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Abstract

We apply our geometrical theory for counting placements of q nonat-
tacking chess pieces on an n × n chessboard, from our previous papers
(Parts I and II), to partial queens: that is, chess pieces with any com-
bination of horizontal, vertical, and 45◦-diagonal moves. Parts I and II
showed that for any rider (a piece with moves of unlimited length) the
number of placements will be a quasipolynomial function of n in which
the coefficients are essentially polynomials in q. Those general results
gave the three highest-order coefficients of the counting quasipolynomial
and formulas for counting placements of two nonattacking pieces and the
combinatorially distinct types of such placements.

By contrast, the unified framework we present here for partial queens
allows us to explicitly compute the four highest-order coefficients of the
counting quasipolynomial, show that the five highest-order coefficients
are constant (independent of n), and find the period of the next coef-
ficient (which depends upon the exact set of moves). Furthermore, for
three nonattacking partial queens we are able to prove formulas for the
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total number of nonattacking placements and for the number of their
combinatorially distinct types.

The method of proof, as in the previous parts, is by detailed analysis
of the lattice of subspaces of an inside-out polytope.

1 Introduction

The well-known n-Queens Problem asks for the number of ways to place n nonat-
tacking queens on an n × n square chessboard. A broader question separates the
number of pieces from the size of the board; that question is the q-Queens Problem,
which asks for the number of ways to place q nonattacking queens on an n×n board.
This article is part of a series in which we develop a general method for solving such
questions for pieces of the type called “riders”, whose moves have unlimited distance
[1, 2, 3, 4, 5].

In Part I we obtained a general form for the function of n that, given q identical
riders, counts the number of nonattacking configurations of those pieces on an n×n
board. In Part II we learned that the complexity of that counting function depends
on the magnitudes of the numerator and denominator of the slopes of the piece’s
move directions. Thus it is natural to focus on “partial queens”—the rider pieces
whose moves are a subset of those of the queen—because they are the pieces for
which the move slopes involve only ±1 and 0. By narrowing our focus to partial
queens we are able to ascertain much more about the counting functions, and in a
unified manner.

We proved in Part I that in each non-attacking placement problem the number
of solutions is a quasipolynomial function of n—that means it is given by a cyclically
repeating sequence of polynomials as n varies—and that the coefficient of each power
of n is (up to a factor) a polynomial function of q. In Part II we found, for instance,
that the coefficients of the three highest powers of n do not vary with n. In the
main theorem here, Theorem 3.1, we are able to say much more for partial queens.
Most importantly, we prove explicit formulas for the coefficients of the four highest
powers of n and for the leading term (in powers of q) of the coefficient of every power
of n. Surprisingly, we are even able to obtain formulas for the periodic parts of the
coefficients of the next two highest powers of n, though not for the nonperiodic parts.
A consequence is that we know something about the period of the quasipolynomial;
in particular, if a partial queen does not have both diagonal moves, then all the
highest six coefficients are constant. (That is definitely not true for the bishop or
queen—Part VI proves that the period of the counting quasipolynomial for q ≥ 3
bishops is 2.) Furthermore, although the only fully explicit counting function we
could find for q arbitrary riders on the square board was for q = 2 (Theorem II.3.1),
for partial queens we get the complete counting function for 3 nonattacking pieces
(Theorem 4.2).

The method of proof is purely an application of the theory from Parts I and II
(whose essentials are reviewed in Section 2). The chess problem is converted into
a geometry problem in which moves become hyperplanes in R2q; the n × n board
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becomes the set of 1/(n+ 1)-fractional lattice points inside the unit square; and the
number of nonattacking configurations becomes a linear combination of the numbers
of q-tuples of these lattice points that lie in intersections of move hyperplanes. We
explicitly determine all subspaces of codimension 1, 2, and 3 in the lattice of such
intersections and count the number of lattice points therein (from which follows the
count for q = 3 pieces). We further apply our theory to calculate the number of
combinatorially distinct configurations of three nonattacking partial queens, which
turns out to be determined solely by the number of moves, not which moves they
are (Corollary 4.3).

We mentioned the relative simplicity of partial queens. A deeper reason we study
this set of pieces is that we hope ultimately to discover the factors that control such
basic properties of the counting formula as the period of the cyclically repeating
polynomials, the periods of the individual coefficients of powers of n, formulas for
the coefficients in terms of the moves of the piece under consideration, or anything
that will let us predict aspects of the counting functions by knowing the moves. For
this hope, partial queens can be a valuable test set, not as hard as general riders but
varied enough to suggest patterns for counting functions—indeed, it was the formulas
and their proofs for partial queens that led us to several of the general properties
proved in Parts I and II.

Our analysis involves a great deal of notation; we append a notational dictionary
after an observation and a question in Section 5 and the detailed subspace analysis
in Section 6.

2 Essentials

2.1 Review

We assume acquaintance with the notation and methods of Parts I and II as they
apply to the square board. For easy reference we review the most important here.

The square board consists of the integral points in the interior of the integral
multiple (n+ 1)[0, 1]2 of the unit square. (See Figure 2.1.) Writing [n] := {1, . . . , n},
the set of points of the board is

[n]2 = (n+ 1)(0, 1)2 ∩ Z2.

We write δij for the Kronecker delta.
A move of a piece P is the difference between two positions on the board; it may

be any integral multiple of a vector in a finite, nonempty set M of basic moves. The
latter are non-zero, non-parallel integral vectors mr = (cr, dr) in lowest terms, i.e.,
cr and dr are relatively prime. (The slope dr/cr contains all necessary information
and can be specified instead of mr itself.) For a move m = (c, d), we define

ĉ := min(|c|, |d|), d̂ := max(|c|, |d|).

One piece attacks another if the former can reach the latter by a move. An
example with two attacking bishops—the piece with basic moves (1, 1) and (1,−1)—
is shown in Figure 2.1.
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Figure 2.1: The 6×6 square board consists of the integral points inside (6+1)[0, 1]2.
The boundary (shaded) is used in the computations. The bishops at positions z1 =
(1, 1) and z2 = (4, 4) are attacking; that is expressed mathematically by the equation
(z2 − z1) · (1,−1) = 0. Neither of those bishops attacks the bishop at position
z3 = (6, 3) since (zi − z3) · (1,−1) 6= 0 and (zi − z3) · (1, 1) 6= 0 for i = 1, 2.

We assume that q > 0. In the q-Queens Problem, the constraint is that no
two pieces may attack one another. To say it mathematically, if there are pieces at
positions zi = (xi, yi) and zj = (xj, yj), then zj − zi is not a multiple of any m ∈M.
This can be written as the following move hyperplane (or attack hyperplane)

H
d/c
ij := {z ∈ R2q : (zj − zi) · (d,−c) = 0}.

The equation of a move hyperplane is called a move equation or attack equation.
This turns the question of counting nonattacking chess piece configurations into a

problem of counting integer vectors z = (z1, z2, . . . , zq) ∈ ([n]2)q that avoid the move
arrangement AP, which is the set of all move hyperplanes. In our bishops example
(Figure 2.1), a nonattacking configuration of q bishops therefore corresponds to an
integral point in [n]2q that avoids all 2

(
n
2

)
equations of the form (yj−yi) = ±(xj−xi).

An equivalent formulation that is sometimes preferable scales the lattice points
by a factor of 1/(n + 1), so that configurations of q pieces are 1/(n + 1)-fractional
lattice points avoiding AP in the unit hypercube. The pair ((0, 1)2q,AP) consisting
of the unit hypercube and the move arrangement is called an inside-out polytope;
something that is explained more fully in Section I.2.

Our notation for the number of nonattacking configurations of q unlabelled pieces
on an n × n board is uP(q;n). Because it is more feasible for our method, what we
actually compute is the number of nonattacking labelled configurations, oP(q;n),
which equals q!uP(q;n). The Ehrhart theory of inside-out polytopes implies that
these counting functions are quasipolynomials in n of degree 2q, whose leading co-
efficient is the volume of the unit hypercube. Thus the counting function has the
form

uP(q;n) = γ0(n)n2q + γ1(n)n2q−1 + γ2(n)n2q−2 + · · ·+ γ2q(n)n0,

in which the coefficients γi(n) are periodic functions of n and the leading coefficient
γ0(n) = 1/q!.

