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Abstract

A bipartite graph is a proper interval bigraph if and only if it is asteroidal-
triple-free. An asteroidal triple (AT) is a triple of vertices such that any
two are joined by a path that avoids the neighbors of the third. For k ≥ 3,
a k-partite graph that is AT-free is not necessarily an interval k-graph.
In this paper, we prove that if a k-partite, AT-free graph has no induced
5-cycle and no vertex that is adjacent to two consecutive vertices of a
4-cycle, then it is an interval k-graph. We propose a conjecture for the
characterization of k-partite, AT-free interval k-graphs.

1 Introduction

Throughout this paper, G will be a connected graph. A graph is called an interval
graph if its vertices can be assigned intervals on the real line in such a way that two
vertices are adjacent if and only if their corresponding intervals intersect. In [7], it was
shown that a graph is an interval graph if and only if it contains neither an asteroidal
triple nor an induced cycle of length at least four. An asteroidal triple (AT) is a
triple of vertices such that any two are joined by a path that avoids the neighbors
of the third. A bipartite graph is called an interval bigraph if its vertices can be
assigned intervals on the real line in such a way that vertices in different parts of the
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Figure 1: The forbidden subgraphs C6, 2P3, and C7.

partition are adjacent if and only if their corresponding intervals intersect. There is
no characterization of interval bigraphs in terms of forbidden subgraphs, but much
else is known ([1] and [6]), including that a bipartite, AT-free graph is an interval
bigraph[6]. The term AT-free refers to a graph that does not contain an asteroidal
triple. Note that since induced cycles of length six or more contain asteroidal triples,
a graph that is AT-free has no induced cycle of length six or more.

A generalization of the interval bigraph is the interval k-graph, which was intro-
duced in [4] and has been studied further in [2], [3], and [5]. A k-partite graph is an
interval k-graph if its vertices can be assigned intervals on the real line in such a
way that vertices in different parts of the partition are adjacent if and only if their
corresponding intervals intersect. From the above characterizations of interval graphs
and interval bigraphs, we know that a k-partite, AT-free graph with no induced cycle
of length four or five is an interval k-graph, and that a k-partite, AT-free graph with
no induced cycle of length three or five is an interval k-graph. It is an easy exercise
to show that an interval k-graph cannot have a 5-cycle as an induced subgraph. In
this paper, we prove the following:

Theorem 1.1 Let G be a k-partite, AT-free graph that does not contain a 5-cycle
as an induced subgraph. Suppose that there is no vertex in G which is adjacent to
two consecutive vertices of a 4-cycle. Then G is an interval k-graph.

The graphs C6, 2P3, and C7 are AT-free graphs without induced 5-cycles. These
graphs are not, however, interval k-graphs (where k = 3, 4, 4, respectively), which is
why we need the last assumption in Theorem 1.1. Indeed, in every proper coloring
of C7 or 2P3 there is an induced 4-cycle whose vertices are assigned four different
colors, and hence they fail to be interval 4-graphs by the characterization of interval
graphs. The graph C6 is the cartesian product of K2 and K3, which fails to be an
interval 3-graph in the same way that C4, the cartesian product of K2 and K2, fails
to be an interval graph. Since 2P3 is an induced subgraph of Cj for each j ≥ 8, we
propose the following conjecture:

Conjecture 1.2 Let G be a k-partite, AT-free graph that does not contain a 5-cycle
as an induced subgraph. Then G is an interval k-graph if and only if G does not
contain C6, 2P3, or C7 as an induced subgraph.
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1.1 Terminology and Notation

We use terminology and notation as in [8] except as indicated. When the context
makes it clear, we use V for the vertex set V (G) and E for the edge set E(G) of the
graph G. Let H be a subgraph of G. In the neighborhood of H we do not include
any vertex from H. The subgraph of G induced by X ⊆ V will be denoted G[X].
We use G − X to denote the subgraph G[V − X] of G, and H + X to denote the
supergraph G[V (H) ∪ X] of H. A j-cycle is a chordless cycle of length j and is
denoted Cj. We call a graph acyclic if it does not contain Cj, j ≥ 4, as an induced
subgraph.

