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Abstract

A rainbow graph is an edge-colored graph whose edges have distinct col-
ors, that is, where each color appears on at most one edge. Akbari
and Alipour (2007), and Suzuki (2006), independently presented a neces-
sary and sufficient condition for an edge-colored graph to have a rainbow
spanning tree. In this paper, we define a (g, f)-chromatic graph as an
edge-colored graph where each color c appears on at least g(c) edges and
at most f(c) edges. We also present a necessary and sufficient condition
for an edge-colored graph to have a (g, f)-chromatic spanning tree. Using
this criterion, we can show that an edge-colored complete graph Kn has a
spanning tree with a color probability distribution “similar” to that ofKn.
Finally, we conjecture that an edge-colored complete graph K2n (n ≥ 3)
can be partitioned into n edge-disjoint spanning trees such that each has
a color probability distribution “similar” to that of K2n. This conjecture
is a generalization of the conjecture by Brualdi and Hollingsworth (1996).

1 Introduction

We consider finite undirected graphs without loops or multiple edges. For a graph
G, we denote by V (G) and E(G) its vertex and edge sets, respectively. An edge-
coloring of a graph G is a mapping color : E(G) → C, where C is a set of colors.
Then, the triple (G,C, color) is called an edge-colored graph. We often abbreviate
an edge-colored graph (G,C, color) as G. Note that an edge colored graph is not
necessarily proper: some edges colored with the same color may have a common end
vertex.
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1.1 Rainbow spanning trees

An edge-colored graph G is said to be rainbow 1 if no two edges of G have the same
color, that is, color(ei) 6= color(ej) for any two distinct edges ei and ej of G. As far
as I know, there are three topics about rainbow graphs: the Anti-Ramsey problem
introduced by Erdős et al. [5], rainbow connection problems introduced by Chartrand
et al. [4], and rainbow subgraph problems (see the surveys [8] [13] [11]). This paper
focuses on rainbow subgraph problems.

We denote by ω(G) the number of components of a graph G. Given an edge-
colored graph G and a color set R, we define ER(G) = {e ∈ E(G) | color(e) ∈ R}.
For simplicity, we denote the graph (V (G), E(G) \ ER(G)) by G− ER(G), and also
denote E{c}(G) by Ec(G) for a color c.

Akbari and Alipour [1], and Suzuki [15], independently presented the following
necessary and sufficient condition for an edge-colored graph to have a rainbow span-
ning tree.

Theorem 1.1 (Akbari and Alipour [1], Suzuki [15]). An edge-colored graph G has
a rainbow spanning tree if and only if

ω(G− ER(G)) ≤ |R|+ 1 for any R ⊆ C.

Suzuki [15] proved the following theorem by using Theorem 1.1.

Theorem 1.2 (Suzuki [15]). An edge-colored complete graph Kn has a rainbow span-
ning tree if |Ec(Kn)| ≤ n/2 for any color c ∈ C.

The complete graph Kn has (n−1)n/2 edges, and thus the condition of Theorem
1.2 is equivalent to

|Ec(Kn)|
|E(Kn)|

(n− 1) ≤ 1 for any color c ∈ C.

We can regard |Ec(Kn)|/|E(Kn)| as the probability of a color c appearing in Kn.
The term “rainbow” means that each color appears on one or zero edges. Thus, we
can interpret Theorem 1.2 as saying that if each color probability is at most 1/(n−1)
in Kn then Kn has a spanning tree T such that each color probability is 1/(n − 1)
or 0 in T .

1.2 f-Chromatic spanning trees and forests

The term “rainbow” means that each color appears on at most one edge. Suzuki
[16] generalized “one” to a mapping f from a given color set C to the set Z≥0 of
non-negative integers, and defined f -chromatic graphs as follows.

1A rainbow graph is also said to be heterochromatic, multicolored, totally multicolored, polychro-
matic, or colorful, and so on.



