The nonexistence of projective planes of order 12 with a collineation group of order 9

Kenzi Akiyama
Fukuoka University
Fukuoka, 814-0180
Japan
jkenaki@kme.biglobe.ne.jp
Chiniro Suetake
3-3 Chuouminami,Tabuse
Kumage, Yamaguchi 742-1517
Japan
yufuyama@yahoo.co.jp
Masaki Tanaka
Sojo University
Kumamoto 860-0082
Japan
anataka1106@gmail.com
In memory of Professor Yutaka Hiramine

Abstract

In this paper, we prove that there are no projective planes of order 12 admitting a collineation group of order 9 .

1 Introduction

A finite projective plane is one of the most fundamental concepts in finite geometry. For every prime power q there exists a projective plane of order q, because the desarguesian plane $\mathrm{PG}(2, q)$ gives an example of a projective plane of order q. But the order of any known finite projective plane is always a prime power. Is the order of any finite projective plane a prime power? For this question, Bruck and Ryser proved the following remarkable theorem in 1949 [8].

The Bruck-Ryser Theorem If $n \equiv 1$ or $2(\bmod 4)$, there does not exist a projective plane of order n unless n can be expressed a sum of two integral squares.

For example, this theorem yields that there does not exist a projective plane of order n, where $n \leq 25$, if $n=6,14,21$, or 22 . Therefore, the smallest composite integer not covered by the Bruck-Ryser Theorem is 10 .

In [26] there is an interesting description of the search for a projective plane of order 10. There exists a projective plane of order n if and only if there exists a complete set of $n-1$ mutually orthogonal Latin squares of order n. Euler conjectured that there is no pair of orthogonal Latin squares of order n if $n \equiv 2(\bmod 4)$. It was proved that this conjecture is false for all orders greater than six (see [9, 10, 27, 28]). This raised the hope for the existence of a projective plane of order 10. Many mathematicians were interested in a projective plane of order 10. At first it was proved that the projective plane has a trivial collineation group [2, 17, 31]. Lam and his colleagues started the research of this problem in 1980 and after a huge effort, finally proved the non-existence of a projective plane of order 10 . They examined the weight enumerator of the vector space generated by the rows of the incidence matrix of a putative projective plane of order 10 . They used computers for the exhaustive research and the computer time was about 2,000 hours on a CRAY.

The next composite order not covered by the Bruck-Ryser theorem is 12. Actually it is still unknown whether or not a projective plane of order 12 exists. The study of projective planes of order 12 was begun by Janko and van Trung in 1980. Now let G be be a collineation group of a projective plane of order 12. Janko and van Trung proved in their articles $[15,16,18,19,20,21,22,23]$ that G has the following four properties.
(i) G is a $\{2,3\}$-group.
(ii) If $|G|=6$, then G is an abelian group.
(iii) If $|G|=4$, then G is a cyclic group.
(iv) If $|G|=3$ or 4 , then G is not an elation group.

Horvatic-Baldasar, Kramer, and Matulic-Bedenic [6, 7] showed that $|G|$ divides 16 or 9. Suetake [30], Akiyama and Suetake [3] showed that $|G|$ divides 4 or 9. Morover Akiyama and Suetake [4] proved that if $|G|=9$, then G is an elementary abelian group and is not planar.

Projective planes of order 15 were studied in [1, 13, 29].
Kang and Ju-Hyun Lee [25] studied an explicit formula and its fast computational algorithm for projective planes of prime order. The GAP System for Computational Discrete Algebra [12] is very useful (however we did not use the system). Casiello, Indaco, and Nagy [11] , on the computational approach to the problem of the existence of a projective plane of order 10 , quite recently implemented a new enumerative procedure using the GAP System in order to considerably reduce the computational time of some essential parts.

This paper is a sequel of [4] and we prove the following theorem.

Theorem There are no projective planes of order 12 admitting a collineation group of order 9 .

Any finite projective plane of order n contains a symmetric transversal design $\mathrm{STD}_{1}[n, n]$ as a substructure. Conversely any symmetric transversal design STD_{1} $[n, n]$ can be uniquely extended to a projective plane of order n, up to isomorphism.

Let $\pi=(\mathcal{Q}, \mathcal{L}, J)$ be a projective plane of order 12 with a collineation group G of order 9 and $\mathcal{D}=(\mathcal{P}, \mathcal{B}, I)$ be the symmetric transversal design $\mathrm{STD}_{1}[12,12]$ contained in π having the automorphism group $G^{\mathcal{P} \cup \mathcal{B}}$. Then we determine explicitly all types of the action on \mathcal{P} and \mathcal{B} of G in Sections 4 and 5. If G contains a nontrivial planar element, we prove that the subplane of order 3 fixed point wise by the collineation does not exist in Section 6. Otherwise, we prove the nonexistence of π by availing the groupring $\mathbb{Z}[G]$ in Section 7. We used a computer for both cases. We also have the following result from the theorem.

Corollary If G is a collineation group of a projective plane π of order 12, then G is cyclic and $|G|$ divides 3 or 4 .

Throughout this paper all sets are assumed to be finite. Most definitions and notation are standard and are taken from [5, 14, 24].

2 Preliminaries

In this section we state some basic definitions and results about a projective plane and a symmetric transversal design, which will be needed to prove our result.

Notation 2.1 Let $\mathcal{D}=(\mathcal{P}, \mathcal{B}, I)$ be an incidence structure, where \mathcal{P} is a point set, \mathcal{B} is a block set and I is an incidence relation, that is, I is a subset of $\mathcal{P} \times \mathcal{B}$. Then for $p \in \mathcal{P}$ and $B \in \mathcal{B}, p I B$ denotes $(p, B) \in I$. For $p \in \mathcal{P}$ set $(p)=\{X \in \mathcal{B} \mid p I X\}$ and for $B \in \mathcal{B}$ set $(B)=\{x \in \mathcal{P} \mid x I B\}$. If \mathcal{D} is a projective plane, since $\mathcal{B} \ni B \longmapsto(B) \in 2^{\mathcal{P}}$ is a one-to-one mapping, we identify B with (B) for $B \in \mathcal{B}$.

Notation 2.2 Let (G, Λ) be a permutation group acting on the set Λ, which is not always faithful, and H a non empty subset of G. Then set $F_{\Lambda}(H)=\left\{x \in \Lambda \mid x^{\mu}=\right.$ x for all $\mu \in H\}$ and $\theta_{\Lambda}(H)=\left|F_{\Lambda}(H)\right|$. If $H=\{\varphi\}$, especially set $F_{\Lambda}(\{\varphi\})=F_{\Lambda}(\varphi)$ and $\theta_{\Lambda}(\{\varphi\})=\theta_{\Lambda}(\varphi) . t_{\Lambda}(G)=t_{\Lambda}$ denotes the number of orbits of the permutation group (G, Λ).

Lemma 2.3 (Burnside-Frobenius) Let G be a permutation group acting on a set Λ and t the number of orbits of (G, Λ). Then

$$
t|G|=\sum_{\alpha \in G} \theta_{\Lambda}(\alpha)
$$

Lemma 2.4 Let $\pi=(\mathcal{Q}, \mathcal{L}, J)$ be a projective plane. Let φ be a collineation and G a collineation group of π. Then

$$
\theta_{\mathcal{Q}}(\varphi)=\theta_{\mathcal{L}}(\varphi) \text { and } t_{\mathcal{Q}}(G)=t_{\mathcal{L}}(G)
$$

Lemma 2.5 Let $\pi=(\mathcal{Q}, \mathcal{L}, J)$ be a projective plane. Let φ be a collineation of π with $\theta_{\mathcal{Q}}(\varphi) \neq 0$. Then one of the following statements holds:
(i) φ is a generalized elation. That is, there exist $L \in F_{\mathcal{L}}(\varphi)$ and $p \in F_{\mathcal{Q}}(\varphi)$ such that $F_{\mathcal{Q}}(\varphi) \subseteq(L), F_{\mathcal{L}}(\varphi) \subseteq(p), p \in(L)$, where L, p are called an axis, a center of φ respectively. In this case, since the axis and the center of φ are unique for π respectively, φ is called $a(p, L)$-generalized elation.
(ii) φ is a generalized homology. That is, there exist $L \in F_{\mathcal{L}}(\varphi)$ and $p \in F_{\mathcal{Q}}(\varphi)$ such that $F_{\mathcal{Q}}(\varphi) \subseteq(L) \cup\{p\}, F_{\mathcal{L}}(\varphi) \subseteq(p) \cup\{L\}, p \notin(L)$, where L, p are called an axis, a center of φ respectively. In this case, since the axis and the center of φ are unique for π respectively, φ is called a (p, L)-generalized homology.
(iii) φ is planar. That is, the substructure $\left(F_{\mathcal{Q}}(\varphi), F_{\mathcal{L}}(\varphi)\right)$ of π is a projective plane (a subplane of π).

Lemma 2.6 Let $\pi=(\mathcal{Q}, \mathcal{L}, J)$ be a projective plane. Let $\varphi, \tau \in$ Aut π such that $\varphi \tau=\tau \varphi$. Then $F_{\mathcal{Q}}(\varphi)^{\tau}=F_{\mathcal{Q}}(\varphi)$ and $F_{\mathcal{L}}(\varphi)^{\tau}=F_{\mathcal{L}}(\varphi)$.

Definition 2.7 Let $\mathcal{D}=(\mathcal{P}, \mathcal{B}, I)$ be an incidence structure. Then \mathcal{D} is called a symmetric transversal design $\operatorname{STD}_{\lambda}[k, u]$, if the following axioms are satisfied, where λ, k, u are positive integers and $k \geq 2$:
(i) For $B \in \mathcal{B},|(B)|=k$.
(ii) There exists a partition of $\mathcal{P}=\mathcal{P}_{0} \cup \mathcal{P}_{1} \cup \cdots \cup \mathcal{P}_{k-1}$ such that for any $0 \leq i \leq k-1$ $\left|\mathcal{P}_{i}\right|=u$ and for distinct $p, q \in \mathcal{P}$

$$
|(p) \cap(q)|= \begin{cases}0 & \text { if } p, q \in \mathcal{P}_{i} \text { for some } i \\ \lambda & \text { otherwise }\end{cases}
$$

$\left(\mathcal{P}_{0}, \ldots, \mathcal{P}_{k-1}\right.$ are called point classes of \mathcal{D}. We denote the set of point classes by $\Omega(\mathcal{D})$.)
(iii) The dual structure \mathcal{D}^{d} of \mathcal{D} also satisfies (i) and (ii).
(The point classes of $\mathcal{D}^{d} \mathcal{B}_{0}, \ldots, \mathcal{B}_{k-1}$ are called block classes of \mathcal{D}. We denote the set of block classes by $\Delta(\mathcal{D})$.)

In this definition we give some remarks. From the definition it follows that $k=u \lambda$ and $|\mathcal{P}|=|\mathcal{B}|=u k$. Since $\mathcal{B} \ni B \longmapsto(B) \in 2^{\mathcal{P}}$ is a one-to-one mapping, we identify B with (B) for $B \in \mathcal{B}$.

Lemma 2.8 Let $\mathcal{D}=(\mathcal{P}, \mathcal{B}, I)$ be an $\operatorname{STD}_{\lambda}[k, u]$ with a set of point classes $\Omega(\mathcal{D})=$ $\left\{\mathcal{P}_{0}, \ldots, \mathcal{P}_{k-1}\right\}$ and a set of block classes $\Delta(\mathcal{D})=\left\{\mathcal{B}_{0}, \ldots, \mathcal{B}_{k-1}\right\}$. Let $\mathcal{P}_{i}=\left\{p_{u i}\right.$, $\left.p_{u i+1}, \ldots, p_{u i+(u-1)}\right\}$ and $\mathcal{B}_{j}=\left\{B_{u j}, B_{u j+1}, \ldots, B_{u j+(u-1)}\right\}(0 \leq i, j \leq k-1)$. Let

$$
N=\left(n_{r, s}\right)_{0 \leq r, s \leq k u-1}=\left(\begin{array}{ccc}
N_{0,0} & \ldots & N_{0, k-1} \\
\vdots & & \vdots \\
N_{k-1,0} & \ldots & N_{k-1, k-1}
\end{array}\right)
$$

be the incidence matrix of \mathcal{D} corresponding to these numberings of the points and the blocks, that is

$$
n_{r, s}=\left\{\begin{array}{ll}
1 & \text { if } p_{r} I B_{s} \\
0 & \text { otherwise }
\end{array},\right.
$$

where each $N_{i, j}(0 \leq i, j \leq k-1)$ is a $u \times u$ matrix. Then the following statements hold.
(i) Each $N_{i, j}(0 \leq i, j \leq k-1)$ is a permutation matrix of degree u and

$$
N N^{T}=N^{T} N=\left(\begin{array}{cccc}
k E & \lambda J & \ldots & \lambda J \\
\lambda J & k E & \ddots & \vdots \\
\vdots & \ddots & \ddots & \lambda J \\
\lambda J & \ldots & \lambda J & k E
\end{array}\right)
$$

where E is the identity matrix of degree u and J is the $u \times u$ all one matrix.
(ii) Let $\varphi \in \operatorname{Sym} \mathcal{P} \cup \mathcal{B}$ such that $\mathcal{P}^{\varphi}=\mathcal{P}$ and $\mathcal{B}^{\varphi}=\mathcal{B}$. We define $\varphi_{f}, \varphi_{g} \in$ $\operatorname{Sym}\{0,1, \ldots, k u-1\}$ by $\varphi: p_{r} \longmapsto p_{r^{\varphi_{f}}}, B_{s} \longmapsto B_{s^{\varphi_{g}}}(0 \leq r, s \leq k u-1)$. Then the following hold.

- $\varphi \in$ Aut $\mathcal{D} \Longleftrightarrow p I B$ if and only if $p^{\varphi} I B^{\varphi}(p \in \mathcal{P}, B \in \mathcal{B}) \Longleftrightarrow n_{r, s}=$ $n_{r^{\varphi_{f},{ }^{\varphi} g}}(0 \leq r, s \leq k u-1)$.
- If $\varphi \in$ Aut \mathcal{D}, then from the definition of STD , it follows that φ induces permutations on both $\Omega(\mathcal{D})$ and $\Delta(\mathcal{D})$. Let these permutations be $\widetilde{\varphi}$ and $\widetilde{\widetilde{\varphi}}$ respectively.

Lemma 2.9 [3] Let $\mathcal{D}=(\mathcal{P}, \mathcal{B}, I)$ be an $\operatorname{STD}_{\lambda}[k, u]$ with the set of point classes $\Omega=\Omega(\mathcal{D})$ and the set of block classes $\Delta=\Delta(\mathcal{D})$. Let $\varphi \in$ Aut \mathcal{D} and let G an automorphism group of \mathcal{D}. Then

$$
\theta_{\mathcal{P}}(\varphi)+\theta_{\Delta}(\varphi)=\theta_{\mathcal{B}}(\varphi)+\theta_{\Omega}(\varphi) \text { and } \theta_{\mathcal{P}}(G)+\theta_{\Delta}(G)=\theta_{\mathcal{B}}(G)+\theta_{\Omega}(G)
$$

The following result is well-known (see Proposition 7.19 in [5]).
Lemma 2.10 Let $\pi=(\mathcal{Q}, \mathcal{L}, J)$ be a projective plane of order n. Choose $r_{\infty} \in \mathcal{Q}$ and $L_{\infty} \in \mathcal{L}$ such that $r_{\infty} \in\left(L_{\infty}\right)$. Set $\mathcal{P}=\mathcal{Q} \backslash\left(L_{\infty}\right)$ and $\mathcal{B}=\mathcal{L} \backslash\left(r_{\infty}\right)$. Let $\left(r_{\infty}\right) \backslash\left\{L_{\infty}\right\}=\left\{L_{0}, L_{1}, \ldots, L_{n-1}\right\}$ and $\left(L_{\infty}\right) \backslash\left\{r_{\infty}\right\}=\left\{r_{0}, r_{1}, \ldots, r_{n-1}\right\}$. Set $\mathcal{P}_{i}=$ $\left(L_{i}\right) \backslash\left\{r_{\infty}\right\}, \mathcal{B}_{j}=\left(r_{j}\right) \backslash\left\{L_{\infty}\right\} \quad(0 \leq i, j \leq n-1), \Omega=\left\{\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{n-1}\right\}$ and $\Delta=\left\{\mathcal{B}_{0}, \mathcal{B}_{1}, \ldots, \mathcal{B}_{n-1}\right\}$. Then the substructure $\mathcal{D}=(\mathcal{P}, \mathcal{B}, I)(I=J \cap(\mathcal{P} \times \mathcal{B}))$ of π is an $\mathrm{STD}_{1}[n, n]$ having the set of point classes Ω and the set of block classes Δ. In this case we say that \mathcal{D} is the $\operatorname{STD}_{1}[n, n]$ with respect to a point r_{∞} and a line L_{∞}.

Lemma 2.11 Let $\pi=(\mathcal{Q}, \mathcal{L}, J)$ be a projective plane of order n. Choose $r_{\infty} \in \mathcal{Q}$ and $L_{\infty} \in \mathcal{L}$ such that $r_{\infty} \in\left(L_{\infty}\right)$. Let $\mathcal{D}=(\mathcal{P}, \mathcal{B}, I)$ be the $\mathrm{STD}_{1}[n, n]$ with respect to r_{∞} and L_{∞}. Set $\Omega=\Omega(\mathcal{D})$ and $\Delta=\Delta(\mathcal{D})$. Let G be a collineation group of π such that $L_{\infty}{ }^{\mu}=L_{\infty}$ and $r_{\infty}{ }^{\mu}=r_{\infty}$ for all $\mu \in G$. Then the following statements hold.
(i) For all $\mu \in G,\left.\mu\right|_{\mathcal{P} \cup \mathcal{B}} \in$ Aut \mathcal{D}.
(ii) $\left.G \ni \mu \longmapsto \mu\right|_{\mathcal{P} \cup \mathcal{B}} \in$ Aut \mathcal{D} is a monomorphism. (In the rest of the paper, we identify $\left.\mu\right|_{\mathcal{P} \cup \mathcal{B}}$ with μ.)
(iii) Both $G \ni \mu \longmapsto \widetilde{\mu} \in \operatorname{Sym} \Omega$ and $G \ni \mu \longmapsto \widetilde{\widetilde{\mu}} \in \operatorname{Sym} \Delta$ are homomorphisms.

3 Projective planes of order 12 admitting a collineation group of order 9

We assume the following in this section.
Hypothesis $3.1 \pi=(\mathcal{Q}, \mathcal{L}, J)$ is a projective plane of order 12 admitting a collineation group G of order 9 .

Lemma 3.2 [18] π does not have an elation of order 3.
Lemma 3.3 [4] G is an elementary abelian group of order 9 and the substructure $\left(F_{\mathcal{Q}}(G), F_{\mathcal{L}}(G)\right)$ of π is not a subplane of π.

Lemma 3.4 [4] Let $\mu \in G \backslash\{1\}$. If $\pi_{1}=\left(F_{\mathcal{Q}}(\mu), F_{\mathcal{L}}(\mu)\right)$ is a subplane of π, then the order of π_{1} is 3 .

Lemma 3.5 Let $\mu \in G, L \in \mathcal{L}$ and $r \in(L)$. If μ is a (r, L)-generalized elation, then $r \in F_{\mathcal{Q}}(G)$ and $L \in F_{\mathcal{L}}(G)$.

Proof. Let $\xi \in G$. Now $\xi^{-1} \mu \xi=\mu$ is a $\left(r^{\xi}, L^{\xi}\right)$-generalized elation. Since the center r and the axis L of μ are unique for μ, respectively, $r^{\xi}=r$ and $L^{\xi}=L$.

Lemma 3.6 If $\mu \in G \backslash\{1\}$, then one of the following (1) to (5) holds:

	μ	$\theta_{\Omega}(\mu)$	$\theta_{\mathcal{B}}(\mu)$	$\theta_{\Delta}(\mu)$	$\theta_{\mathcal{P}}(\mu)$
(1)	planar	3	9	3	9
(2)	$\left(r_{\infty}, L\right)-$ g.e.	n_{2}	0	0	n_{2}
(3)	$\left(r_{\infty}, L_{\infty}\right)$-g.e.	n_{3}	0	n_{3}	0
(4)	$\left(r, L_{\infty}\right)$-g.e.	0	n_{4}	n_{4}	0
(5)	$\left(r_{\infty}, L_{\infty}\right)$-g.e.	0	0	0	0

where $n_{2}, n_{3}, n_{4} \in\{3,6,9\}, r \in\left(L_{\infty}\right) \backslash\left\{r_{\infty}\right\}$ and $L \in\left(r_{\infty}\right) \backslash\left\{L_{\infty}\right\}$.
Proof. If μ is planar, (1) holds by Lemma 3.4. Suppose that μ is not planar. Then μ is a generalized elation. The axis of μ is a line through r_{∞} and the center of μ is a point on L_{∞}. If L_{∞} is the axis of μ, then (3), (4) or (5) holds. If L_{∞} is not the axis of μ, then there exists a line $L \in\left(r_{\infty}\right) \backslash\left\{L_{\infty}\right\}$ such that L is the axis of μ. This yields that the center of μ is r_{∞}. Therefore (2) holds.

Lemma 3.7 $G \backslash\{1\}$ contains a planar collineation, if and only if G is not semiregular on $\mathcal{P}=\mathcal{Q} \backslash\left(L_{\infty}\right)$ and also on $\mathcal{B}=\mathcal{L} \backslash\left(r_{\infty}\right)$.

Proof. Suppose that G is not semiregular on \mathcal{P} and also on \mathcal{B}. Then there exist $\varphi \in G \backslash\{1\}, M \in \mathcal{L}$ such that $M \notin\left(r_{\infty}\right), M^{\varphi}=M$. There also exist $\tau \in G \backslash\{1\}, p \in$ \mathcal{P} such that $p^{\tau}=p$. Set $L=p r_{\infty} \in \mathcal{L}$. Suppose that $G \backslash\{1\}$ does not have a planar collineation. Then τ is a $\left(r_{\infty}, L\right)$-generalized elation and $L \in F_{\mathcal{L}}(G)$ by Lemma 3.5. Set $M \cap L_{\infty}=r$ and $M \cap L=s$. Thus r, s, r_{∞} are not collinear and these points are fixed by φ. This yields that φ is planar, which is a contradiction. Therefore $G \backslash\{1\}$ contains a planar collineation.

The converse is clear. Thus we have the lemma.
Since $|G|=9, G$ fixes a point r_{∞} and a line L_{∞} with $r_{\infty} \in\left(L_{\infty}\right)$. Let $\mathcal{D}=$ $(\mathcal{P}, \mathcal{B}, I)$ be the $\mathrm{STD}_{1}[12,12]$ with respect to r_{∞} and L_{∞}. Actually, $\mathcal{P}=\mathcal{Q} \backslash\left(L_{\infty}\right)$, $\mathcal{B}=\mathcal{L} \backslash\left(r_{\infty}\right)$ and $\Omega=\left\{\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{11}\right\}, \Delta=\left\{\mathcal{B}_{0}, \mathcal{B}_{1}, \ldots, \mathcal{B}_{11}\right\}$ are point classes and block classes of \mathcal{D} respectively, where $\left(r_{\infty}\right) \backslash\left\{L_{\infty}\right\}=\left\{L_{0}, L_{1}, \ldots, L_{11}\right\},\left(L_{\infty}\right) \backslash\left\{r_{\infty}\right\}=$ $\left\{r_{0}, r_{1}, \ldots, r_{11}\right\}, \mathcal{P}_{i}=\left(L_{i}\right) \backslash\left\{r_{\infty}\right\}$ and $\mathcal{B}_{j}=\left(r_{j}\right) \backslash\left\{L_{\infty}\right\}(0 \leq i, j \leq 11)$.

Lemma 3.8 The sizes of G-orbits on L_{∞} are as follows:
Case 1 ($1,1,1,1,1,1,1,3,3$);
Case $2(1,1,1,1,3,3,3)$;
Case 3 (1, 1, 1, 1, 9);
Case 4 (1, 3, 3, 3, 3);
Case 5 (1, 3, 9).
Proof. If G has G-orbits on L_{∞} different from Cases 1 to 5 , then the sizes of G-orbits on L_{∞} is $(1,1,1,1,1,1,1,1,1,1,3)$. Then there exists $\mu \in G \backslash\{1\}$ such that $\left|F_{\left(L_{\infty}\right)}(\mu)\right|=13$. This is contrary to Lemma 3.2.

4 The case that $G \backslash\{1\}$ contains a planar collineation

In this section we consider the case that $G \backslash\{1\}$ contains a planar collineation. We assume Hypothesis 3.1 and also the following in this section.

Hypothesis 4.1 $G \backslash\{1\}$ contains a planar collineation.
Then, by Lemma 3.7, G does not act semiregularly on \mathcal{P}, nor on \mathcal{B}. In the rest of this section, for each of Cases 1 to 5 obtained in Section 3, if that case occurs, we determine the actions on $\Omega \cup \Delta$ of φ and τ, where $G=\langle\varphi, \tau\rangle$. Moreover, if $\varphi(\tau)$ fixes a class $X \in \Omega \cup \Delta$, we also determine the action on X of $\varphi(\tau)$. We will show in Section 6 that actions on $\Omega \cup \Delta$ of φ and τ yield explicitly the actions on $\mathcal{P} \cup \mathcal{B}$ of $\varphi(\tau)$.