The counting system for the lattice points in [n]2q that avoid AP uses the in-
tersection lattice L (AP)—which consists of all intersections of subsets of the move
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arrangement, ordered by reverse inclusion, with bottom element 0̂ = R2q—and its
combinatorial Möbius function µ(0̂, ·). The points of [n]2q that are in the move
hyperplanes represent attacking configurations, which we exclude by Möbius inver-
sion over the intersection lattice; the remaining points, which represent nonattacking
configurations, are what we wish to count. Möbius inversion leads to the formula

q!uP(q;n) =
∑

U∈L (AP)

µ(0̂,U)α(U;n)n2q−2κ, (2.1)

which is Equation (I.2.1) with t = n + 1 and EU∩P◦(t) = α(U;n)n2q−2κ. Equation
(2.1) is the foundation stone of this paper. We explain the terms of the summation
in the next two paragraphs.

First we define the Möbius function and state its three most important evalua-
tions. The recursive definition is that, for each U ∈ L (AP),

µ(0̂,U) =

{
1 if U = 0̂,

−
∑

U′<U µ(0̂,U′) if U > 0̂.
(2.2)

Because of the ordering by reverse inclusion, the inequality U′ < U has the geometric
meaning U′ ⊃ U. From the definition we infer that

µ(0̂,U) =


1 if codimU = 0 (i.e., U = 0̂),

−1 if codimU = 1 (U is a move hyperplane), and

m− 1 if codimU = 2,

where in the last case m is the number of move hyperplanes that contain U.
The quantity α(U;n)n2q−2κ counts lattice points that are in both the intersection

subspace U ∈ L (AP) and [n]2q. For U = 0̂ = R2q, they are all points in [n]2q. For
every other intersection U, they are attacking configurations—points in [n]2q that lie
in one or more move hyperplanes, satisfying one or more attack equations. Each such
U lies in a coordinate subspace of R2q that involves only the coordinates of pieces
that appear in those equations. We call the intersection of U with that coordinate
subspace the essential part of U. In Part II we defined α(U;n) as the number of
points in the intersection of the essential part of U ∈ L (AP) with the integral
hypercube [n]2κ, where κ is the number of pieces involved in the move equations
defining U. By Ehrhart theory, α(U;n) is a quasipolynomial in n of degree 2κ − ν
with constant leading coefficient, where ν is the codimension of U. Since U is the
Cartesian product of its essential part with the complementary coordinate subspace,
of dimension 2q − 2κ, the number of points in U ∩ [n]2q is α(U;n)n2q−2κ.

Since we work closely with quantities of the form α(U;n), we define a few abbre-
viations. For one,

αd/c(n) := α(H
d/c
12 ;n)

is the number of ordered pairs of positions that attack each other along slope d/c
(they may occupy the same position; that is considered attacking). Similarly,

βd/c(n) := α(W
d/c
123 ;n),
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the number of ordered triples that are collinear along slope d/c; W
d/c
123 := H

d/c
12 ∩H

d/c
23 .

Proposition II.3.1 gives general formulas for α and β. We need only a few examples
in Part III:

α0/1(n) = α1/0(n) = n3, α±1/1(n) =
2n3 + n

3
,

β0/1(n) = β1/0(n) = n4, β±1/1(n) =
n4 + n2

2
.

(2.3)

2.2 Partial queens

A partial queen is a piece Qhk, whose moves are h horizontal and vertical moves and
k diagonal moves of slopes ±1, where h, k ∈ {0, 1, 2} and (to avoid the trivial case
M = ∅) we assume h + k ≥ 1. This includes the cases of the bishop (h = 0 and
k = 2) and the queen (h = k = 2), and allows for pieces such as the semiqueen
(h = 2 and k = 1) and the anassa (h = k = 1).1 By restricting to partial queens
it is possible to explicitly calculate the contributions to q!uQhk(q;n) of intersection
subspaces up to codimension 3. From this, we can calculate the coefficients γ1, γ2,
and γ3 and the counting quasipolynomials uQhk(2;n) and uQhk(3;n).

3 Coefficients

Kotěšovec proposed formulas for the coefficients γ1 and γ2 of the counting quasi-
polynomials for queens and bishops and other riders [7, third ed., pp. 13, 210, 223,
249, 652, 663; also in later eds.]. Our main theorem proves the generalization of his
conjectures to partial queens and to γ3; our formulas for γ3 for the queen Q22, the
anassa Q11, the semiqueen Q21, and the trident Q12 are new.

Theorem 3.1. (I) For a partial queen Qhk, the coefficient q!γi of n2q−i in oQhk(q;n)
is a polynomial in q, periodic in n, with leading term(

− 3h+ 2k

6

)i
q2i

i!
.

(II) The coefficients γ0, . . . , γ4 of the five highest powers of n in the quasipolyno-
mial uQhk(q;n) are independent of n.

The coefficients γi for i = 1, 2, 3 are given by

γ1 = − 1

(q − 2)!

{
3h+ 2k

6

}
, (3.1)

γ2 =
1

2!(q − 2)!

{
(q − 2)2

(3h+ 2k

6

)2
+ (q − 2)

4h+ 2k + 8hk + 12δh2 + 5δk2
6

+ (h+ k − 1)

}
,

(3.2)

1Kotěšovec calls our anassa “semi-rook + semi-bishop” but we want it to have a distinctive
name. “Anassa” is archaic Greek feminine for a tribal chief, i.e., presumably for the consort of a
chief [9].
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and

γ3 = − 1

3!(q − 2)!

{
(q − 2)4

(3h+ 2k

6

)3
+ (q − 2)3

(3h+ 2k)(4h+ 8hk + 2k + 12δh2 + 5δk2)

12

+ (q − 2)2
30h2 + 257hk + 20k2 − 8k + 40(8k + 9)δh2 + 4(51h+ 26)δk2

20

+ (q − 2)
12h(h− 1) + 20hk + 8k(k − 1) + 8kδh2 + 5hδk2

2

+ k

}
.

(3.3)

(III) The next coefficient, γ5, is constant except that it has period 2 if k = 2 and
h 6= 0 (and q ≥ 3), with periodic part −(−1)nh/8(q − 3)!.

We write the falling factorials in terms of q−2 instead of q because every nontrivial
coefficient γi (γ0 = 1/q! being “trivial”) has a numerator factor (q)j with j ≥ 2 and
a denominator factor q! (since uP = oP/q!). Therefore uP(q;n) as a whole looks like

n2q

q!
+

(q)2(nontrivial quasipolynomial in n and q)

q!
.

It seems natural to cancel the repetitious factor (q)2 in every coefficient other than
γ0.

Curiously, δh2 = h(h− 1)/2 and δk2 = k(k − 1)/2 because h, k ∈ {0, 1, 2}. Thus,
the expressions involving these Kronecker deltas can be written as polynomials in h
and k. We do not see a reason to prefer one form over the other.

Tables 3.1–3.2 give the explicit formulas for the coefficients γ2 and γ3 for the
partial queens.

Theorem 3.1 yields a nice corollary for pieces with only one diagonal move (or
none, but those pieces, the rook and half-rook, are elementary).

Corollary 3.2. When the piece is a partial queen Qhk with k < 2, the six leading
coefficients, γi for i ≤ 5, are independent of n.

Proof of Theorem 3.1. Theorem II.5.1 says that (q)2i gives the highest power of q
and its coefficient is (−a10/2)i/i!, where a10 =

∑
(c,d)∈M(3d̂− ĉ)/3d̂2 = h3

3
+ k 2

3
since

there are h moves with (ĉ, d̂) = (0, 1) and k with (ĉ, d̂) = (1, 1).
The coefficient γ1 is from Theorem II.5.1. For the other coefficients we state

two lemmas that state the total contributions to uQhk(q;n) from subspaces of all
codimensions ν ≤ 3, the proofs of which, involving case-by-case analysis, we postpone
to Section 6.
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Name (h, k) γ2

Semi-rook (1, 0)
1

2!(q − 2)!