K. SUZUKI /AUSTRALAS. J. COMBIN. 74 (1) (2019), 196–209 198

Definition 1.3 (Suzuki [16]). Let G be an edge-colored graph. Let f be a mapping
from C to Z≥0. Then G is said to be f -chromatic if |Ec(G)| ≤ f(c) for any color
c ∈ C.

Suzuki [16] presented the following necessary and sufficient condition for an edge-
colored graph to have an f -chromatic spanning forest with exactly m components.

Theorem 1.4 (Suzuki [16]). Let G be an edge-colored graph of order n. Let f be a
mapping from C to Z≥0. Let m be a positive integer such that n ≥ m. Then G has
an f -chromatic spanning forest with exactly m components if and only if

ω(G− ER(G)) ≤ m+
∑
c∈R

f(c) for any R ⊆ C.

Suzuki [16] proved the following Theorem by using Theorem 1.4.

Theorem 1.5 (Suzuki [16]). Let G be an edge-colored graph of order n. Let f
be a mapping from C to Z≥0. Let m be a positive integer such that n ≥ m. If
|E(G)| >

(
n−m
2

)
and

|Ec(G)|
|E(G)|

(n−m) ≤ f(c) for any color c ∈ C,

then G has an f -chromatic spanning forest with exactly m components.

A rainbow graph is an f -chromatic graph with f(c) = 1 for every color c. Thus,
these two theorems include Theorems 1.1 and 1.2. In this paper we will further
generalize these theorems and study color probability distributions of edge-colored
complete graphs and their spanning trees.

2 Main results

We begin with the definition of a (g, f)-chromatic graph.

Definition 2.1. Let G be an edge-colored graph. Let g and f be mappings from C
to Z≥0. Then G is said to be (g, f)-chromatic if g(c) ≤ |Ec(G)| ≤ f(c) for any color
c ∈ C.

Fig. 1 shows a (g, f)-chromatic spanning tree of an edge-colored graph. For the
color set C = {1, 2, 3, 4, 5, 6, 7}, mappings g and f are given as follows:

g(1) = 1, g(2) = 1, g(3) = 2, g(4) = 0, g(5) = 0, g(6) = 1, g(7) = 0,

f(1) = 3, f(2) = 2, f(3) = 3, f(4) = 0, f(5) = 0, f(6) = 1, f(7) = 2.

The left edge-colored graph has the right (g, f)-chromatic spanning tree, where each
color c appears on at least g(c) edges and at most f(c) edges.

We will see more examples. First, we suppose that g and f are given as follows:

g(1) = 3, g(2) = 1, g(3) = 3, g(4) = 0, g(5) = 0, g(6) = 1, g(7) = 2,

f(1) = 3, f(2) = 2, f(3) = 3, f(4) = 0, f(5) = 0, f(6) = 1, f(7) = 2.
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Fig. 1: A (g, f)-chromatic spanning tree of an edge-colored graph.

Then, the left edge-colored graph in Fig. 1 has no (g, f)-chromatic spanning trees,
because g(1) + g(2) + · · ·+ g(7) exceeds 7, the size of a spanning tree of the graph.

Next, in Fig. 2, we suppose that g and f are given as follows:

g(1) = 0, g(2) = 2, g(3) = 2, g(4) = 0, g(5) = 0, g(6) = 1, g(7) = 0,

f(1) = 3, f(2) = 2, f(3) = 3, f(4) = 0, f(5) = 0, f(6) = 1, f(7) = 2.

Then, in the left edge-colored graph, any subgraph having g(2), g(3), and g(6) edges
colored with 2, 3, and 6, respectively, contains the right subgraph, which has a cycle.
Thus, the left graph has no (g, f)-chromatic spanning trees.
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Fig. 2: The mapping g forces us to use a cycle.

The following is the main theorem, which gives a necessary and sufficient condi-
tion for an edge-colored graph to have a (g, f)-chromatic spanning tree as a corollary.

