively, let �0 ∨ · · · ∨ �a−1 denote the ordering � of G =(
V,
⋃a−1

i=0 E(Hi)
)
defined by �(ei,j) = �j(ei,j) +

∑j−1
l=0 |E(Hl)| where eij ∈ E(Hj) for

all i and j. Let s be an integer and H and H′ be edge-disjoint hypergraphs on the
same vertex set V , each having at least s−1 edges. Also, letH andH′ have labellings
� and �′, respectively, and let Hs be the subhypergraph of

(
V,E(H) ∪ E(H′)

)
that

consists of the last s− 1 edges of � and the first s − 1 edges of �′. Then we will let
�∨s �

′ denote the ordering of Hs for which the edges of Hs appear in the same order
as they do in � ∨ �′. We now define msr(�, �

′) to be the largest integer s such that
msr(� ∨s �

′) ≥ s.

A matching of a hypergraph H is a subhypergraph M in which every vertex has
degree 1. A matching decomposition of a hypergraph H = (V,E) is a set of matchings
of H that partition the edge set E. The following proposition, presented in [6],
gives a lower bound on the r-cyclic matching sequencibility, given that a matching
decomposition with certain properties exists. In the proposition, the subscripts of
the orderings �i are taken modulo t: �i+r = �i′ holds exactly when i′ ≡ i+ r (mod t).

Proposition 2.2. Let H be a hypergraph that decomposes into matchings M0, . . . ,
Mt−1, each with n edges and orderings �0, . . . , �t−1, respectively. Suppose, for some
x ∈ [n] and r < Δ(G), that ms(�i, �i+r) ≥ n − x for all i ∈ [t − r]. Then msr(G) ≥
rn− x, and if ms(�i, �i+r) ≥ n− x for all i ∈ [t], then cmsr(G) ≥ rn− x.

The following definitions are used here and throughout the paper. For a hyper-
graph H with ordering �, S�(H) denotes the sequence of edges of H listed in the same
order as �, and � corresponds to S�(H); i.e., if e0, . . . , ek−1 is a sequence of the edges



A. MAMMOLITI /AUSTRALAS. J. COMBIN. 74 (2) (2019), 344–363 348

of H, then � corresponds to that sequence if �(ei) = i for all i ∈ [k]. We will omit the
subscript � if the ordering is clear. Also, for edge disjoint graphs H0, . . . ,Ha−1 with
labellings �0, . . . , �a−1, respectively, one can check that the ordering � = �0∨· · ·∨�a−1

corresponds to sequence S�0(H0)∨ · · · ∨ S�a−1(Ha−1). Proposition 2.2 was proven for
graphs in [6]. We provide the details for hypergraphs for completeness.

Proof of Proposition 2.2. We consider only the cyclic case, as the non-cyclic case is
similar. Let � be the ordering corresponding to S�0(M0)∨· · ·∨S�t−1(Mt−1). Consider
a sequence S of rn− x consecutive edges of �. The sequence S is of the form

e1, . . . , ej︸ ︷︷ ︸
edges in Mi

, S�i+1
(Mi+1) ∨ · · · ∨ S�i+r−a

(Mi+r−a), ej+1, . . . , ean−x︸ ︷︷ ︸
edges in Mi+r+1−a

,

for some i ∈ [t], j ∈ [n+ 1], and a. If S contains edges from only one matching Ml,
then S is a subsequence of S�(Ml) and r = 1. Then we are done, as H(S) is clearly
a matching. Hence, without loss of generality, we can assume that S contains edges
from each of Mi and Mi+r+1−a. Let S

′ be the sequence of the edges of S which are
in either Mi or Mi+r+1−a, in order with respect to S. There are 0 < an − x ≤ 2n
edges in S ′. Therefore, a = 1 or a = 2.

If a = 2, then S is a subsequence of S(Mi) ∨ · · · ∨ S(Mi+r−1), and, hence,
Δ(H(S)) ≤ r. If a = 1, then the first j edges and last n − j − x edges of S and
thus S ′ form the sequence of the last j edges of �i and the first n − j − x edges of
�i+u+1, respectively. Therefore, the j + n− j − x = n− x edges of S ′ are consecutive
in �i ∨n−x �i+r. By assumption, ms(�i, �i+r) ≥ n1 − x, so H(S ′) must be a matching.
The edges of S not in S ′ are from the r − 1 matchings Mi+1, . . . ,Mi+r−1. Thus,
Δ(H(S)) ≤ r.

An ordering of a set A is a bijective function σ : A → [|A|]. Many of the
matching decompositions that we will use henceforth have a natural indexing which
is not directly compatible with Proposition 2.2. In such cases we will find it useful
to be able to find an ordering of the set of indices, with particular properties. To do
this, we will make use of the following lemma, first given in [6].

Lemma 2.3. Let s < t be integers and set d := gcd(s, t). Define ai,j :=
(
jmod t

d

)
+(

i t
d
mod t

)
for all integers i and j. Then some ordering σ of [t] satisfies σ(ai,j+1) =

(σ(ai,j) + s) mod t for all i ∈ [d] and j ∈ [
t
d

]
.

Proof. We check that the function σ : [t] → [t] defined by σ(ai,j) = (i+js) modulo t
for i ∈ [d] and j ∈ [

t
d

]
will suffice. Suppose that i + js ≡ i′ + j′s (mod t) for some

i, i′ ∈ [d] and j, j′ ∈ [
t
d

]
. Then i− i′ ≡ (j′ − j)s (mod t). As d divides s and t, any

multiple of s modulo t is also a multiple of d. Thus, i − i′ is a multiple of d, while
0 ≤ |i− i′| ≤ d − 1. This is only possible if i = i′ and so (j − j′)s ≡ 0 (mod t). As
0 ≤ |j′ − j| ≤ t

d
− 1 and lcm(s, t) = st

d
, we must also have that j = j′. Thus, σ is

injective and so bijective; σ is thus an ordering of [t]. For any i ∈ [d] and j ∈ [
t
d

]
,

σ(ai,j+1) = (i+ (j + 1)s) modulo t = (σ(ai,j) + s) modulo t .

Hence, σ has the required properties.
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The function σ in the lemma also satisfies an analogous non-cyclic property, as
follows.

Corollary 2.4. Let s < t be integers. Then there exists an ordering τ of [t] with the
property that, if τ(a) ≤ t− s− 1, then τ(a+ 1) = τ(a) + s.

We use Lemma 2.3 to give an analogous version of Proposition 2.2 for the cyclic case.

Proposition 2.5. Let H be a hypergraph that decomposes into matchings Mi,j, each
with n edges and orderings �i,j for i ∈ [d] and j ∈ [c], respectively. Suppose, for some
x ∈ [n] and r < Δ(H), that gcd(dc, r) = d and ms(�i,j, �i,j+1) ≥ n− x for all i ∈ [d]
and j ∈ [c]. Then cmsr(H) ≥ rn− x.