{(1

2

)2
(q − 2)2 +

2

3
(q − 2)

}
Rook (2, 0)

1

2!(q − 2)!

{
(1)2(q − 2)2 +

10

3
(q − 2) + 1

}
Semibishop (0, 1)

1

2!(q − 2)!

{(1

3

)2
(q − 2)2 +

1

3
(q − 2)

}
Anassa (1, 1)

1

2!(q − 2)!

{(5

6

)2
(q − 2)2 +

7

3
(q − 2) + 1

}
Semiqueen (2, 1)

1

2!(q − 2)!

{(4

3

)2
(q − 2)2 +

38

6
(q − 2) + 2

}
Bishop (0, 2)

1

2!(q − 2)!

{(2

3

)2
(q − 2)2 + 3(q − 2) + 1

}
Trident (1, 2)

1

2!(q − 2)!

{(7

6

)2
(q − 2)2 +

29

6
(q − 2) + 2

}
Queen (2, 2)

1

2!(q − 2)!

{(5

3

)2
(q − 2)2 +

61

6
(q − 2) + 3

}
Table 3.1: The coefficient γ2 for the various partial queens.

(h, k) γ3

(1, 0) − 1

3!(q − 2)!

{(1

2

)3
(q − 2)4 + (q − 2)3 +

3

2
(q − 2)2

}
(2, 0) − 1

3!(q − 2)!

{
(1)3(q − 2)4 + 10(q − 2)3 + 24(q − 2)2 + 12(q − 2)

}
(0, 1) − 1

3!(q − 2)!

{(1

3

)3
(q − 2)4 +

1

3
(q − 2)3 +

3

5
(q − 2)2 + 1

}
(1, 1) − 1

3!(q − 2)!

{(5

6

)3
(q − 2)4 +

35

6
(q − 2)3 +

299

20
(q − 2)2 + 10(q − 2) + 1

}
(2, 1) − 1

3!(q − 2)!

{(4

3

)3
(q − 2)4 +

76

3
(q − 2)3 +

663

10
(q − 2)2 + 36(q − 2) + 1

}
(0, 2) − 1

3!(q − 2)!

{(2

3

)3
(q − 2)4 + 3(q − 2)3 + 10(q − 2)2 + 8(q − 2) + 2

}
(1, 2) − 1

3!(q − 2)!

{(7

6

)3
(q − 2)4 +

203

12
(q − 2)3 +

458

10
(q − 2)2 +

61

2
(q − 2) + 2

}
(2, 2) − 1

3!(q − 2)!

{(5

3

)3
(q − 2)4 +

305

6
(q − 2)3 +

681

5
(q − 2)2 + 73(q − 2) + 2

}
Table 3.2: The coefficient γ3 for the various partial queens.
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Lemma 3.3. The contributions to uQhk(q;n) from subspaces of codimension ν ≤ 2
are as follows.

(I) From codimU = 0:
1

q!
n2q. (3.4)

(II) From codimU = 1:

− 1

q!

{
(q)2

3h+ 2k

6
n2q−1 + (q)2

k

6
n2q−3

}
. (3.5)

(III) From codimU = 2:

1

q!

{[
(q)4

1

2

(3h+ 2k

6

)2
+ (q)3

4h+ 2k + 8hk + 12δh2 + 5δk2
12

+ (q)2
h+ k − 1

2

]
n2q−2 +

[
(q)4

k(3h+ 2k)

36
+ (q)3

k(2h+ 1) + 2δk2
6

]
n2q−4

+

[
(q)4

k2

72
+ (q)3

[
1− (−1)n

]δk2
8

]
n2q−6

}
.

(3.6)

Lemma 3.4. The total contribution to uQhk(q;n) = 1
q!
oP(q;n) from subspaces of

codimension 3 is

− 1

q!

{[
n2q−3

(
(q)3

12h(h− 1) + 20hk + 8k(k − 1) + 8kδh2 + 5hδk2
12

+ (q)4
30h2 + 257hk + 20k2 − 8k + 40(8k + 9)δh2 + 4(51h+ 26)δk2

120

+ (q)5
(3h+ 2k)(4h+ 8hk + 2k + 12δh2 + 5δk2)

72
+ (q)6

(3h+ 2k)3

1296

)
+ n2q−5

(
(q)3

8k(h+ k − 1) + 8kδh2 + 11hδk2
24

+ (q)4
k(31h+ 2k + 2) + 32kδh2 + (34h+ 24)δk2

24

+ (q)5
2k (6h2 + 8hk + 5h+ 3k) + 12kδh2 + (12h+ 13k)δk2

72

+ (q)6
k(3h+ 2k)2

432

)
+ n2q−7

(
(q)4

2k(4h− 1) + (61h+ 76)δk2
120

+ (q)5
4k2(2h+ 1) + (9h+ 14k)δk2

144
+ (q)6

k2(3h+ 2k)

432

)
+ n2q−9

(
(q)5

kδk2
48

+ (q)6
k3

1296

)]
− (−1)nδk2

[
n2q−5(q)3

h

8
+ n2q−7

(
(q)4

3h+ 4

8
+ (q)5

3h+ 2k

48

)
+ n2q−9(q)5

k

48

]}
.
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The lemmas show that the contribution from codimension ν involves only powers
n2q−i for which i ≥ ν and i has the same parity as ν. We cannot fully explain this
parity remark; Theorem II.4.2 does say there is no contribution to the coefficient
of n2q−ν−1, but it says nothing about lower powers. Ehrhart theory says that the
leading coefficient is constant; thus a periodic part can appear only at n2q−ν−2.

The proofs of these lemmas involve totaling the contributions to q!uQhk(q;n) =
oQhk(q;n) in Equation (2.1) from all subspaces of codimension ν. To do that we break
down those subspaces into types. We use notation of the form Uν

κ or Uν
κa to represent

a subspace of codimension ν in the intersection semilattice L (A ) that involves κ
pieces, with a letter index to differentiate between distinct types of subspace with
these same numbers. In addition, we wish to differentiate between those subspaces
that are indecomposable and those that decompose into subspaces of smaller codi-
mension; for the latter we write an asterisk after the number of pieces and we specify
the exact constituent subspaces. For example, we will have a subspace U3

5∗a:U
1
2U

2
3a.

For each type we determine the Möbius function µ(0̂,U) and count the number
of lattice points in the intersection U ∩ (0, 1)2q. To perform this count in type Uν

κa,
we count the number of ways to place κ attacking pieces in the designated way, and
then multiply by n2(q−κ) for the number of ways to place the remaining pieces whose
positions are not constrained.

Continuation of proof of Theorem 3.1. The subspaces U that contribute to γ2 are
only those of codimension two, because no contributions to γ2 come from subspaces
of codimension 0 or 1. To find γ2 we extract the coefficient of n2q−2 from (3.6). When
calculating γ3, there are contributions from the subspaces of codimensions 3 and 1.
Combining their contributions implies that the coefficients γ3 are as in (3.3).

The contribution to γ4 from any subspace of codimension 3 is necessarily zero
(again by Theorem II.4.2), and by our calculations above the contribution is constant
for every subspace of lesser codimension. Along with the constancy of the leading
coefficient, this implies that γ4 is constant for all partial queens.

A periodic contribution to γ5 can arise only from subspaces of codimensions
1, 2, and 3, and by Lemma 3.3 only from codimension 3. The periodic parts of all
codimension-3 subspaces are collected in Lemma 3.4, in which the periodic coefficient
of n2q−5 is −(−1)n(q)3hδk2/8, so that is the periodic part of q!γ5. If we hold q fixed,
the counting quasipolynomials for the queen and the trident are the only ones of
partial queens that have non-constant coefficient γ5, whose period is 2.

4 Two and Three Partial Queens

We now use our theory to calculate the counting quasipolynomial uQhk(3;n). The
results agree with formulas proposed by Kotěšovec, who supplemented his formulas
for bishops and queens by independently calculating (but, as is his practice, not
proving) the other cases in his fifth edition [7] after we suggested studying partial
queens.