An interval k-representation, or representation, {Ix}x∈G (or just {Ix}, when
the graph is understood) for the interval k-graph G is a collection of intervals that
represent the vertices of G in a way that satisfies the definition of interval k-graph.
Thus G is an interval k-graph if and only if it has an interval k-representation. The
interval corresponding to the vertex x will be denoted Ix. The left and right endpoints
of the interval Ix will be written, respectively, as xL and xR. Thus the intervals Ix
and Iy intersect if and only if xL ≤ yR and yL ≤ xR.

Say G = (V1, V2, . . . , Vk, E) is an interval k-graph, and let v ∈ Vi. Then Iv is an
end interval of the representation {Ix} if either

vL ≤ yR for all y /∈ Vi or

vR ≥ yL for all y /∈ Vi.

Thus Iv is an end interval of {Ix} if and only if there exists a representation {I ′x} in
which the left(right) endpoint of Iv is further to the left(right) than all other intervals
in {I ′x}.

When two vertices of a k-partite graph belong to different parts of the partition,
we will say that they have different colors. Similarly, two vertices from the same
part of the partition will have the same color. We use the same terminology when
talking about intervals.

2 Lemmas

Lemma 2.1 Let G be an interval k-graph. If there are vertices y and z in G such
that N(y) = {x, z} and N(z) = {x, y} for some vertex x in G, and G′ = G−{x, y, z}
is connected, then Ix is an end interval in every representation {Iv}v∈G of G.

Proof: Suppose there is a representation {Iv} in which Ix is not an end interval.
Then there are some intervals Ia and Ib in {Iv} such that xL > aR, xR < bL, and
such that a and b have different colors than x. The vertices a and b can be neither
y nor z because both y and z are adjacent to x in G, and thus a and b are in G′.
Since G′ is connected, there is a path P = av1 . . . vnb that avoids {x, y, z}. This path
corresponds in {Iv} to a chain of intervals Ia, Iv1 , . . . , Ivn , Ib such that aR ≥ (v1)L,
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(vn)R ≥ bL, and (vi)R ≥ (vi+1)L for each 1 ≤ i ≤ n − 1. This implies that for each
point w ∈ [aR, bL] there is a j with 1 ≤ j ≤ n such that w ∈ Ivj . Since {x, y, z}
induces a triangle, there is a point m that lies in the intersection of Ix, Iy, and Iz,
so m ∈ Ix ⊂ [aR, bL] is contained in some interval Ivj , where j is between 1 and n.
Thus the intersection of Iy, Iz, and Ivj is nonempty, and because neither vertex y nor
vertex z is adjacent to vertex vj, we must use the same color for all of them. This is
a contradiction, since yz ∈ E.

Lemma 2.2 Let G be an AT-free interval bigraph. If there is a vertex y in G with
N(y) = {x} for some x ∈ V such that G′ = G − {x, y} is connected, then Ix is an
end interval in every representation {Iv}v∈G of G.

Proof: Suppose there is a representation {Iv} in which Ix is not an end interval.
Let the vertex set V be partitioned by A and B, and let x ∈ A. Then there are
vertices a, b ∈ B such that in {Iv}, xL > aR and xR < bL. Since G′ is connected,
there is a path from a to b that avoids N(y) = {x}. If there is a path from a to x that
avoids the neighborhood of b and a path from b to x that avoids the neighborhood
of a then {a, b, y} is an AT, which is a contradiction. Hence every path from, say, a
to x, must include a vertex that is in the neighborhood of b.

Let P = av1v2 . . . vnvn+1 . . . x be an a − x path, where vn is the first vertex in P
that is adjacent to b (note that vn 6= x because Ix ∩ Ib = ∅). Since vn is adjacent to
b ∈ B, we must have vn ∈ A, and therefore vn−1 ∈ B. Suppose that x is adjacent
to some vertex vj with j ≤ n − 1. Then P ′ = av1v2 . . . vjx is an a − x path and
must therefore have a vertex vk 6= x that is adjacent to b. But k ≤ j ≤ n− 1, which
contradicts the fact that n is the smallest index such that vn is adjacent to b. So x
must not be adjacent to any vertex vj with j ≤ n− 1. In particular, since vn−1 ∈ B,
we must have xR < (vn−1)L or xL > (vn−1)R.

