(g, f)-Chromatic spanning trees and forests

Kazuhiro Suzuki*

Department of Information Science Kochi University Japan kazuhiro@tutetuti.jp

Abstract

A rainbow graph is an edge-colored graph whose edges have distinct colors, that is, where each color appears on at most one edge. Akbari and Alipour (2007), and Suzuki (2006), independently presented a necessary and sufficient condition for an edge-colored graph to have a rainbow spanning tree. In this paper, we define a (g, f)-chromatic graph as an edge-colored graph where each color c appears on at least g(c) edges and at most f(c) edges. We also present a necessary and sufficient condition for an edge-colored graph to have a (g, f)-chromatic spanning tree. Using this criterion, we can show that an edge-colored complete graph K_n has a spanning tree with a color probability distribution "similar" to that of K_n . Finally, we conjecture that an edge-colored complete graph K_{2n} $(n \ge 3)$ can be partitioned into n edge-disjoint spanning trees such that each has a color probability distribution "similar" to that of K_{2n} . This conjecture is a generalization of the conjecture by Brualdi and Hollingsworth (1996).

1 Introduction

We consider finite undirected graphs without loops or multiple edges. For a graph G, we denote by V(G) and E(G) its vertex and edge sets, respectively. An *edge-coloring* of a graph G is a mapping *color* : $E(G) \to \mathbb{C}$, where \mathbb{C} is a set of colors. Then, the triple $(G, \mathbb{C}, color)$ is called an *edge-colored graph*. We often abbreviate an edge-colored graph $(G, \mathbb{C}, color)$ as G. Note that an edge colored graph is not necessarily proper: some edges colored with the same color may have a common end vertex.

^{*} This work was supported by JSPS KAKENHI Grant Number 16K05254.

1.1 Rainbow spanning trees

An edge-colored graph G is said to be $rainbow^1$ if no two edges of G have the same color, that is, $color(e_i) \neq color(e_j)$ for any two distinct edges e_i and e_j of G. As far as I know, there are three topics about rainbow graphs: the Anti-Ramsey problem introduced by Erdős et al. [5], rainbow connection problems introduced by Chartrand et al. [4], and rainbow subgraph problems (see the surveys [8] [13] [11]). This paper focuses on rainbow subgraph problems.

We denote by $\omega(G)$ the number of components of a graph G. Given an edgecolored graph G and a color set R, we define $E_R(G) = \{e \in E(G) \mid color(e) \in R\}$. For simplicity, we denote the graph $(V(G), E(G) \setminus E_R(G))$ by $G - E_R(G)$, and also denote $E_{\{c\}}(G)$ by $E_c(G)$ for a color c.

Akbari and Alipour [1], and Suzuki [15], independently presented the following necessary and sufficient condition for an edge-colored graph to have a rainbow spanning tree.

Theorem 1.1 (Akbari and Alipour [1], Suzuki [15]). An edge-colored graph G has a rainbow spanning tree if and only if

$$\omega(G - E_R(G)) \le |R| + 1 \quad \text{for any } R \subseteq \mathbb{C}.$$

Suzuki [15] proved the following theorem by using Theorem 1.1.

Theorem 1.2 (Suzuki [15]). An edge-colored complete graph K_n has a rainbow spanning tree if $|E_c(K_n)| \leq n/2$ for any color $c \in \mathbb{C}$.

The complete graph K_n has (n-1)n/2 edges, and thus the condition of Theorem 1.2 is equivalent to

$$\frac{|E_c(K_n)|}{|E(K_n)|}(n-1) \le 1 \quad \text{for any color } c \in \mathbb{C}.$$

We can regard $|E_c(K_n)|/|E(K_n)|$ as the probability of a color c appearing in K_n . The term "rainbow" means that each color appears on one or zero edges. Thus, we can interpret Theorem 1.2 as saying that if each color probability is at most 1/(n-1) in K_n then K_n has a spanning tree T such that each color probability is 1/(n-1) or 0 in T.

1.2 *f*-Chromatic spanning trees and forests

The term "rainbow" means that each color appears on at most one edge. Suzuki [16] generalized "one" to a mapping f from a given color set \mathbb{C} to the set $\mathbb{Z}_{\geq 0}$ of non-negative integers, and defined f-chromatic graphs as follows.

 $^{^{1}}$ A rainbow graph is also said to be *heterochromatic*, *multicolored*, *totally multicolored*, *polychromatic*, or *colorful*, and so on.

Definition 1.3 (Suzuki [16]). Let G be an edge-colored graph. Let f be a mapping from \mathbb{C} to $\mathbb{Z}_{\geq 0}$. Then G is said to be f-chromatic if $|E_c(G)| \leq f(c)$ for any color $c \in \mathbb{C}$.

Suzuki [16] presented the following necessary and sufficient condition for an edgecolored graph to have an f-chromatic spanning forest with exactly m components.