Proof. Let ai,j and σ be as defined in Lemma 2.3 for s = r and t = cd. SetMσ(ai,j ) :=
Mi,j and �σ(ai,j ) := �i,j for all i ∈ [d] and j ∈ [c]. For l ∈ [t], let l = σ(ai,j).
By Lemma 2.3, σ(ai,j+1) ≡ σ(ai,j) + r ≡ l + r (mod t). Hence, ms(�l, �l+r) =
ms(�i,j , �i,j+1) ≥ n−x. Therefore, the conditions of Proposition 2.2 are satisfied and
the result follows.

One could also use Corollary 2.4 to create an analogous version of Proposition 2.2
for the non-cyclic case, but we will not require this.

2.1 Non-trivial definitions of msr(H) and cmsr(H) for all r ≥ 1

If H is a hypergraph with maximum degree Δ(H) and r ≥ Δ(H), then one might
say that, trivially, msr(H) = |E(H)|, as clearly any sequence of edges containing all
the edges of H form H, which has no vertex of degree greater than r. Somewhat
implicitly, the definition of cyclic r-matching sequencibility allows r ≥ Δ(H), and
cmsr(H) is non-trivial in general. However, when r < Δ(H), msr(H) and cmsr(H)
have the intuitive relationship cmsr(H) ≤ msr(H) for any H. Thus, to preserve
that relationship for all r and make the determination of msr(H) for hypergraphs
with r ≥ Δ(H) of interest, we will give a definition of msr(H) which is non-trivial
in general, for all r ≥ 1.

Let H = (V,E) be a hypergraph with an ordering � and, to use the notation of
Bondy and Murty [2], let ε := |E|. First, recall the notion of cyclically consecutive
edges. A sequence S = e0, . . . , es−1 of edges in E is cyclically consecutive in � if the
labels of e0, . . . , es−1 are cyclically consecutive integers modulo ε, respectively. In
particular, a sequence of s > ε edges can be cyclically consecutive, where ei and ei+ε

must be the same edge, for all i ∈ [s−ε]. We define H(S) to be the hypergraph with
(distinctly labelled) edges e0, . . . , es−1

We now define msr(H) for all r ≥ 1. For an integer s, let a be the integer
such that aε ≤ s < (a + 1)ε. A sequence e0 . . . , es−1 of edges of H is consecutive
in � if �(e0) ≤ (a + 1)ε − s and the labels of e0 . . . , es−1 are cyclically consecutive
integers modulo ε, respectively. The definition of consecutive edges, given earlier in
the section, is recovered by setting a = 0. Define msr(�) to be the largest value s
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such that, for every sequence S of s consecutive edges in �, Δ(H(S)) ≤ r. Define
msr(H) to be the largest value of msr(�) over all orderings � of H. As the edges in
a sequence S = e0, . . . , es−1 of consecutive edges of � are also cyclically consecutive
under the restriction �(e0) ≤ (a+1)ε−s, it follows that cmsr(�) ≤ msr(�) and, thus,
cmsr(H) ≤ msr(H) for all positive integers r and hypergraphs H.

We now demonstrate that msr(H), as defined above, is non-trivial in general.
For a hypergraph H = (V,E) and positive integer λ, let λH be the hypergraph
H′ = (V,E ′) where E ′ is formed from E by replacing each e ∈ E with λ distinct
edges parallel to e. For an ordering � of H and integer a, let a� := � ∨ · · · ∨ �, where
� occurs a times. That is, a� corresponds to the sequence e0, . . . , eaε−1 of edges of H
such that S�(H) = e0, . . . , eε−1, and ei and ei+ε are the same edge for all i ∈ [(a−1)ε].
In particular, for an integer s such that aε ≤ s < (a+1)ε, the set of all sequences S of
s consecutive edges of � is the set of all sequences S ′ of s consecutive edges of (a+1)�.
Also, the hypergraph formed by the sequence corresponding to b� is bH for all positive
integers b. So, for any r, if a is the integer such that aΔ(H) ≤ r < (a + 1)Δ(H),
then msr(H) = s for some s such that aε ≤ s < (a + 1)ε and, in general, the value
s is non-trivial for any r ≥ 1 and hypergraph H.

The two following lemmas will each be used in several parts of the proof of
Theorem 1.4.

Lemma 2.6. Let H be a hypergraph with ε edges and maximum degree Δ, and
r = aΔ+ b for non-negative integers a and b with b ∈ [Δ]. Then

aε+msb(H) ≤ msr(H) and aε+ cmsb(H) ≤ cmsr(H) .

Proof. Let s = aε+msb(H) and � be an ordering of H satisfying msb(�) = msb(H).
Consider a sequence S = e0, . . . , es−1 of s consecutive edges of �. As ei = ei+ε for all
i ∈ [s−ε], a+1 copies of the edge ej occur in the sequence S if j ∈ [s−aε], and a copies
of the edge ej occur if s − aε ≤ j ≤ ε − 1. In particular, H(S) is the hypergraph
obtained by adding to aH an edge parallel to e for each edge e in the sequence
S ′ := e0, . . . , es−aε−1. The sequence S ′ is consecutive in �, as �(e0) ≤ (a + 1)ε − s.
Since msb(�) = s − aε, Δ(H(S ′)) ≤ b. Thus, the degree of a vertex v in H(S) is at
most a degH(v) + b ≤ aΔ + b = r. Hence, msr(H) ≥ msr(�) ≥ s = aε + msb(H).
The cyclic case is similar.

Lemma 2.7. For a hypergraph H and λ ≥ 1, cmsr(λH) ≥ cmsr(H).

Proof. Let � be an ordering of H satisfying cmsr(�) = cmsr(H). For an edge
e ∈ E(H), let e′0, . . . , e

′
λ−1 be the corresponding edges parallel to e in E(λH). By

identifying each of e′0, . . . , e
′
λ−1 with a unique copy of e in the sequence Sλ�(H), we

can define �′ = λ� to be an ordering of λH. For any sequence S of s cyclically
consecutive edges of � and the corresponding sequence S ′ of s cyclically consecu-
tive edges of �′, clearly H(S) = H(S ′). Therefore, cmsr(�

′) = cmsr(�) and, thus,
cmsr(λH) ≥ cmsr(H).

An analogous result to Lemma 2.7 in the non-cyclic case does not hold; see Section 7.
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3 Proof of Theorem 1.4: Part I

Theorem 1.4 will be proved by a set of lemmas that fall into three separate categories,
each to be addressed in this and the next two sections. The first two of these lemmas
are given in the present section.

We start by introducing the following notation, which will be used in the remain-
der of the paper. Let λ ≥ 1, 1 ≤ n1 ≤ · · · ≤ nk and u be the largest integer such
that n1 = nu. Let N =

∏k
i=2 ni, N

′ =
∏k

i=u+1 ni, r = r1λN + r2 and λN = ar2 + b
for integers a, b, r1 and r2 such that r2 ∈ [λN ] and b ∈ [r2].

