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Abstract

A set S of cycles is minimal unavoidable in a graph family G if every graph
G ∈ G contains a cycle from S and, for every nonempty proper subset
S ′ ⊂ S, there exists an infinite subfamily G ′ ⊆ G such that no graph from
G ′ contains a cycle from S ′. In this paper, we explore minimal unavoidable
sets of cycles in planar graphs with prescribed minimum vertex degree or
minimum edge-weight. In particular, we show that every planar graph
with δ ≥ 3 and without adjacent 3-vertices always contains a 3- or 4-
cycle (and a 3- or 6-cycle or else a 4- or 6-cycle); when the minimum
edge-weight is at least 9, a 3-, 4- and a 5-cycle is always present. For
planar graphs with δ ≥ 4, we show that they contain a 4- or 8-cycle, and
a 4- or 9-cycle. Besides this, we describe constructions of infinite graph
families whose members omit cycles of prescribed length lists.

1 Introduction

In this paper, we consider connected planar graphs without loops and multiple edges.
A particular plane drawing D of a planar graph G is represented by triple (V,E, F )
where V is the vertex set, E is the edge set and F is the set of faces. Each face
α ∈ F is described by its facial walk which is a clockwise-oriented closed walk
v1, e1, v2, e2, . . . , ek−1, vk, ek, v1 whose vertices and edges are incident with α and, for
all i ∈ {1, . . . , k}, ei follows ei−1 (indices modulo k) in the counter-clockwise order of
edges around vi in D; in the sequel, we will consider facial walks simply as clockwise-
ordered lists of their vertices. The number k is called the size of α, and is denoted
by deg(α). A face of size k (at least k) is further referred to as k-face (k+-face);
similarly, a vertex of degree k (at least k or at most k) is a k-vertex (k+-vertex or
k−-vertex, respectively).
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By Ck, k ≥ 3, we denote the cycle on k vertices. For positive integers k1, . . . , k`
≥ 3, we set Sk1,...,k` = {Ck1 , . . . , Ck`}; in addition, Sk1,...,k`,k+ = {Ck1 , . . . , Ck`}∪{Cp :
p ≥ k} (here we also allow ` = 0).

In [9], the following definition was introduced: A set S of cycles is minimal
unavoidable in a graph family G if

(i) every graph G ∈ G contains a cycle from S and

(ii) for every nonempty proper subset S ′ ⊂ S, there exists an infinite subfamily
G ′ ⊆ G such that no graph from G ′ contains a cycle from S ′.

Continuing our research from [9], we explore minimal unavoidable sets of cycles
in plane graphs under various constraints (but excluding 3-connectedness) on their
minimum vertex degree or minimum edge weight. Compared to the family of plane
graphs of minimum degree at least 3 where each minimal unavoidable set of cycles
consists of at least three elements, the above mentioned additional requirements
yield various smaller unavoidable cycles sets. For example, every plane graph G
with δ(G) ≥ 4 contains C3 (this follows easily from Euler’s formula), C5 [11], and
C6 [2]. Furthermore, in [3], it was shown that every plane graph G with δ(G) ≥ 4
contains C4 or C7. Together with the fact that there exist infinitely many plane
graphs of minimum degree 4 which contain no 4-cycles (they can be obtained, for
example, from cubic plane graphs of girth 5 when turning them into 4-regular plane
graphs by replacing every trivalent vertex by a triangular face), and, also, infinitely
many plane graphs of minimum degree 4 containing no 7-cycles (for example, the
graphs obtained from t copies of the octahedron graph by selecting a single vertex
in every such a copy and then identifying those vertices), we obtain that the set S4,7

is minimal unavoidable in the family of planar graphs of minimum degree ≥ 4. We
also note that various light graph theory results (for details, see [5, 1, 10, 8] or the
survey [4]) imply the existence of cycles of lengths from 3 to 7 in plane graphs of
minimum degree 5.

In addition to these results, we take a closer look on the families of plane graphs
of minimum degree ≥ 4, or minimum degree ≥ 3 and the minimum edge-weight
(that is, the sum of degrees of endvertices of edges) ≥ 7 (or ≥ 9). The negative
results (that is, on finite sets of cycles which are not unavoidable) are contained in
Section 2; we describe constructions of infinite sets of graphs whose members contain
no cycles from prescribed cycle set. The positive results on minimal unavoidability
of particular small cycle sets appear in Section 3. The paper concludes with several
open problems.

