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Abstract

We derive explicit formulæ for the number of k-Stirling permutations
containing a single occurrence of a single pattern of length three as well
as expressions for the corresponding generating functions. Furthermore,
asymptotic results for these numbers are given.

1 Introduction

Given an integer k ∈ N, a k-Stirling permutation of order n is a permutation of the
multiset1 {1k, 2k, . . . , nk} such that, for each i, 1 ≤ i ≤ n, the elements occurring be-
tween two occurrences of i are at least i, or alternatively, that the elements occurring
between two consecutive occurrences of i are larger than i. As an example, the per-
mutations 112233, 331221 and 221331 are 2-Stirling permutations of order 3, whereas
the permutations 331212 and 321123 of the multiset {12, 22, 32} = {1, 1, 2, 2, 3, 3} are
not. Originally, Stirling permutations were introduced by Gessel and Stanley [8] for
the instance k = 2 in the context of finding combinatorial interpretations of the coef-
ficients of certain polynomials, where the Stirling numbers appear. Later, Park [19]

1Here and throughout this work we use in this context jk as the shorthand notation for j
appearing k times consecutively: j, . . . , j, for k ≥ 1.
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considered the general case k ≥ 1. In this work we denote the combinatorial family of
k-Stirling permutations by Qk; note that k = 2 yields exactly Stirling permutations
as defined by Gessel and Stanley [8], whereas k = 1 gives just ordinary permutations.

Recently there has been an increasing interest in the study of properties of k-
Stirling permutations. A reason for that is that k-Stirling permutations often yield
a natural interpretation of generalizations of quantities for ordinary permutations.
See, e.g., the recent work [3, 14] dealing with generalizations of the classical Eule-
rian numbers and Eulerian polynomials, respectively, via interpretations of ascent
statistics in k-Stirling permutations. Another example is the generalization of the
classical correspondence between permutations and so-called binary increasing trees
(i.e., labelled binary trees, where the label of each child node is larger than the la-
bel of the parent node) to a correspondence between k-Stirling permutations and
(k + 1)-ary increasing trees, which naturally yields combinatorial interpretations of
generalizations of a variety of permutation statistics, see [10, 13].

The current work is devoted to pattern occurrence in k-Stirling permutations.
The interest in such studies also stems from the question of what happens if the
fruitful concept for ordinary permutations is lifted to permutations of multisets? Let
us first give the well-known notion of a subsequence pattern occurrence for ordinary
permutations. Let α = (α1, . . . , αm) and β = (β1, . . . , βn) denote two sequences of
numbers, then the sequence α is said to be contained in β as a pattern if there is
a subsequence βi1 , . . . , βim of β, with 1 ≤ i1 < i2 < · · · < im ≤ n, which is order-
isomorphic to α, i.e., it holds αp ≤ αq if and only if βip ≤ βiq . If β does not contain
α one says that β avoids the pattern α, and if there are exactly r subsequences of
β order-isomorphic to α, we say that α is contained in β r times. There are quite
a few studies devoted to ordinary permutations containing a given pattern a given
number of times, see, e.g., [5, 16, 17, 18] and also the review [21]. There are a few
works dealing with such questions for permutations of a multiset [1, 9, 12], closely
related to k-Stirling permutations, and all those, in fact, deal with the avoidance of
patterns of length three. In contrast, there is a huge literature for pattern avoidance
on words: see for example [6, 22, 24], and the book [11] for many more pointers to
the literature.

In this work we treat enumerative questions concerning k-Stirling permutations
containing a pattern α ∈ {123, 132, 213, 231, 312, 321} once. As a consequence of
the 212-avoidance property, using above definition any permutation pattern α in a
k-Stirling permutation of order n ≥ 1 occurs at least k-times. In what follows we
introduce a new notion of pattern containment, which seems to be more appropriate
when studying k-Stirling permutations and that is compatible with the case of k = 1
of ordinary permutations. Let Sα = Sα(σ) denote the value-set of subsequences in
σ ∈ Qk order-isomorphic to α. It consists of all subsequences s = (s1, . . . , s|α|) of
σ order-isomorphic to α; in other words 1 ≤ si ≤ n, for 1 ≤ i ≤ n, such that
there exist 1 ≤ i1 < · · · < i|α| ≤ n with σi` = s`, 1 ≤ ` ≤ n. Then, we say
that the pattern α is contained r times in σ if the cardinality of the value-set Sα
is equal to r, |Sα| = r. Thus, two occurrences of a pattern α will only be consid-
ered different if the sets of values of the elements in the corresponding subsequences
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differ. From here on and throughout this work, pattern containment is always used
with respect to this definition and we denote by Qk(α; r) the family of k-Stirling
permutations containing the pattern α exactly rtimes. As an example we consider
the 3-Stirling permutation σ = 555444113366631222 of order 6: the value-set of the
pattern 123 contains a single element due to the subsequence 136, S123 = {(1, 3, 6)},
thus σ ∈ Q3(123; 1); furthermore, the value-set of the pattern 312 is given by S312 =
{(3, 1, 2), (4, 1, 2), (4, 1, 3), (5, 1, 2), (5, 1, 3), (6, 1, 2)} and thus has size 6, i.e., σ ∈
Q3(312; 6); moreover, the value-set of the pattern 231 has size 8, thus σ ∈ Q3(231; 8)
and it is given by S231 = {(3, 6, 1), (3, 6, 2), (4, 6, 1), (4, 6, 2), (4, 6, 3), (5, 6, 1), (5, 6, 2),
(5, 6, 3)}.

Throughout this work we use the abbreviations G := Gk(α) = Qk(α; 1) and
F := Fk(α) = Qk(α; 0) for the families of k-Stirling permutations with a single occur-
rence and without occurrence of a specified pattern α, respectively. As main results
we obtain explicit formulæ for the number Gn = G

[k]
n (α) = |{σ ∈ Gk(α) : |σ| = n}| of

elements of order n contained in Gk(α), as well as expressions for the generating func-
tion G(z) =

∑
n≥0Gnz

n in terms of the corresponding quantity F (z) =
∑

n≥0 Fnz
n

for the family Fk(α). Note that we often write Gn or G
[k]
n and drop the dependence

on k as well as α for the sake of simplicity. Table 1 summarizes our findings on Gn

and compares it with the known results for k = 1. For the readers convenience we
also collect for ordinary permutations, k = 1, and Stirling permutations, k = 2, the
corresponding sequences or their entry in the OEIS (if available).

Members
α

in class

Enumeration formula Gn = |{σ ∈ Gk(α) : |σ| = n}| G
[1]
n

312, 213
(
kn+n−2k−1

n−1

)
− 1

k(n−1)+1

(
(k+1)(n−1)

n−1

) (
2n−3
n−3

)
231, 132

∑n−1
j=0

(
n−1
j

) [
k2
(
n+(k−1)j+k−4

n−j−4

)
+ (k − 1)

(
n+(k−1)j+k−3

n−j−2

)
+
(
n+(k−1)j+k−2

n−j−1

)
− (2k − 1)

(
n+(k−1)j−3
n−j−2

)
−
(
n+(k−1)j−2
n−j−1

)] (
2n−3
n−3

)

123, 321

∑k
j=0

(
k
j

)
(−1)j

[
(k − 1)

∑n−j
`=0

(
n−j−1+(k−1)`

n−j−`

)(2(n−j+2
` )

n−j+2
−

(n−j+1
` )

n−j+1

)
+
∑n+1−j

`=0

(
n−j+(k−1)`
n−j+1−`

)(2(n+1−j+2
` )

n+1−j+2
− (n+1−j+1

` )
n+1−j+1

)]
+ 2(2−k)

n+1

∑n−1
`=0

(
n+1
`

)(
n−2+(k−1)`
n−1−`

)
− 4

n+2

∑n
`=0

(
n+2
`

)(
n−1+(k−1)`

n−`

)
+
∑n

`=0

(n
`)(

n+(k−1)`−1
n−` )

n+1−`

3
n

(
2n
n−3

)

Table 1: k-Stirling permutations containing a single permutation pattern α of
length 3.