Recall from the Introduction that the complete k-partite k-hypergraph, denoted
by Kn1,...,nk

, is the hypergraph whose vertex set V is the union of disjoint sets
N1, . . . , Nk of sizes n1, . . . , nk, respectively, and whose edge set E is the family of
all k-edges that have exactly one endpoint in Ni for all i. We note that the in-
equality msr(λKn1,...,nk

) ≤ rn1 is trivial for all r as every edge incident with one of
the n1 vertices of N1 and, therefore, a sequence of at most rn1 edges of λKn1,...,nk

can form a hypergraph with maximum degree at most r. Thus, the inequalities
cmsr(λKn1,...,nk

) ≤ msr(λKn1,...,nk
) ≤ rn1 will always hold.

The following claim is an immediate necessary condition for an ordering � of
λKn1,...,nk

to satisfy msr(�) = rn1 or cmsr(�) = rn1.

Claim 3.1. Let � be an ordering of λKn1,...,nk
. If msr(�) = rn1, then the edges �−1(j)

and �−1(r2n1 + j) are incident with the same vertex in Ni for all i = 1, . . . , u and
j ∈ [λNn1−r2n1]. If cmsr(�)=rn1, then the edges �−1(j) and �−1((r2n1+j) mod λNn1)
are incident with the same vertex in Ni for all i = 1, . . . , u and j ∈ [λN ].

Proof. We only prove the non-cyclic case as the cyclic case is similar. Let � be an
ordering of λKn1,...,nk

such that msr(�) = rn1, and let ε := |E(λKn1,...,nk
)| = λNn1.

Consider a sequence S = e0, . . . , ern1 of consecutive edges of �, where, by defini-
tion, j := �(e0) ∈ [(r1 + 1)ε − rn1] = [ε − r2n1]. The sequence S ′ = e1, . . . , ern1−1

consists of rn1 − 1 consecutive edges of � and so (H(S ′)) ≤ r.

As every edge in E(λKn1,...,nk
) is incident with a vertex in each of N1, . . . , Nu and

|Ni| = n1 for i ≤ u, every vertex in each of N1, . . . , Nu must have degree exactly
r in H(S ′), except for some v1 ∈ N1, . . . , vu ∈ Nu which each have degree r − 1.
Thus, in order for the hypergraphs formed by the sequences S0 = e0, . . . , ern1−1 and
S1 = e1, . . . , ern1 to each have maximum degree at most r, the edges e0 and ern1 must
be incident with each of v1 ∈ N1, . . . , vu ∈ Nu. As ei = ei+ε for all i ∈ [rn1 − ε],
ern1 = er′ for r

′ = rn1 mod ε. Since r = r1λN + r2 and ε = λNn1, it follows that e0
and er′ = er2n1 are incident with v1, . . . , vu; i.e., the edges �−1(j) and �−1(r2n1 + j)
are incident with the same vertex in Ni for all i = 1, . . . , u, as required.

Lemma 3.2. If msr(λKn1,...,nk
) = rn1, then nu−1

1 | r2 or

(⌊
r2

nu−1
1

⌋
+ 1

)⌊
λ

r2

k∏
i=2

ni

⌋
≤ λ

k∏
i=u+1

ni ≤
⌊

r2

nu−1
1

⌋(⌊
λ

r2

k∏
i=2

ni

⌋
+ 1

)
.
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Proof. Let � be an ordering of λKn1,...,nk
such that msr(�) = rn1. Let

S�(λKn1,...,nk
) = e0, . . . , eλNn1−1 and let S = e′0, . . . , e

′
λNn1−1 be the sequence of edges

from E(Kn1,...,nu) such that if ei is incident with each of v1 ∈ N1, . . . , vu ∈ Nu,
then e′i is the edge in E(Kn1,...,nu) incident with each of v1, . . . , vu. For an edge
e ∈ E(Kn1,...,nu), let d(e) be the number of times that e appears among the first r2n1

edges of S. Similarly, let d′(e) number of times that e appears among the first bn1

edges of S, where d′(e) is 0 for all e if b = 0.

We count in two ways the number times that an edge e ∈ E(Kn1,...,nu) appears
in S. For all j ∈ [λNn1 − r2n1], Claim 3.1 implies that the edges ej and er2n1+j are
incident with the same vertex in Ni for i = 1, . . . , u. Therefore, e′j = e′r2n1+j for all
j ∈ [λNn1 − r2n1]. In particular, e′j = e′ar2n1+j for j ∈ [bn1], where [bn1] = [0] = ∅
if b = 0. As λN = ar2 + b, the first bn1 edges and the last bn1 edges of S (in order)
are therefore the same. Thus, the edge e ∈ (Kn1,...,nu) appears ad(e) + d′(e) times
in the sequence S. On the other hand, as � is an ordering of λKn1,...,nk

, any vertices
v1 ∈ N1, . . . , vu ∈ Nu are incident with exactly λN ′ edges in the sequence S�(H).
Thus, each edge e ∈ E(Kn1,...,nu) appears λN

′ times in S. Hence,

λN ′ = ad(e) + d′(e) (2)

for all e ∈ E(Kn1,...,nu).

We now establish the upper inequality of the lemma. As the first bn1 edges of S
are contained in the first r2n1 edges of S, clearly d′(e) ≤ d(e) for all e. So, by (2), we
have that (a+1)d(e) ≥ λN ′ for all e ∈ E(Kn1,...,nu). In particular, (a+1)dmin ≥ λN ′,
where dmin is the minimum of d(e) over all edges e ∈ E(Kn1,...,nu). Clearly,∑

e∈E(Kn1,...,nu )

d(e) = r2n1 , (3)

and so, by the Pigeonhole Principle, dmin ≤
⌊
r2n1

nu
1

⌋
=
⌊

r2
nu−1
1

⌋
. Thus,

(a+ 1)

⌊
r2

nu−1
1

⌋
≥ (a+ 1)dmin ≥ λN ′ ,

which is equivalent to(⌊
λ

r2

k∏
i=2

ni

⌋
+ 1

)⌊
r2

nu−1
1

⌋
≥ λ

k∏
i=u+1

ni .

This establishes the upper inequality of the lemma.

We now establish the lower inequality of the lemma. Since d′(e) ≥ 0, (2) implies
that λN ′ ≥ ad(e) for all e ∈ E(Kn1,...,nu). In particular, λN ′ ≥ admax, where dmax

is the maximal value of d(e) for edges e ∈ E(Kn1,...,nu). By (3) and the Pigeonhole

Principle, dmax ≥
⌈

r2
nu−1
1

⌉
. Thus,

λ

k∏
i=u+1

ni = λN ′ ≥ a

⌈
r2

nu−1
1

⌉
=

⌊
λ

r2

k∏
i=2

ni

⌋⌈
r2

nu−1
1

⌉
,
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which establishes the lower inequality of the lemma if nu−1
1 � r2. Otherwise, nu−1

1 | r2,
and we are done.

Lemma 3.3. If cmsr(λKn1,...,nu) = rn1, then nu−1
1 | r2.

Proof. Let � be an ordering of λKn1,...,nk
such that cmsr(�) = rn1. Let x and y

be integers satisfying xr2 = yλN . Write Sy�(λKn1,...,nk
) = e0, . . . , eyλNn1−1 and let

S = e′0, . . . , e
′
yλNn1−1 be the sequence of edges from E(Kn1,...,nu) such that, if ei is

incident with each of v1 ∈ V1, . . . , vu ∈ Vu, then e′i is the edge in E(Kn1,...,nu) incident
with each of v1, . . . , vu. For an edge e ∈ E(Kn1,...,nu) let d(e) be the number of times
that e appears among the first r2n1 edges of S.