Lemma 4.2 Case 1 does not occur.

Proof. Let φ be a planar collineation in $G \backslash\{1\}$. Then $\theta_{\Delta}(\varphi)=3$. This is contrary to the assumption of Case 1.

Lemma 4.3 If Case 2 occurs, then one of the following two types holds.
Type 1 (i) $G=\langle\varphi, \tau\rangle$,
$\underset{\sim}{\widetilde{\varphi}}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\varphi}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\widetilde{\tau}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{5}, \mathcal{P}_{4}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{5}, \mathcal{B}_{4}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$.
(ii) φ fixes three points of \mathcal{P}_{i} for $0 \leq i \leq 2$ and three blocks of \mathcal{B}_{j} for $0 \leq j \leq 2$. Also G acts semiregularly on both $\mathcal{P} \backslash F_{\mathcal{P}}(\varphi)$ and $\mathcal{B} \backslash F_{\mathcal{B}}(\varphi)$, while $\langle\tau\rangle$ acts semiregularly on both $F_{\mathcal{P}}(\varphi)$ and $F_{\mathcal{B}}(\varphi)$.

Type 2 (i) $G=\langle\varphi, \tau\rangle$,
$\underset{\widetilde{\mathscr{P}}}{\widetilde{\varphi}}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\widetilde{\tau}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}\right)\left(\mathcal{P}_{4}\right)\left(\mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{8}, \mathcal{P}_{7}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}\right)\left(\mathcal{B}_{4}\right)\left(\mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{8}, \mathcal{B}_{7}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$.
(ii) φ fixes three points of \mathcal{P}_{i} for $0 \leq i \leq 2$ and three blocks of \mathcal{B}_{j} for $0 \leq j \leq 2$. Also G acts semiregularly on both $\mathcal{P} \backslash F_{\mathcal{P}}(\varphi)$ and $\mathcal{B} \backslash F_{\mathcal{B}}(\varphi)$, while $\langle\tau\rangle$ acts semiregularly on both $F_{\mathcal{P}}(\varphi)$ and $F_{\mathcal{B}}(\varphi)$.

Proof. Let φ be a planar collineation in $G \backslash\{1\}$. Then we can assume that $\widetilde{\varphi}=$ $\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$ and $\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)$ $\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$, where φ fixes three points of \mathcal{P}_{i} for $0 \leq i \leq 2$ and three blocks of \mathcal{B}_{j} for $0 \leq j \leq 2$.
(α) Assume that there exists $\tau \in G \backslash\langle\varphi\rangle$ with $F_{\mathcal{P}}(\tau) \neq \emptyset$. Since τ is planar by Lemma 3.6, $\theta_{\Omega}(\tau)=\theta_{\Delta}(\tau)=3$. Applying the Burnside-Frobenius theorem to the permutation group (G, Δ), we have $\theta_{\Delta}(\varphi)+\theta_{\Delta}(\tau)+\theta_{\Delta}(\varphi \tau)+\theta_{\Delta}\left(\varphi^{2} \tau\right)=21$. This yields $\theta_{\Delta}(\varphi \tau)+\theta_{\Delta}\left(\varphi^{2} \tau\right)=15$. Since $\theta_{\Delta}(\varphi \tau) \neq 12$ and $\theta_{\Delta}\left(\varphi^{2} \tau\right) \neq 12$, by Lemma 3.2, $\left(\theta_{\Delta}(\varphi \tau), \theta_{\Delta}\left(\varphi^{2} \tau\right)\right)=(6,9)$ or $(9,6)$. Considering φ^{2} instead of φ if necessary, we may assume that $\left(\theta_{\Delta}(\varphi \tau), \theta_{\Delta}\left(\varphi^{2} \tau\right)\right)=(6,9)$. Now $\varphi \tau$ and $\varphi^{2} \tau$ are generalized elations having L_{∞} as an axis. Therefore $\theta_{\mathcal{P}}(\varphi \tau)=\theta_{\mathcal{P}}\left(\varphi^{2} \tau\right)=0$. From this we have $\theta_{\Omega}(\varphi \tau)+\theta_{\mathcal{B}}(\varphi \tau)=\theta_{\Delta}(\varphi \tau)+\theta_{\mathcal{P}}(\varphi \tau)=6+0=6$. Similarly we have $\theta_{\Omega}\left(\varphi^{2} \tau\right)+\theta_{\mathcal{B}}\left(\varphi^{2} \tau\right)=9$.

Suppose that $F_{\Omega}(\varphi) \cap F_{\Omega}(\tau) \neq \emptyset$. Then $F_{\Omega}(\varphi)=F_{\Omega}(\tau)=\left\{\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right\}$. If there exists $p \in \mathcal{P}_{0}$ such that $p^{\varphi}=p^{\tau}=p$, then $\left(F_{\mathcal{Q}}(G), F_{\mathcal{L}}(G)\right)$ is a subplane of π of order 3 . This is contrary to Lemma 3.3. Therefore $F_{\mathcal{P}_{0}}(\varphi) \cap F_{\mathcal{P}_{0}}(\tau)=\emptyset$.

Since $\theta_{\mathcal{P}}(\varphi \tau)=\theta_{\mathcal{P}}\left(\varphi^{2} \tau\right)=0, G$ acts semiregularly on $\mathcal{P}_{0} \backslash\left(F_{\mathcal{P}_{0}}(\varphi) \cup F_{\mathcal{P}_{0}}(\tau)\right)$. Therefore $9=|G|| | \mathcal{P}_{0} \backslash\left(F_{\mathcal{P}_{0}}(\varphi) \cup F_{\mathcal{P}_{0}}(\tau)\right) \mid=6$. This is a contradiction. Thus $F_{\Omega}(\varphi) \cap$ $F_{\Omega}(\tau)=\emptyset$. Therefore $\left(\theta_{\Omega}\left(\varphi^{2} \tau\right), \theta_{\mathcal{B}}\left(\varphi^{2} \tau\right)\right)=(0,9)$ by Lemma 3.6. Let $r_{0}\left(\neq r_{\infty}\right)$ be the center of $\varphi^{2} \tau$. Then $r_{0} \in F_{\mathcal{Q}}(G)$ by Lemma 3.5. Set $\mathcal{B}_{0}=\left(r_{0}\right) \backslash\left\{L_{\infty}\right\} \in \Delta$. By a similar argument to that the above, $F_{\mathcal{B}_{0}}(\varphi) \cap F_{\mathcal{B}_{0}}(\tau)=\emptyset$. There exists $L \in\left(r_{0}\right)$ such
that $L^{\varphi^{2} \tau}=L$ and L is fixed by φ or τ. Therefore L is fixed by φ and τ. This is also a contradiction.
(β) Assume that $F_{\mathcal{P}}(\mu)=\emptyset$ for all $\mu \in G \backslash\langle\varphi\rangle$. Let $\tau \in G \backslash\langle\varphi\rangle$. We may assume that $\theta_{\Delta}(\tau) \leq \theta_{\Delta}(\varphi \tau) \leq \theta_{\Delta}\left(\varphi^{2} \tau\right)$. Since $\theta_{\Delta}(\tau)+\theta_{\Delta}(\varphi \tau)+\theta_{\Delta}\left(\varphi^{2} \tau\right)=18$, $\left(\theta_{\Delta}(\tau), \theta_{\Delta}(\varphi \tau), \theta_{\Delta}\left(\varphi^{2} \tau\right)\right)=(3,6,9)$ or $(6,6,6) \cdot \tau, \varphi \tau$ and $\varphi^{2} \tau$ are generalized elations having L_{∞} as an axis by Lemma 3.6. The center of each collineation of $\tau, \varphi \tau$, and $\varphi^{2} \tau$ is an element of $F_{\left(L_{\infty}\right)}(\varphi)$. Set $\pi_{S}=\left(F_{\mathcal{Q}}(\varphi), F_{\mathcal{L}}(\varphi)\right)$. Then π_{S} is a subplane of π of order 3. Now $\left.\tau\right|_{\pi_{S}}=\left.\varphi \tau\right|_{\pi_{S}}=\left.\varphi^{2} \tau\right|_{\pi_{S}}$ and this is an elation of π_{S} having L_{∞} as an axis. We may assume that the center of $\left.\tau\right|_{\pi_{S}}$ is r_{∞}. Therefore $\left.\tau\right|_{\pi_{S}}$ fixes all lines through the point r_{∞}. Let M_{0}, M_{1}, M_{2} be these lines except L_{∞}. Since M_{0}, M_{1}, M_{2} are fixed by φ and τ, these three lines are fixed by any collineation in G.

Assume that $\left(\theta_{\Delta}(\tau), \theta_{\Delta}(\varphi \tau), \theta_{\Delta}\left(\varphi^{2} \tau\right)\right)=(3,6,9)$. Then $F_{\left(r_{\infty}\right)}(\varphi)=F_{\left(r_{\infty}\right)}(\tau)$ and $F_{\left(r_{\infty}\right)}(\varphi) \subseteq F_{\left(r_{\infty}\right)}(\varphi \tau) \cap F_{\left(r_{\infty}\right)}\left(\varphi^{2} \tau\right)$. The center of each collineation of $\tau, \varphi \tau$, and $\varphi^{2} \tau$ is r_{∞}. If there exists $M \in\left(r_{\infty}\right)$ such that $M^{\varphi} \neq M, M^{\varphi \tau}=M$ and $M^{\varphi^{2} \tau}=M$, then $M=M^{\varphi}$, because $M^{\varphi \tau}=M=M^{\varphi^{2} \tau}$ yields $M=M^{\varphi}$. This is a contradiction. Therefore $F_{\left(r_{\infty}\right)}(\varphi \tau) \cap F_{\left(r_{\infty}\right)}\left(\varphi^{2} \tau\right)=\left\{L_{\infty}, M_{0}, M_{1}, M_{2}\right\}=F_{\left(r_{\infty}\right)}(\varphi)=F_{\left(r_{\infty}\right)}(\tau)$. In this case we have Type 1.

Assume that $\left(\theta_{\Delta}(\tau), \theta_{\Delta}(\varphi \tau), \theta_{\Delta}\left(\varphi^{2} \tau\right)\right)=(6,6,6)$. Then $F_{\left(r_{\infty}\right)}(\varphi) \subseteq F_{\left(r_{\infty}\right)}(\tau) \cap$ $F_{\left(r_{\infty}\right)}(\varphi \tau) \cap F_{\left(r_{\infty}\right)}\left(\varphi^{2} \tau\right)$. The center of each collineation of $\tau, \varphi \tau$, and $\varphi^{2} \tau$ is r_{∞}. If there exists $M \in\left(r_{\infty}\right)$ such that $M^{\varphi} \neq M, M^{\tau}=M$ and $M^{\varphi \tau}=M$, then $M=M^{\varphi}$, because $M^{\tau}=M=M^{\varphi \tau}$ yields $M=M^{\varphi}$. This is a contradiction. Therefore $F_{\left(r_{\infty}\right)}(\tau) \cap F_{\left(r_{\infty}\right)}(\varphi \tau)=F_{\left(r_{\infty}\right)}(\varphi)$. By a similar argument, $F_{\left(r_{\infty}\right)}(\tau) \cap F_{\left(r_{\infty}\right)}\left(\varphi^{2} \tau\right)=$ $F_{\left(r_{\infty}\right)}(\varphi \tau) \cap F_{\left(r_{\infty}\right)}\left(\varphi^{2} \tau\right)=F_{\left(r_{\infty}\right)}(\varphi)$. In this case we have Type 2.

Lemma 4.4 If Case 3 occurs, then one of the following three types holds.
Type 3 (i) $G=\langle\varphi, \tau\rangle$,
$\underset{\sim}{\widetilde{\varphi}}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\widetilde{\tau}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{6}, \mathcal{P}_{9}\right)\left(\mathcal{P}_{4}, \mathcal{P}_{7}, \mathcal{P}_{10}\right)\left(\mathcal{P}_{5}, \mathcal{P}_{8}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{6}, \mathcal{B}_{9}\right)\left(\mathcal{B}_{4}, \mathcal{B}_{7}, \mathcal{B}_{10}\right)\left(\mathcal{B}_{5}, \mathcal{B}_{8}, \mathcal{B}_{11}\right)$.
(ii) Each of $\varphi, \tau, \varphi \tau, \varphi^{2} \tau$ fixes three points of \mathcal{P}_{i} for $0 \leq i \leq 2$ and three blocks of \mathcal{B}_{j} for $0 \leq j \leq 2$. Any two point sets of $F_{\mathcal{P}}(\varphi), F_{\mathcal{P}}(\tau), F_{\mathcal{P}}(\varphi \tau)$, and $F_{\mathcal{P}}\left(\varphi^{2} \tau\right)$ are disjoint from each other. Any two block sets of $F_{\mathcal{B}}(\varphi), F_{\mathcal{B}}(\tau), F_{\mathcal{B}}(\varphi \tau)$, and $F_{\mathcal{B}}\left(\varphi^{2} \tau\right)$ are disjoint from each other.
Type 4 (i) $G=\langle\varphi, \tau\rangle$,
$\underset{\widetilde{\mathcal{P}}}{\underset{\sim}{\varphi}}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{6}, \mathcal{P}_{9}\right)\left(\mathcal{P}_{4}, \mathcal{P}_{7}, \mathcal{P}_{10}\right)\left(\mathcal{P}_{5}, \mathcal{P}_{8}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{6}, \mathcal{B}_{9}\right)\left(\mathcal{B}_{4}, \mathcal{B}_{7}, \mathcal{B}_{10}\right)\left(\mathcal{B}_{5}, \mathcal{B}_{8}, \mathcal{B}_{11}\right)$.
(ii) φ fixes three points of \mathcal{P}_{i} for $0 \leq i \leq 2$ and three blocks of \mathcal{B}_{j} for $0 \leq j \leq 2$. Also G fixes any block of $F_{\mathcal{B}_{0}}(\varphi)$, and G acts semiregularly on the each block set of $\mathcal{B}_{0} \backslash F_{\mathcal{B}_{0}}(\varphi), \mathcal{B}_{1} \backslash F_{\mathcal{B}_{1}}(\varphi)$, and $\mathcal{B}_{2} \backslash F_{\mathcal{B}_{2}}(\varphi)$. Moreover, $\langle\tau\rangle$ acts regularly on the both block sets $F_{\mathcal{B}_{1}}(\varphi)$ and $F_{\mathcal{B}_{2}}(\varphi)$.

Type 5 (i) $G=\langle\varphi, \tau\rangle$,
$\underset{\widetilde{\varphi}}{\widetilde{\varphi}}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\tilde{\tau}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{6}, \mathcal{P}_{9}\right)\left(\mathcal{P}_{4}, \mathcal{P}_{7}, \mathcal{P}_{10}\right)\left(\mathcal{P}_{5}, \mathcal{P}_{8}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{6}, \mathcal{B}_{9}\right)\left(\mathcal{B}_{4}, \mathcal{B}_{7}, \mathcal{B}_{10}\right)\left(\mathcal{B}_{5}, \mathcal{B}_{8}, \mathcal{B}_{11}\right)$.
(ii) φ fixes three points of \mathcal{P}_{i} for $0 \leq i \leq 2$ and three blocks of \mathcal{B}_{j} for $0 \leq j \leq 2$. Also $\langle\tau\rangle$ acts regularly on $F_{\mathcal{P}_{i}}(\varphi)$ for $0 \leq i \leq 2$, and G acts regularly on $\mathcal{P}_{i} \backslash F_{\mathcal{P}_{i}}(\varphi)$ for $0 \leq i \leq 2$. Moreover, $\langle\tau\rangle$ acts regularly on $F_{\mathcal{B}_{j}}(\varphi)$ for $0 \leq j \leq 2$, and G acts regularly on $\mathcal{B}_{j} \backslash F_{\mathcal{B}_{j}}(\varphi)$ for $0 \leq j \leq 2$.

Proof. Suppose that Case 3 occurs. Let φ be a planar collineation in $G \backslash\{1\}$. Then we may assume that $\widetilde{\varphi}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$ and $\widetilde{\widetilde{\varphi}}=$ $\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$, where φ fixes three points of \mathcal{P}_{i} for $0 \leq i \leq 2$ and three blocks of \mathcal{B}_{j} for $0 \leq j \leq 2$. Let $\varphi^{\mathcal{P}_{0}}=\left(p_{0}\right)\left(p_{1}\right)\left(p_{2}\right)\left(p_{3}, p_{4}, p_{5}\right)$ $\left(p_{6}, p_{7}, p_{8}\right)\left(p_{9}, p_{10}, p_{11}\right), \quad \varphi^{\mathcal{P}_{1}}=\left(p_{12}\right)\left(p_{13}\right)\left(p_{14}\right)\left(p_{15}, p_{16}, p_{17}\right)\left(p_{18}, p_{19}, p_{20}\right)\left(p_{21}, p_{22}, p_{23}\right)$, $\varphi^{\mathcal{P}_{2}}=\left(p_{24}\right)\left(p_{25}\right)\left(p_{26}\right)\left(p_{27}, p_{28}, p_{29}\right)\left(p_{30}, p_{31}, p_{32}\right)\left(p_{33}, p_{34}, p_{35}\right)$ and $F_{\left(L_{\infty}\right)}(\varphi)=\left\{r_{\infty}, r_{0}\right.$, $\left.r_{1}, r_{2}\right\}$. We distinguish two cases.

Case I. Suppose that there exists $\tau \in G \backslash\langle\varphi\rangle$ with $F_{\mathcal{P}}(\tau) \neq \emptyset$. Then τ is planar and $F_{\left(L_{\infty}\right)}(\tau)=\left\{r_{\infty}, r_{0}, r_{1}, r_{2}\right\}$. Since $\left(F_{\mathcal{Q}}(G), F_{\mathcal{L}}(G)\right)$ is not a subplane of $(\mathcal{Q}, \mathcal{L}, J)$ by Lemma 3.3, $F_{\mathcal{P}}(\varphi) \cap F_{\mathcal{P}}(\tau)=\emptyset$.
(α) Suppose that $\mathcal{P}_{0}{ }^{\tau}=\mathcal{P}_{0}$. Since τ induces a permutation on $\left\{\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right\}$, $\mathcal{P}_{1}{ }^{\tau}=\mathcal{P}_{1}$ and $\mathcal{P}_{2}{ }^{\tau}=\mathcal{P}_{2}$. Let $\tau^{\mathcal{P}_{0}}=\left(p_{0}, p_{1}, p_{2}\right)\left(p_{3}\right)\left(p_{4}\right)\left(p_{5}\right)\left(p_{6}, p_{8}, p_{7}\right)\left(p_{9}, p_{10}, p_{11}\right)$, $\tau^{\mathcal{P}_{1}}=\left(p_{12}, p_{13}, p_{14}\right)\left(p_{15}\right)\left(p_{16}\right)\left(p_{17}\right)\left(p_{18}, p_{20}, p_{19}\right)\left(p_{21}, p_{22}, p_{23}\right)$ and $\tau^{\mathcal{P}_{2}}=\left(p_{24}, p_{25}, p_{26}\right)\left(p_{27}\right)\left(p_{28}\right)\left(p_{29}\right)\left(p_{30}, p_{32}, p_{31}\right)\left(p_{33}, p_{34}, p_{35}\right)$. Therefore $\varphi \tau^{\mathcal{P}_{0}}=\left(p_{0}, p_{1}, p_{2}\right)\left(p_{3}, p_{4}, p_{5}\right)\left(p_{6}\right)\left(p_{7}\right)\left(p_{8}\right)\left(p_{9}, p_{11}, p_{10}\right)$, $\varphi \tau^{\mathcal{P}_{1}}=\left(p_{12}, p_{13}, p_{14}\right)\left(p_{15}, p_{16}, p_{17}\right)\left(p_{18}\right)\left(p_{19}\right)\left(p_{20}\right)\left(p_{21}, p_{23}, p_{22}\right)$, $\varphi \tau^{\mathcal{P}_{2}}=\left(p_{24}, p_{25}, p_{26}\right)\left(p_{27}, p_{28}, p_{29}\right)\left(p_{30}\right)\left(p_{31}\right)\left(p_{32}\right)\left(p_{33}, p_{35}, p_{34}\right)$, $\varphi^{2} \tau^{\mathcal{P}_{0}}=\left(p_{0}, p_{1}, p_{2}\right)\left(p_{3}, p_{5}, p_{4}\right)\left(p_{6}, p_{7}, p_{8}\right)\left(p_{9}\right)\left(p_{10}\right)\left(p_{11}\right)$, $\varphi^{2} \tau^{\mathcal{P}_{1}}=\left(p_{12}, p_{13}, p_{14}\right)\left(p_{15}, p_{17}, p_{16}\right)\left(p_{18}, p_{19}, p_{20}\right)\left(p_{21}\right)\left(p_{22}\right)\left(p_{23}\right)$ and $\varphi^{2} \tau^{\mathcal{P}_{2}}=\left(p_{24}, p_{25}, p_{26}\right)\left(p_{27}, p_{29}, p_{28}\right)\left(p_{30}, p_{31}, p_{32}\right)\left(p_{33}\right)\left(p_{34}\right)\left(p_{35}\right)$.

Thus any collineation of $\varphi, \tau, \varphi \tau, \varphi^{2} \tau$ is planar. Therefore $\widetilde{\tau}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)$ $\left(\mathcal{P}_{3}, \mathcal{P}_{6}, \mathcal{P}_{9}\right)\left(\mathcal{P}_{4}, \mathcal{P}_{7}, \mathcal{P}_{10}\right)\left(\mathcal{P}_{5}, \mathcal{P}_{8}, \mathcal{P}_{11}\right)$. By the assumption, $\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)$ $\left(\mathcal{B}_{3}, \mathcal{B}_{6}, \mathcal{B}_{9}\right)\left(\mathcal{B}_{4}, \mathcal{B}_{7}, \mathcal{B}_{10}\right)\left(\mathcal{B}_{5}, \mathcal{B}_{8}, \mathcal{B}_{11}\right)$. Thus we have Type 3 .
(β) Suppose that $\mathcal{P}_{0}{ }^{\tau} \neq \mathcal{P}_{0}$. Then we may assume that $\widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}\right)\left(\mathcal{P}_{4}\right)$ $\left(\mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$ or $\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}\right)\left(\mathcal{P}_{4}\right)\left(\mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{8}, \mathcal{P}_{7}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$. If the former occurs, $\widetilde{\varphi^{2} \tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{5}, \mathcal{P}_{4}\right)\left(\mathcal{P}_{6}\right)\left(\mathcal{P}_{7}\right)\left(\mathcal{P}_{8}\right)\left(\mathcal{P}_{9}\right)\left(\mathcal{P}_{10}\right)\left(\mathcal{P}_{11}\right)$ and therefore $\varphi^{2} \tau$ is neither a generalized elation nor a planar collineation. This is a contradiction. Therefore $\widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}\right)\left(\mathcal{P}_{4}\right)\left(\mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{8}, \mathcal{P}_{7}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$. Set $\mathcal{S}=\left(F_{\mathcal{Q}}(\varphi), F_{\mathcal{L}}(\varphi)\right)$. Then \mathcal{S} is a subplane of π of order 3 . And also $\left.\tau\right|_{\mathcal{S}}$ is a $\left(r_{i}, L_{\infty}\right)-$ elation of \mathcal{S} for some $0 \leq i \leq 2$ and τ fixes all lines of $F_{\left(r_{i}\right)}(\varphi)$ through r_{i}. In this case we can reduce to case (α) by considering r_{i} instead of r_{∞}.

Case II. Suppose that for all $\mu \in G \backslash\langle\varphi\rangle, F_{\mathcal{P}}(\mu)=\emptyset$. Then $\theta_{\Delta}(\mu)=3, \theta_{\mathcal{P}}(\mu)=$ $0, \theta_{\Omega}(\mu)+\theta_{\mathcal{B}}(\mu)=\theta_{\Delta}(\mu)+\theta_{\mathcal{P}}(\mu)=3$ and $\left(\theta_{\Omega}(\mu), \theta_{\mathcal{B}}(\mu)\right)=(0,3)$ or (3,0). Let $G=\langle\varphi, \tau\rangle$. Then we may assume that $\theta_{\Omega}(\tau) \leq \theta_{\Omega}(\varphi \tau) \leq \theta_{\Omega}\left(\varphi^{2} \tau\right)$. In this case $\left(\theta_{\Omega}(\tau), \theta_{\Omega}(\varphi \tau), \theta_{\Omega}\left(\varphi^{2} \tau\right)\right)=(0,0,0),(0,0,3),(0,3,3)$ or $(3,3,3)$.
(γ) Suppose that $\left(\theta_{\Omega}(\tau), \theta_{\Omega}(\varphi \tau), \theta_{\Omega}\left(\varphi^{2} \tau\right)\right)=(0,0,0)$. Then $\widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)$ $\left(\mathcal{P}_{3}, \mathcal{P}_{6}, \mathcal{P}_{9}\right)\left(\mathcal{P}_{4}, \mathcal{P}_{7}, \mathcal{P}_{10}\right)\left(\mathcal{P}_{5}, \mathcal{P}_{8}, \mathcal{P}_{11}\right)$ and $\left(\theta_{\mathcal{B}}(\tau), \theta_{\mathcal{B}}(\varphi \tau), \theta_{\mathcal{B}}\left(\varphi^{2} \tau\right)\right)=(3,3,3)$. Any collineation of $\tau, \varphi \tau$, or $\varphi^{2} \tau$ is a generalized elation having the axis L_{∞}. We may assume that the center of τ is r_{0}. We distinguish three cases.