Complete formulas for two or three partial queens are in Theorems 4.1 and 4.2.
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Theorem 4.1. The counting quasipolynomial for two partial queens Qhk is

uQhk(2;n) =
1

2
n4 − 3h+ 2k

6
n3 +

h+ k − 1

2
n2 − k

6
n.

Proof. In Theorem II.3.1 there are h moves with (ĉ, d̂) = (0, 1) and k with (ĉ, d̂) =
(1, 1). So, all d̂r = 1 and n mod d̂r = 0.

Theorem 4.2. The counting quasipolynomial for three partial queens Qhk is a poly-
nomial when k < 2 and has period 2 when k = 2. The formula is

uQhk(3;n) =
1

6
n6 − 3h+ 2k

6
n5

+

[
5h+ 4hk + 4k − 3

6
+ δh2 +

5δk2
12

]
n4

−
[

(h+ k − 1)(3h+ 2k)

3
+
k

6
+

2kδh2
3

+
5hδk2

12

]
n3

+

[
(h+ k − 1)2(h+ k + 2)

6
+

(2h+ 1)k

6
+
δk2
3

]
n2

−
[
k(h+ k − 1)

3
+
kδh2

3
+

11hδk2
24

]
n+

δk2
8

+ (−1)n
δk2
8

(
hn− 1

)
.

Tables 4.1 and 4.2 list the quasipolynomials for the various partial queens. Then
Theorem 4.1 gives uQ00(2;n) =

(
n2

2

)
, uQ10(2;n) = n2

(
n2

2

)
, and uQ20(2;n) = [(n)2]

2;

Theorem 4.2 gives uQ00(3;n) =
(
n2

3

)
, uQ10(3;n) = n3

(
n3

3

)
, and uQ20(3;n) = [(n)3]

2; all
as one expects from elementary counting (given that Q00, the partial queen with no
moves, attacks only a piece on the same square).

In all instances, these equations agree with Kotěšovec’s conjectures and data.
(After we suggested partial queens, Kotěšovec computed many values of the count-
ing functions and inferred formulas which we employed to correct and verify our
theoretical calculations.)

Proof. The only subspaces that contribute to oQhk(3;n) = 3!uQhk(3;n) are those that
involve three pieces or fewer. The subspace R2q of codimension 0 contributes n2q.
The contribution from codimension 1 is given in Equation (3.5). In the proof of
Theorem 3.1, we already have calculated the contributions from subspaces of types
U2

2, U2
3a, U2

3b, U3
3a, and U3

3b. There is one final type of subspace, involving three
pieces.

Type U4
3. The subspace U is defined by four move equations on three pieces that

specify that the pieces all occupy one position on the board; that is, U = W=
ijl.

There is one subspace for each of the
(
q
3

)
unordered triples of pieces. The number

of points in a subspace is n2, the size of the board.
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Name (h, k) uQhk(2;n)

Semi-rook (1, 0)
n4

2
− n3

2

Rook (2, 0)
n4

2
− n3 +

n2

2

Semibishop (0, 1)
n4

2
− n3

3
− n

6

Anassa (1, 1)
n4

2
− 5n3

6
+
n2

2
− n

6

Semiqueen (2, 1)
n4

2
− 4n3

3
+ n2 − n

6

Bishop (0, 2)
n4

2
− 2n3

3
+
n2

2
− n

3

Trident (1, 2)
n4

2
− 7n3

6
+ n2 − n

3

Queen (2, 2)
n4

2
− 5n3

3
+

3n2

2
− n

3

Table 4.1: The quasipolynomials that count nonattacking configurations of two par-
tial queens.

According to Lemma I.3.1, µ(0̂,U) = (h+ k− 1)2(h+ k+ 2), which happily gives
0 when h+ k = 1.

Consequently, the contribution to oQhk(q;n) is(
q

3

)
(h+ k − 1)2(h+ k + 2)n2q−4.

Combining all contributions and dividing by q! = 6 gives the formula of the
theorem.

We can now calculate the number of combinatorial types for two and three partial
queens.

Corollary 4.3. The number of combinatorial types of nonattacking configuration of
q partial queens Qhk is h+ k when q = 2 and when q = 3 is given by Table 4.3.

Proof. Set n = −1 in uQhk(q;n) and apply Theorem I.5.3.

For q = 2 we get the number of basic moves, in accord with Proposition I.5.6. For
q = 3 the number of types depends only on the number of moves, just as when we
compared three queens to three nightriders in the end of Section I.5. The numbers
match [8, Sequence A084990], whose formula is s(s2 + 3s− 1)/3 with s := |M|.
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(h, k) uQhk(3;n)

(1, 0)
n6

6
− n5

2
+
n4

3

(2, 0)
n6

6
− n5 +

13n4

6
− 2n3 +

2n2

3

(0, 1)
n6

6
− n5

3
+
n4

6
− n3

6
+
n2

6

(1, 1)
n6

6
− 5n5

6
+

5n4

3
− 11n3

6
+

7n2

6
− n

3

(2, 1)
n6

6
− 4n5

3
+

25n4

6
− 37n3

6
+

25n2

6
− n

(0, 2)
n6

6
− 2n5

3
+

5n4

4
− 5n3

3
+

4n2

3
− 2n

3
+

1

8
− (−1)n

1

8

(1, 2)
n6

6
− 7n5

6
+

41n4

12
− 65n3

12
+

14n2

3
− 43n

24
+

1

8
+ (−1)n

{n
8
− 1

8

}
(2, 2)

n6

6
− 5n5

3
+

79n4

12
− 25n3

2
+ 11n2 − 43n

12
+

1

8
+ (−1)n

{n
4
− 1

8

}
Table 4.2: The quasipolynomials that count nonattacking configurations of three
partial queens.

h \ k 0 1 2

0 – 1 6

1 1 6 17

2 6 17 36

Table 4.3: The number of combinatorial types of nonattacking configuration for three
partial queens.

Conjecture 4.4. The number of combinatorial configuration types of three pieces
is

|M|
(
|M|2 + 3|M| − 1

)
/3.

5 Volumes and Evaluations

Here are an observation and a related problem suggested by our calculation of partial
queen coefficients and similar computations for the nightrider in Part V.
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5.1 A quasipolynomial observation

It is striking that in Theorem 3.1 and in the counting formula for nightriders in
Part V we can know the period and periodic part of a quasipolynomial coefficient
without knowing anything about the rest of the coefficient.

5.2 A problem of volumes

It should be possible to find the volume of U ∩ [0, 1]2q without finding any of the
constituents of its Ehrhart quasipolynomial. Doing so would provide the leading
term of α(U;n) and thereby the exact contribution of U to γcodimU. This would be
helpful for all pieces, not only partial queens.

The advantage would be that, if α(U;n) were known for all subspaces of lesser
codimension than i and if vol(U∩[0, 1]2q) were known for all subspaces of codimension
i, then γi would be completely known. Thus we could complete the evaluations of
γ5 and γ6 in Theorem 3.1 and of γ3 for nightriders in Part V.

6 The Missing Proofs

We present the proofs of Lemmas 3.3 and 3.4.

6.1 Proof of Lemma 3.3 on codimension up to 2

Proof. The case ν = 0 is from α((0, 1)2q;n) = n2q. The case ν = 1 is that of
hyperplanes:

Type U1
2. The hyperplanes contribute

−
(
q

2

) ∑
(c,d)∈M

αd/c(n) · n2q−4 = −
(
q

2

)[3h+ 2k

3
n2q−1 +

k

3
n2q−3

]
to oQhk(q;n) since we choose an unordered pair of pieces and a single slope, and the
Möbius function is −1, and the number of ways to place the two pieces is αd/c(n),
given in Equation (2.3).

It remains to solve ν = 2. We break the subspaces down into four types.
Type U2

2. The subspace U is defined by two move equations involving the same

two pieces, U = H
d/c
ij ∩ H

d′/c′

ij where d/c 6= d′/c′ and i < j. Thus, U = W=
ij ,

the subspace corresponding to the equation zi = zj, i.e., to two pieces in the same
location.