Theorem 1.4 (Suzuki [16]). Let G be an edge-colored graph of order n. Let f be a mapping from \mathbb{C} to $\mathbb{Z}_{\geq 0}$. Let m be a positive integer such that $n \geq m$. Then G has an f-chromatic spanning forest with exactly m components if and only if

$$\omega(G - E_R(G)) \le m + \sum_{c \in R} f(c) \quad \text{for any } R \subseteq \mathbb{C}.$$

Suzuki [16] proved the following Theorem by using Theorem 1.4.

Theorem 1.5 (Suzuki [16]). Let G be an edge-colored graph of order n. Let f be a mapping from \mathbb{C} to $\mathbb{Z}_{\geq 0}$. Let m be a positive integer such that $n \geq m$. If $|E(G)| > \binom{n-m}{2}$ and

$$\frac{E_c(G)|}{|E(G)|}(n-m) \le f(c) \qquad \text{for any color } c \in \mathbb{C},$$

then G has an f-chromatic spanning forest with exactly m components.

A rainbow graph is an *f*-chromatic graph with f(c) = 1 for every color *c*. Thus, these two theorems include Theorems 1.1 and 1.2. In this paper we will further generalize these theorems and study color probability distributions of edge-colored complete graphs and their spanning trees.

2 Main results

We begin with the definition of a (g, f)-chromatic graph.

Definition 2.1. Let G be an edge-colored graph. Let g and f be mappings from \mathbb{C} to $\mathbb{Z}_{\geq 0}$. Then G is said to be (g, f)-chromatic if $g(c) \leq |E_c(G)| \leq f(c)$ for any color $c \in \mathbb{C}$.

Fig. 1 shows a (g, f)-chromatic spanning tree of an edge-colored graph. For the color set $\mathbb{C} = \{1, 2, 3, 4, 5, 6, 7\}$, mappings g and f are given as follows:

$$g(1) = 1, g(2) = 1, g(3) = 2, g(4) = 0, g(5) = 0, g(6) = 1, g(7) = 0,$$

 $f(1) = 3, f(2) = 2, f(3) = 3, f(4) = 0, f(5) = 0, f(6) = 1, f(7) = 2.$

The left edge-colored graph has the right (g, f)-chromatic spanning tree, where each color c appears on at least g(c) edges and at most f(c) edges.

We will see more examples. First, we suppose that g and f are given as follows:

$$g(1) = 3, g(2) = 1, g(3) = 3, g(4) = 0, g(5) = 0, g(6) = 1, g(7) = 2,$$

 $f(1) = 3, f(2) = 2, f(3) = 3, f(4) = 0, f(5) = 0, f(6) = 1, f(7) = 2.$

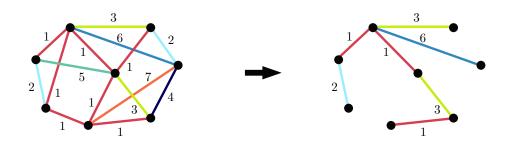


Fig. 1: A (g, f)-chromatic spanning tree of an edge-colored graph.

Then, the left edge-colored graph in Fig. 1 has no (g, f)-chromatic spanning trees, because $g(1) + g(2) + \cdots + g(7)$ exceeds 7, the size of a spanning tree of the graph. Next, in Fig. 2, we suppose that g and f are given as follows:

$$g(1) = 0, g(2) = 2, g(3) = 2, g(4) = 0, g(5) = 0, g(6) = 1, g(7) = 0,$$

 $f(1) = 3, f(2) = 2, f(3) = 3, f(4) = 0, f(5) = 0, f(6) = 1, f(7) = 2.$

Then, in the left edge-colored graph, any subgraph having g(2), g(3), and g(6) edges colored with 2, 3, and 6, respectively, contains the right subgraph, which has a cycle. Thus, the left graph has no (g, f)-chromatic spanning trees.

Fig. 2: The mapping g forces us to use a cycle.

The following is the main theorem, which gives a necessary and sufficient condition for an edge-colored graph to have a (g, f)-chromatic spanning tree as a corollary.

Theorem 2.2. Let G be an edge-colored graph of order n. Let g and f be mappings from \mathbb{C} to $\mathbb{Z}_{\geq 0}$ such that $g(c) \leq f(c)$ for any $c \in \mathbb{C}$. Let m be a positive integer such that $n \geq m + \sum_{c \in \mathbb{C}} g(c)$. Then G has a (g, f)-chromatic spanning forest with exactly m components if and only if

$$\omega(G - E_R(G)) \le \min\{ m + \sum_{c \in R} f(c), n - \sum_{c \in \mathbb{C} \setminus R} g(c) \} \text{ for any } R \subseteq \mathbb{C}.$$

This theorem is proved in Section 3.2. Note that the size of a spanning forest with exactly m components of G is n - m. If G has a (g, f)-chromatic spanning forest with exactly m components, then the size of the forest is at least $\sum_{c \in \mathbb{C}} g(c)$. Thus, the condition $n \ge m + \sum_{c \in \mathbb{R}} g(c)$ is necessary.