We count in two ways the number of times that an edge e ∈ E(Kn1,...,nu) appears
in S. For all j, Claim 3.1 implies that edges ej and ej′ are incident with the same
vertex in Ni for i = 1, . . . , u, where j′ := (r2n1 + j) mod λNn1. So, e′j = e′j′ for all
j ∈ [yλNn1 − r2n1]. Therefore, each edge e ∈ E(Kn1,...,nu) appears xd(e) times in
the sequence S, as xr2 = yλN . On the other hand, e ∈ E(Kn1,...,nu) appears λN ′

times in the sequence Sλ(H), as � is an ordering of λKn1,...,nk
. Thus, e appears yλN ′

times in the sequence S. Therefore, xd(e) = yλN ′ for all e ∈ E(Kn1,...,nu), and d(e)
is therefore constant. By (3), d(e)nu

1 = r2n1; hence, n
u−1
1 | r2.

4 Proof of Theorem 1.4: Part II

The next lemma required for the proof of Theorem 1.4 is Lemma 4.2 below. Before
presenting this lemma, however, let us first introduce notation used in this section
and the next.

Recall that the representation of an integer x in basem is x = (xl, . . . , x0)m, where
x =

∑l
i=0 xim

i and xi ∈ Zm for all i. We consider the following generalisation of this

representation. Let m1, . . . , mk be arbitrary positive integers and set M :=
∏k

i=2mi.
The representation of each integer x ∈ ZM in base m := (m1, . . . , mk) is the k-vector
〈x〉m := (0, x2, . . . , xk) ∈ {0} ×∏k

i=2 Zmi
that satisfies

x =
k∑

i=2

(
xi

k∏
j=i+1

mj

)
. (4)

By the following lemma, this representation is indeed well defined. Note that the 0
in the first coordinate is technically useful as it will align with notation used later in
the paper.

Lemma 4.1. The representation 〈x〉m := (0, x2, . . . , xk) of each x ∈ ZM exists and
is unique. Furthermore, 〈x + 1〉m = (0, x2, . . . , xt−1, xt + 1 . . . , xk + 1)m for some
2 ≤ t ≤ k.

Proof. Let x ∈ ZM be an integer with representation 〈x〉m = (0, x2, . . . , xk). Clearly,
xk ≡ x (mod mk). Suppose, by induction, that xl+1, . . . , xk are uniquely determined
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by x. Then, as x ≡ ∑k
i=l xi

∏k
j=i+1mj (mod

∏k
i=l mi) for any 2 ≤ l ≤ k, we can

determine xl uniquely given x and xl+1, . . . , xk. Thus, if an integer in ZM has a
representation 〈x〉m, then it is unique. As there are M k-tuples, each of which
represents an integer satisfying (4), every integer in ZM has a unique representation
as a k-tuple.

If xk �= mk − 1, then clearly 〈x + 1〉 = (0, x2, . . . , xk−1, xk + 1), as required.
Otherwise, let t′ be the smallest positive integer such that xj = mj − 1 for all

t′ < j ≤ k. Then x =
∑t′

i=2(xi

∏k
j=i+1mj) +

∑k
i=t′+1

(
(mi − 1)

∏k
j=i+1mj

)
, and so

x+ 1 =

t′∑
i=2

(
xi

k∏
j=i+1

mj

)
+

k∑
i=t′+1

k∏
j=i

mj −
k∑

i=t′+1

(
k∏

j=i+1

mj

)
+ 1

=

t′∑
i=2

(
xi

k∏
j=i+1

mj

)
+

k∏
j=t′+1

mj .

Hence, x+ 1 = M if t′ = 1, and, if t′ ≥ 2, then

x+ 1 =

t′−1∑
i=2

(
xi

k∏
j=i+1

mj

)
+ (x′

t + 1)

k∏
j=t′+1

mj .

Thus, 〈x + 1〉 = 〈M〉m = 〈0〉m = (0, x2 + 1, . . . , xk + 1) when t′ = 1 and, when
t′ ≥ 2, 〈x + 1〉m = (0, x2, . . . , xt′−1, xt′ + 1, . . . , xk + 1). In particular, 〈x + 1〉m =
(0, x2, . . . , xt−1, xt + 1, . . . , xk + 1) for some t, namely t = t′ if t′ ≥ 2, and t = 2 if
t′ = 1.

Lemma 4.2. For all 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk and r, λ ≥ 1,

rn1 − 1 ≤ cmsr(λKn1,...,nk
) ≤ msr(λKn1,...,nk

) ≤ rn1 .

To prove Lemma 4.2, we need only consider cases, according to the following claim.

Claim 4.3. If Lemma 4.2 is true for all 1 ≤ r < N and λ = 1, then Lemma 4.2 is
true for all r, λ ≥ 1.

Proof. Suppose that Lemma 4.2 is true for all r < N and λ = 1. Write r as
r = r1N + r2 Then,

cmsr(H) ≥ r1n1N + cmsr2(H) ≥ r1n1N + r2n1 + 1 = rn1 − 1 ,

by Lemma 2.6. Thus, by Lemma 2.7, cmsr(λH) ≥ rn1 − 1 for all λ ≥ 1, and we can
conclude that rn1 − 1 ≤ cmsr(λKn1,...,nk

) ≤ msr(λKn1,...,nk
) ≤ rn1, as the two upper

inequalities are trivially true.

To prove Lemma 4.2, it therefore suffices to consider Kn1,...,nk
. More notation is

however needed, so let d be a positive factor of N , and let m1, . . . , mk be integers
satisfying d =

∏k
i=2mi where m1 = n1 and mi | ni for all 2 ≤ i ≤ k. Define Ni :=
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Zmi
× Zni/mi

for 1 ≤ i ≤ k, m := (m1, . . . , mk) and n/m := (n1/m1, . . . , nk/mk).
Without loss of generality, we can identify the edges of Kn1,...,nk

with the elements

of N :=
∏k

i=1Ni; in particular, each edge of Kn1,...,nk
is identified with a vec-

tor
(
(x1, y1), . . . , (xk, yk)

)
m,n/m

. The sum of two elements ((x1, y1), . . . , (xk, yk)),

((x′
1, y

′
1), . . . , (x

′
k, y

′
k)) ∈ N is defined as

(
(x1+x′

1, y1+y′1), . . . , (xk+x′
k, yk+y′k)

)
m,n/m

.

The difference of two such elements is defined analogously.

For integers x ∈ Zd and y ∈ ZN/d, define 〈(x, y)〉m,n/m := ((0, 0), (x2, y2) . . . ,

(xk, yk))m,n/m, where 〈x〉m = (0, x2, . . . , xk)m and 〈y〉n/m = (0, y2, . . . , yk)n/m. Also,

for each integer x ∈ [n1], define 〈x∗〉m,n/m :=
(
(x1,1, x1,2), . . . , (xk,1, xk,2)

)
m,n/m

, where

xi,1 ∈ [mi] and xi,2 ∈ [ ni

mi
] satisfy x = xi,1

ni

mi
+ xi,2 for all 1 ≤ i ≤ k. It is easily

checked that each xi,j is uniquely determined by x, and so 〈x∗〉m,n/m is well defined.