Theorem 2.2. Let G be an edge-colored graph of order n. Let g and f be mappings
from C to Z≥0 such that g(c) ≤ f(c) for any c ∈ C. Let m be a positive integer such
that n ≥ m+

∑
c∈C g(c). Then G has a (g, f)-chromatic spanning forest with exactly

m components if and only if

ω(G− ER(G)) ≤ min{ m+
∑
c∈R

f(c), n−
∑

c∈C\R

g(c) } for any R ⊆ C.
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This theorem is proved in Section 3.2. Note that the size of a spanning forest
with exactly m components of G is n − m. If G has a (g, f)-chromatic spanning
forest with exactly m components, then the size of the forest is at least

∑
c∈C g(c).

Thus, the condition n ≥ m+
∑

c∈R g(c) is necessary.

We see the above last example again. Let G be the left graph in Fig. 2. G has
no (g, f)-chromatic spanning trees. Thus, by Theorem 2.2,

ω(G− ER(G)) > min{ 1 +
∑
c∈R

f(c), 8−
∑

c∈C\R

g(c) } for some R ⊆ C.

Actually, for R = {1, 4, 5, 7}, G− ER(G) is the right graph in Fig. 2 and we have

ω(G− ER(G)) = 4, 1 +
∑
c∈R

f(c) = 6, 8−
∑

c∈C\R

g(c) = 3.

We can prove the following theorem by using Theorem 2.2.

Theorem 2.3. Let G be an edge-colored graph of order n. Let g and f be mappings
from C to Z≥0. Let m be a positive integer such that n ≥ m. If |E(G)| >

(
n−m
2

)
and

g(c) ≤ |Ec(G)|
|E(G)|

(n−m) ≤ f(c) for any color c ∈ C,

then G has a (g, f)-chromatic spanning forest with exactly m components.

This theorem is proved in Section 3.3. Note that an f -chromatic graph is a (g, f)-
chromatic graph with g(c) = 0 for any color c, and ω(G−ER(G)) ≤ n for any R ⊆ C
since the number of components of any subgraph of a graph of order n is at most n.
Thus, Theorem 2.2 and 2.3 include Theorem 1.4 and 1.5.

Let Kn be an edge-colored complete graph of order n, and set

g(c) =

⌊
|Ec(Kn)|
|E(Kn)|

(n− 1)

⌋
and f(c) =

⌈
|Ec(Kn)|
|E(Kn)|

(n− 1)

⌉
for any color c ∈ C.

Then, by Theorem 2.3, Kn has a (g, f)-chromatic spanning tree T . By the definition
2.1, g(c) ≤ |Ec(T )| ≤ f(c) for any color c ∈ C. Thus, the following theorem holds.

Theorem 2.4. Any edge-colored complete graph Kn has a spanning tree T such that⌊
|Ec(Kn)|
|E(Kn)|

(n− 1)

⌋
≤ |Ec(T )| ≤

⌈
|Ec(Kn)|
|E(Kn)|

(n− 1)

⌉
for any color c ∈ C.

We call |Ec(G)|/|E(G)| the color probability of a color c in an edge-colored graph
G. The color probability distribution of G is the sequence of the color probabilities.
Since |E(T )| = n− 1, Theorem 2.4 implies that an edge-colored complete graph Kn

has a spanning tree T such that |Ec(T )|/|E(T )| is about |Ec(Kn)|/|E(Kn)|. Then
the color probability distribution of T is said to be similar to that of Kn.

From Theorem 2.4, we can get the following theorem, proved in Section 3.4.
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Theorem 2.5. An edge-colored complete graph Kn has a spanning tree with the
same color probability distribution as that of Kn if and only if |Ec(Kn)| is an integral
multiple of n/2 for any color c ∈ C.

In Section 4, we will give a conjecture for a spanning tree decomposition of an
edge-colored complete graph.