We see the above last example again. Let G be the left graph in Fig. 2. G has no (g, f)-chromatic spanning trees. Thus, by Theorem 2.2,

$$\omega(G - E_R(G)) > \min\{ 1 + \sum_{c \in R} f(c), 8 - \sum_{c \in \mathbb{C} \setminus R} g(c) \} \text{ for some } R \subseteq \mathbb{C}.$$

Actually, for $R = \{1, 4, 5, 7\}, G - E_R(G)$ is the right graph in Fig. 2 and we have

$$\omega(G - E_R(G)) = 4, \quad 1 + \sum_{c \in R} f(c) = 6, \quad 8 - \sum_{c \in \mathbb{C} \setminus R} g(c) = 3.$$

We can prove the following theorem by using Theorem 2.2.

Theorem 2.3. Let G be an edge-colored graph of order n. Let g and f be mappings from \mathbb{C} to $\mathbb{Z}_{\geq 0}$. Let m be a positive integer such that $n \geq m$. If $|E(G)| > \binom{n-m}{2}$ and

$$g(c) \leq \frac{|E_c(G)|}{|E(G)|}(n-m) \leq f(c)$$
 for any color $c \in \mathbb{C}$,

then G has a (g, f)-chromatic spanning forest with exactly m components.

This theorem is proved in Section 3.3. Note that an *f*-chromatic graph is a (g, f)chromatic graph with g(c) = 0 for any color *c*, and $\omega(G - E_R(G)) \leq n$ for any $R \subseteq \mathbb{C}$ since the number of components of any subgraph of a graph of order *n* is at most *n*. Thus, Theorem 2.2 and 2.3 include Theorem 1.4 and 1.5.

Let K_n be an edge-colored complete graph of order n, and set

$$g(c) = \left\lfloor \frac{|E_c(K_n)|}{|E(K_n)|} (n-1) \right\rfloor \text{ and } f(c) = \left\lceil \frac{|E_c(K_n)|}{|E(K_n)|} (n-1) \right\rceil \text{ for any color } c \in \mathbb{C}.$$

Then, by Theorem 2.3, K_n has a (g, f)-chromatic spanning tree T. By the definition 2.1, $g(c) \leq |E_c(T)| \leq f(c)$ for any color $c \in \mathbb{C}$. Thus, the following theorem holds.

Theorem 2.4. Any edge-colored complete graph K_n has a spanning tree T such that

$$\left\lfloor \frac{|E_c(K_n)|}{|E(K_n)|}(n-1) \right\rfloor \le |E_c(T)| \le \left\lceil \frac{|E_c(K_n)|}{|E(K_n)|}(n-1) \right\rceil \quad \text{for any color } c \in \mathbb{C}.$$

We call $|E_c(G)|/|E(G)|$ the color probability of a color c in an edge-colored graph G. The color probability distribution of G is the sequence of the color probabilities. Since |E(T)| = n - 1, Theorem 2.4 implies that an edge-colored complete graph K_n has a spanning tree T such that $|E_c(T)|/|E(T)|$ is about $|E_c(K_n)|/|E(K_n)|$. Then the color probability distribution of T is said to be similar to that of K_n .

From Theorem 2.4, we can get the following theorem, proved in Section 3.4.

Theorem 2.5. An edge-colored complete graph K_n has a spanning tree with the same color probability distribution as that of K_n if and only if $|E_c(K_n)|$ is an integral multiple of n/2 for any color $c \in \mathbb{C}$.

In Section 4, we will give a conjecture for a spanning tree decomposition of an edge-colored complete graph.

3 Proofs

In this section, we prove Theorem 2.2, Theorem 2.3, and Theorem 2.5. In order to prove Theorem 2.2, we first state and prove two lemmas.

3.1 Lemmas

Lemma 3.1. Let G be an edge-colored graph of order n. Let g be a mapping from \mathbb{C} to $\mathbb{Z}_{\geq 0}$. Then G has a (g,g)-chromatic forest if and only if

$$\omega(G - E_R(G)) \le n - \sum_{c \in \mathbb{C} \setminus R} g(c) \quad \text{for any } R \subseteq \mathbb{C}.$$

Note that this lemma requires the forest neither to be a spanning forest nor to have a fixed number of components.

Proof. Let G be an edge-colored graph of order n. Let g be a mapping from \mathbb{C} to $\mathbb{Z}_{\geq 0}$.