Note that the first entry of 〈x∗〉m,n/m is not necessarily equal to (0, 0). The subscript

m,n/m will be omitted if the context is implicitly clear.

For i ∈ [d] and j ∈ [N
d
], define Mi,j :=

{〈x∗〉m,n/m + 〈(i, j)〉m,n/m : x ∈ [n1]
}
.

Claim 4.4. The set
{Mi,j : i ∈ [d], j ∈ [N

d
]
}

is a matching decomposition of
Kn1,...,nk

.

Proof. We first check that each Mi,j is a matching. Let 〈x∗〉 = (
(x1,1, x1,2), . . . ,

(xk,1, xk,2)
)
, 〈y∗〉 = (

(y1,1, y1,2), . . . , (yk,1, yk,2)
)
and 〈(i, j)〉 = (

(i1, j1), . . . , (ik, jk)
)
for

distinct x, y ∈ [n1]. Suppose that the edges 〈x∗〉+ 〈(i, j)〉 and 〈y∗〉+ 〈(i, j)〉 in Mi,j

have the same l-th entry for some 1 ≤ l ≤ k; i.e.,

xl,1 + il ≡ yl,1 + il (mod ml) and xl,2 + jl ≡ yl,2 + jl

(
mod

nl

ml

)
.

Then xl,1 = yl,1 and xl,2 = yl,2. Hence, x = xl,1
nl

ml
+ xl,2 = yl,1

nl

ml
+ yl,2 = y, a

contradiction. Thus, Mi,j is a matching for all i ∈ [d], j ∈ [N
d
].

We now verify that the matchings Mi,j for i ∈ [d], j ∈ [N
d
] partition E(Kn1,...,nk

).
As there are clearly N matchings Mi,j, each containing n1 edges, we need only show
that no two distinct Mi,j and Mi′,j′ contain a common edge. Suppose, otherwise,
that there are distinct (i, j), (i′, j′) such that Mi,j and Mi′,j′ contain a common
edge. By considering first entries, it is easy to check that if Mi,j and Mi′,j′ contain a
common edge, then that edge is of the form 〈x∗〉+ 〈(i, j)〉 = 〈x∗〉+ 〈(i′, j′)〉 for some
x ∈ [n1]. Let 〈x∗〉 = ((x1,1, x1,2), . . . , (xk,1, xk,2)), 〈(i, j)〉 = ((i1, j1), . . . , (ik, jk)) and
〈(i′, j′)〉 = ((i′1, j

′
1), . . . , (i

′
k, j

′
k)). Then, by equating the l-th entries of 〈x∗〉 + 〈(i, j)〉

and 〈x∗〉+ 〈(i′, j′)〉, we see that, for 1 ≤ l ≤ k,

xl,1 + il ≡ xl,1 + i′l (mod mi) and xl,2 + jl ≡ xl,2 + j′l
(
mod

ni

mi

)
.

Then (il, jl) = (i′l, j
′
l) for all 1 ≤ l ≤ k, and so

〈(i, j)〉 = ((i1, j1), . . . , (ik, jk)) = ((i′1, j
′
1), . . . , (i

′
k, j

′
k)) = 〈(i′, j′)〉 ,

contradicting our assumption that (i, j) �= (i′, j′). Hence, the matchings Mi,j for i ∈
[d], j ∈ [N

d
] are disjoint and, by the number of their edges, partition E(Kn1,...,nk

).
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Let �i,j be the ordering of Mi,j defined by �i,j (〈x∗〉+ 〈(i, j)〉) = x for all x ∈ [n1],
and set �i,N

d
:= �i,0 and (thus) Mi,N

d
:= Mi,0 for all i ∈ [d].

Lemma 4.5. For all i ∈ [d] and j ∈ [N
d
], ms(�i,j, �i,j+1) ≥ n1 − 1.

Proof. Let � = �i,j ∨n1−1 �i,j. Consider a sequence S of n1 − 1 consecutive edges
in �. We check that H(S) is a matching of Kn1,...,nk

. Let 1 ≤ s ≤ n1 − 2 be
the number of edges in S which are from Mi,j. There are then n1 − 1 − s edges
in S from Mi,j+1, and the edges in S which are from Mi,j are 〈x∗〉 + 〈(i, j)〉 for
n1 − s ≤ a ≤ n1 − 1, and the edges in S from Mi,j+1 are 〈y∗〉 + 〈(i, j + 1)〉 for
0 ≤ y ≤ n1− s−2. As Mi,j and Mi,j+1 are each matchings, H(S) is not a matching
only if there is an edge from Mi,j in S and another from Mi,j+1 in S that have a
common entry. So, suppose that 〈x∗〉+ 〈(i, j)〉 and 〈y∗〉+ 〈(i, j + 1)〉 have the same
l-th entry for some 1 ≤ l ≤ k, n1 − s ≤ x ≤ n1 − 1 and 0 ≤ y ≤ n1 − s − 2. Let
〈x∗〉 = (

(x1,1, x1,2), . . . , (xk,1, xk,2)
)
, 〈y∗〉 = (

(y1,1, y1,2), . . . , (yk,1, yk,2)
)
and 〈(i, j)〉 =(

(i1, j1), . . . , (ik, jk)
)
. By Lemma 4.1, 〈(i, j + 1)〉 = (

(i1, j1), . . . , (it−1, jt−1), (it, jt +
1), . . . , (ik, jk + 1)

)
for some 2 ≤ t ≤ k. Thus, by equating the �th entries of 〈x∗〉 +

〈(i, j)〉 and 〈y∗〉+ 〈(i, j + 1)〉, we see that

(x�,1+il, x�,2+j�) =

{(
(y�,1 + i�) mod m�, (y�,2 + j�) mod nl

ml

)
if l < t(

(y�,1 + i�) mod m�, (y�,2 + j� + 1) mod nl

ml

)
otherwise.

(5)

By equating the entries of the pairs in (5), we see that xl,1 = yl,1 and either xl,2 = yl,2
or xl,2 ≡ yl,2 + 1 (mod nl

ml
). If the former is true, then x = xl,1

nl

ml
+ xl,2 = yl,1

nl

ml
+

yl,2 = y, a contradiction. Hence, xl,2 ≡ yl,2 + 1 (mod nl

ml
). If xl,2 = yl,2 + 1, then,

using a similar argument, we arrive at the contradiction x = y + 1. We are then left
with the case in which xl,2 = 0 and yl,2 =

nl

ml
− 1, also a contradiction, as, otherwise,

x = xl,1
nl

ml
< yl,1

nl

ml
+ nl

ml
− 1 = y. Hence, H(S) is a matching, as required.

We can now prove Lemma 4.2.