3 Proofs

In this section, we prove Theorem 2.2, Theorem 2.3, and Theorem 2.5. In order to
prove Theorem 2.2, we first state and prove two lemmas.

3.1 Lemmas

Lemma 3.1. Let G be an edge-colored graph of order n. Let g be a mapping from
C to Z≥0. Then G has a (g, g)-chromatic forest if and only if

ω(G− ER(G)) ≤ n−
∑

c∈C\R

g(c) for any R ⊆ C.

Note that this lemma requires the forest neither to be a spanning forest nor to
have a fixed number of components.

Proof. Let G be an edge-colored graph of order n. Let g be a mapping from C to
Z≥0.

First, we prove the necessity. Suppose that G has a (g, g)-chromatic forest F .
By Definition 2.1, |Ec(F )| = g(c) for any color c. For any R ⊆ C, the graph
(V (G), EC\R(F )) is a spanning forest of G− ER(G). Thus,

ω(G− ER(G)) ≤ ω((V (G), EC\R(F )))

= |V (G)| − |EC\R(F )|

= |V (G)| −
∑

c∈C\R

|Ec(F )|

= n−
∑

c∈C\R

g(c).

Next, we prove the sufficiency. Suppose that

ω(G− ER(G)) ≤ n−
∑

c∈C\R

g(c) for any R ⊆ C.

Set m = n−
∑

c∈C g(c). Then,

n−m =
∑
c∈C

g(c) =
∑
c∈R

g(c) +
∑

c∈C\R

g(c) for any R ⊆ C,
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that is,

n−
∑

c∈C\R

g(c) = m+
∑
c∈R

g(c) for any R ⊆ C.

Thus, we have

ω(G− ER(G)) ≤ m+
∑
c∈R

g(c) for any R ⊆ C.

Hence, by Theorem 1.4, G has a g-chromatic spanning forest F with exactly m
components. By Definition 1.3, |Ec(F )| ≤ g(c) for any color c ∈ C. On the other
hand, we have∑

c∈C

|Ec(F )| = |E(F )| = n−m = n− (n−
∑
c∈C

g(c)) =
∑
c∈C

g(c).

Thus |Ec(F )| = g(c) for any color c ∈ C. Therefore, by Definition 2.1, F is a
(g, g)-chromatic forest of G.

Lemma 3.2. Let G be an edge-colored graph of order n. Let g and f be mappings
from C to Z≥0 such that g(c) ≤ f(c) for any c ∈ C. Let m be a positive integer. Then
G has a (g, f)-chromatic spanning forest with exactly m components if and only if
G has both an f -chromatic spanning forest of size at least

∑
c∈C g(c) with exactly m

components, and a (g, g)-chromatic forest.

Note that the f -chromatic spanning forest and the (g, g)-chromatic forest may
be different in this Lemma.

Proof. Let G be an edge-colored graph of order n. Let g and f be mappings from
C to Z≥0 such that g(c) ≤ f(c) for any c ∈ C. Let m be a positive integer.

First, we prove the necessity. Suppose that G has a (g, f)-chromatic spanning
forest F with exactly m components. By Definition 2.1, g(c) ≤ |Ec(F )| for any color
c ∈ C. Thus,

∑
c∈C g(c) ≤

∑
c∈C |Ec(F )| = |E(F )|. Hence, F is an f -chromatic

spanning forest of size at least
∑

c∈C g(c) with exactly m components of G. Since F
is a (g, f)-chromatic forest, F contains some (g, g)-chromatic forest, which is also a
(g, g)-chromatic forest in G.

Next, we prove the sufficiency. Suppose that G has both an f -chromatic spanning
forest of size at least

∑
c∈C g(c) with exactly m components, and a (g, g)-chromatic

forest Fg. Let Ff be an f -chromatic spanning forest of size at least
∑

c∈C g(c) with
exactly m components of G such that it has the maximum number of edges of Fg.