First, we prove the necessity. Suppose that G has a (g, g)-chromatic forest F. By Definition 2.1, $|E_c(F)| = g(c)$ for any color c. For any $R \subseteq \mathbb{C}$, the graph $(V(G), E_{\mathbb{C}\setminus R}(F))$ is a spanning forest of $G - E_R(G)$. Thus,

$$\omega(G - E_R(G)) \le \omega((V(G), E_{\mathbb{C}\setminus R}(F)))$$

= $|V(G)| - |E_{\mathbb{C}\setminus R}(F)|$
= $|V(G)| - \sum_{c \in \mathbb{C}\setminus R} |E_c(F)|$
= $n - \sum_{c \in \mathbb{C}\setminus R} g(c).$

Next, we prove the sufficiency. Suppose that

$$\omega(G - E_R(G)) \le n - \sum_{c \in \mathbb{C} \setminus R} g(c) \text{ for any } R \subseteq \mathbb{C}.$$

Set $m = n - \sum_{c \in \mathbb{C}} g(c)$. Then,

$$n-m = \sum_{c \in \mathbb{C}} g(c) = \sum_{c \in R} g(c) + \sum_{c \in \mathbb{C} \setminus R} g(c)$$
 for any $R \subseteq \mathbb{C}$,

that is,

$$n - \sum_{c \in \mathbb{C} \backslash R} g(c) = m + \sum_{c \in R} g(c) \quad \text{ for any } R \subseteq \mathbb{C}.$$

Thus, we have

$$\omega(G - E_R(G)) \le m + \sum_{c \in R} g(c) \text{ for any } R \subseteq \mathbb{C}.$$

Hence, by Theorem 1.4, G has a g-chromatic spanning forest F with exactly m components. By Definition 1.3, $|E_c(F)| \leq g(c)$ for any color $c \in \mathbb{C}$. On the other hand, we have

$$\sum_{c \in \mathbb{C}} |E_c(F)| = |E(F)| = n - m = n - (n - \sum_{c \in \mathbb{C}} g(c)) = \sum_{c \in \mathbb{C}} g(c).$$

Thus $|E_c(F)| = g(c)$ for any color $c \in \mathbb{C}$. Therefore, by Definition 2.1, F is a (g,g)-chromatic forest of G.

Lemma 3.2. Let G be an edge-colored graph of order n. Let g and f be mappings from \mathbb{C} to $\mathbb{Z}_{\geq 0}$ such that $g(c) \leq f(c)$ for any $c \in \mathbb{C}$. Let m be a positive integer. Then G has a (g, f)-chromatic spanning forest with exactly m components if and only if G has both an f-chromatic spanning forest of size at least $\sum_{c \in \mathbb{C}} g(c)$ with exactly m components, and a (g, g)-chromatic forest.

Note that the *f*-chromatic spanning forest and the (g, g)-chromatic forest may be different in this Lemma.

Proof. Let G be an edge-colored graph of order n. Let g and f be mappings from \mathbb{C} to $\mathbb{Z}_{\geq 0}$ such that $g(c) \leq f(c)$ for any $c \in \mathbb{C}$. Let m be a positive integer.

First, we prove the necessity. Suppose that G has a (g, f)-chromatic spanning forest F with exactly m components. By Definition 2.1, $g(c) \leq |E_c(F)|$ for any color $c \in \mathbb{C}$. Thus, $\sum_{c \in \mathbb{C}} g(c) \leq \sum_{c \in \mathbb{C}} |E_c(F)| = |E(F)|$. Hence, F is an f-chromatic spanning forest of size at least $\sum_{c \in \mathbb{C}} g(c)$ with exactly m components of G. Since F is a (g, f)-chromatic forest, F contains some (g, g)-chromatic forest, which is also a (g, g)-chromatic forest in G.

Next, we prove the sufficiency. Suppose that G has both an f-chromatic spanning forest of size at least $\sum_{c \in \mathbb{C}} g(c)$ with exactly m components, and a (g, g)-chromatic forest F_g . Let F_f be an f-chromatic spanning forest of size at least $\sum_{c \in \mathbb{C}} g(c)$ with exactly m components of G such that it has the maximum number of edges of F_g .

We will prove that F_f is the desired (g, f)-chromatic spanning forest with exactly m components of G by contradiction.

Suppose that F_f is not a (g, f)-chromatic spanning forest with exactly m components of G. Then, since F_f is f-chromatic but not (g, f)-chromatic, we may assume that for some color, say color 1, $|E_1(F_f)| \leq g(1) - 1$.

Since F_g is (g, g)-chromatic, $|E_1(F_g)| = g(1)$. Thus, $|E_1(F_f)| < |E_1(F_g)|$. Hence, $E_1(F_g) \setminus E_1(F_f) \neq \emptyset$. Let e be an edge in $E_1(F_g) \setminus E_1(F_f)$. Adding the edge e to F_f , we consider the resulting graph $(V(F_f), E(F_f) \cup \{e\})$ denoted by F_f^+ . Since F_f is f-chromatic and $e \notin E_1(F_f)$, we have

$$|E_c(F_f^+)| = \begin{cases} |E_c(F_f)| + 1 \le g(c) \le f(c) & \text{if } c = 1, \\ |E_c(F_f)| \le f(c) & \text{if } c \ne 1. \end{cases}$$

Thus, F_f^+ is also an *f*-chromatic spanning subgraph of *G*.