Assume first that xR < (vn−1)L. Because x ∈ A and x is not adjacent to vj with
j ≤ n − 1, Ix cannot intersect any interval Ivj with j ≤ n − 1 and vj ∈ B. Thus,
since xR < (vn−1)L and xL > aR, we must have either aR < xL < xR < (v2)L or
(vn−i−2)R < xL < xR < (vn−i)L for some vn−i ∈ B with 1 ≤ i ≤ n− 4. Then Ix ⊂ Ivi
for some 1 ≤ i ≤ n − 2 with vi ∈ A. Thus, since xy ∈ E the intersection of Iy
and Ivi is nonempty, which is a contradiction as y ∈ B and vi /∈ N(y). Now assume
xL > (vn−1)R. Since vn and vn−1 are adjacent, we get xL > (vn−1)R ≥ (vn)L, and
since vn is adjacent to b and xR < bL, we get xR < bL ≤ (vn)R, so that Ix is contained
in In. Thus we again get a contradiction, as vn ∈ A but vn /∈ N(y).

Let c be a cut vertex of the graph G, and let G1, G2, . . . , Gn be the components
of G − {c}. The graphs Gi + {c}, i = 1, . . . , n, are the branches of G at c. Let H
and H ′ be subgraphs of G. We say that c ∈ V (H) is a DB cut-vertex in H of
H ′ if it is a cut vertex of H ′ with the additional property that there exist distinct
branches B1 ⊆ H ′ and B2 ⊆ H ′ of H ′ at c such that C3 ⊆ B1 and C4 ⊆ B2 for some
3-cycle C3 and 4-cycle C4. If H = G we will say just DB cut-vertex of H ′, and if
H = H ′ = G we will say just DB cut-vertex. Note that graphs without 3-cycles and
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graphs without 4-cycles do not have DB cut-vertices. Since acyclic AT-free graphs
are interval graphs by [7] and bipartite AT-free graphs are interval bigraphs by [6],
we will use DB cut-vertices to separate G into components that are each either an
interval graph or interval bigraph. If X = v1v2 . . . vjv1 is a (possibly chorded) cycle
of length j in G, then we write G[X] in place of G[V (X)], and denote the edge set
{vivi+1 | 1 ≤ i ≤ j − 1} ∪ {vjv1} by E(X).

Lemma 2.3 Let G be a graph with no induced Cj, j ≥ 5, and suppose that there
is no vertex in G which is adjacent to two consecutive vertices of a C4. Then for
every 3-cycle C and 4-cycle L, there is a DB cut-vertex c such that C and L belong
to different branches at c.

Proof: Let C and L be a 3-cycle and 4-cycle, respectively. For contradiction,
suppose that there is no cut vertex with C and L belonging to different branches.
Then there are two disjoint paths from C to L. Since C and L are each connected,
there is a cycle T such that E(T )∩E(C) is nonempty and E(T )∩E(L) is nonempty.
Since G has no j-cycle for j ≥ 5, G[T ] only has induced cycles of length three and
four. Since E(T ) ∩ E(C) is nonempty and E(T ) ∩ E(L) is nonempty, this implies
that some edge of G[T ] is shared by a 3-cycle and 4-cycle. But this contradicts the
hypothesis that a vertex cannot be adjacent to two consecutive vertices of a C4, so
the proof is complete.

3 Proof of Theorem 1.1

Proof: Let G = (V,E) be a k-partite graph. We say that a subgraph H of G
is DB-nonseparable if it has no DB cut-vertices (of H). By Lemma 2.3, a DB-
nonseparable graph with no C`, ` ≥ 5, and no vertex adjacent to two consecutive
vertices of a 4-cycle is either bipartite or acyclic. A DB cut is a collection X ⊂ V of
DB cut-vertices such that for each component Gi of G−X , Gi+X is DB-nonseparable.
If |X | is minimal in the set of all DB cuts, we call X a minimal DB cut, and call
|X | the DB-connectivity of G. If G is an interval k-graph with subgraphs H and
H ′, we write {Ix}x∈H < {Ix}x∈H′ if xR < yL for each x ∈ H and y ∈ H ′.