- Suppose that both $\varphi \tau$ and $\varphi^{2} \tau$ have the center r_{0}. Then $(\gamma-1) F_{\mathcal{B}_{0}}(\tau)=F_{\mathcal{B}_{0}}(\varphi)$ or $(\gamma-2)\left|F_{\mathcal{B}_{0}}(\tau)\right|=\left|F_{\mathcal{B}_{0}}(\varphi \tau)\right|=\left|F_{\mathcal{B}_{0}}\left(\varphi^{2} \tau\right)\right|=\left|F_{\mathcal{B}_{0}}(\varphi)\right|=3$ and $\mathcal{B}_{0}=F_{\mathcal{B}_{0}}(\tau) \cup$ $F_{\mathcal{B}_{0}}(\varphi \tau) \cup F_{\mathcal{B}_{0}}\left(\varphi^{2} \tau\right) \cup F_{\mathcal{B}_{0}}(\varphi)$ is a disjoint union.
- Suppose that the center of $\varphi \tau$ is r_{0} and r_{0} is not the center of $\varphi^{2} \tau$. In this case we may assume that the center of $\varphi^{2} \tau$ is r_{1}. Therefore $(\gamma-3)\left|F_{\mathcal{B}_{0}}(\tau)\right|=$ $\left|F_{\mathcal{B}_{0}}(\varphi \tau)\right|=\left|F_{\mathcal{B}_{0}}(\varphi)\right|=3,\left|F_{\mathcal{B}_{1}}\left(\varphi^{2} \tau\right)\right|=\left|F_{\mathcal{B}_{1}}(\varphi)\right|=3$ and $F_{\mathcal{B}_{0}}(\tau), \quad F_{\mathcal{B}_{0}}(\varphi \tau), \quad F_{\mathcal{B}_{0}}(\varphi)$ do not intersect each other. Moreover $F_{\mathcal{B}_{1}}\left(\varphi^{2} \tau\right) \cap F_{\mathcal{B}_{1}}(\varphi)=\emptyset$.
- Suppose that the centers of $\tau, \varphi \tau, \varphi^{2} \tau$ are different each other. Then we may assume that the center of $\varphi \tau$ is r_{1} and the center of $\varphi^{2} \tau$ is r_{2}. Therefore $(\gamma-$ 4) $\left|F_{\mathcal{B}_{0}}(\tau)\right|=\left|F_{\mathcal{B}_{0}}(\varphi)\right|=3,\left|F_{\mathcal{B}_{1}}(\varphi \tau)\right|=\left|F_{\mathcal{B}_{1}}(\varphi)\right|=3,\left|F_{\mathcal{B}_{2}}\left(\varphi^{2} \tau\right)\right|=\left|F_{\mathcal{B}_{2}}(\varphi)\right|=3$, $F_{\mathcal{B}_{0}}(\tau) \cap F_{\mathcal{B}_{0}}(\varphi)=\emptyset, F_{\mathcal{B}_{1}}(\varphi \tau) \cap F_{\mathcal{B}_{1}}(\varphi)=\emptyset$ and $F_{\mathcal{B}_{2}}\left(\varphi^{2} \tau\right) \cap F_{\mathcal{B}_{2}}(\varphi)=\emptyset$.
$(\gamma-1)$ yields Type 4.
Assume that $(\gamma-2)$ occurs. Let $p \in F_{\mathcal{P}_{0}}(\varphi)$. Then $p^{\tau} \in F_{\mathcal{P}_{1}}(\varphi)$. Let B be the block through p and p^{τ}. Then $B \in F_{\mathcal{B}}(\varphi)$. Since $p, p^{\tau} \in(B)$, we have $p^{\tau}, p^{\tau^{2}} \in\left(B^{\tau}\right)$. Therefore B and B^{τ} are through the point p^{τ}. But $B, B^{\tau} \in \mathcal{B}_{i}$ for some $0 \leq i \leq 2$. This is a contradiction. Thus $(\gamma-2)$ does not occur.

Assume that $(\gamma-3)$ occurs. Since G acts semiregularly on $\mathcal{B}_{1} \backslash\left(F_{\mathcal{B}_{1}}\left(\varphi^{2} \tau\right) \cup F_{\mathcal{B}_{1}}(\varphi)\right)$, $9\left|\left|\mathcal{B}_{1} \backslash\left(F_{\mathcal{B}_{1}}\left(\varphi^{2} \tau\right) \cup F_{\mathcal{B}_{1}}(\varphi)\right)\right|=6\right.$. This is a contradiction. Thus $(\gamma-3)$ does not occur.

Assume that $(\gamma-4)$ occurs. Since G acts semiregularly on $\mathcal{B}_{0} \backslash\left(F_{\mathcal{B}_{0}}(\tau) \cup F_{\mathcal{B}_{0}}(\varphi)\right)$, we have $9\left|\left|\mathcal{B}_{0} \backslash\left(F_{\mathcal{B}_{0}}(\tau) \cup F_{\mathcal{B}_{0}}(\varphi)\right)\right|=6\right.$. This is a contradiction. Thus $(\gamma-4)$ does not occur.
(δ) Suppose that $\left(\theta_{\Omega}(\tau), \theta_{\Omega}(\varphi \tau), \theta_{\Omega}\left(\varphi^{2} \tau\right)\right)=(0,0,3)$. Since $\theta_{\Omega}(\tau)=\theta_{\Omega}(\varphi \tau)=0$, we may assume that $\widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$. Therefore $\widetilde{\varphi^{2} \tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}\right)\left(\mathcal{P}_{4}\right) \ldots\left(\mathcal{P}_{11}\right)$. This is contrary to $\theta_{\Omega}\left(\varphi^{2} \tau\right)=3$. Thus (δ) does not occur.
(ϵ) Suppose that $\left(\theta_{\Omega}(\tau), \theta_{\Omega}(\varphi \tau), \theta_{\Omega}\left(\varphi^{2} \tau\right)\right)=(0,3,3)$. Since $\theta_{\Omega}(\tau)=0, \theta_{\Omega}(\varphi \tau)=$ 3 , we may assume that $\widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{5}, \mathcal{P}_{4}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$. Therefore $\widetilde{\varphi^{2} \tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}\right)\left(\mathcal{P}_{7}\right) \ldots\left(\mathcal{P}_{11}\right)$. This is contrary to $\theta_{\Omega}\left(\varphi^{2} \tau\right)=$ 3. Thus (ϵ) does not occur.
(ζ) Suppose that $\left(\theta_{\Omega}(\tau), \theta_{\Omega}(\varphi \tau), \theta_{\Omega}\left(\varphi^{2} \tau\right)\right)=(3,3,3)$. Then since

$$
\left(\theta_{\mathcal{B}}(\tau), \theta_{\mathcal{B}}(\varphi \tau), \theta_{\mathcal{B}}\left(\varphi^{2} \tau\right)\right)=(0,0,0) \text { and } \theta_{\Omega}(\tau)=\theta_{\Omega}(\varphi \tau)=3
$$

we may assume that

$$
\begin{aligned}
\widetilde{\tau}= & \left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right), \\
& \left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{6}, \mathcal{P}_{9}\right)\left(\mathcal{P}_{4}, \mathcal{P}_{7}, \mathcal{P}_{10}\right)\left(\mathcal{P}_{5}, \mathcal{P}_{8}, \mathcal{P}_{11}\right) \\
\text { or } \quad & \left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}\right)\left(\mathcal{P}_{4}\right)\left(\mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{8}, \mathcal{P}_{7}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right) .
\end{aligned}
$$

If the first case on $\widetilde{\tau}$ occurs, then $\widetilde{\varphi^{2} \tau}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right) \ldots\left(\mathcal{P}_{11}\right)$. This is a contradiction. The second case on $\widetilde{\tau}$ yields Type 5. If the third case on $\widetilde{\tau}$ occurs, we have a contradiction by the same argument as in ($\gamma-2$).

Lemma 4.5 Let $G=\langle\varphi, \tau\rangle$. In Case 4, if both φ and τ are planar and $F_{\Omega}(\varphi) \cap$ $F_{\Omega}(\tau)=\emptyset$, then $F_{\left(L_{\infty}\right)}(\varphi)=F_{\left(L_{\infty}\right)}(\tau)$.

Proof. Suppose that both φ and τ are planar and $F_{\Omega}(\varphi) \cap F_{\Omega}(\tau)=\emptyset, F_{\left(L_{\infty}\right)}(\varphi) \neq$ $F_{\left(L_{\infty}\right)}(\tau)$. Then $F_{\left(L_{\infty}\right)}(\varphi) \cap F_{\left(L_{\infty}\right)}(\tau)=\left\{r_{\infty}\right\}$. Let $x \in F_{\mathcal{P}}(\varphi)$ and $y \in F_{\mathcal{P}}(\tau)$. Since x, y are not contained in the same point class, there exists $B \in \mathcal{B}$ such that $x \in(B)$ and $y \in(B)$.

Assume that there exists $x_{1}(\neq x) \in(B)$ such that $x_{1} \in F_{\mathcal{P}}(\varphi)$. Then $\mid(B) \cap$ $F_{\mathcal{P}}(\varphi) \mid=3, B \in F_{\mathcal{B}}(\varphi)$ and therefore $(B)=\left(B^{\varphi}\right) \ni y^{\varphi}$. Moreover $y^{\varphi} \neq y$ and $y^{\varphi} \in$ $F_{\mathcal{P}}(\tau)$. Let L be the extension to a line in \mathcal{L} of B. Then $(L) \cap\left(L_{\infty}\right)$ is fixed by both φ and τ. This is a contradiction. Therefore $\{B\} \cap F_{\mathcal{P}}(\varphi)=\{x\},(B) \cap F_{\mathcal{P}}(\tau)=\{y\}$.

Moreover $(B) \cap\left(L_{\infty}\right) \notin F_{\left(L_{\infty}\right)}(\varphi) \cup F_{\left(L_{\infty}\right)}(\tau)$. If we move points $x \in F_{\mathcal{P}}(\varphi)$ and points $y \in F_{\mathcal{P}}(\tau)$, the number of these lines L (the extensions to lines in \mathcal{L} of the blocks B) is 81 . Therefore these lines L intersect with L_{∞} in the points except $F_{\left(L_{\infty}\right)}(\varphi) \cup F_{\left(L_{\infty}\right)}(\tau)$. But $\left|\left\{X \in \mathcal{L} \mid X \neq L_{\infty},(X) \cap\left(L_{\infty}\right) \notin F_{\left(L_{\infty}\right)}(\varphi) \cup F_{\left(L_{\infty}\right)}(\tau)\right\}\right|=$ $6 \times 12=72$. This is a contradiction. Thus we have the lemma.

Lemma 4.6 If Case 4 occurs, then one of the following three types holds.
Type 6 (i) $G=\langle\varphi, \tau\rangle$,
$\underset{\sim}{\widetilde{\varphi}}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$.
(ii) φ fixes three points on \mathcal{P}_{i} for $0 \leq i \leq 2$ and three blocks of \mathcal{B}_{j} for $0 \leq j \leq 2$. $\left\langle\varphi^{2} \tau\right\rangle$ acts semiregularly on both \mathcal{P}_{i} and \mathcal{B}_{j} for $3 \leq i, j \leq 11$.
Type 7 (i) $G=\langle\varphi, \tau\rangle$,
$\underset{\sim}{\widetilde{\varphi}}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{5}, \mathcal{P}_{4}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{5}, \mathcal{B}_{4}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$.
(ii) φ fixes three points of \mathcal{P}_{i} for $0 \leq i \leq 2$ and three blocks of \mathcal{B}_{j} for $0 \leq j \leq 2$. $\langle\varphi \tau\rangle$ acts semiregularly on both \mathcal{P}_{i} and \mathcal{B}_{j} for $3 \leq i, j \leq 5 .\left\langle\varphi^{2} \tau\right\rangle$ acts semiregularly on both \mathcal{P}_{i} and \mathcal{B}_{j} for $6 \leq i, j \leq 11$.

Type 8 (i) $G=\langle\varphi, \tau\rangle$,
$\underset{\widetilde{\varphi}}{\widetilde{\varphi}}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\tilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}\right)\left(\mathcal{P}_{4}\right)\left(\mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{8}, \mathcal{P}_{7}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}\right)\left(\mathcal{B}_{3}\right)\left(\mathcal{B}_{4}\right)\left(\mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{8}, \mathcal{B}_{7}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$.
(ii) φ fixes three points of \mathcal{P}_{i} for $0 \leq i \leq 2$ and three blocks of \mathcal{B}_{j} for $0 \leq j \leq 2$.
$\langle\tau\rangle$ acts semiregularly on both \mathcal{P}_{i} and \mathcal{B}_{j} for $3 \leq i, j \leq 5 .\langle\varphi \tau\rangle$ acts semiregularly on both \mathcal{P}_{i} and \mathcal{B}_{j} for $6 \leq i, j \leq 8 .\left\langle\varphi^{2} \tau\right\rangle$ acts semiregularly on both \mathcal{P}_{i} and \mathcal{B}_{j} for $9 \leq i, j \leq 11$.

Proof. Suppose that Case 4 occurs. Let φ be a planar collineation in $G \backslash\{1\}$. Let $G=\langle\varphi, \tau\rangle$ and $F_{\left(L_{\infty}\right)}(\varphi)=\left\{r_{\infty}, r_{0}, r_{1}, r_{2}\right\}$. Then $\langle\tau\rangle$ acts regularly on $\left\{r_{0}, r_{1}, r_{2}\right\}$. We may assume that $\widetilde{\varphi}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$ and $\widetilde{\widetilde{\varphi}}=$ $\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$, where φ fixes three points of \mathcal{P}_{i} for $0 \leq i \leq 2$ and three blocks of \mathcal{B}_{j} for $0 \leq j \leq 2$. Applying the Burnside-Frobenius theorem to the permutation group (G, Δ), we have $\theta_{\Delta}(\tau)+\theta_{\Delta}(\varphi \tau)+\theta_{\Delta}\left(\varphi^{2} \tau\right)=$ 9. Then, since we may assume that $\theta_{\Delta}(\tau) \leq \theta_{\Delta}(\varphi \tau) \leq \theta_{\Delta}\left(\varphi^{2} \tau\right)$, we find that $\left(\theta_{\Delta}(\tau), \theta_{\Delta}(\varphi \tau), \theta_{\Delta}\left(\varphi^{2} \tau\right)\right)=(0,0,9),(0,3,6)$ or $(3,3,3)$ holds.
(α) Suppose that $\left(\theta_{\Delta}(\tau), \theta_{\Delta}(\varphi \tau), \theta_{\Delta}\left(\varphi^{2} \tau\right)\right)=(0,0,9)$. Since $\theta_{\Delta}(\tau)=0, \theta_{\mathcal{B}}(\tau)=0$ and $\theta_{\Omega}(\tau)=\theta_{\mathcal{P}}(\tau)$.

Assume that $\theta_{\Omega}(\tau) \neq 0$. Now τ is a $\left(r_{\infty}, L\right)$-generalized elation for some $L \in$ $\left(r_{\infty}\right) \backslash\left\{L_{\infty}\right\}$ by Lemma 3.6. Since $L^{\varphi}=L$ by Lemma 3.5, $L \in F_{\mathcal{L}}(G)$. Let L_{i} be the line of π through r_{∞} corresponding to $\mathcal{P}_{i}(0 \leq i \leq 11)$. Then since $\left\{L_{0}, L_{1}, L_{2}\right\}^{\tau}=$ $\left\{L_{0}, L_{1}, L_{2}\right\}, L_{0} \in F_{\mathcal{L}}(G)$. This is a contradiction. Therefore $\theta_{\Omega}(\tau)=\theta_{\mathcal{P}}(\tau)=0$ and $\theta_{\Delta}(\tau)=\theta_{\mathcal{B}}(\tau)=0$.

Since $\theta_{\Delta}(\varphi \tau)=0$, the similar argument yields $\theta_{\Omega}(\varphi \tau)=\theta_{\mathcal{P}}(\varphi \tau)=0$ and $\theta_{\Delta}(\varphi \tau)=\theta_{\mathcal{B}}(\varphi \tau)=0$. Since $\varphi^{2} \tau$ is a $\left(r_{\infty}, L_{\infty}\right)$-generalized elation by Lemma 3.5, $\theta_{\Omega}\left(\varphi^{2} \tau\right)=9$. Therefore $\widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$. It also follows that $\left\langle\varphi^{2} \tau\right\rangle$ acts semiregulary on both \mathcal{P}_{i} and \mathcal{B}_{j} for $3 \leq i, j \leq 11$. Thus we have Type 6.
(β) Suppose that $\left(\theta_{\Delta}(\tau), \theta_{\Delta}(\varphi \tau), \theta_{\Delta}\left(\varphi^{2} \tau\right)\right)=(0,3,6)$. Then, $\theta_{\Omega}(\tau)=\theta_{\mathcal{P}}(\tau)=0$ and $\theta_{\Delta}(\tau)=\theta_{\mathcal{B}}(\tau)=0$ hold by the same argument as in (α), because $\theta_{\Delta}(\tau)=0$. Since $\theta_{\Delta}(\varphi \tau)=3$, by Lemma $4.5 \varphi \tau$ is a generalized elation. Let $F_{\left(L_{\infty}\right)}(\varphi \tau)=$ $\left\{r_{3}, r_{4}, r_{5}, r_{\infty}\right\}$. From the assumption of Case 4 , it follows that $\left\{r_{0}, r_{1}, r_{2}\right\} \cap\left\{r_{3}, r_{4}, r_{5}\right\}$ $=\emptyset . \varphi \tau$ is a $\left(r_{\infty}, L_{\infty}\right)$-generalized elation by Lemma 3.5. Therefore

$$
\widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{5}, \mathcal{P}_{4}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)
$$

and

$$
\tilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{5}, \mathcal{B}_{4}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)
$$

It also follows that $\langle\varphi \tau\rangle$ acts semiregularly on both \mathcal{P}_{i} and $\mathcal{B}_{j}(3 \leq i, j \leq 5)$ and $\left\langle\varphi^{2} \tau\right\rangle$ acts semiregularly on both \mathcal{P}_{i} and $\mathcal{B}_{j}(6 \leq i, j \leq 11)$. Thus we have Type 7 .
(γ) Suppose that $\left(\theta_{\Delta}(\tau), \theta_{\Delta}(\varphi \tau), \theta_{\Delta}\left(\varphi^{2} \tau\right)\right)=(3,3,3)$. Then all $\tau, \varphi \tau, \varphi^{2} \tau$ are generalized elations by Lemmas 3.5 and 4.5. For $\mu \neq \xi \in\left\{\varphi, \tau, \varphi \tau, \varphi^{2} \tau\right\}, F_{\Delta}(\mu) \cap$ $F_{\Delta}(\xi)=\emptyset$ and $F_{\Omega}(\mu) \cap F_{\Omega}(\xi)=\emptyset$. In this case we have Type 8.

Lemma 4.7 If Case 5 occurs, then the following holds.
Type 9 (i) $G=\langle\varphi, \tau\rangle$,
$\underset{\widetilde{\boldsymbol{\varphi}}}{\underset{\sim}{\varphi}}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{6}, \mathcal{P}_{9}\right)\left(\mathcal{P}_{4}, \mathcal{P}_{7}, \mathcal{P}_{10}\right)\left(\mathcal{P}_{5}, \mathcal{P}_{8}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{6}, \mathcal{B}_{9}\right)\left(\mathcal{B}_{4}, \mathcal{B}_{7}, \mathcal{B}_{10}\right)\left(\mathcal{B}_{5}, \mathcal{B}_{8}, \mathcal{B}_{11}\right)$.
(ii) φ fixes three points of \mathcal{P}_{i} for $0 \leq i \leq 2$ and three blocks of \mathcal{B}_{j} for $0 \leq j \leq 2$.

Proof. Suppose that Case 5 occurs. Let φ be a planar collineation in $G \backslash\{1\}$. Let $G=\langle\varphi, \tau\rangle$. Then $\theta_{\Omega}(\tau)=\theta_{\mathcal{P}}(\tau)=0$ and $\theta_{\Delta}(\tau)=\theta_{\mathcal{B}}(\tau)=0$. By considering the assumption of Case 5 , we have Type 9 .

5 The case that $G \backslash\{1\}$ does not contain a planar collineation

If $G \backslash\{1\}$ does not contain a planar collineation, then G is semiregular on $\mathcal{P}=$ $\mathcal{Q} \backslash\left(L_{\infty}\right)$ or G is semiregular on $\mathcal{B}=\mathcal{L} \backslash\left(r_{\infty}\right)$ by Lemma 3.7. In this section we assume Hypothesis 3.1 and the following.

Hypothesis 5.1 $G \backslash\{1\}$ does not contain a planar collineation and G is semiregular on $\mathcal{Q} \backslash\left(L_{\infty}\right)$.

Then every $\mu \in G$ is a generalized elation of π with L_{∞} as an axis.
In the rest of this section, we investigate the actions on both $\Omega \cup \Delta$ and $\mathcal{P} \cup \mathcal{B}$ of φ and τ, where $G=\langle\varphi, \tau\rangle$, as in Section 4 under these assumptions. The extensions of φ and τ on $\mathcal{P} \cup \mathcal{B}$ will be determined in Section 7 .

Lemma 5.2 Case 1 does not occur.
Proof. Suppose that Case 1 occurs. Let $G=\langle\varphi, \tau\rangle$ and $F_{\left(L_{\infty}\right)}(G)=\left\{r_{\infty}, r_{0}, r_{1}\right.$, $\left.r_{2}, r_{3}, r_{4}, r_{5}\right\}$. Since $\mid\left\{r_{i} \mid r_{i}\right.$ is the center of μ for some $\left.\mu \in G \backslash\{1\}\right\} \mid \leq 4$, there exists $1 \leq j \leq 5$ such that r_{j} is not a center of any collineation of $\varphi, \tau, \varphi \tau, \varphi^{2} \tau$. Therefore G acts semiregularly on $\left(r_{j}\right) \backslash\left\{L_{\infty}\right\}$ and therefore $9=|G|| |\left(r_{j}\right) \backslash\left\{L_{\infty}\right\} \mid=12$. This is a contradiction.

Lemma 5.3 Case 2 does not occur.
Proof. Suppose that Case 2 occurs. Let $G=\langle\varphi, \tau\rangle$ and $F_{\left(L_{\infty}\right)}(G)=\left\{r_{\infty}, r_{0}, r_{1}, r_{2}\right\}$. If there exists $i \in\{\infty, 0,1,2\}$ such that r_{i} is not the center of any collineation \in $G \backslash\{1\}$, then G acts semiregularly on $\left(r_{i}\right) \backslash\left\{L_{\infty}\right\}$ and therefore $9=|G|| |\left(r_{i}\right) \backslash\left\{L_{\infty}\right\} \mid=$ 12. This is a contradiction. Thus the centers of $\varphi, \varphi \tau, \varphi^{2} \tau, \tau$ are different each other.

The Burnside-Frobenius Theorem yields $\theta_{\Delta}(\varphi)+\theta_{\Delta}(\varphi \tau)+\theta_{\Delta}\left(\varphi^{2} \tau\right)+\theta_{\Delta}(\tau)=21$. Since we may assume that $\theta_{\Delta}(\varphi) \leq \theta_{\Delta}(\varphi \tau) \leq \theta_{\Delta}\left(\varphi^{2} \tau\right) \leq \theta_{\Delta}(\tau)$, we find that

$$
\left(\theta_{\Delta}(\varphi), \theta_{\Delta}(\varphi \tau), \theta_{\Delta}\left(\varphi^{2} \tau\right), \theta_{\Delta}(\tau)\right)=(3,3,6,9) \text { or }(3,6,6,6)
$$

here we may also assume that the center of τ is r_{∞}. Set $\Phi_{1}=\left\{L \in\left(r_{\infty}\right) \backslash\left\{L_{\infty}\right\} \mid L^{\tau}=\right.$ $L\}$ and $\Phi_{2}=\left\{L \in\left(r_{\infty}\right) \backslash\left\{L_{\infty}\right\} \mid L^{\tau} \neq L\right\}$. We remark that $\left|\Phi_{2}\right|=3$ or 6 , because $\theta_{\Delta}(\tau)=\left|\Phi_{1}\right|=9$ or 6 . Then G induces a permutation group on $\Phi_{i}(i=1,2)$. Since G acts semiregularly on Φ_{2}, we have $9=|G|| | \Phi_{2} \mid$. This is a contradiction.

Lemma 5.4 If Case 3 occurs, then the following hold.
Type 10 (i) $G=\langle\varphi, \tau\rangle$,
$\underset{\sim}{\widetilde{\varphi}}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{6}, \mathcal{P}_{9}\right)\left(\mathcal{P}_{4}, \mathcal{P}_{7}, \mathcal{P}_{10}\right)\left(\mathcal{P}_{5}, \mathcal{P}_{8}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{6}, \mathcal{B}_{9}\right)\left(\mathcal{B}_{4}, \mathcal{B}_{7}, \mathcal{B}_{10}\right)\left(\mathcal{B}_{5}, \mathcal{B}_{8}, \mathcal{B}_{11}\right)$.
(ii) G acts semiregularly on \mathcal{P} and $\left|F_{\mathcal{B}_{0}}(\tau)\right|=\left|F_{\mathcal{B}_{1}}(\varphi \tau)\right|=\left|F_{\mathcal{B}_{2}}\left(\varphi^{2} \tau\right)\right|=3$.