The derivation of the results in Sections 3-5 somehow reflects the increasing “com-
plexity” of the treatment of these patterns. For the pattern 312, a combinatorial de-
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α k = 1 OEIS k = 2 OEIS
312, 213 0,0,1,3,10,35,126,462 A001700 0,0,3,23,155,1014,6580 not contained
231, 132 0,0,1,3,10,35,126,462 A001700 0,0,5,26,135,685,3453,17379 not contained
123, 321 0,0,1,6,27,110,429 A003517 0,0,5,33,180,919,4560,22332 not contained

Table 2: G
[k]
n : OEIS entries and sequences for permutations k = 1 and Stirling

permutations k = 2.

composition of k-Stirling permutations according to the k occurrences of the smallest
element 1 is successful. The same approach is feasible also for the pattern 231 but
requires considerably more care. Finally, for the pattern 123, we must inspect the
possible ways to insert the string (n + 1)k into a k-Stirling permutation of order n;
this analysis requires the so-called kernel method, which is detailed in [2, 20]. We
are also interested in the asymptotic growth behaviour of these quantities and in
describing the influence of the value k on the occurrence of a pattern α; thus, in
Section 6 we also give asymptotic results. We note that at least in principle the
approaches presented also work when studying families Qk(α; r), with r ≥ 2, but
even for the case r = 2 the computations are rather involved. In particular, so far we
are not able to get results on the structure of the generating function for the number
of elements of order n in Qk(α; r), for general r, which have been found for ordinary
permutations and the pattern 231 (or 312) in [4, 15], and we have to leave this for
future research.

2 Preliminaries

We collect a few basic properties of the familyQk. The number Qn := Q
[k]
n of different

k-Stirling permutations of order n is given by the following enumeration formula:

Qn =
n∏
j=1

(
1 + (j − 1)k

)
= n! kn

(
n− 1 + 1

k

n

)
. (1)

Note that it is sometimes convenient to allow also n = 0, i.e., the empty sequence,
with Q0 = 1. This result can be shown by induction in a straightforward manner,
since, due to the 212-avoidance property, the k copies of n+1 have to form a substring
and thus each such k-Stirling permutation can be obtained uniquely by inserting the
string (n+ 1)k into a k-Stirling permutation of the multiset {1k, 2k, . . . , (n− 1)k, nk}
at one of the 1+n·k possible positions, i.e., anywhere in the string, including the first
or last position. This does not only show the above enumeration formula, but also
gives a simple recursive algorithm to generate all k-Stirling permutations of a given
order. This algorithm, in a fittingly adapted form, will be used in Section 5 for the
pattern 123 to generate such pattern-restricted k-Stirling permutations of arbitrary
order, and further, to derive functional equations for suitably defined generating
functions.
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Another important basic property is the combinatorial decomposition of the fam-
ily Qk with respect to the k occurrences of the smallest label 1: namely, let σ ∈ Qk of
order n ≥ 1, then it holds σ = S11S21S3 . . . 1Sk+1, with (possibly empty) substrings
S1, . . . , Sk+1. Moreover, it must hold that these substrings do not contain common
labels, i.e., Si ∩ Sj = ∅, for i 6= j (where we assume Si, Sj as multisets), otherwise
the property of avoiding the pattern 212 would be violated. Thus, each substring Si,
1 ≤ i ≤ k + 1, is, after an order-preserving relabelling, itself a member of Qk. This
immediately yields the following formal description of the family Q := Qk:

Q = {ε}+ Z2 ∗ Qk+1,

where ε denotes the empty string, the so-called atomic element Z corresponds to a
multiset jk of a label, + and ∗ are the disjoint union and the partition product of
labelled object families, respectively. Furthermore, A2∗B denotes the so-called boxed
product of families A and B meaning that the smallest label is constrained to lie in A,
see [7]. Thus, by a straightforward application of the symbolic method (see also [7]),
one immediately gets that the exponential generating function Q(z) :=

∑
n≥0Qn

zn

n!

satisfies the differential equation Q′(z) = Q(z)k+1, from which the enumeration result
(1) follows.

When considering pattern containment in the family Q, it is a trivial fact that
the number of elements in Qk(α; r) of order n is equal to the number of elements in
Qk(α′, r) of order n, where α′ denotes the reversal of the pattern α. Thus, we can
indeed restrict ourselves to consider the patterns 123, 312 and 231. We conclude this
section with two remarks on notation. It is convenient to write A1 ≺ A2 ≺ · · · ≺ Aq,
for (possibly empty) strings A1, . . . , Aq, if each label contained in Ai is smaller than
every label contained in Aj, for i < j. When decomposing a k-Stirling permutation
σ we use the capital letters S1, S2 etc.; similarly, we use capital letters T when
decomposing τ .

3 Containing the pattern 312 only once

3.1 Avoiding the pattern 312

We consider the combinatorial family G := Gk(312) of k-Stirling permutations with
a single occurrence of the pattern 312 and treat the enumeration problem for it. Let
Gn denote the number of k-Stirling permutations of order n with a single occurrence
of the pattern 312 and G(z) :=

∑
n≥0Gnz

n its generating function. We will compute
formulæ for Gn and G(z) by a combinatorial decomposition of these objects with
respect to the smallest label and establishing relations to k-Stirling permutations
avoiding the pattern 312. Therefore, let us introduce the family F := Fk(312)
of 312-avoiding k-Stirling permutations, the number Fn of 312-avoiding k-Stirling
permutations of order n, and its generating function F (z) :=

∑
n≥0 Fnz

n. It has
been proven in [12] via relations to increasing trees that Fn is enumerated by the
generalized Catalan numbers. However, in order to get a link between the families
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G and F we will first give a more direct proof of the results for F , which afterwards
will be extended.

Let σ be a 312-avoiding k-Stirling permutation of order n ≥ 1 and consider
its decomposition with respect to the k occurrences of the smallest label 1: σ =
S11S21S3 . . . 1Sk+1, with (possibly empty) substrings S1, . . . , Sk+1, which are, after
order-preserving relabellings, themselves 312-avoiding k-Stirling permutations. Fur-
thermore, due to the property of avoiding the pattern 312 it must hold 1 ≺ S1 ≺
S2 ≺ · · · ≺ Sk+1. This immediately yields the following formal equation for the
family F :

F = {ε}+ Z × Fk+1,

where + and× denote the disjoint union and the Cartesian product of object families,
respectively. Thus, by a straightforward application of the symbolic method, we get
the functional equation

F (z) = 1 + zF (z)k+1 (2)

for the generating function F (z). Extracting coefficients, Fn = [zn]F (z), can be done
easily by applying the Lagrange-Bürmann inversion theorem, see [23], and yields
Fn = 1

kn+1

(
(k+1)n
n

)
, i.e., Fn is given by the generalized Catalan numbers.