Proof of Lemma 4.2. Let r < N and d = gcd(N, r). By Claim 4.4 and Lemma 4.5,
the assumptions of Proposition 2.5 are met for the hypergraph Kn1,...,nk

with match-
ings Mi,j ordered by �i,j for i ∈ [d] and j ∈ [N

d
], respectively. Thus, cmsr(Kn1,...,nk

) ≥
rn1 − 1 when r < N . By Claim 4.3, Lemma 4.2 is true for all r ≥ 1 and λ ≥ 1.

5 Proof of Theorem 1.4: Part III

We now present the remaining lemmas required for the proof of Theorem 1.4, namely,
Lemmas 5.1 and 5.2.

Lemma 5.1. If nu−1
1 | r2, then cmsr(λKn1,...,nk

) = rn1.
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Lemma 5.2. If nu−1
1 | r2 or

(⌊
r2

nu−1
1

⌋
+ 1

)⌊
λ

r2

k∏
i=2

ni

⌋
≤ λ

k∏
i=u+1

ni ≤
⌊

r2

nu−1
1

⌋(⌊
λ

r2

k∏
i=2

ni

⌋
+ 1

)
, (6)

then msr(Kn1,...,nk
) = rn1.

The rest of this section serves to prove these lemmas.

First note that we can immediately reduce Lemma 5.1 to a single case for λ, as
follows.

Claim 5.3. If Lemma 5.1 is true for r = nu−1
1 and λ = 1, then Lemma 5.1 is true

for all r ≥ nu−1
1 and λ ≥ 1.

Proof. Suppose that Lemma 5.1 is true for r = nu−1
1 and λ = 1. Then, by Lemma 2.1,

Lemma 5.1 is true for λ = 1 and all r < N such that nu−1
1 | r2 = r. Thus, for any

r = r1N + r2 such that nu−1
1 | r2, it follows from Lemma 2.6 that

cmsr(Kn1,...,nk
) ≥ r1n1N + cmsr2(H) = r1n1N + r2n1 = rn1 .

By Lemma 2.7, the cases in which λ > 1 follow from the case in which λ = 1, and
we are done.

Claim 5.4. If Lemma 5.2 is true for 1 ≤ r < λN , then Lemma 5.2 is true for all
r ≥ 1.

Proof. Suppose that Lemma 5.2 is true for r < λN and that either nu−1
1 | r2 or

equation (6) holds. Then, for each r ≥ 1,

msr(λKn1,...,nk
) ≥ r1n1λ

k∏
i=2

ni +msr2(λKn1,...,nk
) = r1λn1

k∏
i=2

ni + r2n1 = rn1 ,

by Lemma 2.6.

Set Ni := [ni] for all 1 ≤ i ≤ k. By the natural isomorphism between [ni] and
[ni] × [1] for all i, it follows that the sets Ni are, up to isomorphism, the same sets
as those defined in Section 4 for d = N ; i.e., when mi = ni for all 1 ≤ i ≤ k. We
will therefore use the definitions and notation of the previous section, where, for
simplicity, we identify the edges of Kn1,...,nk

with the elements of
∏k

i=1 Zni
. Then

〈x∗〉n := 〈x∗〉m,n/m, as defined in Section 4, will be identified with the element

(x, . . . , x) ∈ ∏k
i=1Zni

for each x ∈ Zn1 .

Let �′ be a labelling of Kn1,...,nu such that the edges (�′)−1(xn1), . . . , (�
′)−1(xn1 +

n1−1) form a matching for all x ∈ [nu−1
1 ]. That is, let �′ be an ordering which corre-

sponds to S(M0) ∨ · · · ∨ S(Mnu−1
1 −1) for some matching decomposition

M0, . . ., Mnu−1
1 −1 of Kn1,...,nu , where each Mi is ordered arbitrarily. Let n′ :=
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(n1, nu+1, . . . , nk). For i ∈ [N ′], let M′
i :=

{〈x∗〉n′ − 〈i〉n′ : x ∈ [n1]
}

and

M′
i :=

{
(xu+1, . . . , xk) : (x1, xu+1, . . . , xk) ∈ M′

i

}
. It is easy to check that M′

i and,

therefore, M′
i is a matching, by using a similar argument to the proof of Claim 4.4.

Let �′i be the ordering of M′
i defined by �′i(〈x∗〉n′ − 〈i〉n′) = x for all x ∈ [n1].

Also let �′i be the analogous ordering for M′
i. Identify each element (x1, . . . , xk) ∈∏k

i=1Zni
with element

(
(x1, . . . , xu), (xu+1, . . . , xk)

) ∈ (
∏u

i=1 Zni
)×(

∏k
i=u+1 Zni

). For
i ∈ [nu−1

1 ] and j ∈ [λN ′], let M′
i,j be a set containing an edge parallel to the edge

((�′)−1(in1 + x), (�′j)
−1(x)) for each x ∈ [n1], where, for simplicity, we let �′j = �′j′ for

j′ ∈ [N ′] with j′ ≡ j (mod N).

Claim 5.5. The set
{M′

i,j : i ∈ [nu−1
1 ], j ∈ [λN ′]

}
is a matching decomposition of

λKn1,...,nk
.

Proof. Each M′
i,j is a matching since (�′)−1(in1), . . . , (�

′)−1(in1 + n1 − 1) form the

matching Mi and (�′j)
−1(0), . . . , (�′j)

−1(n1−1) form the matching Mi. For i ∈ [nu−1
1 ]

and j ∈ [N ′], there are λ matchings whose edges are parallel to the same as those
in M′

i,j, namely, M′
i,j, . . . ,M′

i,j+(λ−1)N ′. Therefore, it suffices to show that
{Mi,j :

i ∈ [nu−1
1 ], j ∈ [N ′]

}
is a matching decomposition of Kn1,...,nk

.

We see that the matching M′
i is isomorphic to the matching M0,N ′−i defined in

Section 4 for d = N ′ andKn1,nu+1,...,nk
, by noting that 〈x∗〉n′+〈−i〉n′ = 〈x∗〉n′−〈i〉n′ for

any x ∈ [n1] and by setting M0,N ′ := M0,0. Thus, by Claim 4.4,
{M′

j : j ∈ [N ′]
}
is

a matching decomposition of Kn1,nu+1,...,nk
. The edges of M′

i,j are isomorphic to edges

in M′
j by identifying ((�′)−1(in1 + x), (�′j)

−1(x)) with (x, (�′j)
−1(x)) for all x ∈ [n1].

Hence,
{M′

i,j : j ∈ [N ′]
}
is a matching decomposition of Mi × Knu+1,...,nk

for any

i ∈ [nu−1
1 ]. As every edge of Kn1,...,nu appears in exactly one Mi, the set

{M′
i,j : i ∈

[nu−1
1 ], j ∈ [N ′]

}
is a matching decomposition of Kn1,...,nk

, as required.

Let �′i,j be the ordering of M′
i,j defined by �′i,j

((
(�′)−1(in1 + x), (�′j)

−1(x)
))

for
x ∈ [n1], and set �′i,λN := �′i,0 and (thus) M′

i,λN := M′
i,0.