We will prove that Ff is the desired (g, f)-chromatic spanning forest with exactly
m components of G by contradiction.

Suppose that Ff is not a (g, f)-chromatic spanning forest with exactly m compo-
nents of G. Then, since Ff is f -chromatic but not (g, f)-chromatic, we may assume
that for some color, say color 1, |E1(Ff )| ≤ g(1)− 1.

Since Fg is (g, g)-chromatic, |E1(Fg)| = g(1). Thus, |E1(Ff )| < |E1(Fg)|. Hence,
E1(Fg) \ E1(Ff ) 6= ∅. Let e be an edge in E1(Fg) \ E1(Ff ). Adding the edge e to
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Ff , we consider the resulting graph (V (Ff ), E(Ff ) ∪ {e}) denoted by F+
f . Since Ff

is f -chromatic and e /∈ E1(Ff ), we have

|Ec(F
+
f )| =

{
|Ec(Ff )|+ 1 ≤ g(c) ≤ f(c) if c = 1,

|Ec(Ff )| ≤ f(c) if c 6= 1.

Thus, F+
f is also an f -chromatic spanning subgraph of G.

If the edge e connects two distinct components of Ff in F+
f , then F+

f is an
f -chromatic spanning forest with exactly m− 1 components of G. Since Fg is (g, g)-
chromatic, |E(Fg)| =

∑
c∈C g(c). Since |E(Ff )| ≥

∑
c∈C g(c), we have

|E(F+
f )| = |E(Ff )|+ 1 ≥

∑
c∈C

g(c) + 1 = |E(Fg)|+ 1 > |E(Fg)|.

Thus, E(F+
f ) \ E(Fg) 6= ∅. Let e′ be an edge in E(F+

f ) \ E(Fg). Then, we have

ω(F+
f − e

′) = ω(F+
f ) + 1 = m,

|E(F+
f − e

′)| = |E(F+
f )| − 1 = |E(Ff )| ≥

∑
c∈C

g(c),

where F+
f − e′ denotes the graph (V (F+

f ), E(F+
f ) \ {e′}). Hence, since F+

f is an

f -chromatic spanning forest of G, F+
f − e′ is an f -chromatic spanning forest of size

at least
∑

c∈C g(c) with exactly m components of G. Recall that e ∈ E(Fg) and
e′ /∈ E(Fg). Then, F+

f − e′, namely, (V (Ff ), (E(Ff ) ∪ {e}) \ {e′}) has more edges of
Fg than Ff , which is a contradiction to the maximality of Ff .

Therefore, we may assume that the both endpoints of e are contained in one
component of Ff . Then, ω(F+

f ) = ω(Ff ) = m and F+
f has exactly one cycle C,

which contains e. Since Fg has no cycles, C has some edge e′ /∈ E(Fg). Then,
F+
f − e′ is a forest and

ω(F+
f − e

′) = ω(F+
f ) = m,

|E(F+
f − e

′)| = |E(F+
f )| − 1 = |E(Ff )| ≥

∑
c∈C

g(c).

Thus, since F+
f is an f -chromatic spanning subgraph of G, F+

f −e′ is an f -chromatic
spanning forest of size at least

∑
c∈C g(c) with exactly m components of G. Recall

that e ∈ E(Fg) and e′ /∈ E(Fg). Then, F+
f − e′, namely, (V (Ff ), (E(Ff )∪{e})\{e′})

has more edges of Fg than Ff , which is a contradiction to the maximality of Ff .

Consequently, Ff is the desired (g, f)-chromatic spanning forest with exactly m
components of G.

3.2 Proof of Theorem 2.2

Let G be an edge-colored graph of order n. Let g and f be mappings from C to
Z≥0 such that g(c) ≤ f(c) for any c ∈ C. Let m be a positive integer such that
n ≥ m+

∑
c∈C g(c).
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First, we prove the necessity. Suppose that G has a (g, f)-chromatic spanning
forest F with exactly m components. Since F is a (g, f)-chromatic forest, F contains
some (g, g)-chromatic forest. Thus, by Lemma 3.1, we have

ω(G− ER(G)) ≤ n−
∑

c∈C\R

g(c) for any R ⊆ C.