Proof. Let $G=\langle\varphi, \tau\rangle$. Then we may assume that

$$
\begin{aligned}
\widetilde{\widetilde{\varphi}} & =\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right), \\
\text { and } \widetilde{\widetilde{\tau}} & =\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{6}, \mathcal{B}_{9}\right)\left(\mathcal{B}_{4}, \mathcal{B}_{7}, \mathcal{B}_{10}\right)\left(\mathcal{B}_{5}, \mathcal{B}_{8}, \mathcal{B}_{11}\right) .
\end{aligned}
$$

Let $F_{\left(L_{\infty}\right)}(G)=\left\{r_{\infty}, r_{0}, r_{1}, r_{2}\right\}$. A similar argument as in Lemma 5.2 yields that centers of $\varphi, \tau, \varphi \tau, \varphi^{2} \tau$ are different from each other. Therefore we may assume that the center of φ is r_{∞}. Since $\theta_{\Omega}(\varphi)=3$ by Lemma 3.6, we may assume that $\widetilde{\varphi}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$. Since $\theta_{\Omega}(\mu)=0$ for all $\mu \in G \backslash\langle\varphi\rangle, \widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{6}, \mathcal{P}_{9}\right)\left(\mathcal{P}_{4}, \mathcal{P}_{7}, \mathcal{P}_{10}\right)\left(\mathcal{P}_{5}, \mathcal{P}_{8}, \mathcal{P}_{11}\right)$. Since the centers of $\varphi, \tau, \varphi \tau, \varphi^{2} \tau$ are different from each other, we may assume that $\left|F_{\mathcal{B}_{0}}(\tau)\right|=$ $\left|F_{\mathcal{B}_{1}}(\varphi \tau)\right|=\left|F_{\mathcal{B}_{2}}\left(\varphi^{2} \tau\right)\right|=3$.

Lemma 5.5 If Case 4 occurs, then one of the following four types holds.
Type 11 (i) $G=\langle\varphi, \tau\rangle$,
$\underset{\widetilde{\varphi}}{\widetilde{\varphi}}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\widetilde{\tau}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}\right)\left(\mathcal{P}_{4}\right)\left(\mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}\right)\left(\mathcal{B}_{4}\right)\left(\mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$.
(ii) G acts semiregularly on both \mathcal{P} and \mathcal{B}.

Type 12 (i) $G=\langle\varphi, \tau\rangle$, $\underset{\widetilde{\varphi}}{\widetilde{\varphi}}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\widetilde{\tau}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}\right)\left(\mathcal{P}_{4}\right)\left(\mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{11}, \mathcal{P}_{10}\right)$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}\right)\left(\mathcal{B}_{4}\right)\left(\mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{11}, \mathcal{B}_{10}\right)$.
(ii) G acts semiregularly on both \mathcal{P} and \mathcal{B}.

Type 13 (i) $G=\langle\varphi, \tau\rangle$,
$\underset{\widetilde{\boldsymbol{\varphi}}}{\widetilde{\sim}}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\underset{\sim}{\tau}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}\right)\left(\mathcal{P}_{4}\right)\left(\mathcal{P}_{5}\right)\left(\mathcal{P}_{6}\right)\left(\mathcal{P}_{7}\right)\left(\mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}\right)\left(\mathcal{B}_{4}\right)\left(\mathcal{B}_{5}\right)\left(\mathcal{B}_{6}\right)\left(\mathcal{B}_{7}\right)\left(\mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$.
(ii) G acts semiregularly on both \mathcal{P} and \mathcal{B}.

Type 14 (i) $G=\langle\varphi, \tau\rangle$,
$\underset{\sim}{\widetilde{\varphi}}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}\right)\left(\mathcal{P}_{4}\right)\left(\mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{11}, \mathcal{P}_{10}\right)$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}\right)\left(\mathcal{B}_{3}\right)\left(\mathcal{B}_{4}\right)\left(\mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{11}, \mathcal{B}_{10}\right)$.
(ii) G acts semiregularly on both \mathcal{P} and \mathcal{B}.

Proof. Let $G=\langle\varphi, \tau\rangle$. By the assumption of Case 4, any collineation in G is a $\left(r_{\infty}, L_{\infty}\right)$-generalized elation. Therefore G acts semiregularly on \mathcal{B}. We may assume that $\theta_{\Delta}(\varphi) \leq \theta_{\Delta}(\mu) \leq \theta_{\Delta}(\tau)$ for all $\mu \in G \backslash\{1\}$. The Burnside-Frobenius theorem yields $\theta_{\Delta}(\varphi)+\theta_{\Delta}(\varphi \tau)+\theta_{\Delta}\left(\varphi^{2} \tau\right)+\theta_{\Delta}(\tau)=12$ and therefore $\theta_{\Delta}(\varphi)=0,3$.

Suppose that $\theta_{\Delta}(\varphi)=0$. Then we may assume that
$\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$ and
$\widetilde{\varphi}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$. Since $\theta_{\Delta}(\tau)=6,9$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}\right)\left(\mathcal{B}_{4}\right)\left(\mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}\right)\left(\mathcal{B}_{4}\right)\left(\mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{11}, \mathcal{B}_{10}\right)$ or
$\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}\right)\left(\mathcal{B}_{4}\right)\left(\mathcal{B}_{5}\right)\left(\mathcal{B}_{6}\right)\left(\mathcal{B}_{7}\right)\left(\mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$.
(α) Suppose that $\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}\right)\left(\mathcal{B}_{4}\right)\left(\mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$. Then $\theta_{\Omega}(\tau)=6$. Since $\widetilde{\widetilde{\varphi} \tau}=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{8}, \mathcal{B}_{7}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{11}, \mathcal{B}_{10}\right), \theta_{\Omega}(\varphi \tau)=0$. Therefore $\widetilde{\tau}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}\right)\left(\mathcal{P}_{4}\right)\left(\mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$. In this case we have Type 11.
(β) Suppose that $\widetilde{\tau}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}\right)\left(\mathcal{B}_{4}\right)\left(\mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{11}, \mathcal{B}_{10}\right)$. Then $\theta_{\Omega}(\tau)=6$. Since $\widetilde{\widetilde{\varphi \tau}}=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{8}, \mathcal{B}_{7}\right)\left(\mathcal{B}_{9}\right)\left(\mathcal{B}_{11}\right)\left(\mathcal{B}_{10}\right), \theta_{\Omega}(\varphi \tau)=3$. Therefore $\widetilde{\tau}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}\right)\left(\mathcal{P}_{4}\right)\left(\mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{11}, \mathcal{P}_{10}\right)$. In this case we have Type 12.
(γ) Suppose that $\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}\right)\left(\mathcal{B}_{4}\right)\left(\mathcal{B}_{5}\right)\left(\mathcal{B}_{6}\right)\left(\mathcal{B}_{7}\right)\left(\mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$.
Then $\theta_{\Omega}(\tau)=9$. Since

$$
\widetilde{\widetilde{\varphi \tau}}=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{11}, \mathcal{B}_{10}\right)
$$

$\theta_{\Omega}(\varphi \tau)=0$. Therefore $\widetilde{\tau}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}\right)\left(\mathcal{P}_{4}\right)\left(\mathcal{P}_{5}\right)\left(\mathcal{P}_{6}\right)\left(\mathcal{P}_{7}\right)\left(\mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$. In this case we have Type 13.

Suppose that $\theta_{\Omega}(\varphi)=3$. Then $\theta_{\Omega}(\varphi)=\theta_{\Omega}(\varphi \tau)=\theta_{\Omega}\left(\varphi^{2} \tau\right)=\theta_{\Omega}(\tau)=3$. Since $\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right), \theta_{\Omega}(\varphi)=3$. Therefore $\widetilde{\varphi}=$
$\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$ and $\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}\right)\left(\mathcal{B}_{3}\right)\left(\mathcal{B}_{4}\right)$
$\left(\mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{11}, \mathcal{B}_{10}\right)$. Since $\theta_{\Omega}(\tau)=\theta_{\Omega}(\varphi \tau)=3, \widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}\right)\left(\mathcal{P}_{4}\right)$
$\left(\mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{11}, \mathcal{P}_{10}\right)$. In this case we have Type 14.
Lemma 5.6 If Case 5 occurs, then the following hold.
Type 15 (i) $G=\langle\varphi, \tau\rangle$,
$\underset{\sim}{\widetilde{\varphi}}=\left(\mathcal{P}_{0}\right)\left(\mathcal{P}_{1}\right)\left(\mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right)\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right)\left(\mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\varphi}}=\left(\mathcal{B}_{0}\right)\left(\mathcal{B}_{1}\right)\left(\mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}\right)\left(\mathcal{B}_{6}, \mathcal{B}_{7}, \mathcal{B}_{8}\right)\left(\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}\right)$,
$\widetilde{\tau}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}\right)\left(\mathcal{P}_{3}, \mathcal{P}_{6}, \mathcal{P}_{9}\right)\left(\mathcal{P}_{4}, \mathcal{P}_{7}, \mathcal{P}_{10}\right)\left(\mathcal{P}_{5}, \mathcal{P}_{8}, \mathcal{P}_{11}\right)$,
$\widetilde{\widetilde{\tau}}=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}\right)\left(\mathcal{B}_{3}, \mathcal{B}_{6}, \mathcal{B}_{9}\right)\left(\mathcal{B}_{4}, \mathcal{B}_{7}, \mathcal{B}_{10}\right)\left(\mathcal{B}_{5}, \mathcal{B}_{8}, \mathcal{B}_{11}\right)$.
(ii) G acts semiregularly on both \mathcal{P} and \mathcal{B}.

Proof. There exists $\varphi \in G \backslash\{1\}$ such that $\theta_{\Delta}(\varphi)=3$ by the assumption of Case 5 . Since $\theta_{\mathcal{P}}(\varphi)+\theta_{\Delta}(\varphi)=\theta_{\mathcal{B}}(\varphi)+\theta_{\Omega}(\varphi)$ and $\theta_{\mathcal{P}}(\varphi)=0, \theta_{\mathcal{B}}(\varphi)+\theta_{\Omega}(\varphi)=3$. Since φ is a $\left(r_{\infty}, L_{\infty}\right)$-generalized elation, $\theta_{\Omega}(\varphi)=3$ and therefore $\theta_{\mathcal{B}}(\varphi)=0$. There exists $\tau \in G \backslash\langle\varphi\rangle$ such that $\theta_{\Delta}(\tau)=0$ by the assumption of Case 5 . Then $\theta_{\Delta}(\varphi \tau)=$ $\theta_{\Delta}\left(\varphi^{2} \tau\right)=0$. Therefore $\tau, \varphi \tau, \varphi^{2} \tau$ are $\left(r_{\infty}, L_{\infty}\right)$-generalized elations. Hence $\theta_{\Omega}(\tau)=$ $\theta_{\Omega}(\varphi \tau)=\theta_{\Omega}\left(\varphi^{2} \tau\right)=0$ and $\theta_{\mathcal{B}}(\tau)=\theta_{\mathcal{B}}(\varphi \tau)=\theta_{\mathcal{B}}\left(\varphi^{2} \tau\right)=0$. Thus we have Type 15.

Lemma 5.7 Let G be a collineation group of order 9 of $\pi=(\mathcal{Q}, \mathcal{L}, J)$. If $G \backslash\{1\}$ does not contain a planar collineation, then one of Types 10 to 15 occurs, up to duality of π.

Proof. From Lemmas 5.2 to 5.6, and Lemma 3.7, the lemma holds.

$6 \quad$ Types 1 to 9

In this section we consider Types 1 to 9 in Section 4 and we show that none of these types occurs, by considering the first 36 rows of the incidence matrix of \mathcal{D}, which corresponds to the subplane of order 3 .

Let $\mathcal{D}=(\mathcal{P}, \mathcal{B}, I)$ be the $\operatorname{STD}_{1}[12,12]$ with the set of point classes $\Omega=\left\{\mathcal{P}_{0}, \ldots\right.$, $\left.\mathcal{P}_{11}\right\}(0 \leq i \leq 11)$ and the set of block classes $\Delta=\left\{\mathcal{B}_{0}, \ldots, \mathcal{B}_{11}\right\}(0 \leq j \leq 11)$. Let $\mathcal{P}_{i}=\left\{p_{12 i}, p_{12 i+1}, \ldots, p_{12 i+11}\right\}(0 \leq i \leq 11)$ and $\mathcal{B}_{j}=\left\{B_{12 j}, B_{12 j+1}, \ldots, B_{12 j+11}\right\}(0 \leq$ $j \leq 11)$. Let $H=\left(h_{i, j}\right)_{0 \leq i, j \leq 143}$ be the incidence matrix corresponding to the numberings p_{0}, \ldots, p_{143} and B_{0}, \ldots, B_{143} of points and blocks of \mathcal{D} and set $H_{r, s}=$ $\left(h_{12 r+i, 12 s+j}\right)_{0 \leq i, j \leq 11}$ for $0 \leq r, s \leq 11$. Then $H_{r, s}(0 \leq r, s \leq 11)$ is a permutation matrix and $H=\left(H_{r, s}\right)_{0 \leq r, s \leq 11}$. Moreover set $H_{1}=\left(h_{i, j}\right)_{0 \leq i \leq 35,0 \leq j \leq 143}$. Then $H_{1}=\left(H_{r, s}\right)_{0 \leq r \leq 2,0 \leq s \leq 11}$. At first we determine the form of H_{1} for each type of Types 1 to 9 . We need several symbols for that.

Notation 6.1 (i) Let Λ_{1} be the set of 12×12 permutation matrices

$$
\left(\begin{array}{c|ccc}
C_{0} & O_{3} & O_{3} & O_{3} \\
\hline O_{3} & C_{1} & C_{2} & C_{3} \\
O_{3} & C_{3} & C_{1} & C_{2} \\
O_{3} & C_{2} & C_{3} & C_{1}
\end{array}\right)
$$

where $C_{i}(0 \leq i \leq 3)$ are 3×3 cyclic matrices.
Let Λ_{2} be the set of 12×12 permutation matrices

$$
S=\left(\begin{array}{cccc}
P & O_{3} & O_{3} & O_{3} \\
O_{3} & C_{0} & C_{1} & C_{2} \\
O_{3} & C_{3} & C_{4} & C_{5} \\
O_{3} & C_{6} & C_{7} & C_{8}
\end{array}\right)
$$

where P is a 3×3 permutation matrix and $C_{i}(0 \leq i \leq 8)$ are 3×3 cyclic matrices.
Let Λ_{3} be the set of 12×12 permutation matrices $\left(\begin{array}{cccc}A & O_{3} & O_{3} & O_{3} \\ O_{3} & B & O_{3} & O_{3} \\ O_{3} & O_{3} & C & O_{3} \\ O_{3} & O_{3} & O_{3} & D\end{array}\right)$, where A, B, C, D are 3×3 permutation matrices.
(ii) For a 3×3 matrix $X=\left(\begin{array}{ccc}x_{0,0} & x_{0,1} & x_{0,2} \\ x_{1,0} & x_{1,1} & x_{1,2} \\ x_{2,0} & x_{2,1} & x_{2,2}\end{array}\right)=\left(x_{i, j}\right)_{0 \leq i, j \leq 2}$ with entries from $\{0,1\}$ and $f, g \in \operatorname{Sym}\{0,1,2\}$, we define $X^{(f, g)}=\left(y_{i, j}\right)_{0 \leq i, j \leq 2}$ by $y_{i, j}=x_{i^{f}, j^{g}} \quad(0 \leq$ $i, j \leq 2)$. In particular, for $r, s \in\{1,2\}$, set $X^{\left(f^{r}, f^{s}\right)}=X^{(r, s)}$ where $f=(0,1,2)$.

Then, let Φ_{1} be the set of 12×12 permutation matrices
$\left(\begin{array}{cccc}C_{0} & C_{1} & C_{2} & C_{3} \\ X_{0} & X_{1} & X_{2} & X_{3} \\ X_{0}^{(1,1)} & X_{1}{ }^{(1,1)} & X_{2}^{(1,1)} & X_{3}^{(1,1)} \\ X_{0}^{(2,2)} & X_{1}^{(2,2)} & X_{2}^{(2,2)} & X_{3}{ }^{(2,2)}\end{array}\right), \Phi_{2}$ the set of 12×12 permutation matrices
$\left(\begin{array}{cccc}C_{0} & C_{1} & C_{2} & C_{3} \\ X_{0} & X_{1} & X_{2} & X_{3} \\ X_{0}^{(2,1)} & X_{1}^{(2,1)} & X_{2}^{(2,1)} & X_{3}^{(2,1)} \\ X_{0}{ }^{(1,2)} & X_{1}{ }^{(1,2)} & X_{2}{ }^{(1,2)} & X_{3}{ }^{(1,2)}\end{array}\right)$ and Φ_{3} the set of 12×12 permutation matrices $\left(\begin{array}{cccc}C_{0} & C_{1} & C_{2} & C_{3} \\ X_{0} & X_{1} & X_{2} & X_{3} \\ X_{0}(0,1) & X_{1}{ }^{(0,1)} & X_{2}^{(0,1)} & X_{3}{ }^{(0,1)} \\ X_{0}{ }^{(0,2)} & X_{1}{ }^{(0,2)} & X_{2}{ }^{(0,2)} & X_{3}{ }^{(0,2)}\end{array}\right)$, where $C_{i}(0 \leq i \leq 3)$ are cyclic matrices and $X_{i}(0 \leq i \leq 3)$ are 3×3 matrices.

We remark that $\left|\Lambda_{i}\right|$ and $\left|\Phi_{i}\right|(1 \leq i \leq 3)$ are not big. Actually, $\left|\Lambda_{1}\right|=3^{4}=81$, $\left|\Lambda_{2}\right|=6^{2} \times 3^{2}=972,\left|\Lambda_{3}\right|=6^{4}=1296$ and $\left|\Phi_{1}\right|=\left|\Phi_{2}\right|=\left|\Phi_{3}\right|=4 \times 3 \times 9 \times 6 \times 3=$ 1944.
(iii) We define a 12×12 permutation matrix $X^{(f, g)}=\left(y_{i, j}\right)_{0 \leq i, j \leq 11}$ by $y_{i, j}=x_{i^{f}, j^{g}} \quad(0 \leq$ $i, j \leq 11$) for a 12×12 permutation matrix $X=\left(x_{i, j}\right)_{0 \leq i, j \leq 11}$ and $f \in \operatorname{Sym}\{0,1, \ldots$, $11\}$. In particular, we set $X^{(f, 1)}=X^{f}$.

It follows that the actions of φ and τ on both \mathcal{P} and \mathcal{B} in Types 1 to 9 are determined explicitly from Section 4.

Type 1

(6.1.1) $\varphi=\left(x_{0}\right)\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}, x_{4}, x_{5}\right)\left(x_{6}, x_{7}, x_{8}\right)\left(x_{9}, x_{10}, x_{11}\right)\left(x_{12}\right)\left(x_{13}\right)\left(x_{14}\right)\left(x_{15}, x_{16}, x_{17}\right)\left(x_{18}, x_{19}, x_{20}\right)$
$\left(x_{21}, x_{22}, x_{23}\right)\left(x_{24}\right)\left(x_{25}\right)\left(x_{26}\right)\left(x_{27}, x_{28}, x_{29}\right)\left(x_{30}, x_{31}, x_{32}\right)\left(x_{33}, x_{34}, x_{35}\right)\left(x_{36}, x_{48}, x_{60}\right)\left(x_{37}, x_{49}, x_{61}\right)\left(x_{38}, x_{50}, x_{62}\right)$
$\left(x_{39}, x_{51}, x_{63}\right)\left(x_{40}, x_{52}, x_{64}\right)\left(x_{41}, x_{53}, x_{65}\right)\left(x_{42}, x_{54}, x_{66}\right)\left(x_{43}, x_{55}, x_{67}\right)\left(x_{44}, x_{56}, x_{68}\right)\left(x_{45}, x_{57}, x_{69}\right)\left(x_{46}, x_{58}, x_{70}\right)$
$\left(x_{47}, x_{59}, x_{71}\right)\left(x_{72}, x_{84}, x_{96}\right)\left(x_{73}, x_{85}, x_{97}\right)\left(x_{74}, x_{86}, x_{98}\right)\left(x_{75}, x_{87}, x_{99}\right)\left(x_{76}, x_{88}, x_{100}\right)\left(x_{77}, x_{89}, x_{101}\right)\left(x_{78}, x_{90}, x_{102}\right)$
$\left(x_{79}, x_{91}, x_{103}\right)\left(x_{80}, x_{92}, x_{104}\right)\left(x_{81}, x_{93}, x_{105}\right)\left(x_{82}, x_{94}, x_{106}\right)\left(x_{83}, x_{95}, x_{107}\right)\left(x_{108}, x_{120}, x_{132}\right)\left(x_{109}, x_{121}, x_{133}\right)$
$\left(x_{110}, x_{122}, x_{134}\right)\left(x_{111}, x_{123}, x_{135}\right)\left(x_{112}, x_{124}, x_{136}\right)\left(x_{113}, x_{125}, x_{137}\right)\left(x_{114}, x_{126}, x_{138}\right)\left(x_{115}, x_{127}, x_{139}\right)$
$\left(x_{116}, x_{128}, x_{140}\right)\left(x_{117}, x_{129}, x_{141}\right)\left(x_{118}, x_{130}, x_{142}\right)\left(x_{119}, x_{131}, x_{143}\right)$ and
$\tau=\left(x_{0}, x_{1}, x_{2}\right)\left(x_{3}, x_{6}, x_{9}\right)\left(x_{4}, x_{7}, x_{10}\right)\left(x_{5}, x_{8}, x_{11}\right)\left(x_{12}, x_{13}, x_{14}\right)\left(x_{15}, x_{18}, x_{21}\right)\left(x_{16}, x_{19}, x_{22}\right)\left(x_{17}, x_{20}, x_{23}\right)$
$\left(x_{24}, x_{25}, x_{26}\right)\left(x_{27}, x_{30}, x_{33}\right)\left(x_{28}, x_{31}, x_{34}\right)\left(x_{29}, x_{32}, x_{35}\right)\left(x_{36}, x_{61}, x_{50}\right)\left(x_{37}, x_{62}, x_{48}\right)\left(x_{38}, x_{60}, x_{49}\right)\left(x_{39}, x_{64}, x_{53}\right)$
$\left(x_{40}, x_{65}, x_{51}\right)\left(x_{41}, x_{63}, x_{52}\right)\left(x_{42}, x_{67}, x_{56}\right)\left(x_{43}, x_{68}, x_{54}\right)\left(x_{44}, x_{66}, x_{55}\right)\left(x_{45}, x_{70}, x_{59}\right)\left(x_{46}, x_{71}, x_{57}\right)\left(x_{47}, x_{69}, x_{58}\right)$
$\left(x_{72}, x_{85}, x_{98}\right)\left(x_{73}, x_{86}, x_{96}\right)\left(x_{74}, x_{84}, x_{97}\right)\left(x_{75}, x_{88}, x_{101}\right)\left(x_{76}, x_{89}, x_{99}\right)\left(x_{77}, x_{87}, x_{100}\right)\left(x_{78}, x_{91}, x_{104}\right)$
$\left(x_{79}, x_{92}, x_{102}\right)\left(x_{80}, x_{90}, x_{103}\right)\left(x_{81}, x_{94}, x_{107}\right)\left(x_{82}, x_{95}, x_{105}\right)\left(x_{83}, x_{93}, x_{106}\right)\left(x_{108}, x_{121}, x_{134}\right)\left(x_{109}, x_{122}, x_{132}\right)$
$\left(x_{110}, x_{120}, x_{133}\right)\left(x_{111}, x_{124}, x_{137}\right)\left(x_{112}, x_{125}, x_{135}\right)\left(x_{113}, x_{123}, x_{136}\right)\left(x_{114}, x_{127}, x_{140}\right)\left(x_{115}, x_{128}, x_{138}\right)$
$\left(x_{116}, x_{126}, x_{139}\right)\left(x_{117}, x_{130}, x_{143}\right)\left(x_{118}, x_{131}, x_{141}\right)\left(x_{119}, x_{129}, x_{142}\right)$, where $x \in\{p, B\}$.
Proof. Since $\left|F_{\mathcal{P}_{i}}(\varphi)\right|=3(0 \leq i \leq 2)$, let $F_{\mathcal{P}_{0}}(\varphi)=\left\{p_{0}, p_{1}, p_{2}\right\}, F_{\mathcal{P}_{1}}(\varphi)=$ $\left\{p_{12}, p_{13}, p_{14}\right\}$ and $F_{\mathcal{P}_{2}}(\varphi)=\left\{p_{24}, p_{25}, p_{26}\right\}$. Since $\langle\varphi\rangle$ acts semiregularly on $\mathcal{P}_{0} \backslash F_{\mathcal{P}_{0}}(\varphi)$, let $\varphi^{\mathcal{P}_{0}}=\left(p_{0}\right)\left(p_{1}\right)\left(p_{2}\right)\left(p_{3}, p_{4}, p_{5}\right)\left(p_{6}, p_{7}, p_{8}\right)\left(p_{9}, p_{10}, p_{11}\right)$. Since $\langle\tau\rangle$ acts semiregularly on \mathcal{P}_{0}, we may assume that $\tau^{\mathcal{P}_{0}}=\left(p_{0}, p_{1}, p_{2}\right)\left(p_{3}, p_{6}, p_{9}\right) \ldots$. From this, we have $p_{3}{ }^{\tau}=p_{6}$ and therefore $p_{3}{ }^{\varphi \tau}=p_{3}{ }^{\tau \varphi}=p_{6}{ }^{\varphi}$. This yields $p_{4}{ }^{\tau}=p_{7}$. By a similar argument, it follows that
$\tau^{\mathcal{P}_{0}}=\left(p_{0}, p_{1}, p_{2}\right)\left(p_{3}, p_{6}, p_{9}\right)\left(p_{4}, p_{7}, p_{10}\right)\left(p_{5}, p_{8}, p_{11}\right)$. Similarly, we have
$\varphi^{\mathcal{P}_{1}}=\left(p_{12}\right)\left(p_{13}\right)\left(p_{14}\right)\left(p_{15}, p_{16}, p_{17}\right)\left(p_{18}, p_{19}, p_{20}\right)\left(p_{21}, p_{22}, p_{23}\right)$,
$\tau^{\mathcal{P}_{1}}=\left(p_{12}, p_{13}, p_{14}\right)\left(p_{15}, p_{18}, p_{21}\right)\left(p_{16}, p_{19}, p_{22}\right)\left(p_{17}, p_{20}, p_{23}\right)$,
$\varphi^{\mathcal{P}_{2}}=\left(p_{24}\right)\left(p_{25}\right)\left(p_{26}\right)\left(p_{27}, p_{28}, p_{29}\right)\left(p_{30}, p_{31}, p_{32}\right)\left(p_{33}, p_{34}, p_{35}\right)$ and $\tau^{\mathcal{P}_{2}}=\left(p_{24}, p_{25}, p_{26}\right)\left(p_{27}, p_{30}, p_{33}\right)\left(p_{28}, p_{31}, p_{34}\right)\left(p_{29}, p_{32}, p_{35}\right)$.