Let G be AT-free with no C5, and suppose no vertex in G is adjacent to two
consecutive vertices of a 4-cycle. Let X be a minimal DB cut, and let |X | = j. We
prove Theorem 1.1 by induction on j. If j = 0 then by Lemma 2.3, G is either
bipartite or acyclic and there is nothing to prove, so suppose j ≥ 1.

Let j = 1, with X = {x}. Consider the branches Bi(x), i = 1, 2, . . . , n, and their
corresponding components Gi = Bi(x) − x of G − x. Since j = 1, each branch is
either bipartite or acyclic and thus has a representation. Since G is AT-free, at most
two branches may have a vertex that is not in the neighborhood of x. Without loss
of generality let B1(x) be such a branch.

First assume that B1(x) is bipartite. There is a vertex y ∈ G − B1(x) with
y /∈ N(G1) such that xy ∈ E, since x is a DB cut-vertex. Because B1(x) is bipartite,
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clearly B1(x) + y is as well. Further, B1(x) + y is AT-free since it is an induced
subraph of G. Hence B1(x) + y is an interval bigraph, and by Lemma 2.2 Ix is an
end interval in each representation. Consequently, B1(x) is an interval bigraph and
Ix is an end interval in {Iv}v∈B1(x).

Now assume that B1(x) is acyclic. Create new vertices y and z and add them to
B1(x) such that N(y) = {x, z} and N(z) = {x, y}. Then B1(x) + {y, z} is acyclic,
and is AT-free as well since B1(x) + y is AT-free and N(z) = N(y). Therefore
by Lemma 2.1, B1(x) is again an interval k-graph with Ix an end interval in each
representation.

Now for each Bi(x) such that V (Gi) ⊂ N(x), we can construct a representation
with xL < vL and xR > vR for each v ∈ Gi. For B1(x) we may construct a repre-
sentation with xR > vR for each v ∈ G1, since Ix is an end interval. If without loss
of generality Bn(x) is another branch with a vertex that is not in the neighborhood
of x, then we may construct a representation with xL < vL for each v ∈ Gn. Thus,
since G1, . . . , Gn are distinct components, we may construct a representation for G
by setting {Iv}v∈G1 < {Iv}v∈G2 < · · · < {Ix}x∈Gn−1 < {Iv}v∈Gn .

Now let j ≥ 2, and suppose that the theorem holds for graphs with DB-connectiv-
ity less than j. Since G is connected and j ≥ 2, there is a component H of G − X
whose neighborhood in G includes at least two vertices from X . Let x, y ∈ N(H)∩X ,
and let H ′ = H + {x, y}. Then H ′ is DB-nonseparable because X is a DB cut, so
H ′ is acyclic or bipartite. Also, the branch B(x) of G at x containing H ′ has DB-
connectivity at most j − 1, since a subset of X − {x} is a minimal DB cut.

First suppose that H ′ is acyclic. Create new vertices a and b and add them to
B(x) such that N(a) = {b, x} and N(b) = {a, x}. Then B(x) + {a, b} = B′(x) has
DB-connectivity at most j − 1. This is true because H ′ + {a, b} is acyclic and B(x)
has DB-connectivity at most j−1. Hence B′(x) has a representation, and by Lemma
2.1 we know that Ix is an end interval in B(x).