Lemma 5.6. For all i ∈ [nu−1
1 ] and j ∈ [λN ′], ms(�′i,j, �

′
i,j+1) ≥ n1 holds.

Proof. Let � = �′i,j ∨n1 �
′
i,j+1. Consider a sequence S of n1 consecutive edges in �.

The edges of S that appear in the matching Mi,j (in order with respect to �) are(
(�′)−1(in1 + x), (�′j)

−1(x)
)
, . . . ,

(
(�′)−1(in1 + n1 − 1), (�′j)

−1(n1 − 1)
)

and the edges of S that appear in the matching Mi,j+1 (in order with respect to �)
are (

(�′)−1(in1), (�′j+1)
−1(0)

)
, . . . ,

(
(�′)−1(in1 + x− 1), (�′j+1)

−1(x− 1)
)

for some 1 ≤ x ≤ n1 − 1. The edges (�′)−1(in1 +0), . . . , (�′)−1(in1 +n1 − 1) form the
matching Mi and, in particular, every vertex in [nl] for 1 ≤ l ≤ u has degree 1 in
H(S).

So without loss of generality, we consider the degree of vertices in [nl] for u+1 ≤
l ≤ k in the hypergraph H(S ′), where S ′ = (�′j)

−1(x), . . . , (�′j)
−1(n1 − 1),



A. MAMMOLITI /AUSTRALAS. J. COMBIN. 74 (2) (2019), 344–363 359

(�′j+1)
−1(0), . . . , (�′j+1)

−1(x− 1). As we are not concerned with the degree of vertices
in [n1], we can consider the hypergraph formed by the edges

〈x∗〉n′ − 〈j〉n′ , . . . , 〈(n1 − 1)∗〉n′ − 〈j〉n′,

〈0∗〉n′ − 〈j + 1〉n′ , . . . , 〈(x− 1)∗〉n′ − 〈j + 1〉n′ ,
(7)

by ignoring the first entry of each edge. Let 〈j〉n′ = (j1, ju+1, . . . , jk)n′ . By Lemma 4.1
〈j + 1〉n′ = (j1, ju+1, . . . , ju+t−1, ju+t + 1, . . . , jk + 1)n′ for some 1 ≤ t ≤ k − u. For
u + 1 ≤ l ≤ u + t − 1, the (l − u + 1)-th entry of the edges in (7) are, modulo nl,
x − jl, . . . , n1 − 1 − jl and −jl, 1 − jl, . . . , x − 1 − jl, which are clearly distinct as
nl > n1. For u + t ≤ l ≤ k, the (l − u + 1)-th entry of the edges in (7) modulo nl

are x − jl, . . . , n1 − 1 − jl and −jl − 1,−jl, . . . , x − 2 − jl, which are distinct since
nl > n1. Thus, every vertex in [nl] for u + 1 ≤ l ≤ k is incident with at most one
edge in (7) and thus at most one edge in S. Hence, H(S) is a matching.

Proof of Lemma 5.1 . By Claim 5.3, we only need to consider the case in which
r = nu−1

1 and λ = 1. By Claim 5.5,
{M′

i,j : i ∈ [nu−1
1 ], j ∈ [N ′]

}
is a matching

decomposition of Kn1,...,nk
. By Lemma 5.6, ms(�′i,j, �

′
i,j+1) ≥ n1 for all i ∈ [nu−1

1 ] and
j ∈ [N ′]. Hence, by Proposition 2.5, we have that cmsr(Kn1,...,nk

) ≥ rn1, and so
cmsr(Kn1,...,nk

) = rn1 as required.

The remainder of this section is devoted to proving Lemma 5.2. We assume that
nu−1
1 � r2, as the case in which nu−1

1 | r2 has been shown in Lemma 5.1. Let r < λN
be a positive integer and write r = pnu−1

1 + q for non-negative integers p and q such
that 0 < q < nu−1

1 , and recall that λN = ar + b. Then (6) can be expressed as

(p+ 1)a ≤ λN ′ ≤ p(a+ 1) . (8)

As we are proving Lemma 5.2, we will assume that (8) holds and thus that p �= 0.

Let α = p, β = (p + 1), γ = (λN ′ − ap), δ =
(
λN ′ − a(p + 1)

)
and ν =

nu−1
1 − q. The identities r = pnu−1

1 + q and nu−1
1 λN ′ = ra + b easily yield the

following expressions:

γν + δq = b (9)

(α− γ)ν + (β − δ)q = r − b (10)

aα + γ = λN ′ = aβ + δ . (11)

By (8), each of the numbers γ, δ, α− γ and β − δ is non-negative.

Let σ : [λN ′] → [λN ′] be a function with the properties given in Corollary 2.4
with s = α and t = λN ′. Similarly, let τ : [λN ′] → [λN ′] be a function with
the properties given in Corollary 2.4 with s = β and t = λN ′. For a fixed pair
(i, j) ∈ [nu−1

1 ]× [λN ′], let si,j and ti,j be the integers that satisfy{
σ(j) = si,jα + ti,j with ti,j ∈ [α] if i ∈ [ν] ;

τ(j) = si,jβ + ti,j with ti,j ∈ [β] otherwise.
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Let ρ : [nu−1
1 ]× [λN ′] → [λN ] be defined by

ρ(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
si,jr + νti,j + i if ti,j ∈ [γ] and i ∈ [ν] ;

si,jr + νγ + qti,j + i− ν if ti,j ∈ [δ] and i ∈ [ν + q]− [ν] ;

si,jr + b+ ν(ti,j − γ) + i if ti,j ∈ [α]− [γ] and i ∈ [ν] ;

si,jr + b+ ν(α− γ) + qti,j + i− ν if ti,j ∈ [β]− [δ] and i ∈ [ν + q]−[ν].

As σ and τ are bijections of [λN ′], (8) implies that si,j ∈ [a + 1] for all i and j.
Furthermore by (11), if si,j = a, then ti,j ∈ [γ] if i ∈ [ν] and t ∈ [δ] otherwise.
Therefore, if i ∈ [ν], then either ρ(i, j) = si,jr + νti,j + i ≤ ar + ν(γ − 1) + ν − 1 or
ρ(i, j) = si,jr+ b+ ν(ti,j −γ)+ i ≤ (a−1)r+ b+ ν(α−1−γ)+ ν −1. In either case,
ρ(i, j) < λN , by (9) and (10), respectively. By a similar argument, ρ(i, j) < λN
when i ∈ [ν + q]− [ν], and ρ is thus well defined.

Lemma 5.7. The function ρ is an ordering of [nu−1
1 ]× [λN ′] with the property that

if ρ(i, j) ∈ [λN − r], then ρ(i, j + 1) = ρ(i, j) + r.