There is one such subspace for each of the
(
q
2

)
unordered pairs of pieces. There

are n2 ways to place the two attacking pieces in U. The Möbius function is µ(0̂,U) =
h+ k − 1, by Lemma I.3.1.

The total contribution to oQhk(q;n) is(
q

2

)
(h+ k − 1)n2q−2.
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Type U2
3a. The subspace U is defined by two move equations of the same slope

involving three pieces, say U = H
d/c
12 ∩H

d/c
23 . This subspace is W

d/c
123 = H

d/c
12 ∩H

d/c
13 ∩

H
d/c
23 . There is one such subspace for each of the

(
q
3

)
unordered triples of pieces. The

number of ways to place the three pieces is βd/c(n) in Equation (2.3). Summing over
(c, d) ∈M gives

[
h+ 1

2
k
]
n4 + 1

2
kn2.

The Möbius function is µ(0̂,U) = 2 by Lemma I.3.1. The total contribution of
this type is (

q

3

){
(2h+ k)n2q−2 + kn2q−4}.

Type U2
3b. The subspace U is defined by two move equations of different slopes

involving three pieces, say U = H
d/c
12 ∩H

d′/c′

23 .
First, we count the number of ways in which we can place three pieces (P1, P2,

and P3) so that P1 and P2 are on a line of slope d/c and P2 and P3 are on a line of
slope d′/c′. Depending on d/c and d′/c′, we have the following numbers of choices
for the placements of the chosen pieces in the given attacking configuration:

Case VH. If {d/c, d′/c′} = {0/1, 1/0}, we have n2 choices for P2; then we place
P1 in one of n positions in the same column as P2 and place P3 in one of n positions
in the same row as P2. This gives a total of n4 placements of the three pieces. This
case contributes only when h = 2.

Case DV. If one slope is diagonal and the other vertical or horizontal, we first
choose the positions of P1 and P2, which we specify are attacking each other diago-
nally. This can be done in α1/1(n) ways. Then we place P3 in line with P2 in n ways.
This gives a total of 2

3
n4 + 1

3
n2 placements of the three pieces, contributing hk times.

Case DD. If {d/c, d′/c′} = {1/1,−1/1}, then the number of possibilities for
placing P1 on the diagonal of slope +1 and P3 on the diagonal of slope −1 depends
on the position (x, y) where we place P2. Consider the positions (x, y) satisfying
x ≥ y and x + y ≤ n; if we rotate this triangle of positions about the center of the
square, we see that there are four points with the same number of possibilities for
each position in the triangle, except when n is odd, in which case we must consider
the position (n+1

2
, n+1

2
) independently. (See Figure 6.1.)

Figure 6.1: The triangle of positions that we consider in Case DD, along with its
rotations. The left figure shows that all positions are covered when n is even; the
right figure shows that position (n+1

2
, n+1

2
) is considered independently.

For a position (x, y) of P2 in this triangle, the number of choices for P1 is n−x+y
and the number of choices for P3 is x + y − 1. This gives the following number of
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placements in Case DD:
4

n/2∑
y=1

n−y∑
x=y

(n− x+ y)(x+ y − 1) if n is even,

n2 + 4

(n−1)/2∑
y=1

n−y∑
x=y

(n− x+ y)(x+ y − 1) if n is odd,

=


5
12
n4 + 1

3
n2 if n is even,

5
12
n4 + 1

3
n2 + 1

4
if n is odd,

=
[ 5

12
n4 +

1

3
n2 +

1

8

]
− (−1)n

1

8
.

This quantity contributes only when k = 2.
In Type U2

3b, µ(0̂,U) = 1. There are (q)3 ways to choose the three pieces. The
total contribution to oQhk(q;n) depends on h and k; it is

(q)3

{[
δh2 +

2

3
hk +

5

12
δk2

]
n2q−2 +

[1

3
hk +

1

3
δk2

]
n2q−4

+
1

8
δk2n

2q−6 − (−1)n
1

8
δk2n

2q−6
}
.

Type U2
4∗ :U

1
2U

1
2. The subspace U is defined by two move equations involving four

distinct pieces. Hence, U = H
d/c
12 ∩H

d′/c′

34 , which decomposes into the two hyperplanes

H
d/c
12 and H

d′/c′

34 , where d′/c′ may equal d/c. The Möbius function is µ(0̂,U) = 1.
There are 2!

(
q

2,2,q−4

)
= (q)4/4 ways to choose an ordered pair of unordered pairs

of pieces. Assign any slope d/c to the first pair and d′/c′ to the second. Each pair
of slopes, distinct or equal, appears twice, once for each ordering of the unordered
pairs, so we divide by 2. The number of attacking configurations in each case is
αd/c(n) ·αd′/c′(n). The total contribution of all cases (before multiplication by n2q−8)
is

(q)4
8

∑
(c,d),(c′,d′)∈M

αd/c(n) · αd′/c′(n) =
(q)4

8

[ ∑
(c,d)∈M

αd/c(n)

]2
=

(q)4
8

[
3h+ 2k

3
n3 +

k

3
n

]2
.

Thus, the contribution of Type U2
4∗ to oQhk(q;n), after multiplication by the n2q−8

ways to place the remaining pieces, is

1

8
(q)4

{[
h2 +

4

3
hk +

4

9
k2
]
n2q−2 +

[2

3
hk +

4

9
k2
]
n2q−4 +

1

9
k2n2q−6

}
.

Adding up the various types gives the total contribution to oQhk(q;n); dividing
by q! concludes the proof of Lemma 3.3.
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Figure 6.2: Given two attacking queens on the hypotenuse of a right triangle, there
may be one or two locations for a third mutually attacking queen, as explained in
Type U3

3a.

6.2 Proof of Lemma 3.4 on codimension 3

Proof. The subspaces U defined by three move equations may involve three, four,
five, or six pieces. We treat each number of pieces in turn.

Type U3
3a. The subspace U is defined by three move equations of distinct slopes

involving the same three pieces, say U = H
d/c
12 ∩H

d′/c′

13 ∩Hd′′/c′′

23 where d/c, d′/c′, and
d′′/c′′ are distinct.

There is one subspace U for every valid choice of three slopes and each of the (q)3
ways to choose three pieces and assign pairs of them to the three slopes.

As exhibited in Figure 6.2, there are two kinds of subspace U, with the hypotenuse
of the right triangle either on a diagonal (Case 41) or on a vertical or horizontal line
(Case 42).

Case 41. We take d/c to be diagonal with slope −1/1 and we take d′/c′ = 0/1
and d′′/c′′ = 1/0. That is the upper triangle in Figure 6.2(left) if P1 is higher than
P2 and the lower one if lower; when P1 and P2 coincide, the triangle degenerates to
a point and P3 coincides with the other pieces.

Once we have chosen the positions of P1 and P2 on a diagonal, P3 is determined.
The number of such configurations is α1/1(n) = 2n3+n

3
= α(U;n). This is then

multiplied by k for the k diagonal slopes d/c and δh2 because this case exists only
when h = 2.

Case 42. There are h horizontal and vertical moves, so h orientations for the
hypotenuse. We take the case of a horizontal hypotenuse, d/c = 0/1, and d′/c′ = 1/1,
d′′/c′′ = −1/1; then we multiply the count by h. P3 is in the upper triangle of
Figure 6.2(right) if P1 is left of P2 and the lower one if right; when P1 and P2

coincide, the triangle is degenerate and P3 coincides with them.
First we choose the vertical coordinate y of the hypotenuse. Form the diamond

composed of two triangles with vertices (1, y), (n, y), and (n+1
2
, y + n

2
) (the upper

triangle) or (n+1
2
, y − n

2
) (the lower triangle). P3 may have any (integral) location

in these triangles that is in the board [1, n]2, and once it is positioned the locations
of P1 and P2 are determined. Thus, we need only count the valid locations for P3

for each height y. We do so by counting the integral points in the diamond and
subtracting those outside the board.
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The number of integral points in one triangle with hypotenuse of n points is
T (n) := 1

4
(n2 + 2n + ε), where ε := 1

2
[1 − (−1)n] = (n mod 2). The number in the

diamond is T (n) + T (n− 2) = 1
2
(n2 + ε). There are n such diamonds.