On the other hand, since F is a (g, f)-chromatic spanning forest with exactly m
components of G, F is an f -chromatic spanning forest with exactly m components
of G. Thus, by Theorem 1.4, we have

ω(G− ER(G)) ≤ m+
∑
c∈R

f(c) for any R ⊆ C.

Therefore,

ω(G− ER(G)) ≤ min{ m+
∑
c∈R

f(c), n−
∑

c∈C\R

g(c) } for any R ⊆ C.

Next, we prove the sufficiency. Suppose that

ω(G− ER(G)) ≤ min{ m+
∑
c∈R

f(c), n−
∑

c∈C\R

g(c) } for any R ⊆ C. (1)

By (1), we have

ω(G− ER(G)) ≤ m+
∑
c∈R

f(c) for any R ⊆ C.

Thus, by Theorem 1.4, G has an f -chromatic spanning forest F with exactly m
components of G. By our assumption that n ≥ m+

∑
c∈C g(c), we have

|E(F )| = n−m ≥
∑
c∈C

g(c).

Thus, F is an f -chromatic spanning forest of size at least
∑

c∈C g(c) with exactly m
components.

On the other hand, by (1), we have

ω(G− ER(G)) ≤ n−
∑

c∈C\R

g(c) for any R ⊆ C.

Thus, by Lemma 3.1, G has a (g, g)-chromatic forest.

Therefore, by Lemma 3.2, G has a (g, f)-chromatic spanning forest with exactly
m components.
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3.3 Proof of Theorem 2.3

In order to prove Theorem 2.3, we will use the following Lemma.

Lemma 3.3 (Suzuki [16]).

|E(G)| ≤
(
|V (G)| − ω(G) + 1

2

)
for any graph G.

Let G be an edge-colored graph of order n. Let g and f be mappings from C to
Z≥0. Let m be a positive integer such that n ≥ m. Suppose that |E(G)| >

(
n−m
2

)
and

g(c) ≤ |Ec(G)|
|E(G)|

(n−m) ≤ f(c) for any color c ∈ C. (2)

Then, since
∑

c∈C |Ec(G)| = |E(G)|, we have

∑
c∈C

g(c) ≤
∑
c∈C

|Ec(G)|
|E(G)|

(n−m) = n−m, that is, n ≥ m+
∑
c∈C

g(c). (3)

We will prove that G has a (g, f)-chromatic spanning forest with exactly m
components by contradiction.

Suppose that G has no (g, f)-chromatic spanning forests with exactly m compo-
nents. By (3) and our assumption, we can apply Theorem 2.2 to G and we have

ω(G− ER(G)) > min{ m+
∑
c∈R

f(c), n−
∑

c∈C\R

g(c) } for some R ⊆ C.

That is, ω(G−ER(G)) ≥ m+
∑

c∈R f(c)+1 or ω(G−ER(G)) ≥ n−
∑

c∈C\R g(c)+1

for some R ⊆ C. We denote G− ER(G) by G′.

Claim 1.

ω(G′) ≥ m+ 1 and ω(G′) ≥ n+ 1− |E(G′)|
|E(G)|

(n−m).

Proof. First, we suppose that ω(G′) ≥ m +
∑

c∈R f(c) + 1 for some R ⊆ C. Since
f(c) ≥ 0 for any color c, ω(G′) ≥ m+

∑
c∈R f(c) + 1 ≥ m+ 1.