Proof. We first check that ρ is an ordering of [nu−1
1 ]× [λN ′]. Suppose that ρ(i, j) =

ρ(i′, j′). By inspection, we have that

ρ(i, j)− si,jr ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[νγ] for ti,j ∈ [γ] and i ∈ [ν] ;

[b]− [νγ] for ti,j ∈ [δ] and i ∈ [ν + q]− [ν] ;

[b+ ν(α− γ)]− [b] for ti,j ∈ [α]− [γ] and i ∈ [ν] ;

[r]− [b+ ν(α− γ)] for ti,j ∈ [β]− [δ] and i ∈ [ν + q]− [ν] ,

and ρ(i′, j′) − si′,j′r has the analogous property. Therefore, si,j = si′,j′ and either
i, i′ ∈ [ν] or i, i′ ∈ [ν + q]− [ν]. Thus, by the definition of ρ,

0 = ρ(i, j)− ρ(i′, j′) =

{
ν(ti,j − ti′,j′) + i− i′ if i, i′ ∈ [ν] ;

q(ti,j − ti′,j′) + i− i′ if i, i′ ∈ [ν + q]− [ν] .
(12)

However, |i− i′| ∈ [ν] if i, i′ ∈ [ν], and |i− i′| ∈ [q] if i, i′ ∈ [ν + q]− [ν]. Hence, (12)
implies that ti,j = ti′,j′ and i = i′. Therefore, j = σ−1(si,jα + ti,j) = σ−1(si′,j′α +
ti′,j′) = j′ if i ∈ [ν], and, similarly, j = j′ if i ∈ [ν + q] − [ν]. Thus, (i, j) = (i′, j′),
and so ρ is injective. Since |[nu−1

1 ]× [λN ′]| = |[λN ]|, ρ is a bijection and, hence, an
ordering of [nu−1

1 ]× [λN ′].

We now check that ρ satisfies the property given in the lemma. Suppose that
ρ(i, j) ∈ [λN − r]. If i ∈ [ν], then si,jr + νti,j + i < (a − 1)r + b if t ∈ [γ], and
si,jr + b + ν(ti,j − γ) + i < (a − 1)r + b otherwise. Therefore, si,j ≤ a − 1 and if
si,j = a − 1, then ti,j ∈ [γ]. Thus, si,jα + ti,j < λN ′ − α and so, by Corollary 2.4,
σ(j + 1) = (si,j + 1)α + ti,j. By a similar argument, τ(j + 1) = (si,j + 1)β + ti,j for
i ∈ [ν+q]− [ν]. Hence, in any case, si,j+1 = si,j+1 and ti,j+1 = ti,j. By the definition
of ρ, ρ(i, j+1)−si,j+1r = ρ(i, j)−si,jr, and so ρ(i, j+1)−ρ(i, j) = si,j+1r−si,jr = r.
Rearranging yields the required expression.
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Proof of Lemma 5.2. By Claim 5.4, we only need to consider the cases in which
1 ≤ r < λN . Let Ml = M′

ρ−1(l) and �l = �′ρ−1(l) for all l ∈ [λN ]. We check that
the conditions of Proposition 2.2 are satisfied for the matchings M0, . . . ,MλN−1 of
Kn1,...,nk

. By Claim 5.5,
{M0, . . . ,MλN−1

}
is a matching decomposition of Kn1,...,nk

.
For l ∈ [λN − r], let ρ−1(l) = (i, j) and so ρ(i, j) = l. By Lemma 5.7, ρ(i, j +
1) = ρ(i, j) + r = l + r and, as ρ is a bijection, ρ−1(l + r) = (i, j + 1). Hence,
ms(�l, �l+r) = ms(�i,j, �i,j+1) ≥ n1, by Lemma 5.6, and the proof then follows from
Proposition 2.2.

6 Proof of Theorem 1.4: Conclusion

Proof of Theorem 1.4. By Lemma 4.2, msr(λKn1,...,nk
) and cmsr(λKn1,...,nk

) are each
either rn1 − 1 or rn1. By Lemmas 3.2 and 5.2, msr(λKn1,...,nk

) = rn1 if and only if
nu−1
1 | r or (1) holds. Thus,

msr(λKn1,...,nk
) =

{
rn1 if nu−1

1 | r2 or (1) holds ;

rn1 − 1 otherwise .

Similarly by Lemmas 3.3 and 5.1 cmsr(λKn1,...,nk
) = rn1 if and only if nu−1

1 | r and,
thus,

cmsr(λKn1,...,nk
) =

{
rn1 if nu−1

1 | r2 ;
rn1 − 1 otherwise .

7 Concluding Remarks

One can show, for the special case in which p = 1, q = 0, λ = 1, and where σ
is the identity function on [λN ′], that the function ρ defined in Section 5 reduces
to the much simpler function ρ(i, j) = jr + i for all i ∈ [nu−1

1 ] and j ∈ [N ′] and,
furthermore, that it satisfies a cyclic analogue of Lemma 5.7, namely ρ(i, j + 1) =
(ρ(i, j) + r) moduloN for all i ∈ [nu−1

1 ] and j ∈ [N ′]. The given proof of Lemma 5.1
implicitly uses this ρ: Proposition 2.5 uses Lemma 2.3. The cyclic construction in
the previous section is thus a very special case of the non-cyclic construction.

Though the hypergraphs in this paper attain the lower bounds in Lemma 2.6,
there are hypergraphs which do not. Consider the graph G below. First, we check
that cms(G) = 1. Suppose otherwise that cms(�) = 2 for some ordering � of G. As
G has 6 edges and the vertex v has degree 3, the edges incident with v are, without
loss of generality, labelled as depicted in Figure 1. However, for any choice of a label
for the edge e, there will be two cyclically consecutive edges incident with a common
vertex. Thus, cms(G) = 1. On the other hand, it is easy to check that, for any
ordering � of G with the edges incident with v labelled as depicted, cms4(�) ≥ 8.
As Δ(G) = 3 and |E(G)| = 6, the lower bound of Lemma 2.6 for G when r = 4 is
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1 × 6 + cms1(G) = 7 < 8 ≤ cms4(G). By similar reasoning, the graph G′ obtained
from G by removing the edge e′ satisfies ms(G′) = 1 and ms4(G

′) ≥ 7, which is
strictly above the lower bound given by Lemma 2.6. The bounds in Lemma 2.6 are
thus not always achieved.

We can also show that Lemma 2.7 is no longer true if cyclic-sequencibility is
replaced by non-cyclic sequencibility. Consider the graph H in Figure 2. It is easy
to verify that the ordering � of H depicted in Figure 2 satisfies ms(�) = 2 and, in
particular, that ms(G) ≥ 2. The graph 2H has 24 edges, 14 of which are incident
with v. Therefore, for any ordering �′ of 2H corresponding to the sequence of edges
e0, . . . , e23, at least one of the 12 pairs of edges e2i, e2i+1 for i ∈ [12] has both of its
edges incident with v, by the Pigeonhole Principle. Thus, no ordering �′ of 2H can
satisfy ms(�′) ≥ 2, and so ms(2H) = 1 < 2 = ms(H). So, there is no non-cyclic
sequencibility analogue of Lemma 2.7.

We end the paper with the following conjecture on the matching sequencibility of
complete multi-partite graphs. Let Ks(n) be the complete s-partite graph with parts
of size n.

Conjecture 7.1. For any integers n ≥ 2 and s ≥ 2,

ms(Ks(n)) = cms(Ks(n)) =
⌊sn
2

⌋
− 1 .
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