If the edge e connects two distinct components of F_f in F_f^+ , then F_f^+ is an f-chromatic spanning forest with exactly m-1 components of G. Since F_g is (g,g)-chromatic, $|E(F_g)| = \sum_{c \in \mathbb{C}} g(c)$. Since $|E(F_f)| \ge \sum_{c \in \mathbb{C}} g(c)$, we have

$$|E(F_f^+)| = |E(F_f)| + 1 \ge \sum_{c \in \mathbb{C}} g(c) + 1 = |E(F_g)| + 1 > |E(F_g)|.$$

Thus, $E(F_f^+) \setminus E(F_g) \neq \emptyset$. Let e' be an edge in $E(F_f^+) \setminus E(F_g)$. Then, we have

$$\omega(F_f^+ - e') = \omega(F_f^+) + 1 = m,$$

$$|E(F_f^+ - e')| = |E(F_f^+)| - 1 = |E(F_f)| \ge \sum_{c \in \mathbb{C}} g(c),$$

where $F_f^+ - e'$ denotes the graph $(V(F_f^+), E(F_f^+) \setminus \{e'\})$. Hence, since F_f^+ is an f-chromatic spanning forest of G, $F_f^+ - e'$ is an f-chromatic spanning forest of size at least $\sum_{c \in \mathbb{C}} g(c)$ with exactly m components of G. Recall that $e \in E(F_g)$ and $e' \notin E(F_g)$. Then, $F_f^+ - e'$, namely, $(V(F_f), (E(F_f) \cup \{e\}) \setminus \{e'\})$ has more edges of F_g than F_f , which is a contradiction to the maximality of F_f .

Therefore, we may assume that the both endpoints of e are contained in one component of F_f . Then, $\omega(F_f^+) = \omega(F_f) = m$ and F_f^+ has exactly one cycle C, which contains e. Since F_g has no cycles, C has some edge $e' \notin E(F_g)$. Then, $F_f^+ - e'$ is a forest and

$$\omega(F_f^+ - e') = \omega(F_f^+) = m,$$

$$|E(F_f^+ - e')| = |E(F_f^+)| - 1 = |E(F_f)| \ge \sum_{c \in \mathbb{C}} g(c).$$

Thus, since F_f^+ is an *f*-chromatic spanning subgraph of G, $F_f^+ - e'$ is an *f*-chromatic spanning forest of size at least $\sum_{c \in \mathbb{C}} g(c)$ with exactly *m* components of *G*. Recall that $e \in E(F_g)$ and $e' \notin E(F_g)$. Then, $F_f^+ - e'$, namely, $(V(F_f), (E(F_f) \cup \{e\}) \setminus \{e'\})$ has more edges of F_g than F_f , which is a contradiction to the maximality of F_f .

Consequently, F_f is the desired (g, f)-chromatic spanning forest with exactly m components of G.

3.2 Proof of Theorem 2.2

Let G be an edge-colored graph of order n. Let g and f be mappings from \mathbb{C} to $\mathbb{Z}_{\geq 0}$ such that $g(c) \leq f(c)$ for any $c \in \mathbb{C}$. Let m be a positive integer such that $n \geq m + \sum_{c \in \mathbb{C}} g(c)$.

First, we prove the necessity. Suppose that G has a (g, f)-chromatic spanning forest F with exactly m components. Since F is a (g, f)-chromatic forest, F contains some (g, g)-chromatic forest. Thus, by Lemma 3.1, we have

$$\omega(G - E_R(G)) \le n - \sum_{c \in \mathbb{C} \setminus R} g(c) \quad \text{for any } R \subseteq \mathbb{C}.$$

On the other hand, since F is a (g, f)-chromatic spanning forest with exactly m components of G, F is an f-chromatic spanning forest with exactly m components of G. Thus, by Theorem 1.4, we have

$$\omega(G - E_R(G)) \le m + \sum_{c \in R} f(c)$$
 for any $R \subseteq \mathbb{C}$.

Therefore,

$$\omega(G - E_R(G)) \le \min\{ m + \sum_{c \in R} f(c), n - \sum_{c \in \mathbb{C} \setminus R} g(c) \} \text{ for any } R \subseteq \mathbb{C}.$$

Next, we prove the sufficiency. Suppose that

$$\omega(G - E_R(G)) \le \min\{ m + \sum_{c \in R} f(c), n - \sum_{c \in \mathbb{C} \setminus R} g(c) \} \text{ for any } R \subseteq \mathbb{C}.$$
(1)

By (1), we have

$$\omega(G - E_R(G)) \le m + \sum_{c \in R} f(c) \text{ for any } R \subseteq \mathbb{C}.$$

Thus, by Theorem 1.4, G has an f-chromatic spanning forest F with exactly m components of G. By our assumption that $n \ge m + \sum_{c \in \mathbb{C}} g(c)$, we have

$$|E(F)| = n - m \ge \sum_{c \in \mathbb{C}} g(c).$$

Thus, F is an f-chromatic spanning forest of size at least $\sum_{c \in \mathbb{C}} g(c)$ with exactly m components.