The number of diamond points outside the board depends on y. For y = n+1
2

(the
midline, which exists when n is odd), there are no such points. Thus, we total the
count for all y < n/2 and double it. The excluded part of the diamond is a triangle
whose upper edge extends from (y + 1, 0) to (n − y, 0), with n − 2y points, so the
number of excluded points is T (n− 2y) = 1

4
[(n− 2y + 1)2 − 1 + ε]. Summing over y

and doubling to include y > (n+1)/2 gives 2
∑(n−ε)/2

y=1 T (n−2y) = 1
12

(n3−4n+3nε).
This is subtracted from the total of the n diamond areas and the result multiplied
by h, giving

h

{
n
n2 + ε

2
− n3 − 4n+ 3nε

12

}
=

5h

12
n3 +

11h

24
n− (−1)n

h

8
n

as the number of configurations. This case applies only when k = 2.
In both cases of type U3

3a, µ(0̂,U) = −1 because the number of hyperplanes
that contain U is 3 = codimU. In each case we multiply by (q)3 for the number of
subspaces and n2q−6 for the q − 3 other pieces. The total contribution of this type
to oQhk(q;n) is

− (q)3

{[
δh2

2k

3
+ δk2

5h

12

]
n2q−3 +

[
δh2

k

3
+ δk2

11h

24

]
n2q−5 − (−1)nδk2

h

8
n2q−5

}
.

Type U3
3b. The subspace U is defined by three move equations involving three

pieces and two or three slopes, of the form U = H
d/c
12 ∩H

d′/c′

12 ∩Hd′′/c′′

23 where d′′/c′′ is
any chosen slope, and d/c, d′/c′ are arbitrary distinct slopes. This subspace equals

W=
12 ∩W

d′′/c′′

123 ; thus, it does not depend on the choice of d/c and d′/c′, and H
d′′/c′′

23

can be replaced by H
d′′/c′′

13 in the definition of U. Moreover, the number of ways to
place the three pieces equals the number of ways to place an ordered pair of pieces in
a line of slope d′′/c′′, i.e., αd

′′/c′′(n) from Equation (2.3). This should be multiplied
by n2q−6 for the remaining q − 3 pieces.

By Lemma I.3.1 the Möbius function is µ(0̂,U) = −2(h+ k− 1). We can specify
the pieces involved in (q)3/2 ways. The contribution to oQhk(q;n) is therefore

−(q)3(h+ k − 1)

{[
h+

2k

3

]
n2q−3 +

k

3
n2q−5

}
.

Type U3
4a. The subspace U is defined by three move equations of the same slope

involving four pieces, say U = W
d/c
1234 = (for instance) H

d/c
12 ∩H

d/c
23 ∩H

d/c
34 . There are(

q
4

)
ways to choose the four pieces.
The number of ways to place four attacking pieces in U is

∑
l∈Ld/c(n) l

4 (see Sec-

tion II.3), which depends on d/c. When d/c ∈ {0/1, 1/0}, the number is
∑

l∈Ld/c(n) l
4

= n5. When d/c ∈ {1/1,−1/1}, the number is
∑n

l=1 l
4+
∑n−1

l=1 l
4 = 1

15
(6n5+10n3−n).
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We have µ(0̂,U) = −6 because U is contained in six hyperplanes H
d/c
ij , four

codimension-2 subspaces of type U2
3a, and three codimension-2 subspaces of type

U2
4∗ . The total contribution to oQhk(q;n) is

−
(
q

4

){[
6h+

12k

5

]
n2q−3 + 4kn2q−5 − 2k

5
n2q−7

}
.

Type U3
4b. The subspace U is defined by three move equations involving four

pieces, two of the equations having the same slope and involving the same piece: say

U = W
d/c
123 ∩H

d′/c′

34 = (for example) H
d/c
12 ∩H

d/c
23 ∩H

d′/c′

34 , where d′/c′ 6= d/c.
There is a subspace for each of (q)4/2! choices of pieces (since P1 and P2 are

unordered) and for each ordered pair of slopes d/c and d′/c′.
Just as with subspaces of type U2

3b, we have three cases.

Case VH. Take d/c = 1/0 and d′/c′ = 0/1. Choosing P3’s position in n2 ways,
place P1 and P2 in the same column in n2 ways, and place P4 in P3’s row in n ways.
Multiply by two for interchanging slopes, for a total of 2n5 placements when h = 2.

Case DV. Take d/c = 1/1 (diagonal) and d′/c′ = 1/0 (vertical). As in Type
U2

3a, the number of ways to place P1, P2, and P3 in the same diagonal is given
by Equation (2.3); multiply by the n ways to place P4 in the same column as P3.
Considering the choice of diagonal and that of column or row, we get 1

2
hk(n5 + n3).

Or, take d/c = 1/0 and d′/c′ = 1/1. Place P3 and P4 in the same diagonal in
α1/1(n) ways and multiply by n2 placements of P1 and P2 in P3’s column; we get
1
3
hk(2n5 + n3).

The total is hk(7
6
n5 + 5

6
n3).

Case DD. This case exists only when k = 2. Here {d/c, d′/c′} = {1/1,−1/1}.
We reduce the computation by symmetry, as in Type U2

3b, but here the symmetry
in Figure 6.1 is broken by having two pieces in one of the diagonals. Thus, we count
the placements where P3 is on one of the two main diagonals separately from the
other placements. See Figure 6.3 for a visual representation.

Figure 6.3: The triangle of positions that we consider in Case DD of Type U3
4b, for

even n (left) and odd n (right).

For P3 at a point (x, y) in the bottom triangle y + 1 ≤ x ≤ n − y, the number
of placements with P1 and P2 on the diagonal of slope +1 and P4 on the diagonal
of slope −1 through (x, y) equals the number with P1 and P2 on the diagonal of
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slope −1 and P4 on the diagonal of slope +1 through (n+ 1− x, y), which is also in
the bottom triangle. Therefore, if we double the number of the former kind we get
the total number with P3 in the bottom triangle. (Note that we are combining the
counts of two different [but isomorphic] subspaces U. In particular, the configuration
with all pieces in the same place is counted twice, but only once for each subspace.)
Multiplying this by 4 for the four triangles, we have the number of configurations
where P3 is off the two main diagonals. To get the actual number note that when
(x, y) is in the bottom triangle, its positive diagonal has n − x − y points and its
negative diagonal has x+ y − 1 points.

Similarly, if we count the configurations with P3 in the lower left or lower right
half-diagonal and P1,P2 on the diagonal with positive slope, double the result. We
double this again to account for the upper half-diagonals.

When n is odd, the center point contributes n3 for each choice of the diagonal of
P1,P2.

Thus we have the following number of placements in Case DD:

8

n/2∑
y=1

n−y∑
x=y+1

(n− x+ y)2(x+ y − 1)

+ 4

n/2∑
y=1

[n(2y − 1)2 + n2(2y − 1)]

if n is even,

8

(n−1)/2∑
y=1

n−y∑
x=y+1

(n− x+ y)2(x+ y − 1)

+ 4

(n−1)/2∑
y=1

[n(2y − 1)2 + n2(2y − 1)] + 2n3

if n is odd,

=

{
3
5
n5 + 2

3
n3 − 4

15
n if n is even,

3
5
n5 + 2

3
n3 + 11

15
n if n is odd,

=

[
3

5
n5 +

2

3
n3 +

7

30
n

]
− (−1)n

1

2
n.