2 Negative results

We recall the general outline (from [9]) of constructions which exclude selected par-
ticular cycles from infinitely many graphs of a family G: consider a plane graph G
without cycles of lengths `1, . . . , `k (note that it need not belong to G), and with x
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being arbitrary vertex on the outerface of G. Next, form the graph Gn by taking
n copies of G and identifying all vertices which are counterparts of x. With some
care when choosing G and x, the graph Gn is planar, it belongs to G and it does not
contain cycles of lengths `1, . . . , `k and, also, the cycles of length ` ≥ |V (G)|+ 1.

Sometimes we also use a similar construction, taking a plane graph H without
cycles of the above specified lengths and choosing two distinct vertices x, y on its
outerface. Next, we take a cycle Cn (with n greater than the length of the longest
forbidden cycle) and replace every edge of this cycle with a copy of H (identifying
the endvertices of this edge with the vertices x, y). Provided that H is chosen in such
a way that the resulting graph belongs to G, we obtain another infinite sequence of
graphs of G which do not contain the considered cycles.

The source graphs G and H are often built from smaller plane graphs using
several operations which replace parts of graphs (mostly vertices and edges) with
other configurations. The general operations are the following ones:

• truncation: each edge of given plane graph is subdivided by two new vertices;
then, each star with the center being an original vertex of degree k is replaced
by a k-face. The resulting graph is cubic and plane.

• rectification: after the truncation is performed, each edge whose both endver-
tices were subdividing vertices is contracted. The resulting graph is 4-regular
and plane.

Among small starter-graphs which are used in the subsequent constructions, there
are well-known graphs of five Platonic polyhedra, and further particular graphs (see
Figure 1):

◦ the rhombic dodecahedron graph.

◦ rhombic triacontahedron graph (the dual of rectified dodecahedron graph).

Figure 1: The rhombic dodecahedron and the rhombic triacontahedron graph

We use also other specialized graph operations which exclude some cycle lengths
(see Figure 2):

• K4-substitution: each 3-face is replaced by a copy of a plane drawing of the
complete 4-vertex graph.
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• ⟁-substitution: works similarly as K4-substitution, just the replacement graph
is the graph of 7-wheel.

Figure 2: The K4- and ⟁-substitutions

Now, the results on excluded cycles are the following:

Theorem 2.1 Let S = {S6+ , S3,5,7,9,11,13+ , S5,6,7,8,9,81+ , S4,5,109+ , S4,19+}. If S is a
finite set of cycles such that S ⊂ T for T ∈ S, then S is not unavoidable in the
family of plane graphs of minimum degree at least 3 and minimum edge-weight at
least 7.

Proof: For every T ∈ S and every finite S ⊂ T , we describe a graph yielding an
infinite set of plane graphs of minimum degree at least 3 and minimum edge-weight
at least 7 whose members contain no cycle from S:

• If S ⊂ S6+ , then choose H to be the 5-wheel graph.

• If S ⊂ S3,5,7,9,11,13+ , then G is the graph of rhombic dodecahedron.

• If S ⊂ S5,6,7,8,9,81+ , then G is obtained from truncated dodecahedron graph by
K4-substitution.

• If S ⊂ S4,5,109+ , then G is the graph from [7, Fig. 1]; it consists of 3- and 4-
vertices such that no two 3-vertices are adjacent, and of 6-faces together with
nonadjacent 3-faces.

• If S ⊂ S4,19+ , then choose H to be the graph in Figure 3, with x, y being its
vertices of degree 2; note that this graph is not hamiltonian.

�

Theorem 2.2 If S is a finite set of cycles such that S ⊂ S7+ or S ⊂ S4,31+, then
S is not unavoidable in the family of plane graphs of minimum degree at least 4,
and also in the family of plane graphs of minimum degree at least 3 and minimum
edge-weight at least 8; for the latter family, S ⊂ S3,5,7,...,25+ is not unavoidable as
well.
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Figure 3: The graph H for excluding 4- and 19+-cycles

Proof: The constructions of the corresponding infinite families of plane graphs are
as follows:

• If S ⊂ S7+ , then take G being the regular octahedron graph.

• If S ⊂ S4,31+ then choose G to be the rectified dodecahedron graph.