3.2 Single occurrence of the pattern 312

Now let us consider a k-Stirling permutation τ with a single occurrence of the pattern
312. Again we consider the decomposition of τ with respect to the smallest label 1:
τ = T11T21T3 . . . 1Tk+1, with T1, . . . , Tk+1 (possibly empty) substrings, which are (af-
ter order-preserving relabellings) themselves k-Stirling permutations. We distinguish
two cases according to the labels `mr forming the 312-pattern of τ :

• The 312-pattern `mr does not contain label 1, i.e., m 6= 1. Then the substrings
T1, . . . , Tk+1 must satisfy the following properties:

– The subsequence `mr must be contained entirely in a substring Tj, 1 ≤
j ≤ k + 1, otherwise, if ` ∈ Ti, r ∈ Tj, with i < j, then `1r would be
another occurrence of the pattern 312.

– The substrings must satisfy 1 ≺ T1 ≺ T2 ≺ · · · ≺ Tk+1, since otherwise,
if there were `′ ∈ Ti, r′ ∈ Tj, with i < j and `′ > r′, then `′1r′ would be
another occurrence of the pattern 312.

– After order-preserving relabellings, Tj is itself a k-Stirling permutation
with a single occurrence of the pattern 312, whereas T1, . . . , Tj−1, Tj+1, . . . ,
Tk+1 are 312-avoiding k-Stirling permutations.

Thus, this object family G [0], where the occurrence of the 312-pattern does not
include the letter 1, can be described in the following formal way:

G [0] = (k + 1) · G × Z × Fk. (3)
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• The 312-pattern `mr contains label 1, i.e., m = 1. Let us assume that ` ∈ Ti
and r ∈ Tj, with i < j. Then the following properties must be satisfied:

– Ti+1, . . . , Tj−1 = ∅, otherwise there would exist `′ ∈ Tq, with i + 1 ≤ q ≤
j−1, such that either `′ > `, which causes due to `′1r a further occurrence
of the pattern 312, or `′ < `, which causes due to `1`′ a further occurrence
of the pattern 312.

– ` = r + 1, otherwise if ` > r + 1 then label r + 1 would be contained in a
substring Tq and then either q ≤ i, which causes due to (r+1)1r a further
occurrence of the pattern 312, or q ≥ j, which causes due to `1(r + 1) a
further occurrence of the pattern 312.

– Define T ′i := Ti − {`k}; then it must hold that T1 ≺ · · · ≺ Ti−1 ≺ T ′i ≺
Ti+1 ≺ · · · ≺ Tk+1, since otherwise another 312-pattern would occur.

– Ti = T ′i `
k, otherwise there would be an element m′ < ` and consequently

m′ < r = ` − 1 to the right of `, which causes due to `m′r a further
occurrence of the pattern 312.

– After order-preserving relabellings, T1, . . . , Ti−1, T
′
i , Tj+1, . . . , Tk+1 are 312-

avoiding k-Stirling permutations and Tj 6= ∅ is a non-empty 312-avoiding
k-Stirling permutation.

Let G [1] denote the family, where the occurrence of the 312-pattern includes the
letter 1. According to our considerations it can be described in the following
formal way:

G [1] =
∑

1≤i<j≤k+1

Z × Z × Fk+1−j+i × (F − {ε}). (4)

Here, the atoms Z correspond to label 1 and label ` of Ti = T ′i `
k. Since all

parts T1, . . . , Ti−1, T
′
i , as well as Tj+1, . . . , Tk+1 are 312-avoiding k-Stirling per-

mutations, we get the corresponding term F i+k+2−(j+1) = Fk+1−j+i. Moreover,
since Tj 6= ∅ is a non-empty 312-avoiding k-Stirling permutation, we get the
additional combinatorial family F − {ε}.

Combining the two cases (3) and (4) via G = G [0]+G [1], one obtains after straight-
forward simplifications the following symbolic equation connecting the families G
and F :

G = (k + 1) · G × Z × Fk + Z2 × (F − {ε})×
k∑
p=1

p · Fp. (5)

Thus, applying the symbolic method to (5) yields the following functional equation
relating the generating functions G(z) and F (z):

G(z) = (k + 1)zG(z)F (z)k + z2(F (z)− 1)
k∑
p=1

pF (z)p,
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or

G(z) =
z2(F (z)− 1)

∑k
p=1 pF (z)p

1− (k + 1)zF (z)k
=

z2F (z)2

(F (z)− 1)(1− k(F (z)− 1))
− zF (z), (6)

where the last expression follows after simple manipulations using the functional
equation (2).

Extracting coefficients from (6) yields an explicit formula for Gn = [zn]G(z).
For the first summand we introduce F̂ (z) := F (z) − 1, which thus satisfies the
functional equation F̂ = z(1 + F̂ )k+1, and apply Cauchy’s integration formula [7].

Using dF̂
dz

= (1+F̂ )k+2

1−kF̂ , this gives

[zn]
z2F (z)2

(F (z)− 1)(1− k(F (z)− 1))
=

1

2πi

∮
(1 + F̂ )2

F̂ (1− kF̂ )

dz

zn−1

=
1

2πi

∮
(1+F̂ )2

F̂ (1−kF̂ )

(1+F̂ )(k+1)(n−1)

F̂ n−1

1−kF̂
(1+F̂ )k+2

dF̂ =
1

2πi

∮
(1+F̂ )kn+n−2k−1

F̂ n
dF̂

= [F̂ n−1](1 + F̂ )kn+n−2k−1 =

(
kn+ n− 2k − 1

n− 1

)
.

Furthermore, the second summand of (6) simply yields

[zn]zF (z) = Fn−1 =
1

k(n− 1) + 1

(
(k + 1)(n− 1)

n− 1

)
.

Combining our findings leads to the following theorem.

Theorem 1 The generating function G(z) =
∑

n≥0Gnz
n of the number Gn := G

[k]
n

of k-Stirling permutations of order n with a single occurrence of the pattern 312 is
given as follows:

G(z) =
z2F (z)2

(F (z)− 1)(1− k(F (z)− 1))
− zF (z),

with F (z) =
∑

n≥0 Fnz
n the generating function of the generalized Catalan numbers

Fn := F
[k]
n = 1

kn+1

(
(k+1)n
n

)
, i.e., the number of 312-avoiding k-Stirling permutations

of order n, which satisfies the functional equation F = 1 + zF k+1.

4 Containing the pattern 231 only once

4.1 Avoiding the pattern 231

In this section we consider the combinatorial family G := Gk(231) of k-Stirling per-
mutations with a single occurrence of the pattern 231. Let Gn denote the number of
k-Stirling permutations of order n with a single occurrence of the pattern 231 and
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G(z) :=
∑

n≥0Gnz
n its generating function. Again we will show relations to the fam-

ily F := Fk(231) of 231-avoiding k-Stirling permutations and, by using formulæ for
the number Fn of 231-avoiding k-Stirling permutations and its generating function
F (z) :=

∑
n≥0 Fnz

n, we are able to show enumeration results also for the family G.
Explicit results for Fn and F (z) (as pointed out before, they are different from the
corresponding formulæ for 312-avoiding k-Stirling permutations) are obtained in [12]
by what is called there component block decomposition of k-Stirling permutations.
However, in order to show relations between the families F and G it seems preferable
to use the decomposition of these objects with respect to the smallest label 1. Thus,
first we will use this decomposition to reprove the results for F and afterwards we
extend the considerations to cover the family G.