In all cases of Type U3
3b, µ(0̂,U) = −2 because U is contained in four hyperplanes,

H
d/c
ij with i, j ∈ {1, 2, 3} and H

d′/c′

34 , and the four subspaces W
d/c
123 and H

d/c
ij ∩H

d′/c′

34

of codimension 2.
Therefore, the total contribution to oQhk(q;n) from Type U3

4b is

−(q)4

{[
2δh2 +

3

5
δk2 +

7

6
hk
]
n2q−3 +

[2

3
δk2 +

5

6
hk
]
n2q−5 +

7

30
δk2n

2q−7

− (−1)n
1

2
δk2n

2q−7
}
.
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Type U3
4c. The subspace U is defined by three move equations, two having the

same slope but not involving the same piece, say U = H
d/c
12 ∩H

d′/c′

23 ∩H
d/c
34 . There

are (q)4/2 choices for P1 through P4 because of the symmetry.
We have the following cases (see Figure 6.4):

Figure 6.4: The possible attacking configurations in Type U3
4c. From left to right are

cases VHV, DHD, HDH, and DDD.

Case VHV. If {d/c, d′/c′} = {0/1, 1/0}, we can choose the pieces and positions
for P2 and P3 in a row in n3 ways, and then place P1 in P2’s column and P4 in P3’s
column in n2 ways. With two possible orientations (VHV or HVH), the number of
attacking configurations is 2n5 when h = 2.

Case DHD. We consider the case where the outer attacking move is diagonal
and the inner attacking move is horizontal or vertical. Without loss of generality,
suppose d/c = +1/1 and d′/c′ = 0/1. We investigate the possibilities for P1 and P4

based on choosing the row for P2 and P3.
Suppose that P2 and P3 are in row y, where 1 ≤ y ≤ n. The positions that do not

diagonally attack a position in row y are those in two right triangles, one in the upper
left and the other in the lower right, with legs having, respectively, n− y and y − 1
points. Placing P1 and P4 in any attacking positions determines where P2 and P3 are.

Thus, the number of configurations is
∑n

y=1

[
n2−

(
n−y+1

2

)
−
(
y
2

)]2
= 9

20
n5+ 5

12
n3+ 2

15
n,

which contributes hk times.

Case HDH. When the inner attacking move is diagonal and the outer attacking
move is horizontal or vertical, we first choose the positions of P2 and P3, in one of
α1/1(n) ways. There are n2 ways to place P1 in relation to P2 and P4 in relation to
P3, giving a total contribution of hk(2

3
n5 + 1

3
n3).

Case DDD. Here {d/c, d′/c′} = {1/1,−1/1}; say d/c = 1/1. We first determine
the number of positions diagonally attacking a piece placed in a diagonal Dy of slope
−1 passing through (1, y) for a fixed y ∈ [2n − 1]. As y varies, the multiset of the
number of positions attacking the positions on it along each opposite diagonal has
the following pattern:

D1, D2n−1: {n},
D2, D2n−2: {n− 1, n− 1},
D3, D2n−3: {n− 2, n, n− 2},
D4, D2n−4: {n− 3, n− 1, n− 1, n− 3},
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. . . . . . ,

Dn−1, Dn+1:

{
{3, . . . , n− 1, n− 1, . . . , 3} if n is even,

{3, . . . , n− 2, n, n− 2, . . . , 3} if n is odd,

Dn:

{
{1, 3, . . . , n− 1, n− 1, . . . , 3, 1} if n is even,

{1, 3, . . . , n− 2, n, n− 2, . . . , 3, 1} if n is odd.

Then P1 and P4 can each be placed arbitrarily and independently in any of the
opposite diagonals that attack Dy. The choice of the opposite diagonal determines
the locations of P2 and P3, respectively. Given y, the number of placements of P1

and P4 is the square of the sum of all lengths in Dy; thus, the total number of ways
to place the four pieces is

2

(n/2)−1∑
j=0

[
n+ 2

j∑
i=1

(n− 2i)
]2

+ 2

(n/2)−2∑
j=0

[
2

j∑
i=0

(n− 2i− 1)
]2

+
[
2

(n/2)−1∑
i=0

(n− 2i− 1)
]2

if n is even,

2

(n−3)/2∑
j=0

[
n+ 2

j∑
i=1

(n− 2i)
]2

+ 2

(n−3)/2∑
j=0

[
2

j∑
i=0

(n− 2i− 1)
]2

+
[
n+ 2

(n−1)/2∑
i=1

(n− 2i)
]2

if n is odd,

which simplifies for both parities to 4
15
n5 + 1

3
n3 + 2

5
n. We double this quantity for the

second subspace resulting from choosing slope d/c = −1. The result is 8
15
n5+2

3
n3+4

5
n,

valid when k = 2.
In this type, once again, µ(0̂,U) = −1. The total contribution to oQhk(q;n) is

−(q)4

{[ 67

120
hk + δh2 +

4

15
δk2

]
n2q−3 +

[3

8
hk +

1

3
δk2

]
n2q−5 +

[ 1

15
hk +

2

5
δk2

]
n2q−7

}
.

Type U3
4d. The subspace U is defined by three move equations having distinct

slopes, say U = H
d/c
12 ∩H

d′/c′

23 ∩H
d′′/c′′

34 . The arguments here are similar to those for
Type U3

4c; however, because of the lack of symmetry, there are now (q)4 choices for
the pieces P1 through P4, provided we fix d/c and d′′/c′′.

We place pieces P2 and P3 first, and then pieces P1 and P4.
Figure 6.5 shows the four cases we consider.

Case HDV. We assume d/c = 0/1 and d′′/c′′ = 1/0. The argument is the same
as in case HDH of Type U3

4c. The contribution is 2
3
kn5 + 1

3
kn3 when h = 2.

Case DHD. We assume d/c = 1/1 and d′′/c′′ = −1/1. This case has the same
contribution as case DHD of Type U3

4c, namely, 9
20
hn5 + 5

12
hn3 + 2

15
hn when k = 2.
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Figure 6.5: The possible attacking configurations in Type U3
4d. From left to right are

cases HDV, DHD, VHD, and DDV.

Case VHD. We choose d/c = 0/1 and assume d′′/c′′ = 1/1. We first place P3

and P4 on the diagonal in α1/1(n) ways, then place P2 and P1 from P3 in n2 ways.
We double for the two orderings of the slopes 0/1 and 1/0 and multiply by h for
the possible diagonal slopes d′′/c′′. The contribution here is 4

3
kn5 + 2

3
kn3, applicable

when h = 2.

Case DDV. We choose d/c = 1/1 and assume d′′/c′′ = 1/0. Case DD in Type
U2

3b counts configurations of P1, P2, and P3 in two attacking moves along diagonals
of slopes +1 and −1. Then we place P4 in relation to P3 in n ways. Accounting for
the two different orderings of the slopes 1/1 and −1/1, the contribution when k = 2
is
[
5
6
hn5 + 2

3
hn3 + 1

4
hn
]
− (−1)n 1

4
hn.

In all cases, µ(0̂,U) = −1. The total contribution to oQhk(q;n) is

−(q)4

{[
2kδh2 +

77h

60
δk2

]
n2q−3 +

[
kδh2 +

13h

12
δk2

]
n2q−5

+
23h

60
δk2n

2q−7 − (−1)n
h

4
δk2n

2q−7
}
.

Type U3
4e. The subspace U is defined by three move equations of different slope,

all involving the same piece, say U = H
d/c
12 ∩H

d′/c′

13 ∩Hd′′/c′′

14 . Given the set of slopes,
there are (q)4 ways to choose the pieces.

The number of ways to place four attacking pieces in U depends on the slopes.
When {1/1,−1/1} ⊂ {d/c, d′/c′, d′′/c′′}, then first place P1 and the two pieces de-
fined along diagonals as in Case DD from Type U2

3b and subsequently the last piece
horizontally or vertically in n ways, giving hn

{[
5
12
n4 + 1

3
n2 + 1

8

]
− (−1)n 1

8

}
ways for

the four pieces (contributing only when k = 2).
When {0/1, 1/0} ⊂ {d/c, d′/c′, d′′/c′′}, then place P1 and the piece aligned diago-

nally in kα1/1 ways and place the other two pieces in n2 ways, giving kn2
{

2
3
n3 + 1

3
n
}

placements (that contribute only when h = 2).
Once more, µ(0̂,U) = −1. The total contribution to oQhk(q;n) is

−(q)4

{[5h

12
δk2 +

2k

3
δh2

]
n2q−3 +

[h
3
δk2 +

k

3
δh2

]
n2q−5

+
h

8
δk2n

2q−7 − (−1)n
h

8
δk2n

2q−7
}
.
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Type U3
4∗ :U

1
2U

2
2. The subspace U decomposes into a hyperplane H

d/c
12 and a

codimension-2 subspace W=
34 of type U2

2. We write W=
34 = H

d′/c′

34 ∩ H
d′′/c′′

34 , where
d′/c′ 6= d′′/c′′. There is no restriction on d/c.