• If S ⊂ S3,5,7,...,25+ then choose G to be rhombic triacontahedron graph.

�

Theorem 2.3 If S is a finite set of cycles such that S ⊂ S10+ or S ⊆ S8,9, then S
is not unavoidable in the family of plane graphs of minimum degree at least 3 and
minimum edge-weight at least 9.

Proof: To construct the corresponding infinite sets, we use the following graphs:

• If S ⊂ S10+ , then choose H to be the graph obtained from 4-antiprism by
inserting a new 4-vertex into one of its 4-faces.

• If S ⊂ S8,9, then G is obtained from a rectified dodecahedron by ⟁-substitu-
tion.

�

3 Minimal unavoidable sets

All unavoidability proofs of this section use a common technique called the Dis-
charging Method which works in the following way: in order to prove a particular
structural result, we assume the existence of a hypothetical counterexample graph
G = (V,E, F ) of a specified family of plane graphs. The plane version of Euler’s
polyhedral formula implies that the following general equality holds for any positive
a and any non-negative b:∑

v∈V

(a deg(v)− 2(a+ b)) +
∑
α∈F

(b deg(α)− 2(a+ b)) = −4(a+ b).
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According to this, we assign to vertices and faces of G initial charges µ : V ∪F →
Z by setting µ(v) = a deg(v)−2(a+b) for every v ∈ V and µ(α) = b deg(α)−2(a+b)
for every α ∈ F . Thus the sum of initial charges

∑
x∈V ∪F

µ(x) is negative.

Now, the initial charges of elements of G are locally redistributed in such a way
that the total sum of charges remains, in the process of redistribution, the same.
This is performed by a set of discharging rules specifying in which situations an
element having a positive charge transfers certain amount of its charge to a close
element which has negative charge. Finally, by case analysis, it is checked that, after
the discharging, the new charges µ̃ : V ∪ F → Q are non-negative; this means that∑
x∈V ∪F

µ(x) =
∑

x∈V ∪F
µ̃(x) ≥ 0, a contradiction.

Theorem 3.1 The sets S3,4 and S3,6 are minimal unavoidable in the family of planar
graphs of minimum degree at least 3 and minimum edge weight at least 7.

Proof: For the set S3,4, we use the initial charge assignment set by a = b = 1, with
the following discharging rule:

Rule 3.1.1: Every k-face, k ≥ 5, sends 1
2

to each incident 3-vertex.

It is enough to examine the final charge of 3-vertices and 5+-faces. Every m-
vertex, m ≥ 3, of G is incident only to 5+-faces, so, after applying the Rule 3.1.1
on a 3-vertex x, µ̃(x) ≥ 3 − 4 + 3 · 1

2
> 0. Further, the condition on minimum

edge weight of G implies that every k-face, k ≥ 5 is incident to at most
⌊
k
2

⌋
3-

vertices; hence, for a k-face α of G, k ≥ 5 we obtain, after applying the Rule 3.1.1,
µ̃(α) ≥ µ(α)−

⌊
k
2

⌋
· 1
2

= k − 4−
⌊
k
2

⌋
· 1
2
≥ 0.

The proof for the set S3,6 uses the same initial charge assignment and the same
redistribution rule, repeating the argument for nonnegativity of final charges of faces
directly. Consider a 3-vertex x, and assume that it is incident with two adjacent
4-faces, say x1xx2y and x2xx3z (note that y 6= z). If y = x3 or z = x1, then a 3-cycle
x1xx3 is found; otherwise, these 4-faces together form a 6-cycle. Hence, x is incident
with at least two 5+-faces and, by Rule 3.1.1, µ̃(x) ≥ 3− 4 + 2 · 1

2
= 0.

The fact that S3,4 and S3,6 are minimal unavoidable follows from Theorem 2.1 on
avoidance of 3-, 4- and 6-cycle in plane graphs of minimum degree 3 and minimum
edge weight 7. �

Theorem 3.2 The set S4,6 is minimal unavoidable in the family of planar graphs of
minimum degree at least 3 and minimum edge weight at least 7.

Proof: Here, we proceed again by the Discharging Method, with the initial charge
assignment given by a = 1, b = 4

5
; it follows that

∑
x∈V ∪F

µ(x) = −36
5

.