Let σ be a 231-avoiding k-Stirling permutation of order n ≥ 1 and consider its
decomposition with respect to the k occurrences of the smallest label 1, which we
denote by

σ = Sk1Sk−11 · · ·S11S,

with (possibly empty) substrings S1, . . . , Sk and S, which are themselves (after order-
preserving relabellings) k-Stirling permutations. Due to the property of avoiding the
pattern 231 it must hold that the concatenated string A := SkSk−1 . . . S1 is forming
a non-increasing sequence. Thus, there are q1, . . . , qk ≥ 0, denoting the number of
different labels contained in S1, . . . , Sk, respectively, and labels 1 < a1 < a2 < · · · <
aq1+q2+···+qk , such that

Sj = akq1+···+qja
k
q1+···+qj−1 . . . a

k
q1+···+qj−1+1, for 1 ≤ j ≤ k.

Furthermore, each element s′ > ai in the substring S must be to the right of each
element s′′ < ai in S, since otherwise ais

′s′′ would cause an occurrence of the pat-
tern 231. Thus, it holds that S can be decomposed itself: S = C0C1 . . . Cq1+···+qk ,
with substrings C0, . . . , Cq1+···+qk satisfying 1 ≺ C0 ≺ a1 ≺ C1 ≺ a2 ≺ C2 ≺
· · · ≺ aq1+···+qk ≺ Cq1+···+qk . Moreover, the substrings C0, . . . , Cq1+···+qk must be (af-
ter order-preserving relabellings) themselves 231-avoiding k-Stirling permutations.
Thus, apart from 1 and C0, σ is decomposed into k sequences of pairs consisting
of an element ai and a 231-avoiding k-Stirling permutation Ci, which immediately
yields the following formal equation for the family F :

F = {ε}+ Z × F ×
(
Seq(Z × F)

)k
,

with Seq denoting the sequence construction for a family of combinatorial objects.
An application of the symbolic method to this equation immediately gives that the
generating function F (z) satisfies the following functional equation:

F (z) = 1 +
zF (z)

(1− zF (z))k
. (7)

To extract coefficients one may set F̂ (z) := zF (z) and apply the Lagrange-Bürmann
inversion theorem, which gives after routine calculations the explicit formula for Fn



M. KUBA AND A. PANHOLZER/AUSTRALAS. J. COMBIN. 74 (2) (2019), 216–239 225

stated already in [12]:

Fn =
1

n+ 1

n∑
j=0

(
n+ 1

j

)(
n+ (k − 1)j − 1

n− j

)
. (8)

4.2 Single occurrence of the pattern 231

Now we treat the family G and consider a k-Stirling permutation τ with a single
occurrence of the pattern 231, where we assume that this pattern is caused by the
subsequence `mr. The decomposition of τ with respect to the smallest label 1 can
be written as

τ = Tk1Tk−11 · · ·T11T,
by T1, . . . , Tk and T (possibly empty) substrings which are (after order-preserving
relabellings) themselves k-Stirling permutations. We start our examinations with
the following two observations:

• ` = r + 1, since otherwise, i.e., if ` > r + 1, label (r + 1) would occur in a
further 231-pattern, namely, either (r + 1) is to the left of m, then (r + 1)mr
causes a 231-pattern, or (r + 1) is to the right of m, then `m(r + 1) causes a
231-pattern.

• The subsequence `mr = (r+1)mr is not contained entirely in the concatenated
string A := TkTk−1 . . . T1, since otherwise (r + 1)m1 would cause a second
occurrence of the pattern 231.

Let us assume that the substrings T1, . . . , Tk contain q1, . . . , qk ≥ 0 different labels,
respectively, and thus that the string A, when considered as a multiset, is given as
A = {ak1, ak2, . . . , akq1+···+qk}, with 1 < a1 < a2 · · · < aq1+···+ak . When we distinguish
according to the position of the labels (r+ 1)mr forming the 231-pattern of τ , there
are three possible cases, which will be treated separately.

• The 231-pattern (r + 1)mr is contained in T , i.e., (r + 1),m, r ∈ T . Then the
strings A and T must satisfy the following properties:

– The elements in A form a non-increasing sequence, since otherwise, if
there were a′, a′′ ∈ A, with a′ > a′′ and a′ left of a′′, due to a′a′′1 a further
231-pattern would occur. Thus the following must hold

Tj = akq1+···+qja
k
q1+···+qj−1 . . . a

k
q1+···+qj−1+1, for 1 ≤ j ≤ k.

– It holds that each element t′ > ai in the substring T must be to the
right of each element t′′ < ai in T , since otherwise ait

′t′′ would cause a
further 231-pattern occurrence. Thus T can be decomposed itself: T =
C0C1 . . . Cq1+···+qk , where the substrings Cj are themselves (after order-
preserving relabellings) k-Stirling permutations satisfying 1 ≺ C0 ≺ a1 ≺
C1 ≺ a2 ≺ C2 ≺ · · · ≺ aq1+···+qk ≺ Cq1+···+qk .
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– After order-preserving relabellings, exactly one of these substrings, let us
assume Cq, is a k-Stirling permutation with a single occurrence of the
pattern 231, whereas all remaining substrings C0, . . . , Cq−1, Cq+1, . . . ,
Cq1+···+qk are 231-avoiding k-Stirling permutations.

From these properties a combinatorial description of the family of k-Stirling
permutations, where the single occurrence of the 231-pattern is contained in
T can be obtained. We denote this family in the following by G [1]. Either
(r + 1)mr ∈ C0, which means that, apart from label 1 and C0, the string τ is
decomposed into k sequences of pairs consisting of a label ai and a 231-avoiding

k-Stirling permutation Ci, which can be described via Z×G×
(
Seq(Z×F)

)k
;

or otherwise, if (r+ 1)mr ∈ Cq, with q > 0, then aq is contained in a substring

Tj, with 1 ≤ j ≤ k; then we may consider Tj as Tj = T
[L]
j akqT

[R]
j , with T

[L]
j and

T
[R]
j non-increasing sequences of labels. Thus, apart from the elements 1, C0,
aq and Cq, the string τ is decomposed into k+1 sequences of pairs consisting of
a label ai and a k-Stirling permutation Ci. Taking into account that aq can be
contained in one of the k substrings Tj, these objects can be described formally

via k · Z × Z × F × G ×
(
Seq(Z × F)

)k+1
. Thus, for the family G [1] we get

the formal description

G [1] = Z × G ×
(
Seq(Z × F)

)k
+ k · Z2 ×F × G ×

(
Seq(Z × F)

)k+1
. (9)

• The 231-pattern (r + 1)mr is contained in AT , but not in T , i.e., (r + 1) ∈ A
and r ∈ T . This case implies that also m ∈ T , since otherwise, if m would
be contained in A, (r + 1)m1 would cause a further occurrence of the 231-
pattern. In the following, let us assume that (r + 1) = aq ∈ A, such that
r = (aq− 1) ∈ T . The structure of the strings A and T will be revealed via the
following properties, which have to be satisfied.

– The elements in A form a non-increasing sequence, since otherwise a fur-
ther 231-pattern would occur. Thus it must hold that

Tj = akq1+···+qja
k
q1+···+qj−1 . . . a

k
q1+···+qj−1+1, for 1 ≤ j ≤ k.