Since $\mathcal{P}_{i}^{\varphi \tau}=\mathcal{P}_{i}(3 \leq i \leq 5)$, we may assume that
$\varphi \tau^{\mathcal{P}_{3}}=\left(p_{36}, p_{37}, p_{38}\right)\left(p_{39}, p_{40}, p_{41}\right)\left(p_{42}, p_{43}, p_{44}\right)\left(p_{45}, p_{46}, p_{47}\right)$,
$\varphi \tau^{\mathcal{P}_{4}}=\left(p_{48}, p_{49}, p_{50}\right)\left(p_{51}, p_{52}, p_{53}\right)\left(p_{54}, p_{55}, p_{56}\right)\left(p_{57}, p_{58}, p_{59}\right)$ and
$\varphi \tau^{\mathcal{P}_{5}}=\left(p_{60}, p_{61}, p_{62}\right)\left(p_{63}, p_{64}, p_{65}\right)\left(p_{66}, p_{67}, p_{68}\right)\left(p_{69}, p_{70}, p_{71}\right)$.
Since $\widetilde{\varphi}=\ldots\left(\mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}\right) \ldots$, we may assume that $\varphi^{\mathcal{P}_{3} \cup \mathcal{P}_{4} \cup \mathcal{P}_{5}}=\left(p_{36}, p_{48}, p_{60}\right) \ldots$. From this, we have $p_{36}{ }^{\varphi}=p_{48}$ and therefore $p_{36}{ }^{\varphi \tau \varphi}=p_{36}{ }^{\varphi \varphi \tau}=p_{48}{ }^{\varphi \tau}=p_{49}$. This yields $p_{37}{ }^{\varphi}=p_{49}$. By a similar argument, it follows that

$$
\varphi^{\mathcal{P}_{3} \cup \mathcal{P}_{4} \cup \mathcal{P}_{5}}=\left(p_{36}, p_{48}, p_{60}\right)\left(p_{37}, p_{49}, p_{61}\right)\left(p_{38}, p_{50}, p_{62}\right) \ldots \text { Similarly, we have }
$$

$\varphi^{\mathcal{P}_{3} \cup \mathcal{P}_{4} \cup \mathcal{P}_{5}}=\ldots\left(p_{39}, p_{51}, p_{63}\right)\left(p_{40}, p_{52}, p_{64}\right)\left(p_{41}, p_{53}, p_{65}\right) \ldots$,
$\varphi^{\mathcal{P}_{3} \cup \mathcal{P}_{4} \cup \mathcal{P}_{5}}=\ldots\left(p_{42}, p_{54}, p_{66}\right)\left(p_{43}, p_{55}, p_{67}\right)\left(p_{44}, p_{56}, p_{68}\right) \ldots$ and
$\varphi^{\mathcal{P}_{3} \cup \mathcal{P}_{4} \cup \mathcal{P}_{5}}=\ldots\left(p_{45}, p_{57}, p_{69}\right)\left(p_{46}, p_{58}, p_{70}\right)\left(p_{47}, p_{59}, p_{71}\right) \ldots$ Thus
$\varphi^{\mathcal{P}_{3} \cup \mathcal{P}_{4} \cup \mathcal{P}_{5}}=\left(p_{36}, p_{48}, p_{60}\right)\left(p_{37}, p_{49}, p_{61}\right)\left(p_{38}, p_{50}, p_{62}\right)\left(p_{39}, p_{51}, p_{63}\right)\left(p_{40}, p_{52}, p_{64}\right)$
$\left(p_{41}, p_{53}, p_{65}\right)\left(p_{42}, p_{54}, p_{66}\right)\left(p_{43}, p_{55}, p_{67}\right)\left(p_{44}, p_{56}, p_{68}\right)\left(p_{45}, p_{57}, p_{69}\right)\left(p_{46}, p_{58}, p_{70}\right)$
(p_{47}, p_{59}, p_{71}). Since
$\varphi \tau^{\mathcal{P}_{3} \cup \mathcal{P}_{4} \cup \mathcal{P}_{5}}=\left(p_{36}, p_{37}, p_{38}\right)\left(p_{39}, p_{40}, p_{41}\right)\left(p_{42}, p_{43}, p_{44}\right)\left(p_{45}, p_{46}, p_{47}\right)\left(p_{48}, p_{49}, p_{50}\right)$
$\left(p_{51}, p_{52}, p_{53}\right)\left(p_{54}, p_{55}, p_{56}\right)\left(p_{57}, p_{58}, p_{59}\right)\left(p_{60}, p_{61}, p_{62}\right)\left(p_{63}, p_{64}, p_{65}\right)\left(p_{66}, p_{67}, p_{68}\right)$
$\left(p_{69}, p_{70}, p_{71}\right)$, from $\tau=\varphi^{2}(\varphi \tau)$, it follows that
$\tau^{\mathcal{P}_{3} \cup \mathcal{P}_{4} \cup \mathcal{P}_{5}}=\left(p_{36}, p_{61}, p_{50}\right)\left(p_{37}, p_{62}, p_{48}\right)\left(p_{38}, p_{60}, p_{49}\right)\left(p_{39}, p_{64}, p_{53}\right)\left(p_{40}, p_{65}, p_{51}\right)$
$\left(p_{41}, p_{63}, p_{52}\right)\left(p_{42}, p_{67}, p_{56}\right)\left(p_{43}, p_{68}, p_{54}\right)\left(p_{44}, p_{66}, p_{55}\right)\left(p_{45}, p_{70}, p_{59}\right)\left(p_{46}, p_{71}, p_{57}\right)$
$\left(p_{47}, p_{69}, p_{58}\right)$.
Since $\mathcal{P}_{i}{ }^{\varphi^{2} \tau}=\mathcal{P}_{i}(6 \leq i \leq 8)$, we may assume that
$\varphi^{2} \tau^{\mathcal{P}_{6}}=\left(p_{72}, p_{73}, p_{74}\right)\left(p_{75}, p_{76}, p_{77}\right)\left(p_{78}, p_{79}, p_{80}\right)\left(p_{81}, p_{82}, p_{83}\right)$,
$\varphi^{2} \tau^{\mathcal{P}_{7}}=\left(p_{84}, p_{85}, p_{86}\right)\left(p_{87}, p_{88}, p_{89}\right)\left(p_{90}, p_{91}, p_{92}\right)\left(p_{93}, p_{94}, p_{95}\right)$ and
$\varphi^{2} \tau^{\mathcal{P}_{8}}=\left(p_{96}, p_{97}, p_{98}\right)\left(p_{99}, p_{100}, p_{101}\right)\left(p_{102}, p_{103}, p_{104}\right)\left(p_{105}, p_{106}, p_{107}\right)$.
Since $\widetilde{\varphi}=\ldots\left(\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}\right) \ldots$, we may assume that $\varphi^{\mathcal{P}_{6} \cup \mathcal{P}_{7} \cup \mathcal{P}_{8}}=\left(p_{72}, p_{84}, p_{96}\right)$
\ldots. From this, we have $p_{72}{ }^{\varphi}=p_{84}$ and therefore $p_{72}{ }^{\varphi^{2} \tau \varphi}=p_{72}{ }^{\varphi \varphi^{2} \tau}=p_{84}{ }^{\varphi^{2} \tau}$
$=p_{85}$. This yields $p_{73}{ }^{\varphi}=p_{85}$. By a similar argument, it follows that
$\varphi^{\mathcal{P}_{6} \cup \mathcal{P}_{7} \cup \mathcal{P}_{8}}=\left(p_{72}, p_{84}, p_{96}\right)\left(p_{73}, p_{85}, p_{97}\right)\left(p_{74}, p_{86}, p_{98}\right) \ldots$ Similarly, we have
$\varphi^{\mathcal{P}_{6} \cup \mathcal{P}_{7} \cup \mathcal{P}_{8}}=\ldots\left(p_{75}, p_{87}, p_{99}\right)\left(p_{76}, p_{88}, p_{100}\right)\left(p_{77}, p_{89}, p_{101}\right) \ldots$,
$\varphi^{\mathcal{P}_{6} \cup \mathcal{P}_{7} \cup \mathcal{P}_{8}}=\ldots\left(p_{78}, p_{90}, p_{102}\right)\left(p_{79}, p_{91}, p_{103}\right)\left(p_{80}, p_{92}, p_{104}\right) \ldots$ and
$\varphi^{\mathcal{P}_{6} \cup \mathcal{P}_{7} \cup \mathcal{P}_{8}}=\ldots\left(p_{81}, p_{93}, p_{105}\right)\left(p_{82}, p_{94}, p_{106}\right)\left(p_{83}, p_{95}, p_{107}\right) \ldots$ Thus
$\varphi^{\mathcal{P}_{6} \cup \mathcal{P}_{7} \cup \mathcal{P}_{8}}=\left(p_{72}, p_{84}, p_{96}\right)\left(p_{73}, p_{85}, p_{97}\right)\left(p_{74}, p_{86}, p_{98}\right)\left(p_{75}, p_{87}, p_{99}\right)\left(p_{76}, p_{88}, p_{100}\right)$ $\left(p_{77}, p_{89}, p_{101}\right)\left(p_{78}, p_{90}, p_{102}\right)\left(p_{79}, p_{91}, p_{103}\right)\left(p_{80}, p_{92}, p_{104}\right)\left(p_{81}, p_{93}, p_{105}\right)\left(p_{82}, p_{94}, p_{106}\right)$
$\left(p_{83}, p_{95}, p_{107}\right)$. Since
$\varphi^{2} \tau^{\mathcal{P}_{6} \cup \mathcal{P}_{7} \cup \mathcal{P}_{8}}=\left(p_{72}, p_{73}, p_{74}\right)\left(p_{75}, p_{76}, p_{77}\right)\left(p_{78}, p_{79}, p_{80}\right)\left(p_{81}, p_{82}, p_{83}\right)\left(p_{84}, p_{85}, p_{86}\right)$
$\left(p_{87}, p_{88}, p_{89}\right)\left(p_{90}, p_{91}, p_{92}\right)\left(p_{93}, p_{94}, p_{95}\right)\left(p_{96}, p_{97}, p_{98}\right)\left(p_{99}, p_{100}, p_{101}\right)\left(p_{102}, p_{103}, p_{104}\right)$
($p_{105}, p_{106}, p_{107}$), from $\tau=\varphi\left(\varphi^{2} \tau\right)$, it follows that
$\tau^{\mathcal{P}_{6} \cup \mathcal{P}_{7} \cup \mathcal{P}_{8}}=\left(p_{72}, p_{85}, p_{98}\right)\left(p_{73}, p_{86}, p_{96}\right)\left(p_{74}, p_{84}, p_{97}\right)\left(p_{75}, p_{88}, p_{101}\right)\left(p_{76}, p_{89}, p_{99}\right)$ $\left(p_{77}, p_{87}, p_{100}\right)\left(p_{78}, p_{91}, p_{104}\right)\left(p_{79}, p_{92}, p_{102}\right)\left(p_{80}, p_{90}, p_{103}\right)\left(p_{81}, p_{94}, p_{107}\right)\left(p_{82}, p_{95}, p_{105}\right)$ $\left(p_{83}, p_{93}, p_{106}\right)$.

The actions of φ and τ on $\mathcal{P}_{9} \cup \mathcal{P}_{10} \cup \mathcal{P}_{11}$ are obtained by the same argument as the above, because $\mathcal{P}_{i}{ }^{\varphi^{2} \tau}=\mathcal{P}_{i}(9 \leq i \leq 11)$. That is
$\varphi^{\mathcal{P}_{9} \cup \mathcal{P}_{10} \cup \mathcal{P}_{11}}=\left(p_{108}, p_{120}, p_{132}\right)\left(p_{109}, p_{121}, p_{133}\right)\left(p_{110}, p_{122}, p_{134}\right)\left(p_{111}, p_{123}, p_{135}\right)$
$\left(p_{112}, p_{124}, p_{136}\right)\left(p_{113}, p_{125}, p_{137}\right)\left(p_{114}, p_{126}, p_{138}\right)\left(p_{115}, p_{127}, p_{139}\right)\left(p_{116}, p_{128}, p_{140}\right)$
$\left(p_{117}, p_{129}, p_{141}\right)\left(p_{118}, p_{130}, p_{142}\right)\left(p_{119}, p_{131}, p_{143}\right)$ and
$\tau^{\mathcal{P}_{9} \cup \mathcal{P}_{10} \cup \mathcal{P}_{11}}=\left(p_{108}, p_{121}, p_{134}\right)\left(p_{109}, p_{122}, p_{132}\right)\left(p_{110}, p_{120}, p_{133}\right)\left(p_{111}, p_{124}, p_{137}\right)$
$\left(p_{112}, p_{125}, p_{135}\right)\left(p_{113}, p_{123}, p_{136}\right)\left(p_{114}, p_{127}, p_{140}\right)\left(p_{115}, p_{128}, p_{138}\right)\left(p_{116}, p_{126}, p_{139}\right)$ $\left(p_{117}, p_{130}, p_{143}\right)\left(p_{118}, p_{131}, p_{141}\right)\left(p_{119}, p_{129}, p_{142}\right)$.

Therefore we have the actions of φ and τ on \mathcal{P} described in (6.1.1). Since the permutation group (G, \mathcal{P}) is isomorphic to the permutation group (G, \mathcal{B}), we may assume that the numbering of the actions of φ and τ on \mathcal{B} are the same as these on the points.
(6.1.2) Let $f=(0)(1)(2)(3,4,5)(6,7,8)(9,10,11) \in \operatorname{Sym}\{0,1, \ldots, 11\}$. Then

$$
H_{1}=\left(\begin{array}{ccc|ccc|ccc|ccc}
S_{0} & S_{1} & S_{2} & A_{0} & A_{0}{ }^{f} & A_{0}{ }^{f^{2}} & A_{1} & A_{1}{ }^{f} & A_{1}{ }^{f^{2}} & A_{2} & A_{2}{ }^{f} & A_{2}{ }^{f^{2}} \\
S_{3} & S_{4} & S_{5} & B_{0} & B_{0}{ }^{f} & B_{0}{ }^{{ }^{2}} & B_{1} & B_{1}{ }^{f} & B_{1}{ }^{2} & B_{2} & B_{2}{ }^{f} & B_{2}{ }^{{ }^{2}} \\
S_{6} & S_{7} & S_{8} & C_{0} & C_{0}{ }^{f} & C_{0}{ }^{f^{2}} & C_{1} & C_{1}{ }^{f} & C_{1}{ }^{f^{2}} & C_{2} & C_{2}{ }^{f} & C_{2}{ }^{f^{2}}
\end{array}\right),
$$

where $S_{0}, \ldots, S_{8} \in \Lambda_{1}, A_{0}, B_{0}, C_{0} \in \Phi_{1}, A_{i}, B_{i}, C_{i} \in \Phi_{2}(i=1,2)$.
Proof. We remark that $h_{i, j}=1 \Longleftrightarrow p_{i} I B_{j} \Longleftrightarrow p_{i}{ }^{\mu} I B_{j}{ }^{\mu} \Longleftrightarrow h_{i^{\prime}, j^{\prime}}=1$ and $h_{i, j}=0 \Longleftrightarrow p_{i} / B_{j} \Longleftrightarrow p_{i}{ }^{\mu} \not I_{j}{ }^{\mu} \Longleftrightarrow h_{i^{\prime}, j^{\prime}}=0$, where $p_{i}{ }^{\mu}=p_{i^{\prime}}$ and $B_{j}{ }^{\mu}=B_{j^{\prime}}$, for $0 \leq i, j \leq 143, \mu \in G$.

We define an action on $\mathcal{P} \times \mathcal{B}$ of G by $(p, B)^{\mu}=\left(p^{\mu}, B^{\mu}\right)$ for $(p, B) \in \mathcal{P} \times \mathcal{B}$. Then, if $A \subseteq \mathcal{P} \times \mathcal{B}$ is a G-orbit, $h_{i, j}=h_{i^{\prime}, j^{\prime}}$ for $\left(p_{i}, B_{j}\right),\left(p_{i^{\prime}}, B_{j^{\prime}}\right) \in A$.

Since $\left(p_{3}, B_{3}\right)^{G}=\left\{\left(p_{3}, B_{3}\right),\left(p_{4}, B_{4}\right), \ldots,\left(p_{11}, B_{11}\right)\right\}$, $\left(p_{3}, B_{4}\right)^{G}=\left\{\left(p_{3}, B_{4}\right),\left(p_{4}, B_{5}\right),\left(p_{5}, B_{3}\right),\left(p_{6}, B_{7}\right),\left(p_{7}, B_{8}\right),\left(p_{8}, B_{6}\right),\left(p_{9}, B_{10}\right)\right.$, $\left.\left(p_{10}, B_{11}\right),\left(p_{11}, B_{9}\right)\right\}$,
$\left(p_{3}, B_{5}\right)^{G}=\left\{\left(p_{3}, B_{5}\right),\left(p_{4}, B_{3}\right),\left(p_{5}, B_{4}\right),\left(p_{6}, B_{8}\right),\left(p_{7}, B_{6}\right),\left(p_{8}, B_{7}\right),\left(p_{9}, B_{11}\right)\right.$, $\left.\left(p_{10}, B_{9}\right),\left(p_{11}, B_{10}\right)\right\}$,
$\left(p_{3}, B_{6}\right)^{G}=\left\{\left(p_{3}, B_{6}\right),\left(p_{4}, B_{7}\right),\left(p_{5}, B_{8}\right),\left(p_{6}, B_{9}\right),\left(p_{7}, B_{10}\right),\left(p_{8}, B_{11}\right),\left(p_{9}, B_{3}\right)\right.$, $\left.\left(p_{10}, B_{4}\right),\left(p_{11}, B_{5}\right)\right\}$,
$\left(p_{3}, B_{7}\right)^{G}=\left\{\left(p_{3}, B_{7}\right),\left(p_{4}, B_{8}\right),\left(p_{5}, B_{6}\right),\left(p_{6}, B_{10}\right),\left(p_{7}, B_{11}\right),\left(p_{8}, B_{9}\right),\left(p_{9}, B_{4}\right)\right.$, $\left.\left(p_{10}, B_{5}\right),\left(p_{11}, B_{3}\right)\right\}$,
$\left(p_{3}, B_{8}\right)^{G}=\left\{\left(p_{3}, B_{8}\right),\left(p_{4}, B_{6}\right),\left(p_{5}, B_{7}\right),\left(p_{6}, B_{11}\right),\left(p_{7}, B_{9}\right),\left(p_{8}, B_{10}\right),\left(p_{9}, B_{5}\right)\right.$, $\left.\left(p_{10}, B_{3}\right),\left(p_{11}, B_{4}\right)\right\}$,
$\left(p_{3}, B_{9}\right)^{G}=\left\{\left(p_{3}, B_{9}\right),\left(p_{4}, B_{10}\right),\left(p_{5}, B_{11}\right),\left(p_{6}, B_{3}\right),\left(p_{7}, B_{4}\right),\left(p_{8}, B_{5}\right),\left(p_{9}, B_{6}\right)\right.$, $\left.\left(p_{10}, B_{7}\right),\left(p_{11}, B_{8}\right)\right\}$,
$\left(p_{3}, B_{10}\right)^{G}=\left\{\left(p_{3}, B_{10}\right),\left(p_{4}, B_{11}\right),\left(p_{5}, B_{9}\right),\left(p_{6}, B_{4}\right),\left(p_{7}, B_{5}\right),\left(p_{8}, B_{3}\right),\left(p_{9}, B_{7}\right)\right.$, $\left.\left(p_{10}, B_{8}\right),\left(p_{11}, B_{6}\right)\right\}$, and
$\left(p_{3}, B_{11}\right)^{G}=\left\{\left(p_{3}, B_{11}\right),\left(p_{4}, B_{9}\right),\left(p_{5}, B_{10}\right),\left(p_{6}, B_{5}\right),\left(p_{7}, B_{3}\right),\left(p_{8}, B_{4}\right),\left(p_{9}, B_{8}\right)\right.$, $\left.\left(p_{10}, B_{6}\right),\left(p_{11}, B_{7}\right)\right\}$,
if we set $h_{0}=h_{0,0}, h_{1}=h_{0,1}, h_{2}=h_{0,2}$ and $h_{3}=h_{3,3}, h_{4}=h_{3,4}, \ldots, h_{11}=h_{3,11}$, then $H_{0,0}=\left(\begin{array}{c|ccc}C_{0} & O_{3} & O_{3} & O_{3} \\ \hline O_{3} & C_{1} & C_{2} & C_{3} \\ O_{3} & C_{3} & C_{1} & C_{2} \\ O_{3} & C_{2} & C_{3} & C_{1}\end{array}\right)$, where $C_{0}=\left(\begin{array}{lll}h_{0} & h_{1} & h_{2} \\ h_{2} & h_{0} & h_{1} \\ h_{1} & h_{2} & h_{0}\end{array}\right), \quad C_{1}=\left(\begin{array}{lll}h_{3} & h_{4} & h_{5} \\ h_{5} & h_{3} & h_{4} \\ h_{4} & h_{5} & h_{3}\end{array}\right)$, $C_{2}=\left(\begin{array}{lll}h_{6} & h_{7} & h_{8} \\ h_{8} & h_{6} & h_{7} \\ h_{7} & h_{8} & h_{6}\end{array}\right)$ and $C_{3}=\left(\begin{array}{ccc}h_{9} & h_{10} & h_{11} \\ h_{11} & h_{9} & h_{10} \\ h_{10} & h_{11} & h_{9}\end{array}\right)$. Set $S_{0}=H_{0,0} \in \Lambda_{1}$.

By repeating the argument similarly, we obtain
$\left.H_{1}=\left(\begin{array}{lll}S_{0} & S_{1} & S_{2} \\ S_{3} & S_{4} & S_{5} \\ S_{6} & S_{7} & S_{8}\end{array}\right)^{*}\left|\quad{ }^{*}\right| \begin{array}{c}* * *\end{array}\right)$, where $S_{0}, S_{1}, \ldots, S_{8} \in \Lambda_{1}$. By a similar argument as above, we can find the remaining submatrices of H_{1}. Note that G acts semiregularly on $\bigcup_{0 \leq i \leq 2} \mathcal{P}_{i} \times \bigcup_{3 \leq j \leq 11} \mathcal{B}_{j}$. For example, since $\left(p_{3}, B_{36}\right)^{G}=$ $\left\{\left(p_{3}, B_{36}\right),\left(p_{7}, B_{37}\right),\left(p_{11}, B_{38}\right),\left(p_{4}, B_{48}\right),\left(p_{8}, B_{49}\right),\left(p_{9}, B_{50}\right),\left(p_{5}, B_{60}\right),\left(p_{6}, B_{61}\right),\left(p_{10}\right.\right.$, $\left.\left.B_{62}\right)\right\}$, we have $h_{3,36}=h_{7,37}=h_{11,38}=h_{4,48}=h_{8,49}=h_{9,50}=h_{5,60}=h_{6,61}=h_{10,62}$.

The proof of statements which will appear in the remaining types are omitted, because we can prove these by arguments similar to those used in Type 1.