The following discharging rules are used:

Rule 3.2.1: Every 4+-vertex sends 1
5

to each incident 3-face.
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Rule 3.2.2: Every 5-face sends 1
5

to each incident 3-vertex.

Rule 3.2.3: Every 7+-face sends 3
10

to each incident 3-vertex.

Rule 3.2.4: Let α be an 7+-face having a common edge xy with a 3-face β.

(a) If both x, y are 4+-vertices then α sends 1
5

to β.

(b) If one of x, y is a 3-vertex then α sends 3
10

to β.

We analyze the final charges of all vertices and faces except 6-faces (note that their
boundary is not a 6-cycle) whose charge is intact and positive.

Case 1: Let v be a 3-vertex. If v is incident only with 5+-faces, then µ̃(v) ≥
3− 18

5
+ 3 · 1

5
= 0. In the opposite case, v is incident with exactly one 3-face and the

remaining two incident faces are 7+-faces (notice that the presence of a 4-face, or a
3-face and a 5-face or a 6-face around v always yields a 4-cycle or a 6-cycle in G);
thus, by Rule 3.2.3, µ̃(v) ≥ 3− 18

5
+ 2 · 3

10
= 0.

Case 2: Let v be a k-vertex, k ≥ 4. Note that v is incident with at most
⌊
k
2

⌋
3-

faces (otherwise two of them are adjacent, thereby forming a 4-cycle in G); therefore,
µ̃(v) ≥ k − 18

5
−
⌊
k
2

⌋
· 1
5
≥ 9

10
(k − 4) ≥ 0.

Case 3: Let α be a 3-face. Similarly as in Case 1, observe that α is adjacent
only with 7+-faces. If α is incident only with 4+-vertices, then, by Rules 3.2.1
and 3.2.4(a), µ̃(α) ≥ 4

5
· 3 − 18

5
+ 3 · 1

5
+ 3 · 1

5
= 0; otherwise, α is incident with

exactly one 3-vertex and two 4+-vertices, and by Rules 3.2.1, 3.2.4(a) and 3.2.4(b),
µ̃(α) ≥ 4

5
· 3− 18

5
+ 2 · 1

5
+ 2 · 3

10
+ 1

5
= 0.

Case 4: Let α be a 5-face. As α is incident with at most two 3-vertices, we have, by
Rule 3.2.2, µ̃(α) ≥ 4

5
· 5− 18

5
− 2 · 1

5
= 0.

Case 5: Let α be a k-face, k ≥ 7. Denote by a, b, c the numbers of transfers of charge
from α by Rules 3.2.3, 3.2.4(a) and 3.2.4(b), respectively. Observe that b+ c ≤ k−a
(because no 3-vertex incident with α lies in two 3-faces). Therefore, µ̃(α) ≥ 4

5
k− 18

5
−

3
10
a− 3

10
c− 1

5
b = 4

5
k− 18

5
− 3

10
a− 3

10
(b+ c) + 1

10
b ≥ 4

5
k− 18

5
− 3

10
a− 3

10
(k− a) + 1

10
b =

k
2
− 18

5
+ b

10
. This is clearly satisfied for k ≥ 8 or for k = 7 with b ≥ 1. Thus,

assume that α is a 7-face and Rule 3.2.4(a) is not applied. Then c ≤ a, a ≤ 3, so
µ̃(α) ≥ 4

5
· 7− 18

5
− 3

10
a− 3

10
c ≥ 2− 2 · 3

10
· 3 > 0.

The fact that S4,6 is minimal unavoidable follows from Theorem 2.1 on avoidance
of 4- and 6-cycle in plane graphs of minimum degree 3 and minimum edge weight 7.

�

Theorem 3.3 The sets S3, S4 and S5 are minimal unavoidable in the family of pla-
nar graphs of minimum degree at least 3 and minimum edge-weight at least 9.
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Proof: Concerning the set S3, we use the initial charge assignment set by a = b = 1
and redistribute the charges of 6+-vertices uniformly to all adjacent 3-vertices. Since
a 3-vertex v is adjacent only with 6+-vertices, we obtain µ̃(v) ≥ µ(v) + 3 · 6−4

6
=

−1 + 3 · 1
3

= 0. �

For S4, we use the initial charge assignment set by a = 1, b = 2; the local
redistribution of charges is performed according to

Rule 3.3.1: Each 5+-face sends 3
2

(or 1 or 1
3
) to each incident 3-vertex (or 4- or

5-vertex, respectively).