– Let i 6= q, then it follows that each element t′ > ai in the substring T
must be to the right of each element t′′ < ai in T , since otherwise ait

′t′′

would cause a further 231-pattern occurrence. Thus T can be decomposed
itself: T = C0C1 . . . Cq−2DCq+1Cq+2 . . . Cq1+···+qk , where the substrings
Cj and D are themselves (after order-preserving relabellings) k-Stirling
permutations satisfying 1 ≺ C0 ≺ a1 ≺ C1 ≺ a2 ≺ · · · ≺ Cq−2 ≺ aq−1 ≺
D ≺ aq+1 ≺ Cq+1 ≺ · · · ≺ aq1+···+qk ≺ Cq1+···+qk , where D contains all
elements between aq−1 and aq+1 other than aq. In particular it holds
(aq − 1) ∈ D.

– m < aq+1, since otherwise aq+1m(aq − 1) would give a further occurrence
of the pattern 231. Thus, it holds m ∈ D.
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– Each element d ∈ D with d < (aq − 1) must be left to m, since otherwise
aqmd would give a further 231-pattern occurrence. As a consequence, each
such d < (aq−1) must be also left to all occurrences of (aq−1), since due
to the 212-pattern avoidance property of k-Stirling permutations, d could
be either to the left or to the right of all occurrences of (aq − 1), but the
latter case would cause a further 231-pattern due to aqmd.

– Each element d ∈ D with d > (aq − 1) (and thus d > aq) must be to
the right of (aq − 1), since otherwise aqd(aq − 1) would give a further
231-pattern occurrence.

– Each element d′ ∈ D with d′ > m must be to the right of each element
d′′ ∈ D with d′′ < m, since otherwise md′d′′ would give a further 231-
pattern occurrence.

– At least one occurrence of (aq − 1) must be to the right of (necessarily
all occurrences of) m, since we assumed that these elements cause the
single occurrence of the 231-pattern. From the previous properties it
follows that D can itself be decomposed into D = Cq−1PC

[1]
q C

[2]
q , with

aq−1 ≺ Cq−1 ≺ (aq − 1) ≺ aq ≺ C
[1]
q ≺ m ≺ C

[2]
q ≺ aq+1, where P could be

one of the following k strings:

P = mk(aq − 1)k or P = (aq − 1)tmk(aq − 1)k−t, with 1 ≤ t ≤ k − 1.

– All the substrings C0, . . . , Cq−1, C
[1]
q , C

[2]
q , Cq+1, . . . , Cq1+···+qk are (after

order-preserving relabellings) 231-avoiding k-Stirling permutations.

This decomposition can be used to give a combinatorial description of the
family of k-Stirling permutations G [2], where the single occurrence of the 231-
pattern is contained in AT , but not in T . Let us assume that aq is con-
tained in the substring Tj, with 1 ≤ j ≤ k. Then we may consider Tj as

Tj = T
[L]
j akqT

[R]
j , with T

[L]
j and T

[R]
j non-increasing sequences of labels. Thus,

the string τ is decomposed into the special labels 1, aq, (aq − 1) and m and

into the special substrings of 231-avoiding k-Stirling permutations C0, C
[1]
q

and C
[2]
q , as well as into k + 1 sequences of pairs consisting of ai contained

in T1, . . . , Tj−1, T
[L]
j , T

[R]
j , Tj+1, . . . , Tk, respectively, and the corresponding sub-

string Ci. Taking into account the k possibilities for the string P and indepen-
dent from it the k possibilities for the substring Tj containing (r+ 1) = aq, we
get the following formal description of G [2]:

G [2] = k2 · Z4 ×F3 ×
(
Seq(Z × F)

)k+1
. (10)

• The 231-pattern (r+ 1)mr is contained in A1, i.e., r = 1, (r+ 1) = 2 = a1 ∈ A
and m > 2 ∈ A. Then the strings A and T must satisfy the following properties:

– m = a2, since otherwise, if m = ai, with i > 2, this would cause a further
occurrence of the 231-pattern, namely, either due to a2m1 if a2 is left to
2, or due to 2a21 if a2 is to the right of 2.
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– The elements a3, . . . , aq1+···+qk are left to 2, since otherwise a further oc-
currence of the 231-pattern would appear due to 2ai1.

– The elements a3, . . . , aq1+···+aq form a non-increasing sequence, since oth-
erwise a further 231-pattern would occur.

– At least one occurrence of 2 is left to (necessarily all occurrences of) a2,
since it is assumed that 2a21 is forming the 231-pattern. Due to these
properties the string A has the following form: A = akq1+···+qka

k
q1+···+ak−1

. . . ak4a
k
3P , with P one of the following k strings:

P = 2kak2 or P = 2tak22k−t, with 1 ≤ t ≤ k − 1.

– In T each element t′ > ai must be to the right of each element t′′ < ai,
since otherwise ait

′t′′ would cause a further 231-pattern. Thus T can
be decomposed in the following way: T = C1C2 . . . Cq1+···+qk , with sub-
strings C1, . . . , Cq1+···+qk satisfying 1 ≺ a1 = 2 ≺ C1 ≺ a2 ≺ C2 ≺ · · · ≺
aq1+···+qk ≺ Cq1+···+qk .

– The substrings C1, . . . , Cq1+···+qk are (after order-preserving relabellings)
themselves 231-avoiding k-Stirling permutations, since otherwise a further
231-pattern would occur.

Combining these properties a combinatorial description of the family of k-
Stirling permutations, where the single occurrence of the 231-pattern is con-
tained in A1, let us denote it by G [3], can be obtained. To do this we distin-
guish between two cases according to the substring P contained in A given in
above description. Namely, if P = 2kak2 = ak1a

k
2 then we may think of get-

ting the substrings Tk, . . . , T1 in the decomposition of τ by starting with the
string Ã = akq1+···+qka

k
q1+···+qk−1 . . . a

k
2a

k
1, partition it into k substrings and finally

switch ak1 with ak2. This means that τ is decomposed into 1 and k sequences of
pairs consisting of ai and the corresponding Ci, but it must be guaranteed that
A consists of at least 2 different labels, otherwise we could not switch the two
smallest ones. Thus these two cases have to be excluded and we get the formal

description Z ×
(
Seq(Z × F)

)k − Z − k · Z × Z × F . On the other hand, if
P has the shape P = 2tak22k−t, with 1 ≤ t ≤ k − 1, then 2 and a2 must lie in
the same substring Ti and we have to modify the description. Namely, we may
think of getting the substrings Tk, . . . , T1 in the decomposition of τ by starting
with the string Ã = akq1+···+ak . . . a

k
2, partition it into k substrings and finally

wrap 2k around a2 in of the k− 1 possible ways. Thus, τ is decomposed into 1,
a1 = 2, C1 and into k sequences of pairs consisting of ai and the corresponding
Ci, but it must be guaranteed that Ã 6= ∅ (otherwise 2k could not be inserted
in the way described above). Thus this case has to be excluded and we get the

formal description (k− 1) · Z ×Z ×F ×
(
Seq(Z ×F)

)k− (k− 1) · Z ×Z ×F .

Therefore, we end up with the following description of the family G [3]:

G [3] = Z×
(
Seq(Z×F)

)k
+(k−1)·Z2×F×

(
Seq(Z×F)

)k−Z−(2k−1)·Z2×F .
(11)
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Combining the three cases (9), (10) and (11) by using G = G [1] +G [2] +G [3] we obtain
a formal description of the family G:

G = Z × G ×
(
Seq(Z × F)

)k
+ k · Z2 ×F × G ×

(
Seq(Z × F)

)k+1

+ k2 · Z4 ×F3 ×
(
Seq(Z × F)

)k+1
+ Z ×

(
Seq(Z × F)

)k
+ (k − 1) · Z2 ×F ×

(
Seq(Z × F)

)k −Z − (2k − 1) · Z2 ×F .