On the other hand, by (1), we have

$$\omega(G - E_R(G)) \le n - \sum_{c \in \mathbb{C} \setminus R} g(c) \text{ for any } R \subseteq \mathbb{C}.$$

Thus, by Lemma 3.1, G has a (g, g)-chromatic forest.

Therefore, by Lemma 3.2, G has a (g, f)-chromatic spanning forest with exactly m components.

3.3 Proof of Theorem 2.3

In order to prove Theorem 2.3, we will use the following Lemma.

Lemma 3.3 (Suzuki [16]).

$$|E(G)| \le \binom{|V(G)| - \omega(G) + 1}{2} \quad \text{for any graph } G.$$

Let G be an edge-colored graph of order n. Let g and f be mappings from \mathbb{C} to $\mathbb{Z}_{\geq 0}$. Let m be a positive integer such that $n \geq m$. Suppose that $|E(G)| > \binom{n-m}{2}$ and

$$g(c) \le \frac{|E_c(G)|}{|E(G)|} (n-m) \le f(c) \qquad \text{for any color } c \in \mathbb{C}.$$
 (2)

Then, since $\sum_{c \in \mathbb{C}} |E_c(G)| = |E(G)|$, we have

$$\sum_{c \in \mathbb{C}} g(c) \le \sum_{c \in \mathbb{C}} \frac{|E_c(G)|}{|E(G)|} (n-m) = n-m, \text{ that is, } n \ge m + \sum_{c \in \mathbb{C}} g(c).$$
(3)

We will prove that G has a (g, f)-chromatic spanning forest with exactly m components by contradiction.

Suppose that G has no (g, f)-chromatic spanning forests with exactly m components. By (3) and our assumption, we can apply Theorem 2.2 to G and we have

$$\omega(G - E_R(G)) > \min\{ m + \sum_{c \in R} f(c), n - \sum_{c \in \mathbb{C} \setminus R} g(c) \} \text{ for some } R \subseteq \mathbb{C}.$$

That is, $\omega(G - E_R(G)) \ge m + \sum_{c \in R} f(c) + 1$ or $\omega(G - E_R(G)) \ge n - \sum_{c \in \mathbb{C} \setminus R} g(c) + 1$ for some $R \subseteq \mathbb{C}$. We denote $G - E_R(G)$ by G'.

Claim 1.

$$\omega(G') \ge m+1 \text{ and } \omega(G') \ge n+1 - \frac{|E(G')|}{|E(G)|}(n-m).$$

Proof. First, we suppose that $\omega(G') \ge m + \sum_{c \in R} f(c) + 1$ for some $R \subseteq \mathbb{C}$. Since $f(c) \ge 0$ for any color $c, \omega(G') \ge m + \sum_{c \in R} f(c) + 1 \ge m + 1$.

By our assumption (2),

$$\sum_{c \in R} f(c) \ge \sum_{c \in R} \frac{|E_c(G)|}{|E(G)|} (n-m) = \frac{n-m}{|E(G)|} \sum_{c \in R} |E_c(G)| = \frac{n-m}{|E(G)|} |E_R(G)|$$
$$= \frac{n-m}{|E(G)|} (|E(G)| - |E(G')|) = n-m - \frac{|E(G')|}{|E(G)|} (n-m).$$

Thus, we have

$$\begin{split} \omega(G') &\geq m + \sum_{c \in R} f(c) + 1 \\ &\geq m + n - m - \frac{|E(G')|}{|E(G)|} (n - m) + 1 = n + 1 - \frac{|E(G')|}{|E(G)|} (n - m). \end{split}$$

Next, we suppose that $\omega(G') \ge n - \sum_{c \in \mathbb{C} \setminus R} g(c) + 1$ for some $R \subseteq \mathbb{C}$. By (3), $\sum_{c \in \mathbb{C}} g(c) \le n - m$. Thus, we have

$$\omega(G') \ge n - \sum_{c \in \mathbb{C} \setminus R} g(c) + 1 \ge n - \sum_{c \in \mathbb{C}} g(c) + 1 \ge n - (n - m) + 1 = m + 1.$$

By our assumption (2),

$$\sum_{c \in \mathbb{C} \setminus R} g(c) \le \sum_{c \in \mathbb{C} \setminus R} \frac{|E_c(G)|}{|E(G)|} (n-m) = \frac{|E_{\mathbb{C} \setminus R}(G)|}{|E(G)|} (n-m) = \frac{|E(G')|}{|E(G)|} (n-m).$$

Thus, we have

$$\begin{split} \omega(G') &\geq n - \sum_{c \in \mathbb{C} \setminus R} g(c) + 1 \\ &\geq n - \frac{|E(G')|}{|E(G)|} (n - m) + 1 = n + 1 - \frac{|E(G')|}{|E(G)|} (n - m). \end{split}$$