It is enough to analyze final charges of 5+-faces and 5−-vertices.

Case 1: Let v be a 3-vertex. Since G contains no 4-cycles, v is incident with at
most one 3-face and, consequently, with at least two 5−-faces, which gives µ̃(v) ≥
−3 + 2 · 3

2
= 0.

Case 2: Let v be a 4-vertex. Note that v is incident with at most two 3-faces; thus,
it is incident with at least two 5+-faces and µ̃(v) ≥ −2 + 2 · 1 = 0.

Case 3: Let v be a 5-vertex. Again, v is incident with at most two 3-faces, thus
receiving 1

3
from at least three incident 5+-faces; then µ̃(v) ≥ −1 + 3 · 1

3
= 0.

Case 4: Let α be an r-face, r ≥ 5. Denote by ti, i ∈ {3, 4, 5}, the number of
i-vertices incident with α. Due to the requirement on minimum edge weight of
G, t3 + t4 + t5 ≤ r, t3 ≤

⌊
r
2

⌋
, t4 ≤

⌊
r
2

⌋
and 2t3 + t4 + t5 ≤ r. Then µ̃(α) ≥

µ(α)− 3
2
·t3−1·t4− 1

3
·t5 ≥ 2r−6− 3

2
t3−t4− 1

3
(r−t4−2t3) = 5

3
r−6− 5

6
t3− 2

3
t4 ≥ 5

3
r−6−⌊

r
2

⌋ (
5
6

+ 2
3

)
≥ 0 for r ≥ 7. Now, if r = 6, then (t3, t4, t5) is element-wise majorized by

one of (3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 2, 1), (1, 1, 2), (1, 0, 3), (0, 3, 3), (0, 2, 4), (0, 1, 5) or
(0, 0, 6); among these triples, the worst charge consumption is associated with triples
(3, 0, 0), (1, 2, 1) and (0, 3, 3), thus yielding µ̃(α) ≥ 2 · 6 − 6 − 3 · 3

2
> 0. If r = 5,

then (t3, t4, t5) is element-wise majorized by one of (2, 0, 0), (1, 1, 1), (0, 2, 3), (0, 1, 4)
or (0, 0, 5) which gives µ̃(α) ≥ 2 · 4− 6− 2 · 3

2
> 0. �

Finally, for S5, use the initial charge assignment set again by a = 1, b = 2, and
redistribute these charges according to five discharging rules:

Rule 3.3.2: Each 6+-face sends 1 to each incident 5−-vertex.

Rule 3.3.3: Each 4-face sends 1 to each incident 3-vertex.

Rule 3.3.4: Each 4-face sends 1
2

to each incident 4- or 5-vertex.

Rule 3.3.5: Let α be an 6+-face which is adjacent with a 3-face [vuw] with u being
a 3-vertex and v being 6+-vertex. Then α sends 1

2
to u (through v).

Rule 3.3.6: Let α be an 6+-face incident with an edge uv with u being a 3-vertex
(and v being an 6+-vertex). Then α sends additional 1

2
to u (through v).

To check the nonnegativity of final charges of elements of counterexample, it is
enough to examine 4+-faces and 5−-vertices.
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Case 1: Let v be a 3-vertex with neighbours v1, v2, v3 in clockwise order. Now discuss
the number of 3-faces around v:

Case 1.1: If v is incident with three 3-faces, then the other faces incident with
edges v1v2, v2v3 and v3v1 are 6+-faces (otherwise a 5-cycle is found); by Rule 3.3.5,
µ̃(v) ≥ −3 + 6 · 1

2
= 0.

Case 1.2: If v is incident with exactly two 3-faces, say [v1vv2] and [v1vv3]. Then at
least one of the edges v1v2, v1v3 is incident with an 6+-face, and the third nontri-
angular face incident with v is also 6+-face. Hence, by Rules 3.3.2, 3.3.5 and 3.3.6,
µ̃(v) ≥ −3 + 1 + 2 · 1

2
+ 2 · 1

2
= 0.

Case 1.3: Let v be incident to exactly one 3-face, say [v1vv2]. Then the other two
faces around v are 6+-faces, thus, by Rules 3.3.2 and 3.3.6, µ̃(v) ≥ −3+2·1+2· 1

2
= 0.