Now suppose that H ′ is bipartite. Since x is a cut vertex of G, there is a vertex
z ∈ G − B(x) with z /∈ N(B(x) − {x}) such that zx ∈ E. Hence because B(x)
contains H ′, there is a vertex z ∈ G whose neighborhood in H ′ is just x, so as in the
case j = 1 we know that Ix is an end interval in each representation of H ′. Similarly,
we know that Iy is an end interval in each representation of H ′. Since Ix is an end
interval, we may construct a representation {Iv}v∈H′ of H ′ such that xL ≤ vR or
xR ≥ vL for all v ∈ H ′. Without loss of generality say xL ≤ vR for each v ∈ V (H ′).
Since Iy is an end interval in {Iv}v∈H′ , we may assume that either yL ≤ vR or yR ≥ vL
for each vertex v ∈ H ′. We will show that there is a representation of H ′ in which
the left(or right) endpoint of Ix is further to the left(right) than all other intervals,
and the right(left) endpoint of Iy is further to the right(left) than all other intervals.
Thus we can assume that yR < uL for some u in H ′ such that y and u have different
colors, for otherwise we are done. Hence yL ≤ vR for each v ∈ V (H ′), so we may
similarly assume that xR < wL for some vertex w ∈ V (H ′) such that x and w have
different colors.
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Suppose that there is a vertex v ∈ H whose neighborhood avoids a path from x to
y. Since H is connected and x and y are cut vertices, we can use the same argument
as in the preceding paragraph to find vertices x′ and y′ whose neighborhoods in H ′ are
just x and y, respectively. But then {v, x′, y′} is an asteroidal triple, a contradiction.
Thus each vertex in H must be adjacent to a vertex in each x−y path. Assume that
x and y are adjacent. Then every vertex in H is adjacent to either x or y, so since
H ′ is bipartite every interval in {Iv}v∈H′ either intersects Iy or has the same color as
Iy. This is a contradiction, as y and u have different colors but their intervals do not
intersect. Now assume that the shortest x−y path is x, r, y. Then for each vertex v in
H we have four possibilities for N(v)∩ {x, r, y}: {r}, {x}, {y}, and {x, y}. Suppose
that N(u1) ∩ {x, r, y} = {x} for some u1 in H. Since u1 and y have different colors
and yL ≤ vR for each v ∈ V (H ′), we must have yR < (u1)L. Then, since u1x ∈ E,
we have yR < (u1)L ≤ xR. If there is a vertex u2 with u2x /∈ E but u2y ∈ E, then
xR < (u2)L ≤ yR, a contradiction. Hence there is no vertex adjacent to y but not
adjacent to x. But then every vertex is either adjacent to x or the same color as x,
which contradicts the vertex w. Thus the vertex u1 does not exist, so each vertex in H
is either adjacent to r or adjacent to y, which contradicts the vertex u. Therefore, the
shortest x− y path is Pi, i ≥ 4. If i is even, then x and y are different colors and not
adjacent, which contradicts the fact that xL ≤ vR and yL ≤ vR for each v ∈ V (H ′).
Thus i is odd with i ≥ 5. Say the shortest x−y path is x = v1v2 . . . vi−1vi = y. Since
xvi−1 /∈ E(H ′) and x has a different color than vi−1, we have xR < (vi−1)L. Similarly,
yR < (v2)L. But then (vi)R = yR < (v2)L ≤ (v1)R = xR < (vi−1)L, a contradiction.
Hence xL ≤ vR and yR ≥ vL for each v in H ′.

Consider B(x)− (H ′−{y}) = B(y). B(y) has DB-connectivity at most j−1, and
has DB-connectivity at most j− 2 if y is not a DB cut-vertex of B(y). Thus we may
add vertices a and b to B(y) such that N(a) = {b, y} and N(b) = {a, y} to get a graph
with DB-connectivity at most j − 1, and by Lemma 2.1 conclude that Iy is an end
interval in the representation of B(y). Let yL ≤ vR for each v ∈ V (B(y)) (if this is not
the case, reverse all of the inequalities in the representation). Then, since yR ≥ vL
for each v ∈ V (H ′) and since H and B(y)−{y} are not connected, we can construct
an interval k-representation {Iv} for B(x) by setting {Iv}v∈H < {Iv}v∈B(y)−{y}. Since
xL ≤ vR for each v ∈ V (H ′), we conclude that Ix is an end interval in {Iv}.

Let B(x) = B1(x), and label the other branches B2(x), . . . , Bm(x). Each branch
Bi(x) for i ≥ 2 has DB-connectivity at most j − 2 and hence has an interval k-
representation. Since G is AT-free there is at most one branch, say Bm(x), that has
a vertex that is not in the neighborhood of x. Since Bm(x) has DB-connectivity at
most j − 2, the graph Bm(x) + {a, b} for a, b with N(a) = {x, b} and N(b) = {a, x}
has DB-connectivity at most j − 1. Then by Lemma 2.1 Ix is an end interval in
{Iv}v∈Bm(x), so as in the case j = 1 the proof is complete.
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