Type 2

(6.2.1) $\varphi=\left(x_{0}\right)\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}, x_{4}, x_{5}\right)\left(x_{6}, x_{7}, x_{8}\right)\left(x_{9}, x_{10}, x_{11}\right)$
$\left(x_{12}\right)\left(x_{13}\right)\left(x_{14}\right)\left(x_{15}, x_{16}, x_{17}\right)\left(x_{18}, x_{19}, x_{20}\right)\left(x_{21}, x_{22}, x_{23}\right)$
$\left(x_{24}\right)\left(x_{25}\right)\left(x_{26}\right)\left(x_{27}, x_{28}, x_{29}\right)\left(x_{30}, x_{31}, x_{32}\right)\left(x_{33}, x_{34}, x_{35}\right)$
$\left(x_{36}, x_{48}, x_{60}\right)\left(x_{37}, x_{49}, x_{61}\right)\left(x_{38}, x_{50}, x_{62}\right)\left(x_{39}, x_{51}, x_{63}\right)$
$\left(x_{40}, x_{52}, x_{64}\right)\left(x_{41}, x_{53}, x_{65}\right)\left(x_{42}, x_{54}, x_{66}\right)\left(x_{43}, x_{55}, x_{67}\right)$
$\left(x_{44}, x_{56}, x_{68}\right)\left(x_{45}, x_{57}, x_{69}\right)\left(x_{46}, x_{58}, x_{70}\right)\left(x_{47}, x_{59}, x_{71}\right)$
$\left(x_{72}, x_{84}, x_{96}\right)\left(x_{73}, x_{85}, x_{97}\right)\left(x_{74}, x_{86}, x_{98}\right)\left(x_{75}, x_{87}, x_{99}\right)$
$\left(x_{76}, x_{88}, x_{100}\right)\left(x_{77}, x_{89}, x_{101}\right)\left(x_{78}, x_{90}, x_{102}\right)\left(x_{79}, x_{91}, x_{103}\right)$
$\left(x_{80}, x_{92}, x_{104}\right)\left(x_{81}, x_{93}, x_{105}\right)\left(x_{82}, x_{94}, x_{106}\right)\left(x_{83}, x_{95}, x_{107}\right)$
$\left(x_{108}, x_{120}, x_{132}\right)\left(x_{109}, x_{121}, x_{133}\right)\left(x_{110}, x_{122}, x_{134}\right)\left(x_{111}, x_{123}, x_{135}\right)$
$\left(x_{112}, x_{124}, x_{136}\right)\left(x_{113}, x_{125}, x_{137}\right)\left(x_{114}, x_{126}, x_{138}\right)\left(x_{115}, x_{127}, x_{139}\right)$
$\left(x_{116}, x_{128}, x_{140}\right)\left(x_{117}, x_{129}, x_{141}\right)\left(x_{118}, x_{130}, x_{142}\right)\left(x_{119}, x_{131}, x_{143}\right)$ and
$\tau=\left(x_{0}, x_{1}, x_{2}\right)\left(x_{3}, x_{6}, x_{9}\right)\left(x_{4}, x_{7}, x_{10}\right)\left(x_{5}, x_{8}, x_{11}\right)$
$\left(x_{12}, x_{13}, x_{14}\right)\left(x_{15}, x_{18}, x_{21}\right)\left(x_{16}, x_{19}, x_{22}\right)\left(x_{17}, x_{20}, x_{23}\right)$
$\left(x_{24}, x_{25}, x_{26}\right)\left(x_{27}, x_{30}, x_{33}\right)\left(x_{28}, x_{31}, x_{34}\right)\left(x_{29}, x_{32}, x_{35}\right)$
$\left(x_{36}, x_{37}, x_{38}\right)\left(x_{39}, x_{40}, x_{41}\right)\left(x_{42}, x_{43}, x_{44}\right)\left(x_{45}, x_{46}, x_{47}\right)$
$\left(x_{48}, x_{49}, x_{50}\right)\left(x_{51}, x_{52}, x_{53}\right)\left(x_{54}, x_{55}, x_{56}\right)\left(x_{57}, x_{58}, x_{59}\right)$
$\left(x_{60}, x_{61}, x_{62}\right)\left(x_{63}, x_{64}, x_{65}\right)\left(x_{66}, x_{67}, x_{68}\right)\left(x_{69}, x_{70}, x_{71}\right)$
$\left(x_{72}, x_{97}, x_{86}\right)\left(x_{73}, x_{98}, x_{84}\right)\left(x_{74}, x_{96}, x_{85}\right)\left(x_{75}, x_{100}, x_{89}\right)$
$\left(x_{76}, x_{101}, x_{87}\right)\left(x_{77}, x_{99}, x_{88}\right)\left(x_{78}, x_{103}, x_{92}\right)\left(x_{79}, x_{104}, x_{90}\right)$
$\left(x_{80}, x_{102}, x_{91}\right)\left(x_{81}, x_{106}, x_{95}\right)\left(x_{82}, x_{107}, x_{93}\right)\left(x_{83}, x_{105}, x_{94}\right)$
$\left(x_{108}, x_{121}, x_{134}\right)\left(x_{109}, x_{122}, x_{132}\right)\left(x_{110}, x_{120}, x_{133}\right)\left(x_{111}, x_{124}, x_{137}\right)$
$\left(x_{112}, x_{125}, x_{135}\right)\left(x_{113}, x_{123}, x_{136}\right)\left(x_{114}, x_{127}, x_{140}\right)\left(x_{115}, x_{128}, x_{138}\right)$
$\left(x_{116}, x_{126}, x_{139}\right)\left(x_{117}, x_{130}, x_{143}\right)\left(x_{118}, x_{131}, x_{141}\right)\left(x_{119}, x_{129}, x_{142}\right)$, where $x \in\{p, B\}$.
(6.2.2) Let $f=(0)(1)(2)(3,4,5)(6,7,8)(9,10,11) \in \operatorname{Sym}\{0,1, \ldots, 11\}$. Then
$H_{1}=\left(\begin{array}{ccc|ccc|ccc|ccc}S_{0} & S_{0} & S_{2} & A_{0} & A_{0}{ }^{f} & A_{0}{ }^{f^{2}} & A_{1} & A_{1}{ }^{f} & A_{1}{ }^{f^{2}} & A_{2} & A_{2}{ }^{f} & A_{2}{ }^{f^{2}} \\ S_{3} & S_{4} & S_{5} & B_{0} & B_{0}{ }^{f} & B_{0}{ }^{f^{2}} & B_{1} & B_{1}{ }^{f} & B_{1}{ }^{f^{2}} & B_{2} & B_{2}{ }^{f} & B_{2}{ }^{f^{2}} \\ S_{6} & S_{7} & S_{8} & C_{0} & C_{0}{ }^{f} & C_{0}{ }^{{ }^{2}} & C_{1} & C_{1}{ }^{f} & C_{1}{ }^{{ }^{2}} & C_{2} & C_{2}{ }^{f} & C_{2}{ }^{f^{2}}\end{array}\right)$,
where $S_{0}, \ldots, S_{8} \in \Lambda_{1}, A_{0}, B_{0}, C_{0} \in \Phi_{3}, A_{1}, B_{1}, C_{1} \in \Phi_{1}, A_{2}, B_{2}, C_{2} \in \Phi_{2}$.

Type 3

(6.3.1) $\varphi=\left(x_{0}\right)\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}, x_{4}, x_{5}\right)\left(x_{6}, x_{7}, x_{8}\right)\left(x_{9}, x_{10}, x_{11}\right)$
$\left(x_{12}\right)\left(x_{13}\right)\left(x_{14}\right)\left(x_{15}, x_{16}, x_{17}\right)\left(x_{18}, x_{19}, x_{20}\right)\left(x_{21}, x_{22}, x_{23}\right)$
$\left(x_{24}\right)\left(x_{25}\right)\left(x_{26}\right)\left(x_{27}, x_{28}, x_{29}\right)\left(x_{30}, x_{31}, x_{32}\right)\left(x_{33}, x_{34}, x_{35}\right)$
$\left(x_{36}, x_{48}, x_{60}\right)\left(x_{37}, x_{49}, x_{61}\right)\left(x_{38}, x_{50}, x_{62}\right)\left(x_{39}, x_{51}, x_{63}\right)$
$\left(x_{40}, x_{52}, x_{64}\right)\left(x_{41}, x_{53}, x_{65}\right)\left(x_{42}, x_{54}, x_{66}\right)\left(x_{43}, x_{55}, x_{67}\right)$
$\left(x_{44}, x_{56}, x_{68}\right)\left(x_{45}, x_{57}, x_{69}\right)\left(x_{46}, x_{58}, x_{70}\right)\left(x_{47}, x_{59}, x_{71}\right)$
$\left(x_{72}, x_{84}, x_{96}\right)\left(x_{73}, x_{85}, x_{97}\right)\left(x_{74}, x_{86}, x_{98}\right)\left(x_{75}, x_{87}, x_{99}\right)$
$\left(x_{76}, x_{88}, x_{100}\right)\left(x_{77}, x_{89}, x_{101}\right)\left(x_{78}, x_{90}, x_{102}\right)\left(x_{79}, x_{91}, x_{103}\right)$
$\left(x_{80}, x_{92}, x_{104}\right)\left(x_{81}, x_{93}, x_{105}\right)\left(x_{82}, x_{94}, x_{106}\right)\left(x_{83}, x_{95}, x_{107}\right)$
$\left(x_{108}, x_{120}, x_{132}\right)\left(x_{109}, x_{121}, x_{133}\right)\left(x_{110}, x_{122}, x_{134}\right)\left(x_{111}, x_{123}, x_{135}\right)$
$\left(x_{112}, x_{124}, x_{136}\right)\left(x_{113}, x_{125}, x_{137}\right)\left(x_{114}, x_{126}, x_{138}\right)\left(x_{115}, x_{127}, x_{139}\right)$
$\left(x_{116}, x_{128}, x_{140}\right)\left(x_{117}, x_{129}, x_{141}\right)\left(x_{118}, x_{130}, x_{142}\right)\left(x_{119}, x_{131}, x_{143}\right)$ and
$\tau=\left(x_{0}, x_{1}, x_{2}\right)\left(x_{3}\right)\left(x_{4}\right)\left(x_{5}\right)\left(x_{6}, x_{8}, x_{7}\right)\left(x_{9}, x_{10}, x_{11}\right)$
$\left(x_{12}, x_{13}, x_{14}\right)\left(x_{15}\right)\left(x_{16}\right)\left(x_{17}\right)\left(x_{18}, x_{20}, x_{19}\right)\left(x_{21}, x_{22}, x_{23}\right)$
$\left(x_{24}, x_{25}, x_{26}\right)\left(x_{27}\right)\left(x_{28}\right)\left(x_{29}\right)\left(x_{30}, x_{32}, x_{31}\right)\left(x_{33}, x_{34}, x_{35}\right)$
$\left(x_{36}, x_{72}, x_{108}\right)\left(x_{48}, x_{84}, x_{120}\right)\left(x_{60}, x_{96}, x_{132}\right)\left(x_{37}, x_{73}, x_{109}\right)$
$\left(x_{49}, x_{85}, x_{121}\right)\left(x_{61}, x_{97}, x_{133}\right)\left(x_{38}, x_{74}, x_{110}\right)\left(x_{50}, x_{86}, x_{122}\right)$
$\left(x_{62}, x_{98}, x_{134}\right)\left(x_{39}, x_{75}, x_{111}\right)\left(x_{51}, x_{87}, x_{123}\right)\left(x_{63}, x_{99}, x_{135}\right)$
$\left(x_{40}, x_{76}, x_{112}\right)\left(x_{52}, x_{88}, x_{124}\right)\left(x_{64}, x_{100}, x_{136}\right)\left(x_{41}, x_{77}, x_{113}\right)$
$\left(x_{53}, x_{89}, x_{125}\right)\left(x_{65}, x_{101}, x_{137}\right)\left(x_{42}, x_{78}, x_{114}\right)\left(x_{54}, x_{90}, x_{126}\right)$
$\left(x_{66}, x_{102}, x_{138}\right)\left(x_{43}, x_{79}, x_{115}\right)\left(x_{55}, x_{91}, x_{127}\right)\left(x_{67}, x_{103}, x_{139}\right)$
$\left(x_{44}, x_{80}, x_{116}\right)\left(x_{56}, x_{92}, x_{128}\right)\left(x_{68}, x_{104}, x_{140}\right)\left(x_{45}, x_{81}, x_{117}\right)$
$\left(x_{57}, x_{93}, x_{129}\right)\left(x_{69}, x_{105}, x_{141}\right)\left(x_{46}, x_{82}, x_{118}\right)\left(x_{58}, x_{94}, x_{130}\right)$
$\left(x_{70}, x_{106}, x_{142}\right)\left(x_{47}, x_{83}, x_{119}\right)\left(x_{59}, x_{95}, x_{131}\right)\left(x_{71}, x_{107}, x_{143}\right)$, where $x \in\{p, B\}$.
(6.3.2) Let $f=(0)(1)(2)(3,5,4)(6,8,7)(9,11,10)$, $g=(0,2,1)(3)(4)(5)(6,7,8)(9,11,10), h=(0,2,1)(3,5,4)(6)(7)(8)(9,10,11)$, $k=(0,2,1)(3,4,5)(6,8,7)(9)(10)(11) \in \operatorname{Sym}\{0,1, \ldots, 11\}$. Then
$H_{1}=\left(\begin{array}{ccc|ccc|ccc|ccc}S_{0} & S_{1} & S_{2} & A_{0} & A_{0}{ }^{f} & A_{0}{ }^{f^{2}} & A_{0}{ }^{g} & A_{0}{ }^{h} & A_{0}{ }^{k} & A_{0} g^{2} & A_{0}{ }^{k^{2}} & A_{0}{ }^{h^{2}} \\ S_{3} & S_{4} & S_{5} & A_{1} & A_{1}{ }^{f} & A_{1}{ }^{2^{2}} & A_{1}{ }^{g} & A_{1}{ }^{h} & A_{1}{ }^{k} & A_{1} g^{2} & A_{1}{ }^{k^{2}} & A_{1}{ }^{h^{2}} \\ S_{6} & S_{7} & S_{8} & A_{2} & A_{2}{ }^{f} & A_{2}{ }^{f^{2}} & A_{2}{ }^{g} & A_{2}{ }^{h} & A_{2}{ }^{k} & A_{2} g^{2} & A_{2}{ }^{k^{2}} & A_{2}{ }^{h^{2}}\end{array}\right)$,
where $S_{0}, S_{1}, \ldots, S_{8} \in \Lambda_{3}$ and A_{0}, A_{1}, A_{2} are 12×12 permutation matrices.

Type 4

(6.4.1) $\varphi=\left(x_{0}\right)\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}, x_{4}, x_{5}\right)\left(x_{6}, x_{7}, x_{8}\right)\left(x_{9}, x_{10}, x_{11}\right)$
$\left(x_{12}\right)\left(x_{13}\right)\left(x_{14}\right)\left(x_{15}, x_{16}, x_{17}\right)\left(x_{18}, x_{19}, x_{20}\right)\left(x_{21}, x_{22}, x_{23}\right)$
$\left(x_{24}\right)\left(x_{25}\right)\left(x_{26}\right)\left(x_{27}, x_{28}, x_{29}\right)\left(x_{30}, x_{31}, x_{32}\right)\left(x_{33}, x_{34}, x_{35}\right)$
$\left(x_{36}, x_{48}, x_{60}\right)\left(x_{37}, x_{49}, x_{61}\right)\left(x_{38}, x_{50}, x_{62}\right)\left(x_{39}, x_{51}, x_{63}\right)$
$\left(x_{40}, x_{52}, x_{64}\right)\left(x_{41}, x_{53}, x_{65}\right)\left(x_{42}, x_{54}, x_{66}\right)\left(x_{43}, x_{55}, x_{67}\right)$
$\left(x_{44}, x_{56}, x_{68}\right)\left(x_{45}, x_{57}, x_{69}\right)\left(x_{46}, x_{58}, x_{70}\right)\left(x_{47}, x_{59}, x_{71}\right)$
$\left(x_{72}, x_{84}, x_{96}\right)\left(x_{73}, x_{85}, x_{97}\right)\left(x_{74}, x_{86}, x_{98}\right)\left(x_{75}, x_{87}, x_{99}\right)$
$\left(x_{76}, x_{88}, x_{100}\right)\left(x_{77}, x_{89}, x_{101}\right)\left(x_{78}, x_{90}, x_{102}\right)\left(x_{79}, x_{91}, x_{103}\right)$
$\left(x_{80}, x_{92}, x_{104}\right)\left(x_{81}, x_{93}, x_{105}\right)\left(x_{82}, x_{94}, x_{106}\right)\left(x_{83}, x_{95}, x_{107}\right)$
$\left(x_{108}, x_{120}, x_{132}\right)\left(x_{109}, x_{121}, x_{133}\right)\left(x_{110}, x_{122}, x_{134}\right)\left(x_{111}, x_{123}, x_{135}\right)$
$\left(x_{112}, x_{124}, x_{136}\right)\left(x_{113}, x_{125}, x_{137}\right)\left(x_{114}, x_{126}, x_{138}\right)\left(x_{115}, x_{127}, x_{139}\right)$
$\left(x_{116}, x_{128}, x_{140}\right)\left(x_{117}, x_{129}, x_{141}\right)\left(x_{118}, x_{130}, x_{142}\right)\left(x_{119}, x_{131}, x_{143}\right)$, where $x \in\{p, B\}$.
$\tau=\left(p_{0}, p_{12}, p_{24}\right)\left(p_{1}, p_{13}, p_{25}\right)\left(p_{2}, p_{14}, p_{26}\right)\left(p_{3}, p_{15}, p_{27}\right)$
$\left(p_{4}, p_{16}, p_{28}\right)\left(p_{5}, p_{17}, p_{29}\right)\left(p_{6}, p_{18}, p_{30}\right)\left(p_{7}, p_{19}, p_{31}\right)$
$\left(p_{8}, p_{20}, p_{32}\right)\left(p_{9}, p_{21}, p_{33}\right)\left(p_{10}, p_{22}, p_{34}\right)\left(p_{11}, p_{23}, p_{35}\right)$
$\left(p_{36}, p_{72}, p_{108}\right)\left(p_{48}, p_{84}, p_{120}\right)\left(p_{60}, p_{96}, p_{132}\right)\left(p_{37}, p_{73}, p_{109}\right)$
$\left(p_{49}, p_{85}, p_{121}\right)\left(p_{61}, p_{97}, p_{133}\right)\left(p_{38}, p_{74}, p_{110}\right)\left(p_{50}, p_{86}, p_{122}\right)$
$\left(p_{62}, p_{98}, p_{134}\right)\left(p_{39}, p_{75}, p_{111}\right)\left(p_{51}, p_{87}, p_{123}\right)\left(p_{63}, p_{99}, p_{135}\right)$
$\left(p_{40}, p_{76}, p_{112}\right)\left(p_{52}, p_{88}, p_{124}\right)\left(p_{64}, p_{100}, p_{136}\right)\left(p_{41}, p_{77}, p_{113}\right)$
$\left(p_{53}, p_{89}, p_{125}\right)\left(p_{65}, p_{101}, p_{137}\right)\left(p_{42}, p_{78}, p_{114}\right)\left(p_{54}, p_{90}, p_{126}\right)$
$\left(p_{66}, p_{102}, p_{138}\right)\left(p_{43}, p_{79}, p_{115}\right)\left(p_{55}, p_{91}, p_{127}\right)\left(p_{67}, p_{103}, p_{139}\right)$
$\left(p_{44}, p_{80}, p_{116}\right)\left(p_{56}, p_{92}, p_{128}\right)\left(p_{68}, p_{104}, p_{140}\right)\left(p_{45}, p_{81}, p_{117}\right)$
$\left(p_{57}, p_{93}, p_{129}\right)\left(p_{69}, p_{105}, p_{141}\right)\left(p_{46}, p_{82}, p_{118}\right)\left(p_{58}, p_{94}, p_{130}\right)$
$\left(p_{70}, p_{106}, p_{142}\right)\left(p_{47}, p_{83}, p_{119}\right)\left(p_{59}, p_{95}, p_{131}\right)\left(p_{71}, p_{107}, p_{143}\right)$ and
$\tau=\left(B_{0}\right)\left(B_{1}\right)\left(B_{2}\right)\left(B_{3}, B_{6}, B_{9}\right)\left(B_{4}, B_{7}, B_{10}\right)\left(B_{5}, B_{8}, B_{11}\right)$
$\left(B_{12}, B_{13}, B_{14}\right)\left(B_{15}, B_{18}, B_{21}\right)\left(B_{16}, B_{19}, B_{22}\right)\left(B_{17}, B_{20}, B_{23}\right)$
$\left(B_{24}, B_{25}, B_{26}\right)\left(B_{27}, B_{30}, B_{33}\right)\left(B_{28}, B_{31}, B_{34}\right)\left(B_{29}, B_{32}, B_{35}\right)$
$\left(B_{36}, B_{72}, B_{108}\right)\left(B_{48}, B_{84}, B_{120}\right)\left(B_{60}, B_{96}, B_{132}\right)\left(B_{37}, B_{73}, B_{109}\right)$
$\left(B_{49}, B_{85}, B_{121}\right)\left(B_{61}, B_{97}, B_{133}\right)\left(B_{38}, B_{74}, B_{110}\right)\left(B_{50}, B_{86}, B_{122}\right)$
$\left(B_{62}, B_{98}, B_{134}\right)\left(B_{39}, B_{75}, B_{111}\right)\left(B_{51}, B_{87}, B_{123}\right)\left(B_{63}, B_{99}, B_{135}\right)$
$\left(B_{40}, B_{76}, B_{112}\right)\left(B_{52}, B_{88}, B_{124}\right)\left(B_{64}, B_{100}, B_{136}\right)\left(B_{41}, B_{77}, B_{113}\right)$
$\left(B_{53}, B_{89}, B_{125}\right)\left(B_{65}, B_{101}, B_{137}\right)\left(B_{42}, B_{78}, B_{114}\right)\left(B_{54}, B_{90}, B_{126}\right)$
$\left(B_{66}, B_{102}, B_{138}\right)\left(B_{43}, B_{79}, B_{115}\right)\left(B_{55}, B_{91}, B_{127}\right)\left(B_{67}, B_{103}, B_{139}\right)$
$\left(B_{44}, B_{80}, B_{116}\right)\left(B_{56}, B_{92}, B_{128}\right)\left(B_{68}, B_{104}, B_{140}\right)\left(B_{45}, B_{81}, B_{117}\right)$
$\left(B_{57}, B_{93}, B_{129}\right)\left(B_{69}, B_{105}, B_{141}\right)\left(B_{46}, B_{82}, B_{118}\right)\left(B_{58}, B_{94}, B_{130}\right)$
$\left(B_{70}, B_{106}, B_{142}\right)\left(B_{47}, B_{83}, B_{119}\right)\left(B_{59}, B_{95}, B_{131}\right)\left(B_{71}, B_{107}, B_{143}\right)$.
(6.4.2) (i) For a 3×3 matrix $P=\left(p_{i, j}\right)_{0 \leq i, j \leq 2}$, set
$P^{[1]}=\left(\begin{array}{lll}p_{0,2} & p_{0,0} & p_{0,1} \\ p_{1,2} & p_{1,0} & p_{1,1} \\ p_{2,2} & p_{2,0} & p_{2,1}\end{array}\right)$ and $P^{[2]}=\left(\begin{array}{lll}p_{0,1} & p_{0,2} & p_{0,0} \\ p_{1,1} & p_{1,2} & p_{1,0} \\ p_{2,1} & p_{2,2} & p_{2,0}\end{array}\right)$.
(ii) For $S=\left(\begin{array}{cccc}P & O_{3} & O_{3} & O_{3} \\ O_{3} & C_{0} & C_{1} & C_{2} \\ O_{3} & C_{3} & C_{4} & C_{5} \\ O_{3} & C_{6} & C_{7} & C_{8}\end{array}\right) \in \Phi_{1}$ set
$S^{(* 0)}=\left(\begin{array}{cccc}P & O_{3} & O_{3} & O_{3} \\ O_{3} & C_{2} & C_{0} & C_{1} \\ O_{3} & C_{5} & C_{3} & C_{4} \\ O_{3} & C_{8} & C_{6} & C_{7}\end{array}\right), \quad S^{(* 1)}=\left(\begin{array}{cccc}P^{[1]} & O_{3} & O_{3} & O_{3} \\ O_{3} & C_{2} & C_{0} & C_{1} \\ O_{3} & C_{5} & C_{3} & C_{4} \\ O_{3} & C_{8} & C_{6} & C_{7}\end{array}\right)$,
$S^{(* * 0)}=\left(\begin{array}{cccc}P & O_{3} & O_{3} & O_{3} \\ O_{3} & C_{1} & C_{2} & C_{0} \\ O_{3} & C_{4} & C_{5} & C_{3} \\ O_{3} & C_{7} & C_{8} & C_{6}\end{array}\right)$ and $S^{(* * 1)}=\left(\begin{array}{cccc}P^{[2]} & O_{3} & O_{3} & O_{3} \\ O_{3} & C_{1} & C_{2} & C_{0} \\ O_{3} & C_{4} & C_{5} & C_{3} \\ O_{3} & C_{7} & C_{8} & C_{6}\end{array}\right)$.
(6.4.3) Let $f=(0)(1)(2)(3,5,4)(6,8,7)(9,11,10) \in \operatorname{Sym}\{0,1, \ldots, 11\}$. Then
$H_{1}=\left(\left.\begin{array}{ccc|ccc|ccc|}S_{0} & S_{1} & S_{2} & A_{0} & A_{0}{ }^{f} & A_{0}{ }^{f^{2}} & A_{2} & A_{2}{ }^{f} & A_{2}{ }^{f^{2}} \\ S_{0}(* 0) & S_{1}{ }^{(* 1)} & S_{2}{ }^{(* 1)} & A_{1} & A_{1}{ }^{f} & A_{1}{ }^{f^{2}} & A_{0} & A_{0}{ }^{f} & A_{0}{ }^{f^{2}} \\ S_{0}{ }^{(* * 0)} & S_{1}{ }^{(* * 1)} & S_{2}{ }^{(* * 1)} & A_{2} & A_{2}{ }^{f} & A_{2}{ }^{{ }^{2}} & & A_{1} & A_{1}{ }^{f} \\ A_{1} & A_{1}{ }^{f^{2}}\end{array} \right\rvert\,\right.$

$$
\left.\left\lvert\, \begin{array}{lll}
A_{1} & A_{1}{ }^{f} & A_{1}{ }^{f^{2}} \\
A_{2} & A_{2}{ }^{f} & A_{2}{ }^{{ }^{2}} \\
A_{0} & A_{0}{ }^{f} & A_{0}{ }^{{ }^{2}}
\end{array}\right.\right)
$$

where $S_{0}, S_{1}, S_{2} \in \Lambda_{2}$ and A_{0}, A_{1}, A_{2} are 12×12 permutation matrices.