Case 1.4: Suppose that v is not incident with a 3-face. Then, by Rules 3.3.2 or 3.3.3,
µ̃(v) ≥ −3 + 3 · 1 = 0.

Case 2: Let v be a 4-vertex. Then v is incident with at most two 3-faces. If v is
incident with at least one 3-face, then at least two faces incident with v are 6+-faces
and µ̃(v) ≥ −2 + 2 · 1 = 0; otherwise, all faces around v contribute at least 1

2
to v by

Rule 3.3.2 or 3.3.4, and we can roughly estimate that µ̃(v) ≥ −2 + 4 · 1
2

= 0.

Case 3: Let v be a 5-vertex. Then v is incident with at most three 3-faces (otherwise
a 5-cycle is found in the neighbourhood of v), thus it receives charge from at least
two 4+-faces yielding µ̃(v) ≥ −1 + 2 · 1

2
= 0.

Case 4: Let α be a 4-face. Then α is incident with at most two 3-vertices; by Rule
3.3.3 or 3.3.4, either µ̃(α) ≥ 2 · 4− 6− 2 · 1 = 0 (when a 3-vertex is incident with α)
or µ̃(α) ≥ 2 · 4− 6− 4 · 1

2
= 0 (when no 3-vertex is incident with α – note that still

there may be up to four 5−-vertices on α).

Case 5: Let α be an r-face r,≥ 6. For calculating the final charge of α, we use
the following averaging argument: each time the Rule 3.3.5 or 3.3.6 is used, assign
the charge 1

2
(which is transferred to a 3-vertex) to the 6+-vertex through which the

transfer is performed. Now each 6+-vertex on α is assigned with at most 1 while
any transfer from α to an incident 5−-vertex by Rule 3.3.2 conducts the charge 1.
Therefore, µ̃(α) ≥ 2r − 6− r · 1 ≥ 0 since r ≥ 6. �

Theorem 3.4 The set S4,8 is minimal unavoidable in the family of planar graphs of
minimum degree at least 4.

Proof: We use the initial charge assignment set by a = b = 1, and the following
discharging rule:

Rule 3.4.1: Every k-face, k ≥ 5, sends 1
3

to each adjacent 3-face.

It is enough to discuss the final charge of faces. Let α be a 3-face of G. Then all
three faces incident to α are 5+-faces. After applying Rule 3.4.1, µ̃(α) ≥ µ(α)+3· 1

3
=
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3− 4 + 1 = 0. Finally, let α be a k-face of G, k ≥ 5. If k = 5, then α is incident to
at most two 3-faces (otherwise a 4-cycle or an 8-cycle is present) and, by Rule 3.4.1,
µ̃(α) ≥ 5− 4− 2 · 1

3
> 0; otherwise µ̃(α) ≥ µ(α)− k · 1

3
= 2

3
k− 4 ≥ 0 for each k ≥ 6.

The minimal unavoidability of S4,8 follows from Theorem 2.2 on avoidance of 4-
and 8-cycle in plane graphs of minimum degree at least 4. �

Theorem 3.5 The set S4,9 is minimal unavoidable in the family of planar graphs of
minimum degree at least 4.

Proof: Here, we use the initial charge assignment set by a = 1, b = 2, and the local
redistribution of initial charges by the following discharging rule:

Rule 3.5.1: Every k-face, k ≥ 5, sends 2k−6
k

to each incident 4-vertex or 5-vertex.

To check the nonnegativity of final charges, it is enough to consider only 4- and
5-vertices.

Case 1: Let v be a 4-vertex with the neighbours v1, v2, v3, v4 in clockwise order. Note
that v is incident to at most two 3-faces which are not adjacent. If the vertex v is
incident with at least two 6+-faces, then µ̃(v) ≥ µ(v) +2 · 2·6−6

6
= 0, hence we can

assume that there is at most one 6+-face incident with v. Now consider the number
of 3-faces around v:

Case 1.1: Let v be incident with at most one 3-face. As the remaining faces around
v are 5+-faces, we have µ̃(v) ≥ µ(v) + 3 · 2·5−6

5
= −2 + 12

5
> 0.