There are (q)4/4 ways to choose the ordered pair of pairs of pieces, {P1,P2} and
{P3,P4}.

Since P4 is essentially merged with P3, the number of attacking configurations is∑
(c,d)∈M αd/c(n) =

(
h+ 2

3
k
)
n3 + 1

3
kn.

The Möbius function is a product, µ(0̂,U) = µ(0̂,H
d/c
12 )µ(0̂,W=

34) = 1− |M| (see
Section I.3.2). The total contribution to oQhk(q;n) is

−(q)4(h+ k − 1)

{[h
4

+
k

6

]
n2q−3 +

k

12
n2q−5

}
.

Type U3
5∗a:U

1
2U

2
3a. The subspace U decomposes into a hyperplane and a codimen-

sion-2 subspace of type U2
3a, say U = H

d/c
12 ∩W

d′/c′

345 , where d/c may equal d′/c′. We
can choose the pieces in (q)5/2!3! ways.

The number of attacking configurations is
∑

(c,d)∈M αd/c(n) =
(
h + 2

3
k
)
n3 + 1

3
kn

times the count from Type U2
3a,
(
h+ 1

2
k
)
n4 + 1

2
kn2.

As for the Möbius function, µ(0̂,U) = µ(0̂,H
d/c
12 )µ(0̂,U2

3a) = −2. The contribu-
tion to oQhk(q;n) is therefore

−(q)5

{[h2
6

+
7hk

36
+
k2

18

]
n2q−3 +

[5hk

36
+
k2

12

]
n2q−5 +

k2

36
n2q−7

}
.

Type U3
5∗b:U1

2U
2
3b. The subspace U decomposes into a hyperplane and a codimen-

sion-2 subspace of type U2
3b. We write U = H

d/c
12 ∩H

d′/c′

34 ∩H
d′′/c′′

45 , with d′/c′ 6= d′′/c′′

and arbitrary d/c. We can choose the five pieces in (q)5/2! ways.
The number of attacking configurations is

∑
(c,d)∈M αd/c(n) times the count from

Type U2
3b, thus

[
δh2 + 2

3
hk + 5

12
δk2
]
n4 +

[
1
3
hk + 1

3
δk2
]
n2 + 1

8
δk2 − (−1)n 1

8
δk2.

Here again µ(0̂,U) = −1. Consequently, the total contribution to oQhk(q;n) is

−1

2
(q)5

{[3h+ 2k

3
δh2 +

2

3
h2k +

4

9
hk2 +

5(3h+ 2k)

36
δk2

]
n2q−3

+
[1

3
kδh2 +

1

3
h2k +

4

9
hk2 +

(1

3
h+

13

36
k
)
δk2

]
n2q−5

+
[1

9
hk2 +

(1

8
h+

7

36
k
)
δk2

]
n2q−7 +

1

24
kδk2n

2q−9

− (−1)n
(

3h+ 2k

24
δk2n

2q−7 +
1

24
kδk2n

2q−9
)}

.

Type U3
6∗ :U

1
2U

1
2U

1
2. The subspace U is defined by three move equations involving

six distinct pieces. Thus, U = H
d/c
12 ∩ H

d′/c′

34 ∩ H
d′′/c′′

56 is decomposable into the
three indicated hyperplanes, whose slopes are not necessarily distinct. The Möbius
function is µ(0̂,U) = −1.
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There are
(

q
2,2,2,q−6

)
= (q)6/48 ways to choose an unordered triple of unordered

pairs of pieces. Then we fix an arbitrary ordering of the three pairs and assign any
slope d/c to the first pair, d′/c′ to the second, and d′′/c′′ to the third. The number
of attacking configurations in each case is αd/c(n) · αd′/c′(n) · αd′′/c′′(n). The total
contribution of all cases (before multiplication by n2q−12) is

− (q)6
48

∑
(c,d),(c′,d′),(c′′,d′′)∈M

αd/c(n) · αd′/c′(n) · αd′′/c′′(n)

= −(q)6
48

[ ∑
(c,d)∈M

αd/c(n)

]3
= −(q)6

48

[
3h+ 2k

3
n3 +

k

3
n

]3
.

Thus, the contribution of Type U3
6∗ to oQhk(q;n), after multiplication by the n2q−12

ways to place the remaining pieces, is

− (q)6

{
(3h+ 2k)3

1296
n2q−3 +

3k(3h+ 2k)2

1296
n2q−5 +

3k2(3h+ 2k)

1296
n2q−7 +

k3

1296
n2q−9

}
.

Summing the contributions of each type completes the proof of Lemma 3.4. (We
verified the sum via Mathematica.)
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Dictionary of Notation

(c, d), (cr, dr) . . . . . . . . . . . . . coordinates of move vector (p. 307)

(ĉ, d̂) (min,max) of c, d (p. 307)
d/c slope of line or move (p. 308)
h . . . . . . . . . . . . . . . . . . . . . . . . # horizontal, vertical moves of partial queen (p. 310)
k # diagonal moves of partial queen (p. 310)
m = (c, d), mr = (cr, dr) basic move (p. 307)
n . . . . . . . . . . . . . . . . . . . . . . . . size of square board (p. 306)
n+ 1 dilation factor for board (p. 307)
[n] {1, . . . , n} (p. 307)
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[n]2 . . . . . . . . . . . . . . . . . . . . . . square board (p. 307)
oP(q;n) # nonattacking labelled configurations (p. 308)
q # pieces on a board (p. 306)
r . . . . . . . . . . . . . . . . . . . . . . . . move index (p. 307)
uP(q;n) # nonattacking unlabelled configurations (p. 308)
z = (x, y), zi = (xi, yi) piece position (p. 308)

z = (z1, . . . , zq) . . . . . . . . . . vector in R2q

z = (z1, . . . , zq) configuration (p. 308)

α(U;n) . . . . . . . . . . . . . . . . . . # attacking configurations in U (p. 309)
αd/c(n) # 2-piece collinear attacks (p. 309)
βd/c(n) # 3-piece collinear attacks (p. 309)
γi . . . . . . . . . . . . . . . . . . . . . . . . coefficient of uP (p. 308)
δij Kronecker delta (p. 307)
ε 1

2
[1− (−1)n] ≡ n mod 2 (p. 322)

ν . . . . . . . . . . . . . . . . . . . . . . . . codimU (p. 314)
µ Möbius function of L (p. 309)
κ # of pieces in equations of U (p. 309)

M . . . . . . . . . . . . . . . . . . . . . . . set of basic moves (p. 307)

AP . . . . . . . . . . . . . . . . . . . . . . . move arrangement of piece P (p. 308)

H
d/c
ij hyperplane for move (c, d) (p. 308)

L intersection semilattice (p. 308)
[0, 1]2q . . . . . . . . . . . . . . . . . . . polytope (p. 308)
([0, 1]2q,AP) inside-out polytope (p. 308)
U subspace in intersection semilattice (p. 309)
Uν
κa . . . . . . . . . . . . . . . . . . . . . . subspace of codimension ν with κ moves (p. 314)

W
d/c
i... subspace of collinearity (p. 310)

W=
i... subspace of equal position (p. 318)

R . . . . . . . . . . . . . . . . . . . . . . . . real numbers
Z integers

P . . . . . . . . . . . . . . . . . . . . . . . . piece (p. 307)
Pi i-th labelled copy of P (p. 307)
Qhk partial queen (p. 310)
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