Type 5

(6.5.1) $\varphi=\left(x_{0}\right)\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}, x_{4}, x_{5}\right)\left(x_{6}, x_{7}, x_{8}\right)\left(x_{9}, x_{10}, x_{11}\right)$
$\left(x_{12}\right)\left(x_{13}\right)\left(x_{14}\right)\left(x_{15}, x_{16}, x_{17}\right)\left(x_{18}, x_{19}, x_{20}\right)\left(x_{21}, x_{22}, x_{23}\right)$
$\left(x_{24}\right)\left(x_{25}\right)\left(x_{26}\right)\left(x_{27}, x_{28}, x_{29}\right)\left(x_{30}, x_{31}, x_{32}\right)\left(x_{33}, x_{34}, x_{35}\right)$
$\left(x_{36}, x_{48}, x_{60}\right)\left(x_{37}, x_{49}, x_{61}\right)\left(x_{38}, x_{50}, x_{62}\right)\left(x_{39}, x_{51}, x_{63}\right)$
$\left(x_{40}, x_{52}, x_{64}\right)\left(x_{41}, x_{53}, x_{65}\right)\left(x_{42}, x_{54}, x_{66}\right)\left(x_{43}, x_{55}, x_{67}\right)$
$\left(x_{44}, x_{56}, x_{68}\right)\left(x_{45}, x_{57}, x_{69}\right)\left(x_{46}, x_{58}, x_{70}\right)\left(x_{47}, x_{59}, x_{71}\right)$
$\left(x_{72}, x_{84}, x_{96}\right)\left(x_{73}, x_{85}, x_{97}\right)\left(x_{74}, x_{86}, x_{98}\right)\left(x_{75}, x_{87}, x_{99}\right)$
$\left(x_{76}, x_{88}, x_{100}\right)\left(x_{77}, x_{89}, x_{101}\right)\left(x_{78}, x_{90}, x_{102}\right)\left(x_{79}, x_{91}, x_{103}\right)$
$\left(x_{80}, x_{92}, x_{104}\right)\left(x_{81}, x_{93}, x_{105}\right)\left(x_{82}, x_{94}, x_{106}\right)\left(x_{83}, x_{95}, x_{107}\right)$
$\left(x_{108}, x_{120}, x_{132}\right)\left(x_{109}, x_{121}, x_{133}\right)\left(x_{110}, x_{122}, x_{134}\right)\left(x_{111}, x_{123}, x_{135}\right)$
$\left(x_{112}, x_{124}, x_{136}\right)\left(x_{113}, x_{125}, x_{137}\right)\left(x_{114}, x_{126}, x_{138}\right)\left(x_{115}, x_{127}, x_{139}\right)$
$\left(x_{116}, x_{128}, x_{140}\right)\left(x_{117}, x_{129}, x_{141}\right)\left(x_{118}, x_{130}, x_{142}\right)\left(x_{119}, x_{131}, x_{143}\right)$ and
$\tau=\left(x_{0}, x_{1}, x_{2}\right)\left(x_{3}, x_{6}, x_{9}\right)\left(x_{4}, x_{7}, x_{10}\right)\left(x_{5}, x_{8}, x_{11}\right)$
$\left(x_{12}, x_{13}, x_{14}\right)\left(x_{15}, x_{18}, x_{21}\right)\left(x_{16}, x_{19}, x_{22}\right)\left(x_{17}, x_{20}, x_{23}\right)$
$\left(x_{24}, x_{25}, x_{26}\right)\left(x_{27}, x_{30}, x_{33}\right)\left(x_{28}, x_{31}, x_{34}\right)\left(x_{29}, x_{32}, x_{35}\right)$
$\left(x_{36}, x_{72}, x_{108}\right)\left(x_{48}, x_{84}, x_{120}\right)\left(x_{60}, x_{96}, x_{132}\right)\left(x_{37}, x_{73}, x_{109}\right)$
$\left(x_{49}, x_{85}, x_{121}\right)\left(x_{61}, x_{97}, x_{133}\right)\left(x_{38}, x_{74}, x_{110}\right)\left(x_{50}, x_{86}, x_{122}\right)$
$\left(x_{62}, x_{98}, x_{134}\right)\left(x_{39}, x_{75}, x_{111}\right)\left(x_{51}, x_{87}, x_{123}\right)\left(x_{63}, x_{99}, x_{135}\right)$
$\left(x_{40}, x_{76}, x_{112}\right)\left(x_{52}, x_{88}, x_{124}\right)\left(x_{64}, x_{100}, x_{136}\right)\left(x_{41}, x_{77}, x_{113}\right)$
$\left(x_{53}, x_{89}, x_{125}\right)\left(x_{65}, x_{101}, x_{137}\right)\left(x_{42}, x_{78}, x_{114}\right)\left(x_{54}, x_{90}, x_{126}\right)$
$\left(x_{66}, x_{102}, x_{138}\right)\left(x_{43}, x_{79}, x_{115}\right)\left(x_{55}, x_{91}, x_{127}\right)\left(x_{67}, x_{103}, x_{139}\right)$
$\left(x_{44}, x_{80}, x_{116}\right)\left(x_{56}, x_{92}, x_{128}\right)\left(x_{68}, x_{104}, x_{140}\right)\left(x_{45}, x_{81}, x_{117}\right)$
$\left(x_{57}, x_{93}, x_{129}\right)\left(x_{69}, x_{105}, x_{141}\right)\left(x_{46}, x_{82}, x_{118}\right)\left(x_{58}, x_{94}, x_{130}\right)$
$\left(x_{70}, x_{106}, x_{142}\right)\left(x_{47}, x_{83}, x_{119}\right)\left(x_{59}, x_{95}, x_{131}\right)\left(x_{71}, x_{107}, x_{143}\right)$, where $x \in\{p, B\}$.
(6.5.2) Let $f=(0)(1)(2)(3,5,4)(6,8,7)(9,11,10)$, $g=(0,2,1)(3,9,6)(4,10,7)(5,11,8), h=(0,2,1)(3,11,7)(4,9,8)(5,10,6)$, $k=(0,2,1)(3,10,8)(4,11,6)(5,9,7) \in \operatorname{Sym}\{0,1, \ldots, 11\}$. Then
$H_{1}=\left(\begin{array}{ccc|ccc|ccc|ccc}S_{0} & S_{1} & S_{2} & A_{0} & A_{0}{ }^{f} & A_{0}{ }^{{ }^{2}} & A_{0}{ }^{g} & A_{0}{ }^{h} & A_{0}{ }^{k} & A_{0}{ }^{g^{2}} & A_{0}{ }^{k^{2}} & A_{0}{ }^{h^{2}} \\ S_{3} & S_{4} & S_{5} & A_{1} & A_{1}{ }^{f} & A_{1}{ }^{{ }^{2}} & A_{1}{ }^{g} & A_{1}{ }^{h} & A_{1}{ }^{k} & A_{1}{ }^{g^{2}} & A_{1}{ }^{k^{2}} & A_{1}{ }^{h^{2}} \\ S_{6} & S_{7} & S_{8} & A_{2} & A_{2}{ }^{f} & A_{2}{ }^{{ }^{2}} & A_{2}{ }^{g} & A_{2}{ }^{h} & A_{2}{ }^{k} & A_{2}{ }^{g^{2}} & A_{2}{ }^{k^{2}} & A_{2}{ }^{h^{2}}\end{array}\right)$,
where $S_{0}, \ldots, S_{8} \in \Lambda_{1}$ and A_{0}, A_{1}, A_{2} are 12×12 permutation matrices.

Type 6

(6.6.1) $\varphi=\left(x_{0}\right)\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}, x_{4}, x_{5}\right)\left(x_{6}, x_{7}, x_{8}\right)\left(x_{9}, x_{10}, x_{11}\right)$
$\left(x_{12}\right)\left(x_{13}\right)\left(x_{14}\right)\left(x_{15}, x_{16}, x_{17}\right)\left(x_{18}, x_{19}, x_{20}\right)\left(x_{21}, x_{22}, x_{23}\right)$
$\left(x_{24}\right)\left(x_{25}\right)\left(x_{26}\right)\left(x_{27}, x_{28}, x_{29}\right)\left(x_{30}, x_{31}, x_{32}\right)\left(x_{33}, x_{34}, x_{35}\right)$
$\left(x_{36}, x_{48}, x_{60}\right)\left(x_{37}, x_{49}, x_{61}\right)\left(x_{38}, x_{50}, x_{62}\right)\left(x_{39}, x_{51}, x_{63}\right)$
$\left(x_{40}, x_{52}, x_{64}\right)\left(x_{41}, x_{53}, x_{65}\right)\left(x_{42}, x_{54}, x_{66}\right)\left(x_{43}, x_{55}, x_{67}\right)$
$\left(x_{44}, x_{56}, x_{68}\right)\left(x_{45}, x_{57}, x_{69}\right)\left(x_{46}, x_{58}, x_{70}\right)\left(x_{47}, x_{59}, x_{71}\right)$
$\left(x_{72}, x_{84}, x_{96}\right)\left(x_{73}, x_{85}, x_{97}\right)\left(x_{74}, x_{86}, x_{98}\right)\left(x_{75}, x_{87}, x_{99}\right)$
$\left(x_{76}, x_{88}, x_{100}\right)\left(x_{77}, x_{89}, x_{101}\right)\left(x_{78}, x_{90}, x_{102}\right)\left(x_{79}, x_{91}, x_{103}\right)$
$\left(x_{80}, x_{92}, x_{104}\right)\left(x_{81}, x_{93}, x_{105}\right)\left(x_{82}, x_{94}, x_{106}\right)\left(x_{83}, x_{95}, x_{107}\right)$


```
(x112, x ( 
(x116},\mp@subsup{x}{128}{},\mp@subsup{x}{140}{)}(\mp@subsup{x}{117}{},\mp@subsup{x}{129}{},\mp@subsup{x}{141}{})(\mp@subsup{x}{118}{},\mp@subsup{x}{130}{},\mp@subsup{x}{142}{})(\mp@subsup{x}{119}{},\mp@subsup{x}{131}{},\mp@subsup{x}{143}{})\mathrm{ and
\tau=(\mp@subsup{x}{0}{},\mp@subsup{x}{12}{},\mp@subsup{x}{24}{})(\mp@subsup{x}{1}{},\mp@subsup{x}{13}{},\mp@subsup{x}{25}{})(\mp@subsup{x}{2}{},\mp@subsup{x}{14}{},\mp@subsup{x}{26}{})(\mp@subsup{x}{3}{},\mp@subsup{x}{16}{},\mp@subsup{x}{29}{})
(x4, \mp@subsup{x}{17}{},\mp@subsup{x}{27}{})(\mp@subsup{x}{5}{},\mp@subsup{x}{15}{},\mp@subsup{x}{28}{})(\mp@subsup{x}{6}{},\mp@subsup{x}{19}{},\mp@subsup{x}{32}{})(\mp@subsup{x}{7}{},\mp@subsup{x}{20}{},\mp@subsup{x}{30}{})
```



```
(x44, \mp@subsup{x}{54}{},\mp@subsup{x}{67}{})(\mp@subsup{x}{45}{},\mp@subsup{x}{58}{},\mp@subsup{x}{71}{})(\mp@subsup{x}{46}{},\mp@subsup{x}{59}{},\mp@subsup{x}{69}{})(\mp@subsup{x}{47}{},\mp@subsup{x}{57}{},\mp@subsup{x}{70}{})
(x72, x }\mp@subsup{x}{55}{},\mp@subsup{x}{98}{})(\mp@subsup{x}{73}{},\mp@subsup{x}{86}{},\mp@subsup{x}{96}{})(\mp@subsup{x}{74}{},\mp@subsup{x}{84}{},\mp@subsup{x}{97}{})(\mp@subsup{x}{75}{},\mp@subsup{x}{88}{},\mp@subsup{x}{101}{}
(x}\mp@subsup{x}{76}{},\mp@subsup{x}{89}{},\mp@subsup{x}{99}{})(\mp@subsup{x}{77}{},\mp@subsup{x}{87}{},\mp@subsup{x}{100}{})(\mp@subsup{x}{78}{},\mp@subsup{x}{91}{},\mp@subsup{x}{104}{})(\mp@subsup{x}{79}{},\mp@subsup{x}{92}{},\mp@subsup{x}{102}{}
```



```
(x108, x121, x134)( }\mp@subsup{x}{109,}{,}\mp@subsup{x}{122}{},\mp@subsup{x}{132}{})(\mp@subsup{x}{110}{},\mp@subsup{x}{120}{},\mp@subsup{x}{133}{})(\mp@subsup{x}{111}{},\mp@subsup{x}{124}{},\mp@subsup{x}{137}{}
```



```
(x116},\mp@subsup{x}{126}{},\mp@subsup{x}{139}{)}(\mp@subsup{x}{117}{},\mp@subsup{x}{130}{},\mp@subsup{x}{143}{)})(\mp@subsup{x}{118}{},\mp@subsup{x}{131}{},\mp@subsup{x}{141}{})(\mp@subsup{x}{119}{},\mp@subsup{x}{129}{},\mp@subsup{x}{142}{})\mathrm{ , where }x\in{p,B}
```

(6.6.2) Let $f=(0)(1)(2)(3,4,5)(6,7,8)(9,10,11)$, $g=(0,1,2)(3,4,5)(6,7,8)(9,10,11) \in \operatorname{Sym}\{0,1, \ldots, 11\}$. Then
$H_{1}=\left(\left.\begin{array}{ccc|ccc}S_{0} & S_{1} & S_{2} & A_{0} & A_{0}{ }^{\left(f^{2}, 1\right)} & A_{0}{ }^{(f, 1)} \\ S_{2} & S_{0} & S_{1} & A_{0}^{\left(1, g^{2}\right)} & A_{0}{ }^{\left(f^{2}, g^{2}\right)} & A_{0}{ }^{\left(f, g^{2}\right)} \\ S_{1} & S_{2} & S_{0} & A_{0}{ }^{(1, g)} & A_{0}{ }^{\left(f^{2}, g\right)} & A_{0}{ }^{(f, g)}\end{array} \right\rvert\,\right.$

$$
\left.\begin{array}{|ccc|ccc}
A_{1} & A_{1}^{\left(f^{2}, 1\right)} & A_{1}^{(f, 1)} & A_{2} & A_{2}^{\left(f^{2}, 1\right)} & A_{2}^{(f, 1)} \\
A_{1}^{\left(1, g^{2}\right)} & A_{1}^{\left(f^{2}, g^{2}\right)} & A_{1}^{\left(f, g^{2}\right)} & A_{2}^{\left(1, g^{2}\right)} & A_{2}^{\left(f^{2}, g^{2}\right)} & A_{2}^{\left(f, g^{2}\right)} \\
A_{1}^{(1, g)} & A_{1}^{\left(f^{2}, g\right)} & A_{1}^{(f, g)} & A_{2}^{(1, g)} & A_{2}^{\left(f^{2}, g\right)} & A_{2}^{(f, g)}
\end{array}\right)
$$

where $S_{0}, S_{1}, S_{2} \in \Lambda_{2}$ and A_{0}, A_{1} and A_{2} are 12×12 permutation matrices.

Type 7

```
(6.7.1) }\varphi=(\mp@subsup{x}{0}{})(\mp@subsup{x}{1}{})(\mp@subsup{x}{2}{})(\mp@subsup{x}{3}{},\mp@subsup{x}{4}{},\mp@subsup{x}{5}{})(\mp@subsup{x}{6}{},\mp@subsup{x}{7}{},\mp@subsup{x}{8}{})(\mp@subsup{x}{9}{},\mp@subsup{x}{10}{},\mp@subsup{x}{11}{}
(x12)(x, (x) )(x+14)(\mp@subsup{x}{15}{},\mp@subsup{x}{16}{},\mp@subsup{x}{17}{})(\mp@subsup{x}{18}{},\mp@subsup{x}{19}{},\mp@subsup{x}{20}{})(\mp@subsup{x}{21}{},\mp@subsup{x}{22}{},\mp@subsup{x}{23}{})
(x}\mp@subsup{x}{24}{)})(\mp@subsup{x}{25}{})(\mp@subsup{x}{26}{})(\mp@subsup{x}{27}{},\mp@subsup{x}{28}{},\mp@subsup{x}{29}{})(\mp@subsup{x}{30}{},\mp@subsup{x}{31}{},\mp@subsup{x}{32}{})(\mp@subsup{x}{33}{},\mp@subsup{x}{34}{},\mp@subsup{x}{35}{}
```



```
(x44,\mp@subsup{x}{56}{},\mp@subsup{x}{68}{})(\mp@subsup{x}{45}{},\mp@subsup{x}{57}{},\mp@subsup{x}{69}{})(\mp@subsup{x}{46}{},\mp@subsup{x}{58}{},\mp@subsup{x}{70}{})(\mp@subsup{x}{47}{},\mp@subsup{x}{59}{},\mp@subsup{x}{71}{})
```



```
(x76, x88, x 100 )(x (x7, x x9, x ( 
(x80, x92, x (104)(x81, x93, x ( 
(x108, x120, x132)(x}\mp@subsup{x}{109}{},\mp@subsup{x}{121}{},\mp@subsup{x}{133}{})(\mp@subsup{x}{110}{},\mp@subsup{x}{122}{},\mp@subsup{x}{134}{})(\mp@subsup{x}{111}{},\mp@subsup{x}{123}{},\mp@subsup{x}{135}{}
(x112, x124},\mp@subsup{x}{136}{})(\mp@subsup{x}{113}{},\mp@subsup{x}{125}{},\mp@subsup{x}{137}{})(\mp@subsup{x}{114}{},\mp@subsup{x}{126}{},\mp@subsup{x}{138}{})(\mp@subsup{x}{115}{},\mp@subsup{x}{127}{},\mp@subsup{x}{139}{}
( }\mp@subsup{x}{116}{},\mp@subsup{x}{128}{},\mp@subsup{x}{140}{)}(\mp@subsup{x}{117}{},\mp@subsup{x}{129}{},\mp@subsup{x}{141}{})(\mp@subsup{x}{118}{},\mp@subsup{x}{130}{},\mp@subsup{x}{142}{})(\mp@subsup{x}{119}{},\mp@subsup{x}{131}{},\mp@subsup{x}{143}{})\mathrm{ and
\tau=(x
```



```
(x8,\mp@subsup{x}{18}{},\mp@subsup{x}{31}{})(\mp@subsup{x}{9}{},\mp@subsup{x}{22}{},\mp@subsup{x}{35}{})(\mp@subsup{x}{10}{},\mp@subsup{x}{23}{},\mp@subsup{x}{33}{})(\mp@subsup{x}{11}{},\mp@subsup{x}{21}{},\mp@subsup{x}{34}{})
```



```
(x44, x66, x
(x72, x ( 
```



```
( }\mp@subsup{x}{108}{,},\mp@subsup{x}{121}{},\mp@subsup{x}{134}{)}(\mp@subsup{x}{109}{},\mp@subsup{x}{122}{},\mp@subsup{x}{132}{})(\mp@subsup{x}{110}{},\mp@subsup{x}{120}{},\mp@subsup{x}{133}{})(\mp@subsup{x}{111}{},\mp@subsup{x}{124}{},\mp@subsup{x}{137}{}
```



```
(x116},\mp@subsup{x}{126}{},\mp@subsup{x}{139}{)}(\mp@subsup{x}{117}{},\mp@subsup{x}{130}{},\mp@subsup{x}{143}{})(\mp@subsup{x}{118}{},\mp@subsup{x}{131}{},\mp@subsup{x}{141}{})(\mp@subsup{x}{119}{},\mp@subsup{x}{129}{},\mp@subsup{x}{142}{})\mathrm{ , where }x\in{p,B}
```

(6.7.2) Let $f=(0)(1)(2)(3,4,5)(6,7,8)(9,10,11)$, $g=(0,1,2)(3,4,5)(6,7,8)(9,10,11) \in \operatorname{Sym}\{0,1, \ldots, 11\}$. Then

$$
\begin{aligned}
& H_{1}=\left(\left.\begin{array}{ccc|ccc|}
S_{0} & S_{1} & S_{2} \\
S_{2} & S_{0} & S_{1} & A_{0} & A_{0}{ }_{0}^{\left(f^{2}, 1\right)} & A_{0}{ }_{0}^{\left(f, g^{2}\right)} \\
S_{1} & S_{2} & S_{0} & A_{0}{ }^{\left(1, g^{2}\right)} & \left.A_{0}{ }^{\left(f^{2}, g\right)}, g^{2}\right) \\
A_{0}{ }^{(f, g)} & A_{0}{ }^{(1, g)}
\end{array} \right\rvert\,\right. \\
&\left.\left\lvert\, \begin{array}{cccccc}
A_{1} & A_{1}{ }^{\left(f^{2}, 1\right)} & A_{1}{ }^{(f, 1)} & A_{2} & A_{2}^{\left(f^{2}, 1\right)} & A_{2}^{(f, 1)} \\
A_{1}{ }^{\left(1, g^{2}\right)} & A_{1}{ }^{\left(f^{2}, g^{2}\right)} & A_{1}^{\left(f, g^{2}\right)} & A_{2}^{\left(1, g^{2}\right)} & A_{2}^{\left(f^{2}, g^{2}\right)} & A_{2}{ }^{\left(f, g^{2}\right)} \\
A_{1}{ }^{(1, g)} & A_{1}{ }^{\left(f^{2}, g\right)} & A_{1}{ }^{(f, g)} & A_{2}{ }^{(1, g)} & A_{2}{ }^{\left(f^{2}, g\right)} & A_{2}^{(f, g)}
\end{array}\right.\right),
\end{aligned}
$$

where $S_{0}, S_{1}, S_{2} \in \Lambda_{2}$ and A_{0}, A_{1}, A_{2} are 12×12 permutation matrices.