By our assumption (2),∑
c∈R

f(c) ≥
∑
c∈R

|Ec(G)|
|E(G)|

(n−m) =
n−m
|E(G)|

∑
c∈R

|Ec(G)| = n−m
|E(G)|

|ER(G)|

=
n−m
|E(G)|

(|E(G)| − |E(G′)|) = n−m− |E(G′)|
|E(G)|

(n−m).
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Thus, we have

ω(G′) ≥ m+
∑
c∈R

f(c) + 1

≥ m+ n−m− |E(G′)|
|E(G)|

(n−m) + 1 = n+ 1− |E(G′)|
|E(G)|

(n−m).

Next, we suppose that ω(G′) ≥ n −
∑

c∈C\R g(c) + 1 for some R ⊆ C. By (3),∑
c∈C g(c) ≤ n−m. Thus, we have

ω(G′) ≥ n−
∑

c∈C\R

g(c) + 1 ≥ n−
∑
c∈C

g(c) + 1 ≥ n− (n−m) + 1 = m+ 1.

By our assumption (2),∑
c∈C\R

g(c) ≤
∑

c∈C\R

|Ec(G)|
|E(G)|

(n−m) =
|EC\R(G)|
|E(G)|

(n−m) =
|E(G′)|
|E(G)|

(n−m).

Thus, we have

ω(G′) ≥ n−
∑

c∈C\R

g(c) + 1

≥ n− |E(G′)|
|E(G)|

(n−m) + 1 = n+ 1− |E(G′)|
|E(G)|

(n−m).

By Claim 1,

n− ω(G′) + 1 ≤ |E(G′)|
|E(G)|

(n−m).

Since n ≥ ω(G′), n− ω(G′) + 1 ≥ 1, that is, n− ω(G′) + 1 6= 0. Thus,

|E(G)| ≤ n−m
n− ω(G′) + 1

|E(G′)|.

Since |V (G′)| = |V (G)| = n, by Lemma 3.3,

|E(G)| ≤ n−m
n− ω(G′) + 1

(
|V (G′)| − ω(G′) + 1

2

)
≤ n−m
n− ω(G′) + 1

× (n− ω(G′) + 1)(n− ω(G′))

2

=
(n−m)(n− ω(G′))

2
.

By Claim 1, ω(G′) ≥ m+ 1. Thus,

|E(G)| ≤ (n−m)(n− (m+ 1))

2
=

(
n−m

2

)
,

which contradicts our assumption that |E(G)| >
(
n−m
2

)
.

Therefore G has a (g, f)-chromatic spanning forest with exactly m components.
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3.4 Proof of Theorem 2.5

If an edge-colored complete graph Kn has a spanning tree T with the same color
probability distribution as that of Kn, that is,

|Ec(Kn)|
|E(Kn)|

=
|Ec(T )|
|E(T )|

for any color c ∈ C,

Then

|Ec(Kn)| = |Ec(T )||E(Kn)|
|E(T )|

=
|Ec(T )|n(n− 1)/2

n− 1
=
|Ec(T )|n

2
for any color c ∈ C.

Thus, since |Ec(T )| is an integer, |Ec(Kn)| is an integral multiple of n/2.

Next, let Kn be an edge-colored complete graph of order n. For any color c ∈ C,
we suppose that |Ec(Kn)| = kc × n/2 for some kc ∈ Z≥0. By Theorem 2.4, Kn has a
spanning tree T such that⌊

|Ec(Kn)|
|E(Kn)|

(n− 1)

⌋
≤ |Ec(T )| ≤

⌈
|Ec(Kn)|
|E(Kn)|

(n− 1)

⌉
for any color c ∈ C.

Since |E(Kn)| = n(n− 1)/2 and |Ec(Kn)| = kc × n/2 (kc ∈ Z≥0), we have

kc = bkcc =

⌊
|Ec(Kn)|
|E(Kn)|

(n− 1)

⌋
≤ |Ec(T )| ≤

⌈
|Ec(Kn)|
|E(Kn)|

(n− 1)

⌉
= dkce = kc.