By Claim 1,

$$n - \omega(G') + 1 \le \frac{|E(G')|}{|E(G)|}(n - m).$$

Since $n \ge \omega(G')$, $n - \omega(G') + 1 \ge 1$, that is, $n - \omega(G') + 1 \ne 0$. Thus,

$$|E(G)| \leq \frac{n-m}{n-\omega(G')+1}|E(G')|.$$

Since |V(G')| = |V(G)| = n, by Lemma 3.3,

$$\begin{split} |E(G)| &\leq \frac{n-m}{n-\omega(G')+1} \binom{|V(G')| - \omega(G') + 1}{2} \\ &\leq \frac{n-m}{n-\omega(G')+1} \times \frac{(n-\omega(G')+1)(n-\omega(G'))}{2} \\ &= \frac{(n-m)(n-\omega(G'))}{2}. \end{split}$$

By Claim 1, $\omega(G') \ge m + 1$. Thus,

$$|E(G)| \le \frac{(n-m)(n-(m+1))}{2} = \binom{n-m}{2},$$

which contradicts our assumption that $|E(G)| > \binom{n-m}{2}$.

Therefore G has a (g, f)-chromatic spanning forest with exactly m components.

3.4 Proof of Theorem 2.5

If an edge-colored complete graph K_n has a spanning tree T with the same color probability distribution as that of K_n , that is,

$$\frac{|E_c(K_n)|}{|E(K_n)|} = \frac{|E_c(T)|}{|E(T)|} \quad \text{for any color } c \in \mathbb{C},$$

Then

$$|E_c(K_n)| = \frac{|E_c(T)||E(K_n)|}{|E(T)|} = \frac{|E_c(T)|n(n-1)/2}{n-1} = \frac{|E_c(T)|n}{2} \quad \text{for any color } c \in \mathbb{C}.$$

Thus, since $|E_c(T)|$ is an integer, $|E_c(K_n)|$ is an integral multiple of n/2.

Next, let K_n be an edge-colored complete graph of order n. For any color $c \in \mathbb{C}$, we suppose that $|E_c(K_n)| = k_c \times n/2$ for some $k_c \in \mathbb{Z}_{\geq 0}$. By Theorem 2.4, K_n has a spanning tree T such that

$$\left\lfloor \frac{|E_c(K_n)|}{|E(K_n)|}(n-1) \right\rfloor \le |E_c(T)| \le \left\lceil \frac{|E_c(K_n)|}{|E(K_n)|}(n-1) \right\rceil \quad \text{for any color } c \in \mathbb{C}.$$

Since $|E(K_n)| = n(n-1)/2$ and $|E_c(K_n)| = k_c \times n/2$ $(k_c \in \mathbb{Z}_{\geq 0})$, we have

$$k_c = \lfloor k_c \rfloor = \left\lfloor \frac{|E_c(K_n)|}{|E(K_n)|} (n-1) \right\rfloor \le |E_c(T)| \le \left\lceil \frac{|E_c(K_n)|}{|E(K_n)|} (n-1) \right\rceil = \lceil k_c \rceil = k_c.$$

Thus, $|E_c(T)| = k_c$. Then,

$$\frac{|E_c(K_n)|}{|E(K_n)|} = \frac{k_c \times n/2}{n(n-1)/2} = \frac{k_c}{n-1} = \frac{|E_c(T)|}{|E(T)|} \quad \text{for any color } c \in \mathbb{C}$$

Therefore, the color probability distribution of T is the same as that of K_n .

4 Spanning tree decomposition conjectures

In 1996, Brualdi and Hollingsworth [2] presented the following conjecture.

Conjecture 4.1 (Brualdi and Hollingsworth [2]). An edge-colored complete graph K_{2n} $(n \geq 3)$ having the property

(*) for every color c, the set of edges colored with c induces its perfect matching can be partitioned into n edge-disjoint rainbow spanning trees.

Brualdi and Hollingsworth [2] proved that an edge-colored complete graph K_{2n} $(n \geq 3)$ having the property (*) has two edge-disjoint rainbow spanning trees. Krussel, Marshall, and Verrall [12] proved that the graph has three edge-disjoint rainbow spanning trees. Fu and Lo [6] proved that if $n \geq 14$ then the graph has three edge-disjoint isomorphic rainbow spanning trees. Horn [9] proved, using the probabilistic

method, that there exist positive constants ϵ , n_0 such that every edge-colored complete graph K_{2n} $(2n \ge n_0)$ having the property (*) has at least ϵn edge-disjoint rainbow spanning trees. Fu, Lo, Perry, and Rodger [7] proved, using a constructive method, that an edge-colored complete graph K_{2n} having the property (*) has $\lfloor \sqrt{6n+9}/3 \rfloor$ edge-disjoint rainbow spanning trees. Pokrovskiy and Sudakov [14] proved that every properly edge-colored complete graph K_n with exactly n-1 colors has n/9 - 6 edge-disjoint rainbow spanning trees.

Kaneko, Kano, and Suzuki [10] proved that a properly edge-colored complete graph K_n $(n \ge 5)$ has two edge-disjoint rainbow spanning trees. Pokrovskiy and Sudakov [14] proved that every properly edge-colored complete graph K_n has $10^{-6}n$ edge-disjoint isomorphic rainbow spanning trees.