Applying the symbolic method this formal description immediately yields an equation
connecting the generating functions G(z) and F (z):

G(z) =
zG(z)

(1− zF (z))k
+

kz2F (z)G(z)

(1− zF (z))k+1
+

k2z4F (z)3

(1− zF (z))k+1
+

z

(1− zF (z))k

+
(k − 1)z2F (z)

(1− zF (z))k
− z − (2k − 1)z2F (z).

Taking into account the defining functional equation for F (z), we obtain, after
straightforward computations, the following formula for G(z):

G(z) =
1

1 + (k − 1)zF (z)− kzF (z)2
·
[
z3F (z)3(k2F (z)− (k − 1)2)

− (k − 1)z2F (z)2(F (z) + 1)− zF (z)(k − 1− (k − 2)F (z)) + F (z)− 1
]
,

with F (z) = 1 + zF (z)
(1−zF (z))k

.

To extract coefficients and thus to obtain an explicit formula for Gn = [zn]G(z)
we introduce F̂ := F̂ (z) := zF (z) and apply Cauchy’s integration formula. First,
after simple computations one gets that G(z) can be expressed via F̂ as follows:

G(z) =
F̂
(

k2F̂ 3

(1−F̂ )k+1
+ (k−1)F̂

(1−F̂ )k
+ 1

(1−F̂ )k
− (2k − 1)F̂ − 1

)
1− kF̂ 2

(1−F̂ )k+1

. (12)

Moreover, using

F̂ = z
(

1 +
F̂

(1− F̂ )k

)
(13)

and thus dz =
1− kF̂2

(1−F̂ )k+1(
1+ F̂

(1−F̂ )k

)2dF̂ , we obtain

Gn = [zn]G(z) =
1

2πi

∮
G

zn+1
dz =

1

2πi

∮ G
(

1 + F̂

(1−F̂ )k

)n+1

F̂ n+1
·

1− kF̂ 2

(1−F̂ )k+1(
1 + F̂

(1−F̂ )k

)2dF̂
=

1

2πi

∮ G
(

1 + F̂

(1−F̂ )k

)n−1(
1− kF̂ 2

(1−F̂ )k+1

)
F̂ n+1

dF̂
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= [F̂ n]G
(

1 +
F̂

(1− F̂ )k

)n−1(
1− kF̂ 2

(1− F̂ )k+1

)
.

Therefore,

Gn = [F̂ n−1]

(
k2F̂ 3

(1−F̂ )k+1
+

(k−1)F̂

(1−F̂ )k
+

1

(1−F̂ )k
− (2k−1)F̂−1

)
·
(

1 +
F̂

(1−F̂ )k

)n−1
,

and by using the binomial series expansion one easily obtains an explicit result for
Gn. We collect these findings in the following theorem.

Theorem 2 The generating function G(z) =
∑

n≥0Gnz
n of the number Gn := G

[k]
n

of k-Stirling permutations of order n with a single occurrence of the pattern 231 is
given as follows:

G(z) =
1

1 + (k − 1)zF (z)− kzF (z)2
·
[
z3F (z)3(k2F (z)− (k − 1)2)

− (k − 1)z2F (z)2(F (z) + 1)− zF (z)(k − 1− (k − 2)F (z)) + F (z)− 1
]
,

with F (z) =
∑

n≥0 Fnz
n the generating function of the number Fn := F

[k]
n of 231-

avoiding k-Stirling permutations of order n, which satisfies the functional equation
F = 1 + zF

(1−zF )k
.

5 Containing the pattern 123 only once

5.1 Avoiding the pattern 123

In this section we consider the combinatorial family G := Gk(123) of k-Stirling per-
mutations with a single occurrence of the pattern 123. Throughout this section we
denote by Ex the evaluation operator at x = 1, and with Dx the differentiation op-
erator with respect to x. The aim is to show results for the number Gn of k-Stirling
permutations of order n with a single occurrence of the pattern 123 as well as for
its generating function G(z) :=

∑
n≥0Gnz

n. As in the previous sections for this we
require corresponding results for the family F := Fk(123) of 123-avoiding k-Stirling
permutations. It has been shown already in [12] by an extension of the correspon-
dence of Simion and Schmidt that, for each order n, the number of 231-avoiding
k-Stirling permutations is equal to the number of 123-avoiding k-Stirling permuta-
tions; thus the numbers Fn and its generating function F (z) :=

∑
n≥0 Fnz

n are given
by the formulæ (8) and (7), respectively, stated in Section 4.

However, for the pattern 123 the situation is more involved and in order to get
results for G these formulæ are not sufficient, but we require refinements of the
enumeration results for F . Namely, first we will derive the generating function of
the number of 123-avoiding k-Stirling permutations of order n, weighted according
to three parameters. Assume that σ ∈ F is of order n: the parameter c(σ) denotes
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the number of possible insertion places for (n + 1)k in σ before the first occurrence
of the patterns 12 and 21; moreover, the parameter d(σ) denotes the number of
the remaining insertion places for (n + 1)k in σ before the first occurrence of the
pattern 12. Furthermore, the parameter e(σ) counts the number of positions, where
an insertion of (n + 1)k in σ would create a single occurrence of the pattern 123.
Note that by defining these parameters we exclude an insertion at the beginning of
the k-Stirling permutation σ, since this case will always be treated separately. These
insertion places can be naturally ordered from left to right.

Example 1 Given the 123-avoiding 2-Stirling permutation σ = 1221, with c(σ) = 1,
d(σ) = 0 and e(σ) = 3. We can obtain either τ = 331221 with parameters c(τ) = 2,
d(τ) = 1 and e(τ) = 3 by inserting 32 at the beginning, or τ = 133221 with parameters
c(τ) = 1, d(τ) = 0 and e(τ) = 2.

Let F (z;u, v, w) denote the generating function of 123-avoiding k-Stirling permu-
tations weighted according to the parameters c(σ), d(σ) and e(σ),

F (z;u, v, w) :=
∑
σ∈F

z|σ|uc(σ)vd(σ)we(σ) =
∑
c,d

Fc,d(z;w)ucvd. (14)

Of course, it holds F (z) = F (z; 1, 1, 1) for the counting series of 123-avoiding k-
Stirling permutations, with F (z) given by (7) as mentioned above. A key part in our
further analysis is the fact that F (z;u, v, w) satisfies a certain functional equation,
stated in the Proposition below.

Proposition 1 The generating function F (z;u, v, w) of the number of 123-avoiding
k-Stirling permutations of order n, weighted according to the insertion places before
12 and 21, remaining places before 12, and places where a single occurrence of 123
can be created, which is defined in (14), satisfies

F (z;u, v, w) = 1 + zukF (z; v, v, w) +
zuwk

u− w

(
F (z;u,w, 1)− F (z;w,w, 1)

)
+

zv

v − 1

(
F (z;u, v, 1)− F (z;u, 1, 1)

)
.

(15)

In order to show this functional equation for F (z;u, v, w) we use the following result.