Thus, |Ec(T )| = kc. Then,

|Ec(Kn)|
|E(Kn)|

=
kc × n/2
n(n− 1)/2

=
kc

n− 1
=
|Ec(T )|
|E(T )|

for any color c ∈ C.

Therefore, the color probability distribution of T is the same as that of Kn.

4 Spanning tree decomposition conjectures

In 1996, Brualdi and Hollingsworth [2] presented the following conjecture.

Conjecture 4.1 (Brualdi and Hollingsworth [2]). An edge-colored complete graph
K2n (n ≥ 3) having the property

(*) for every color c, the set of edges colored with c induces its perfect matching
can be partitioned into n edge-disjoint rainbow spanning trees.

Brualdi and Hollingsworth [2] proved that an edge-colored complete graph K2n

(n ≥ 3) having the property (*) has two edge-disjoint rainbow spanning trees. Krus-
sel, Marshall, and Verrall [12] proved that the graph has three edge-disjoint rainbow
spanning trees. Fu and Lo [6] proved that if n ≥ 14 then the graph has three edge-
disjoint isomorphic rainbow spanning trees. Horn [9] proved, using the probabilistic
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method, that there exist positive constants ε, n0 such that every edge-colored com-
plete graph K2n (2n ≥ n0) having the property (*) has at least εn edge-disjoint
rainbow spanning trees. Fu, Lo, Perry, and Rodger [7] proved, using a construc-
tive method, that an edge-colored complete graph K2n having the property (*) has
b
√

6n+ 9/3c edge-disjoint rainbow spanning trees. Pokrovskiy and Sudakov [14]
proved that every properly edge-colored complete graph Kn with exactly n−1 colors
has n/9− 6 edge-disjoint rainbow spanning trees.

Kaneko, Kano, and Suzuki [10] proved that a properly edge-colored complete
graph Kn (n ≥ 5) has two edge-disjoint rainbow spanning trees. Pokrovskiy and
Sudakov [14] proved that every properly edge-colored complete graph Kn has 10−6n
edge-disjoint isomorphic rainbow spanning trees.

Akbari and Alipour [1] proved that an edge-colored complete graph Kn (n ≥ 5)
has two edge-disjoint rainbow spanning trees if |Ec(Kn)| ≤ n/2 for any color c ∈ C.
Carraher, Hartke, and Horn [3] proved that an edge-colored complete graph Kn

(n ≥ 1000000) has at least bn/(1000 log n)c edge-disjoint rainbow spanning trees if
|Ec(Kn)| ≤ n/2 for any color c ∈ C.

Based on these previous results, we conjecture the following as a generalization
of Conjecture 4.1.

Conjecture 4.2. An edge-colored complete graph K2n (n ≥ 3) can be partitioned
into n edge-disjoint spanning trees T1, T2, . . . , Tn such that each has a color probability
distribution is similar to that of K2n, that is, each Ti satisfies that⌊
|Ec(K2n)|
|E(K2n)|

(2n− 1)

⌋
≤ |Ec(Ti)| ≤

⌈
|Ec(K2n)|
|E(K2n)|

(2n− 1)

⌉
for any color c ∈ C.

Since |E(K2n)| = 2n(2n− 1)/2 for the complete graph K2n, we have

|Ec(K2n)|
|E(K2n)|

(2n− 1) =
|Ec(K2n)|

n
.

Thus, this conjecture implies that Ec(K2n) can be partitioned into n almost equal
parts. If K2n has the property (*) then |Ec(K2n)| = n for any color c. Hence, if
Conjecture 4.2 holds then K2n (n ≥ 3) having the property (*) can be partitioned into
n edge-disjoint spanning trees T1, T2, . . . , Tn such that each Ti satisfies |Ec(Ti)| = 1
for any color c, that is, it can be partitioned into n edge-disjoint rainbow spanning
trees. Therefore, Conjecture 4.2 is a generalization of Conjecture 4.1.
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