Case 1.2: Let v be incident with two 3-faces [vv1v2] and [vv3v4]. Without loss of
generality, let β = [v3vv2xy] be a 5-face. Then x, y are distinct from v1, v4 (otherwise
a 4-cycle is found inG). Consider the fourth face γ having the facial subwalk uv4vv1w;
due to absence of 4-cycles in G, all these five vertices are distinct – thus, it is a facial
path – and, moreover, u,w are distinct from vertices of β. Now, γ is neither a 5-face
(otherwise a 9-cycle uv4vv3yxv2v1wu is found) nor a 6-face [tuv4vv1w] (t is distinct
from vertices of β due to absence of 4-cycles, but then tuv4v3yxv2v1wt is a 9-cycle)
nor else a 7-face (such a face is necessarily bounded by a cycle, say [stuv4vv1w]. If
none of its vertices coincides with a vertex of β, then stuv4v3vv2v1ws is a 9-cycle;
otherwise, taking into account the avoidance of a 4-cycle, we get s = y or t = x, and
another 9-cycle omitting x or y is found). Hence, γ is a 8+-face and this gives that
µ̃(v) ≥ µ(v) + 2·5−6

5
+ 2·8−6

8
= 1

20
> 0.

Case 2: Let v be a 5-vertex. Then v is incident with at most two 3-faces, hence, it
is incident with at least three 5+-faces and µ̃(v) ≥ µ(v) + 3 · 2·5−6

5
= −1 + 12

5
> 0.

The minimal unavoidability of S4,9 follows from Theorem 2.2 on avoidance of 4-
and 9-cycle in plane graphs of minimum degree at least 4. �
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4 Concluding remarks

The negative results of Section 2 exclude many sets of cycles from being unavoidable;
nevertheless, still there are many undecided cases, even for sets consisting of two
cycles. The following table summarizes the obtained results for two-element cycle
sets Sk,l (+ indicates minimal unavoidability, − stands for non-unavoidability, ?
for open problem; ∗ means that the cycle Ck or Cl is already unavoidable in the
considered family).

δ ≥ 3, w ≥ 7 3 4 5 6 7 8 9 10 11 12
3 - + - + - ? - ? - ?
4 - - + ? ? ? ? ? ?
5 - - - - - ? - ?

6+ - - - - - - -

δ ≥ 4 3 4 5 6 7 8 9 10− 30 31+

3 + ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
4 - ∗ ∗ + + + ? -
5 + ∗ ∗ ∗ ∗ ∗ ∗
6 + ∗ ∗ ∗ ∗ ∗

7+ - - - - -

δ ≥ 3, w ≥ 9 3 4 5 6 7 8 9 10+

3 + ∗ ∗ ∗ ∗ ∗ ∗ ∗
4 + ∗ ∗ ∗ ∗ ∗ ∗
5 + ∗ ∗ ∗ ∗ ∗
6 ? ? ? ? ?
7 ? ? ? ?
8 - - -
9 - -

10+ -

Table 1: An overview of obtained results on unavoidability of Sk,l

For the family of plane graphs of minimum degree at least 4, the open cases
are the sets S4,k for 10 ≤ k ≤ 30, of which we conjecture that all of them are
minimal unavoidable. For the family of plane graphs of minimum degree at least 3
and edge-weight at least 7, the first small open cases are the sets S3,8, S3,10, S3,12, S4,k

for 7 ≤ k ≤ 18, and S5,10; for the edge-weight at least 9, we conjecture that 6- and
7-cycles are unavoidable.

The family of plane graphs of minimum degree 5, or minimum degree 4 and
minimum edge-weight at least 9 is the subject of our further research in [6].

It is a matter of discussion whether the definition of minimal unavoidable set
S of cycles should involve infinitely many exceptional graphs for nonempty proper
subsets of S. For graph families discussed in this paper, infinitely many exceptional
graphs can be indeed formed from a single such graph, as described in Section 2.
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However, the constructions used in Theorems 1–3 cannot be used for excluding par-
ticular cycles in the family of polyhedral graphs or its subfamilies. In this case, one
shall develop other constructions where is less obvious that the existence of a single
exceptional polyhedral graph rises to an infinite exceptional family. We also mention
an open problem by Malkevitch (personal communication) that every hamiltonian
polyhedral 5-regular plane graph is pancyclic, where it is not clear whether a possible
counterexample still allows to hold that all such graphs, provided large enough, are
pancyclic, or there exists an infinite family of such graphs omitting some cycle, or
even a cycle with fixed length.
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