Lemma 1 Let σ = σ1 . . . σkn ∈ F denote a 123-avoiding k-Stirling permutation of
order n ≥ 1. The values of the parameters c(σ), d(σ) and e(σ) of the k-Stirling
permutations τ ∈ F of order n+1, obtained by inserting (n+1)k into σ in a suitable
way, are given by

(c(τ), d(τ), e(τ)) =



(
k, c(σ) + d(σ), e(σ)

)
,

by insertion at the beginning of σ,(
γ, 0, c(σ)− γ + d(σ) + k

)
,

by insertion at position γ of c(σ), 1 ≤ γ ≤ c(σ),(
c(σ), δ, 0

)
,

by insertion at position δ of d(σ), 1 ≤ δ ≤ d(σ).
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Proof of Lemma 1: In order to create new 123-avoiding k-Stirling permutations of
order n + 1 we can insert the k-tuple (n + 1)k either at the beginning, or at any of
the c(σ) + d(σ) other possible insertion places.

• If we insert the k-tuple (n+1)k at the beginning of σ, we obtain τ = (n+1)kσ ∈
F of order n+ 1, with c(σ) = k insertion places before the first occurrences of
12 and 21. Moreover, then we have d(τ) = c(σ) + d(σ), since the insertion of
(n+ 1)k creates an occurrence of 21.

• If we insert (n + 1)k at position γ of c(σ), we obtain τ = aγ(n + 1)kac(σ)−γσ2.
Hence, c(τ) = γ and there are no more insertion places before the first occur-
rence of 12, i.e., d(τ) = 0. Note that we can create a single occurrence of 123
by inserting at any of the c(σ)− γ places, at any of the additional k places in
(n+ 1)k, or any of the former d(σ) insertion places in the part σ2 in τ .

• If we insert (n + 1)k at position δ of d(σ), then for the resulting string τ an
insertion of (n + 2)k after this position, i.e., at one of the former d(σ) − δ
remaining places, would create more than one occurrence of the pattern 123,
hence e(τ) = 0 and furthermore d(τ) = δ; moreover, the c(σ) insertion positions
are not influenced.

�

Proof of Proposition 1: By Lemma 1 we obtain the following functional equation for
F (z;u, v, w):

F (z;u, v, w) = 1 + zukF (z; v, v, w) + z ·
∑
c,d

Fc,d(z; 1)
( c∑
γ=1

uγwc−γ+k+d + uc
d∑
δ=1

vδ
)
.

Using
c∑

γ=1

uγwc−γ+k+d = wk+c+d−1 · u ·
(
u
w

)c − 1
u
w
− 1

= uwk+d
uc − wc

u− w

and also uc
∑d

δ=1 v
δ = ucv v

d−1
v−1 , it simplifies to the stated result. �

5.2 Single occurrence of the pattern 123

Now we turn to our studies of the family G and compute formulæ for G(z) and Gn.
To do this we introduce the refined generating function G(z;u) of the number of k-
Stirling permutations with a single occurrence of the pattern 123, weighted according
to c(σ) + d(σ), via

G(z;u) :=
∑
σ∈G

z|σ|uc(σ)+d(σ) =
∑
`

G`(z)u`, (16)

where the parameters c(σ) and d(σ) are defined as in Section 5.1 by the number of
insertion places before 12 and 21, and the number of the remaining insertion places
before 12, respectively. Of course, G(z) = G(z; 1). The interest of G(z;u) lies in the
relationship to the generating function F (z;u, v, w) studied in Section 5.1.
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Proposition 2 The generating function G(z;u) of the number of k-Stirling permu-
tations of order n with a single occurrence of the pattern 123, weighted according to
the insertion places before the first occurrence of the pattern 12, which is defined in
(16), satisfies the following functional equation:

G(z;u) = zEwDwF (z;u, u, w) + zukG(z;u) +
zu

u− 1

(
G(z;u)−G(z; 1)

)
, (17)

with F (z;u, v, w) defined in (14).

Proof: Any k-Stirling permutation τ of order n + 1 with a single occurrence of the
pattern 123 can be generated by inserting (n + 1)k into a k-Stirling permutation σ
of order n in one of the following three ways:

• σ ∈ F is a 123-avoiding k-Stirling permutation and we insert (n+ 1)k at one of
the e(σ) possible positions that create a single 123-pattern.

• σ ∈ G and we insert (n+ 1)k at the beginning of the string.

• σ ∈ G and we insert (n+ 1)k at one of the c(σ) + d(σ) positions before the first
occurrence of the pattern 12.

Hence, the generating function G(z;u) satisfies

G(z;u) = zEwDwF (z;u, u, w) + zukG(z;u) + z
∑
`

G`(z)
∑̀
λ=1

uλ,

which readily leads to the stated result. 2

Next we show how the generating function G(z) = G(z; 1) can be expressed via
F (z;u, v, w).

Lemma 2 The generating function G(z) satisfies:

G(z) = F (z) · zEwDwF (z;U(z), U(z), w), (18)

where F (z;u, v, w) is defined in (14), F (z) is given by (7), and U(z) has the repre-
sentation

U(z) =
1

1− zF (z)
= 1 +

∑
n≥1

zn
∑n−1

`=0

(
n
`

)(
n+`(k−1)
n−1−`

)
n

. (19)

Proof: We show above representation by using the kernel method. First, we rewrite
(17) as (

1− zuk − zu

u− 1

)
G(z;u) = zEwDwF (z;u, u, w)− zu

u− 1
G(z; 1). (20)

The kernel K(z;u) = 1 − zuk − zu
u−1 has a single power series solution u = U(z),

where it vanishes:

K(z;U(z)) = 1− zUk(z)− zU(z)

U(z)− 1
= 0. (21)
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Using the Lagrange-Bürmann inversion theorem, we readily obtain the expansion of
U(z) stated above when considering the shifted series Û(z) = U(z)− 1 satisfying

Û(z) = z(Û(z) + 1)
(
1 + Û(z)(Û(z) + 1)k−1

)
.

Consequently, we have

z =
Û(z)

(Û(z) + 1)
(
1 + Û(z)(Û(z) + 1)k−1

) ,
and obtain for the n-th coefficient

[zn]Û(z) =
1

n
[Ûn−1](1 + Û)n

(
1 + Û(Û + 1)k−1

)n
=

1

n

n−1∑
`=0

(
n

`

)(
n+ `(k − 1)

n− 1− `

)
.

Substituting the series u = U(z) in (20) cancels the left hand side of the equation
and we directly get

zEwDwF (z;U(z), U(z), w) =
zU(z)

U(z)− 1
G(z; 1) =

zU(z)

U(z)− 1
G(z).

Furthermore, it holds that the function U(z)−1
zU(z)

is exactly the generating function F (z)

given in (7); namely, by simple manipulations of (7) and (21) it follows

zF = z

(
1 +

zF

(1− zF )k

)
and 1− 1

U
= z

(
1 +

1− 1
U(

1
U

)k
)
,

and thus that zF (z) = 1− 1
U(z)

, since they satisfy the same functional equation. This

shows the stated relation (18). 2

Remark 1 Another application of the Lagrange-Bürmann inversion theorem similar
to the corresponding computations for U(z) in Lemma 2 yields the expansion

F 2(z) =
∑
n≥0

zn
2

n+ 2

n∑
`=0

(
n+ 2

`

)(
n− 1 + (k − 1)`

n− `

)
, (22)

which can be used later for deriving Gn = [zn]G(z).

Thus, according to Lemma 2 it remains to determine the generating function
zEwDwF (z;u, u, w). When we evaluate F (z;u, v, w) at v = u in the functional
equation (15) we get

F (z;u, u, w) =
1

1− zuk

(
1 +

zuwk

u− w

(
F (z;u,w, 1)− F (z;w,w, 1)

)
+

zu

u− 1

(
F (z;u, u, 1)− F (z;u, 1, 1)

))
.