Akbari and Alipour [1] proved that an edge-colored complete graph K_n $(n \ge 5)$ has two edge-disjoint rainbow spanning trees if $|E_c(K_n)| \le n/2$ for any color $c \in \mathbb{C}$. Carraher, Hartke, and Horn [3] proved that an edge-colored complete graph K_n $(n \ge 1000000)$ has at least $\lfloor n/(1000 \log n) \rfloor$ edge-disjoint rainbow spanning trees if $|E_c(K_n)| \le n/2$ for any color $c \in \mathbb{C}$.

Based on these previous results, we conjecture the following as a generalization of Conjecture 4.1.

Conjecture 4.2. An edge-colored complete graph K_{2n} $(n \ge 3)$ can be partitioned into n edge-disjoint spanning trees T_1, T_2, \ldots, T_n such that each has a color probability distribution is similar to that of K_{2n} , that is, each T_i satisfies that

$$\left\lfloor \frac{|E_c(K_{2n})|}{|E(K_{2n})|}(2n-1) \right\rfloor \le |E_c(T_i)| \le \left\lceil \frac{|E_c(K_{2n})|}{|E(K_{2n})|}(2n-1) \right\rceil \quad \text{for any color } c \in \mathbb{C}.$$

Since $|E(K_{2n})| = 2n(2n-1)/2$ for the complete graph K_{2n} , we have

$$\frac{|E_c(K_{2n})|}{|E(K_{2n})|}(2n-1) = \frac{|E_c(K_{2n})|}{n}$$

Thus, this conjecture implies that $E_c(K_{2n})$ can be partitioned into n almost equal parts. If K_{2n} has the property (*) then $|E_c(K_{2n})| = n$ for any color c. Hence, if Conjecture 4.2 holds then K_{2n} $(n \ge 3)$ having the property (*) can be partitioned into n edge-disjoint spanning trees T_1, T_2, \ldots, T_n such that each T_i satisfies $|E_c(T_i)| = 1$ for any color c, that is, it can be partitioned into n edge-disjoint rainbow spanning trees. Therefore, Conjecture 4.2 is a generalization of Conjecture 4.1.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 16K05254. The author would like to thank the referees and editors for carefully reading the manuscript and providing valuable comments.

References

- S. Akbari and A. Alipour, Multicolored trees in complete graphs, J. Graph Theory 54 (2007), 221–232.
- [2] R. A. Brualdi and S. Hollingsworth, Multicolored trees in complete graphs, J. Combin. Theory Ser. B 68 (1996), 310–313.
- [3] J. M. Carraher, S. G. Hartke and P. Horn, Edge-disjoint rainbow spanning trees in complete graphs, *European J. Combin.* 57 (2016), 71–84.
- [4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, *Math. Bohem.* 133 (2008), 85–98.
- [5] P. Erdős, M. Simonovits and V. T. Sós, Anti-Ramsey theorems, Infinite and finite sets Vol. II, Colloq. Math. Soc. János Bolyai 10 (1975), 633–643.
- [6] H. L. Fu and Y. H. Lo, Multicolored isomorphic spanning trees in complete graphs, Ars Combin. 122 (2015), 423–430.
- [7] H. L. Fu, Y. H. Lo, K. E. Perry and C. A. Rodger, On the number of rainbow spanning trees in edge-colored complete graphs, *Discrete Math.* **341** (2018), 2343–2352.
- [8] S. Fujita, C. Magnant and K. Ozeki, Rainbow generalizations of Ramsey theory: a survey, *Graphs Combin.* 26 (2010), 1–30.
- [9] P. Horn, Rainbow spanning trees in complete graphs colored by one-factorizations, J. Graph Theory 87 (2018), 333–346.
- [10] A. Kaneko, M. Kano and K. Suzuki, Two edge-disjoint heterochromatic spanning trees in colored complete graphs, *Matimyás Mat.* 29 (2006), 49–51.
- [11] M. Kano and X. Li, Monochromatic and heterochromatic subgraphs in edge-colored graphs—a survey, *Graphs Combin.* 24 (2008), 237–263.
- [12] J. Krussel, S. Marshall and H. Verrall, Spanning trees orthogonal to one-factorizations of K_{2n} , Ars Combin. 57 (2000), 77–82.
- [13] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: a survey, Graphs Combin. 29 (2013), 1–38.
- [14] A. Pokrovskiy and B. Sudakov, Linearly many rainbow trees in properly edge-coloured complete graphs, J. Combin. Theory Ser. B 132 (2018), 134–156.
- [15] K. Suzuki, A necessary and sufficient condition for the existence of a heterochromatic spanning tree in a graph, *Graphs Combin.* 22 (2006), 261–269.
- [16] K. Suzuki, A generalization of heterochromatic graphs and *f*-chromatic spanning forests, *Graphs Combin.* 29 (2013), 715–727.

(Received 1 Oct 2018; revised 6 Mar 2019)