(23)
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In the following we will determine step by step all the evaluations of F appearing in
(23). First, we plug w = 1 into (23) and it follows that the occurrences of F (z, u, 1, 1)
cancel out; we get

F (z;u, u, 1) =
1

1− zuk

(
1 +

zu

u− 1
F (z;u, u, 1)− zu

u− 1
F (z; 1, 1, 1)

)
,

and by taking into account F (z; 1, 1, 1) = F (z) we obtain after simple manipulations

F (z;u, u, 1) =
1− zuF (z)

u−1

1− z(uk + u
u−1)

. (24)

Next we turn to the function F (z;u, v, 1), which, by evaluation w = 1 in (15),
satisfies the functional equation(

1− zv

v − 1

)
F (z;u, v, 1) = 1 + zukF (z; v, v, 1)− zu

u− 1
F (z; 1, 1, 1)

+ z
( u

u− 1
− v

v − 1

)
F (z;u, 1, 1),

(25)

with F (z; 1, 1, 1) = F (z) and F (z; v, v, 1) as given in (24). In order to solve (25) we
carry out another application of the kernel method. The kernel on the left hand side
cancels for v = V (z) = 1/(1− z). Since zV (z)/(V (z)− 1) = 1, we get

F (z;V (z), V (z), 1) =
(1− z)k

z

(
F (z)− 1

)
,

and consequently

F (z;u, 1, 1) =
1

1− zu
u−1

(
1 + uk(1− z)k

(
F (z)− 1

)
− zu

u− 1
F (z)

)
. (26)

Plugging (26) into (25) determines the required function:

F (z;u, v, 1) =
1

1− zv
v−1

(
1 + zuk

1− zv
v−1F (z)

1− z(vk + v
v−1)

− zu

u− 1
F (z)

+ z
( u

u−1
− v

v−1

) 1

1− zu
u−1

(
1+uk(1−z)k

(
F (z)−1

)
− zu

u−1
F (z)

))
.

(27)

Now we are ready to derive zEwDwF (z;u, u, w). We get from (23)

zEwDwF (z;u, u, w) =
z2u

1− zuk
EwDw

wk

u− w

(
F (z;u,w, 1)− F (z;w,w, 1)

)
=

z2u

(1− zuk)(u− 1)

(
k(u− 1) + 1

u− 1

(
F (z;u, 1, 1)− F (z)

)
+ EwDw

(
F (z;u,w, 1)− F (z;w,w, 1)

))
,
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with F (z;w,w, 1), F (z;u, 1, 1) and F (z;u,w, 1) as given in (24), (26) and (27). We
substitute u = U(z) given by (19) and obtain

zEwDwF (z;U(z), U(z), w) =
z2U(z)

(1− zUk(z))(U(z)− 1)
×(

k(U(z)−1)+1

U(z)−1

(
F (z;U(z), 1, 1)−F (z)

)
+EwDw

(
F (z;U(z), w, 1)−F (z;w,w, 1)

))
.

The calculation of EwDw

(
F (z;u,w, 1)−F (z;w,w, 1)

)
is preferably carried out using

a computer algebra system. Moreover, for the remaining simplifications the identities
U(z) = 1

1−zF (z)
and Uk(z) = F (z)−1

zF (z)
are useful, where the latter follows directly from

(7). We finally obtain, by using also the series expansions of F (z) and F 2(z) given
in (8) and (22), respectively, the following result.

Theorem 3 The generating function G(z) =
∑

n≥0Gnz
n of the number Gn := G

[k]
n

of k-Stirling permutations of order n with a single occurrence of the pattern 123 is
given as follows:

G(z) =
F (z)(F (z)− 1)(1− z)k

(
z(k − 1) + 1

)
+ z(z(2− k)− 2)F 2(z) + zF (z)

z
,

with F (z) =
∑

n≥0 Fnz
n the generating function of the number Fn := F

[k]
n of 123-

avoiding k-Stirling permutations of order n, which satisfies the functional equation
F = 1 + zF

(1−zF )k
.

6 Asymptotic results

The explicit results for the numbers Gn and the corresponding generating functions
G(z), respectively, obtained in Section 3-5 can be treated by standard techniques
from analytic combinatorics to describe the asymptotic growth behaviour of Gn =
G

[k]
n , for n→∞ and k fixed. In particular, we are also interested in the asymptotic

behaviour of the ratio Gn

Fn
between the number of k-Stirling permutations of order n

with a single occurrence and the corresponding ones avoiding a given pattern α of
length 3. We collect our findings in Table 3.

We give some quick remarks on the asymptotic computations. The asymptotic
results for the pattern 312 immediately follow from the explicit formula for Gn given
in Section 3 after applying Stirling’s formula for the factorials. For the patterns 231
and 123 it is advantageous to apply basic singularity analysis [7] to the corresponding
generating functions G(z) given in Section 4-5. To do this one first considers the
function F̂ (z) = zF (z) satisfying the functional equation (13) and gets the following
local expansion in a complex neighbourhood of the unique dominant singularity
z = ρ:

F̂ (z) = τ − κ ·
√

1− z

ρ
+O

(
1− z

ρ

)
,
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Members
α

in class

G
[k]
n = |{σ ∈ Gk(α) : |σ| = n}| ratio

G[k]
n

F
[k]
n

growth constant c
[α]
k

and behaviour for k →∞

213, 312 ∼ k2k− 1
2

√
2π (k+1)2k+1

2

(
(k+1)k+1

kk

)n
1√
n
∼ c[α]k · n

c
[α]
k =

(
k
k+1

)2k+1

= e−2 ·
(
1− 1

6k2 +O
(

1
k3

))
231, 132 ∼

√
(1−τ)(1+(k−1)τ)
2πkτ(2+(k−1)τ) ·

1−τ−kτ2
√
n ρn

∼ c[α]k · n
c
[α]
k = kτ(1−τ−kτ2)

1+(k−1)τ

= 1− 1
ln k +O

( (ln ln k)
(ln k)2

)
123, 321 ∼ κ

2
√
πρ
· c[α]k ·

1

n
3
2 ρn

∼ c[α]k
c
[α]
k = (2τ−ρ)(1+(k−1)ρ)(1−ρ)k

ρ2

+ ρ(1+(4−2k)τ)−4τ
ρ

= e(ln k)2 ·
(
1 +O

( (ln ln k)2

ln k

))
Table 3: Asymptotic results of G

[k]
n , for n→∞. Here τ = τ(k) denotes the smallest

positive solution of the equation kτ 2 = (1 − τ)k+1, ρ = ρ(k) = kτ2

1+(k−1)τ and κ =

κ(k) =
√

2(1−τ)τ(1+(k−1)τ)
k(2+(k−1)τ) .

where τ , ρ and κ are given as in Table 3. Plugging this local expansion into the for-
mulæ for G(z) stated in Theorem 2 and Theorem 3, respectively, immediately yields
local expansions of G(z) around the dominant singularity z = ρ and consequently the
asymptotic behaviour of the coefficients Gn. In order to get the asymptotic results
for the growth constant ck, for k → ∞, we use the following asymptotic expansion
of τ = τ(k):

τ =
ln k

k
− 2 ln ln k

k
+O

( ln ln k

k · ln k

)
,

which follows from the defining equation kτ 2 = (1−τ)k+1 after applying the so-called
bootstrapping technique (see [7] and references therein).
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