Type 8

```
(6.8.1) }\varphi=(\mp@subsup{x}{0}{})(\mp@subsup{x}{1}{})(\mp@subsup{x}{2}{})(\mp@subsup{x}{3}{},\mp@subsup{x}{4}{},\mp@subsup{x}{5}{})(\mp@subsup{x}{6}{},\mp@subsup{x}{7}{},\mp@subsup{x}{8}{})(\mp@subsup{x}{9}{},\mp@subsup{x}{10}{},\mp@subsup{x}{11}{}
(x12)(x, (x))(\mp@subsup{x}{14}{})(\mp@subsup{x}{15}{},\mp@subsup{x}{16}{},\mp@subsup{x}{17}{})(\mp@subsup{x}{18}{},\mp@subsup{x}{19}{},\mp@subsup{x}{20}{})(\mp@subsup{x}{21}{},\mp@subsup{x}{22}{},\mp@subsup{x}{23}{})
```



```
(x40, x 52, x64)(x41, x x3, x65)(x42, \mp@subsup{x}{54}{},\mp@subsup{x}{66}{})(\mp@subsup{x}{43}{},\mp@subsup{x}{55}{},\mp@subsup{x}{67}{})
```



```
(x72,\mp@subsup{x}{84}{},\mp@subsup{x}{96}{})(\mp@subsup{x}{73}{},\mp@subsup{x}{85}{},\mp@subsup{x}{97}{})(\mp@subsup{x}{74}{},\mp@subsup{x}{86}{},\mp@subsup{x}{98}{})(\mp@subsup{x}{75}{},\mp@subsup{x}{87}{},\mp@subsup{x}{99}{})
(x76, x88, x 100 )(x (x7 , x89, x ( 
(x}\mp@subsup{x}{80}{},\mp@subsup{x}{92}{},\mp@subsup{x}{104}{)}(\mp@subsup{x}{81}{},\mp@subsup{x}{93}{},\mp@subsup{x}{105}{})(\mp@subsup{x}{82}{},\mp@subsup{x}{94}{},\mp@subsup{x}{106}{})(\mp@subsup{x}{83}{},\mp@subsup{x}{95}{},\mp@subsup{x}{107}{}
( }\mp@subsup{x}{108}{,},\mp@subsup{x}{120}{},\mp@subsup{x}{132}{})(\mp@subsup{x}{109}{},\mp@subsup{x}{121}{},\mp@subsup{x}{133}{})(\mp@subsup{x}{110}{},\mp@subsup{x}{122}{},\mp@subsup{x}{134}{})(\mp@subsup{x}{111}{},\mp@subsup{x}{123}{},\mp@subsup{x}{135}{}
(x112, x (x24, , x136)(x113},\mp@subsup{x}{125}{},\mp@subsup{x}{137}{})(\mp@subsup{x}{114}{},\mp@subsup{x}{126}{},\mp@subsup{x}{138}{})(\mp@subsup{x}{115}{},\mp@subsup{x}{127}{},\mp@subsup{x}{139}{}
(x116},\mp@subsup{x}{128}{},\mp@subsup{x}{140}{})(\mp@subsup{x}{117}{},\mp@subsup{x}{129}{},\mp@subsup{x}{141}{})(\mp@subsup{x}{118}{},\mp@subsup{x}{130}{},\mp@subsup{x}{142}{})(\mp@subsup{x}{119}{},\mp@subsup{x}{131}{},\mp@subsup{x}{143}{})\mathrm{ and
\tau=(\mp@subsup{x}{0}{},\mp@subsup{x}{12}{},\mp@subsup{x}{24}{})(\mp@subsup{x}{1}{},\mp@subsup{x}{13}{},\mp@subsup{x}{25}{})(\mp@subsup{x}{2}{},\mp@subsup{x}{14}{},\mp@subsup{x}{26}{})(\mp@subsup{x}{3}{},\mp@subsup{x}{16}{},\mp@subsup{x}{29}{})
```



```
(x48, x49, x
(x60, x}\mp@subsup{x}{61}{},\mp@subsup{x}{62}{})(\mp@subsup{x}{63}{},\mp@subsup{x}{64}{},\mp@subsup{x}{65}{})(\mp@subsup{x}{66}{},\mp@subsup{x}{67}{},\mp@subsup{x}{68}{})(\mp@subsup{x}{69}{},\mp@subsup{x}{70}{},\mp@subsup{x}{71}{}
(x (x2, x x97 , x 
```



```
( }\mp@subsup{x}{108}{,}\mp@subsup{x}{121}{},\mp@subsup{x}{134}{})(\mp@subsup{x}{109}{},\mp@subsup{x}{122}{},\mp@subsup{x}{132}{})(\mp@subsup{x}{110}{},\mp@subsup{x}{120}{},\mp@subsup{x}{133}{})(\mp@subsup{x}{111}{},\mp@subsup{x}{124}{},\mp@subsup{x}{137}{}
(x112},\mp@subsup{x}{125}{},\mp@subsup{x}{135}{)})(\mp@subsup{x}{113}{},\mp@subsup{x}{123}{},\mp@subsup{x}{136}{})(\mp@subsup{x}{114}{},\mp@subsup{x}{127}{},\mp@subsup{x}{140}{})(\mp@subsup{x}{115}{},\mp@subsup{x}{128}{},\mp@subsup{x}{138}{}
```

$\left(x_{116}, x_{126}, x_{139}\right)\left(x_{117}, x_{130}, x_{143}\right)\left(x_{118}, x_{131}, x_{141}\right)\left(x_{119}, x_{129}, x_{142}\right)$, where $x \in\{p, B\}$.
(6.8.2) Let $f=(0)(1)(2)(3,4,5)(6,7,8)(9,10,11)$, $g=(0,1,2)(3,4,5)(6,7,8)(9,10,11) \in \operatorname{Sym}\{0,1, \ldots, 11\}$. Then

$$
\begin{aligned}
& H_{1}=\left(\begin{array}{ccc|ccc}
S_{0} & S_{1} & S_{2} & A_{0} & A_{0}{ }^{\left(f^{2}, 1\right)} & A_{0}(f, 1) \\
S_{2} & S_{0} & S_{1} & A_{0}^{\left(f^{2}, g^{2}\right)} & A_{0}^{\left(f, g^{2}\right)} & A_{0}{ }^{\left(1, g^{2}\right)} \\
S_{1} & S_{2} & S_{0} & A_{0}{ }^{(f, g)} & A_{0}(1, g) & A_{0}{ }^{\left(f^{2}, g\right)}
\end{array}\right. \\
& \left.\left\lvert\, \begin{array}{ccc|ccc}
A_{1} & A_{1}{ }^{\left(f^{2}, 1\right)} & A_{1}^{(f, 1)} & A_{2} & A_{2}\left(f^{2}, 1\right) & A_{2}^{(f, 1)} \\
A_{1}^{\left(f, g^{2}\right)} & A_{1}^{\left(1, g^{2}\right)} & A_{1}{ }^{\left(f^{2}, g^{2}\right)} & A_{2}^{\left(1, g^{2}\right)} & A_{2}^{\left(f^{2}, g^{2}\right)} & A_{2}{ }^{\left(f, g^{2}\right)} \\
A_{1}{ }^{\left(f^{2}, g\right)} & A_{1}^{(f, g)} & A_{1}{ }^{(1, g)} & A_{2}{ }^{(1, g)} & A_{2}{ }^{\left(f^{2}, g\right)} & A_{2}^{(f, g)}
\end{array}\right.\right),
\end{aligned}
$$

where $S_{0}, S_{1}, S_{2} \in \Lambda_{2}$ and A_{0}, A_{1}, A_{2} are 12×12 permutation matrices.

Type 9

(6.9.1) $\varphi=\left(x_{0}\right)\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}, x_{4}, x_{5}\right)\left(x_{6}, x_{7}, x_{8}\right)\left(x_{9}, x_{10}, x_{11}\right)$
$\left(x_{12}\right)\left(x_{13}\right)\left(x_{14}\right)\left(x_{15}, x_{16}, x_{17}\right)\left(x_{18}, x_{19}, x_{20}\right)\left(x_{21}, x_{22}, x_{23}\right)$
$\left(x_{24}\right)\left(x_{25}\right)\left(x_{26}\right)\left(x_{27}, x_{28}, x_{29}\right)\left(x_{30}, x_{31}, x_{32}\right)\left(x_{33}, x_{34}, x_{35}\right)$
$\left(x_{36}, x_{48}, x_{60}\right)\left(x_{37}, x_{49}, x_{61}\right)\left(x_{38}, x_{50}, x_{62}\right)\left(x_{39}, x_{51}, x_{63}\right)$
$\left(x_{40}, x_{52}, x_{64}\right)\left(x_{41}, x_{53}, x_{65}\right)\left(x_{42}, x_{54}, x_{66}\right)\left(x_{43}, x_{55}, x_{67}\right)$
$\left(x_{44}, x_{56}, x_{68}\right)\left(x_{45}, x_{57}, x_{69}\right)\left(x_{46}, x_{58}, x_{70}\right)\left(x_{47}, x_{59}, x_{71}\right)$
$\left(x_{72}, x_{84}, x_{96}\right)\left(x_{73}, x_{85}, x_{97}\right)\left(x_{74}, x_{86}, x_{98}\right)\left(x_{75}, x_{87}, x_{99}\right)$
$\left(x_{76}, x_{88}, x_{100}\right)\left(x_{77}, x_{89}, x_{101}\right)\left(x_{78}, x_{90}, x_{102}\right)\left(x_{79}, x_{91}, x_{103}\right)$
$\left(x_{80}, x_{92}, x_{104}\right)\left(x_{81}, x_{93}, x_{105}\right)\left(x_{82}, x_{94}, x_{106}\right)\left(x_{83}, x_{95}, x_{107}\right)$
$\left(x_{108}, x_{120}, x_{132}\right)\left(x_{109}, x_{121}, x_{133}\right)\left(x_{110}, x_{122}, x_{134}\right)\left(x_{111}, x_{123}, x_{135}\right)$
$\left(x_{112}, x_{124}, x_{136}\right)\left(x_{113}, x_{125}, x_{137}\right)\left(x_{114}, x_{126}, x_{138}\right)\left(x_{115}, x_{127}, x_{139}\right)$
$\left(x_{116}, x_{128}, x_{140}\right)\left(x_{117}, x_{129}, x_{141}\right)\left(x_{118}, x_{130}, x_{142}\right)\left(x_{119}, x_{131}, x_{143}\right)$ and
$\tau=\left(x_{0}, x_{12}, x_{24}\right)\left(x_{1}, x_{13}, x_{25}\right)\left(x_{2}, x_{14}, x_{26}\right)\left(x_{3}, x_{16}, x_{29}\right)$
$\left(x_{4}, x_{17}, x_{27}\right)\left(x_{5}, x_{15}, x_{28}\right)\left(x_{6}, x_{19}, x_{32}\right)\left(x_{7}, x_{20}, x_{30}\right)$
$\left(x_{8}, x_{18}, x_{31}\right)\left(x_{9}, x_{22}, x_{35}\right)\left(x_{10}, x_{23}, x_{33}\right)\left(x_{11}, x_{21}, x_{34}\right)$
$\left(x_{36}, x_{72}, x_{108}\right)\left(x_{37}, x_{73}, x_{109}\right)\left(x_{38}, x_{74}, x_{110}\right)\left(x_{39}, x_{75}, x_{111}\right)$
$\left(x_{40}, x_{76}, x_{112}\right)\left(x_{41}, x_{77}, x_{113}\right)\left(x_{42}, x_{78}, x_{114}\right)\left(x_{43}, x_{79}, x_{115}\right)$
$\left(x_{44}, x_{80}, x_{116}\right)\left(x_{45}, x_{81}, x_{117}\right)\left(x_{46}, x_{82}, x_{118}\right)\left(x_{47}, x_{83}, x_{119}\right)$
$\left(x_{48}, x_{84}, x_{120}\right)\left(x_{49}, x_{85}, x_{121}\right)\left(x_{50}, x_{86}, x_{122}\right)\left(x_{51}, x_{87}, x_{123}\right)$
$\left(x_{52}, x_{88}, x_{124}\right)\left(x_{53}, x_{89}, x_{125}\right)\left(x_{54}, x_{90}, x_{126}\right)\left(x_{55}, x_{91}, x_{127}\right)$
$\left(x_{56}, x_{92}, x_{128}\right)\left(x_{57}, x_{93}, x_{129}\right)\left(x_{58}, x_{94}, x_{130}\right)\left(x_{59}, x_{95}, x_{131}\right)$
$\left(x_{60}, x_{96}, x_{132}\right)\left(x_{61}, x_{97}, x_{133}\right)\left(x_{62}, x_{98}, x_{134}\right)\left(x_{63}, x_{99}, x_{135}\right)$
$\left(x_{64}, x_{100}, x_{136}\right)\left(x_{65}, x_{101}, x_{137}\right)\left(x_{66}, x_{102}, x_{138}\right)\left(x_{67}, x_{103}, x_{139}\right)$
$\left(x_{68}, x_{104}, x_{140}\right)\left(x_{69}, x_{105}, x_{141}\right)\left(x_{70}, x_{106}, x_{142}\right)\left(x_{71}, x_{107}, x_{143}\right)$, where $x \in\{p, B\}$.
(6.9.2) Let $f=(0)(1)(2)(3,4,5)(6,7,8)(9,10,11) \in \operatorname{Sym}\{0,1, \ldots, 11\}$. Then

$$
H_{1}=\left(\begin{array}{ccc|ccc|ccc|ccc}
S_{0} & S_{1} & S_{2} & A_{0} & A_{0}{ }^{f^{2}} & A_{0}{ }^{f} & A_{2} f^{f^{2}} & A_{2}{ }^{f} & A_{2} & A_{1}{ }^{f} & A_{1} & A_{1} f^{2} \\
S_{2} & S_{0} & S_{1} & A_{1} & A_{1}{ }^{f^{2}} & A_{1}{ }^{f} & A_{0}{ }^{f^{2}} & A_{0}{ }^{f} & A_{0} & A_{2}{ }^{f} & A_{2} & A_{2}{ }^{{ }^{2}} \\
S_{1} & S_{2} & S_{0} & A_{2} & A_{2}{ }^{f^{2}} & A_{2}{ }^{f} & A_{1}{ }^{f^{2}} & A_{1}{ }^{f} & A_{1} & A_{0}{ }^{f} & A_{0} & A_{0}{ }^{f^{2}}
\end{array}\right),
$$

where $S_{0}, S_{1}, S_{2} \in \Lambda_{2}$ and A_{0}, A_{1}, A_{2} are 12×12 permutation matrices.

Lemma 6.2 All matrices H_{1} of (6.1.2), (6.2.2), (6.3.2), (6.4.3), (6.5.2), (6.6.2), (6.7.2), (6.8.2) and (6.9.2) do not exist. Therefore none of Types 1 to 9 can occur.

Proof. Any matrix H_{1} of (6.1.2), (6.2.2), (6.3.2), (6.4.3), (6.5.2), (6.6.2), (6.7.2), (6.8.2) and (6.9.2) must satisfy $H_{1} H_{1}^{T}=\left(\begin{array}{ccc}E_{12} & J_{12} & J_{12} \\ J_{12} & E_{12} & J_{12} \\ J_{12} & J_{12} & E_{12}\end{array}\right)$, where E_{12} is the identity matrix of degree 12 and J_{12} is the all one 12×12 matrix by Lemma 2.8. But it follows that there do not exist matrices H_{1} having these forms and satisfying this equation, using a computer.

7 Types 10 to 15

In this section we consider Types 10 to 15 in Section 5 and we show that none of these types can occur.

Definition 7.1 Let m, n be positive integers. Let R, S be $m \times n$ matrices with entries from \mathbb{Z}. Then we say that R is equivalent to S if there exist a permutation matrix X of degree m and a permutation matrix Y of degree n such that $S=X R Y$.

The actions of φ and τ on both \mathcal{P} and \mathcal{B} in Types 10 to 15 are determined explicitly from Section 5 .

Type 10

```
(7.10.1) }\varphi=(\mp@subsup{x}{0}{},\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})(\mp@subsup{x}{3}{},\mp@subsup{x}{4}{},\mp@subsup{x}{5}{})(\mp@subsup{x}{6}{},\mp@subsup{x}{7}{},\mp@subsup{x}{8}{})(\mp@subsup{x}{9}{},\mp@subsup{x}{10}{},\mp@subsup{x}{11}{}
```



```
(x24,\mp@subsup{x}{25}{},\mp@subsup{x}{26}{})(\mp@subsup{x}{27}{},\mp@subsup{x}{28}{},\mp@subsup{x}{29}{})(\mp@subsup{x}{30}{},\mp@subsup{x}{31}{},\mp@subsup{x}{32}{})(\mp@subsup{x}{33}{},\mp@subsup{x}{34}{},\mp@subsup{x}{35}{})
```



```
(x40, x52, ,x64)(x41, x (x3, ,\mp@subsup{x}{65}{})(\mp@subsup{x}{42}{},\mp@subsup{x}{54}{},\mp@subsup{x}{66}{})(\mp@subsup{x}{43}{},\mp@subsup{x}{55}{},\mp@subsup{x}{67}{})
(x44,\mp@subsup{x}{56}{},\mp@subsup{x}{68}{})(\mp@subsup{x}{45}{},\mp@subsup{x}{57}{},\mp@subsup{x}{69}{})(\mp@subsup{x}{46}{},\mp@subsup{x}{58}{},\mp@subsup{x}{70}{})(\mp@subsup{x}{47}{},\mp@subsup{x}{59}{},\mp@subsup{x}{71}{})
(x (x2, x }\mp@subsup{\mp@code{84}}{}{,},\mp@subsup{x}{96}{})(\mp@subsup{x}{73}{},\mp@subsup{x}{85}{},\mp@subsup{x}{97}{})(\mp@subsup{x}{74}{},\mp@subsup{x}{86}{},\mp@subsup{x}{98}{})(\mp@subsup{x}{75}{},\mp@subsup{x}{87}{},\mp@subsup{x}{99}{}
```



```
(x ( }108,\mp@subsup{x}{120}{},\mp@subsup{x}{132}{})(\mp@subsup{x}{109}{},\mp@subsup{x}{121}{},\mp@subsup{x}{133}{})(\mp@subsup{x}{110}{},\mp@subsup{x}{122}{},\mp@subsup{x}{134}{})(\mp@subsup{x}{111}{},\mp@subsup{x}{123}{},\mp@subsup{x}{135}{}
(x112, , x124},\mp@subsup{x}{136}{})(\mp@subsup{x}{113}{},\mp@subsup{x}{125}{},\mp@subsup{x}{137}{})(\mp@subsup{x}{114}{},\mp@subsup{x}{126}{},\mp@subsup{x}{138}{})(\mp@subsup{x}{115}{},\mp@subsup{x}{127}{},\mp@subsup{x}{139}{}
(x116},\mp@subsup{x}{128}{},\mp@subsup{x}{140}{)})(\mp@subsup{x}{117}{},\mp@subsup{x}{129}{},\mp@subsup{x}{141}{})(\mp@subsup{x}{118}{},\mp@subsup{x}{130}{},\mp@subsup{x}{142}{})(\mp@subsup{x}{119}{},\mp@subsup{x}{131}{},\mp@subsup{x}{143}{})\mathrm{ , where }x\in{p,B}
\tau=( po, p12, p}24)(\mp@subsup{p}{1}{},\mp@subsup{p}{13}{},\mp@subsup{p}{25}{})(\mp@subsup{p}{2}{},\mp@subsup{p}{14}{},\mp@subsup{p}{26}{})(\mp@subsup{p}{3}{},\mp@subsup{p}{15}{},\mp@subsup{p}{27}{}
( }\mp@subsup{p}{4}{},\mp@subsup{p}{16}{},\mp@subsup{p}{28}{})(\mp@subsup{p}{5}{},\mp@subsup{p}{17}{},\mp@subsup{p}{29}{})(\mp@subsup{p}{6}{},\mp@subsup{p}{18}{},\mp@subsup{p}{30}{})(\mp@subsup{p}{7}{},\mp@subsup{p}{19}{},\mp@subsup{p}{31}{}
(p8, p20, p}\mp@subsup{p}{32}{})(\mp@subsup{p}{9}{},\mp@subsup{p}{21}{},\mp@subsup{p}{33}{})(\mp@subsup{p}{10}{},\mp@subsup{p}{22}{},\mp@subsup{p}{34}{})(\mp@subsup{p}{11}{},\mp@subsup{p}{23}{},\mp@subsup{p}{35}{}
(p36, p}\mp@subsup{7}{72}{},\mp@subsup{p}{108}{})(\mp@subsup{p}{37}{},\mp@subsup{p}{73}{},\mp@subsup{p}{109}{})(\mp@subsup{p}{38}{},\mp@subsup{p}{74}{},\mp@subsup{p}{110}{})(\mp@subsup{p}{39}{},\mp@subsup{p}{75}{},\mp@subsup{p}{111}{}
( }\mp@subsup{p}{40}{},\mp@subsup{p}{76}{},\mp@subsup{p}{112}{})(\mp@subsup{p}{41}{},\mp@subsup{p}{77}{},\mp@subsup{p}{113}{})(\mp@subsup{p}{42}{},\mp@subsup{p}{78}{},\mp@subsup{p}{114}{})(\mp@subsup{p}{43}{},\mp@subsup{p}{79}{},\mp@subsup{p}{115}{}
( }\mp@subsup{p}{44}{},\mp@subsup{p}{80}{},\mp@subsup{p}{116}{})(\mp@subsup{p}{45}{},\mp@subsup{p}{81}{},\mp@subsup{p}{117}{})(\mp@subsup{p}{46}{},\mp@subsup{p}{82}{},\mp@subsup{p}{118}{})(\mp@subsup{p}{47}{},\mp@subsup{p}{83}{},\mp@subsup{p}{119}{}
(p48, p
( }\mp@subsup{p}{52}{},\mp@subsup{p}{88}{},\mp@subsup{p}{124}{})(\mp@subsup{p}{53}{},\mp@subsup{p}{89}{},\mp@subsup{p}{125}{})(\mp@subsup{p}{54}{},\mp@subsup{p}{90}{},\mp@subsup{p}{126}{})(\mp@subsup{p}{55}{},\mp@subsup{p}{91}{},\mp@subsup{p}{127}{}
```

$\left(p_{56}, p_{92}, p_{128}\right)\left(p_{57}, p_{93}, p_{129}\right)\left(p_{58}, p_{94}, p_{130}\right)\left(p_{59}, p_{95}, p_{131}\right)$
$\left(p_{60}, p_{96}, p_{132}\right)\left(p_{61}, p_{97}, p_{133}\right)\left(p_{62}, p_{98}, p_{134}\right)\left(p_{63}, p_{99}, p_{135}\right)$
$\left(p_{64}, p_{100}, p_{136}\right)\left(p_{65}, p_{101}, p_{137}\right)\left(p_{66}, p_{102}, p_{138}\right)\left(p_{67}, p_{103}, p_{139}\right)$
$\left(p_{68}, p_{104}, p_{140}\right)\left(p_{69}, p_{105}, p_{141}\right)\left(p_{70}, p_{106}, p_{142}\right)\left(p_{71}, p_{107}, p_{143}\right)$ and
$\tau=\left(B_{0}\right)\left(B_{1}\right)\left(B_{2}\right)\left(B_{3}, B_{6}, B_{9}\right)\left(B_{4}, B_{7}, B_{10}\right)\left(B_{5}, B_{8}, B_{11}\right)$
$\left(B_{12}, B_{14}, B_{13}\right)\left(B_{15}, B_{18}, B_{21}\right)\left(B_{16}, B_{19}, B_{22}\right)\left(B_{17}, B_{20}, B_{23}\right)$
$\left(B_{24}, B_{25}, B_{26}\right)\left(B_{27}, B_{30}, B_{33}\right)\left(B_{28}, B_{31}, B_{34}\right)\left(B_{29}, B_{32}, B_{35}\right)$
$\left(B_{36}, B_{72}, B_{108}\right)\left(B_{37}, B_{73}, B_{109}\right)\left(B_{38}, B_{74}, B_{110}\right)\left(B_{39}, B_{75}, B_{111}\right)$
$\left(B_{40}, B_{76}, B_{112}\right)\left(B_{41}, B_{77}, B_{113}\right)\left(B_{42}, B_{78}, B_{114}\right)\left(B_{43}, B_{79}, B_{115}\right)$
$\left(B_{44}, B_{80}, B_{116}\right)\left(B_{45}, B_{81}, B_{117}\right)\left(B_{46}, B_{82}, B_{118}\right)\left(B_{47}, B_{83}, B_{119}\right)$
$\left(B_{48}, B_{84}, B_{120}\right)\left(B_{49}, B_{85}, B_{121}\right)\left(B_{50}, B_{86}, B_{122}\right)\left(B_{51}, B_{87}, B_{123}\right)$
$\left(B_{52}, B_{88}, B_{124}\right)\left(B_{53}, B_{89}, B_{125}\right)\left(B_{54}, B_{90}, B_{126}\right)\left(B_{55}, B_{91}, B_{127}\right)$
$\left(B_{56}, B_{92}, B_{128}\right)\left(B_{57}, B_{93}, B_{129}\right)\left(B_{58}, B_{94}, B_{130}\right)\left(B_{59}, B_{95}, B_{131}\right)$
$\left(B_{60}, B_{96}, B_{132}\right)\left(B_{61}, B_{97}, B_{133}\right)\left(B_{62}, B_{98}, B_{134}\right)\left(B_{63}, B_{99}, B_{135}\right)$
$\left(B_{64}, B_{100}, B_{136}\right)\left(B_{65}, B_{101}, B_{137}\right)\left(B_{66}, B_{102}, B_{138}\right)\left(B_{67}, B_{103}, B_{139}\right)$
$\left(B_{68}, B_{104}, B_{140}\right)\left(B_{69}, B_{105}, B_{141}\right)\left(B_{70}, B_{106}, B_{142}\right)\left(B_{71}, B_{107}, B_{143}\right)$.
(7.10.2) There are the following $16 G$-orbits on \mathcal{P}.
$\mathcal{Q}_{0}=\left\{p_{0}, p_{1}, p_{2}, p_{12}, p_{13}, p_{14}, p_{24}, p_{25}, p_{26}\right\}$,
$\mathcal{Q}_{1}=\left\{p_{3}, p_{4}, p_{5}, p_{15}, p_{16}, p_{17}, p_{27}, p_{28}, p_{29}\right\}$,
$\mathcal{Q}_{2}=\left\{p_{6}, p_{7}, p_{8}, p_{18}, p_{19}, p_{20}, p_{30}, p_{31}, p_{32}\right\}$,
$\mathcal{Q}_{3}=\left\{p_{9}, p_{10}, p_{11}, p_{21}, p_{22}, p_{23}, p_{33}, p_{34}, p_{35}\right\}$,
$\mathcal{Q}_{4}=\left\{p_{36}, p_{48}, p_{60}, p_{72}, p_{84}, p_{96}, p_{108}, p_{120}, p_{132}\right\}$,
$\mathcal{Q}_{5}=\left\{p_{37}, p_{49}, p_{61}, p_{73}, p_{85}, p_{97}, p_{109}, p_{121}, p_{133}\right\}$,
$\mathcal{Q}_{6}=\left\{p_{38}, p_{50}, p_{62}, p_{74}, p_{86}, p_{98}, p_{110}, p_{122}, p_{134}\right\}$,
$\mathcal{Q}_{7}=\left\{p_{39}, p_{51}, p_{63}, p_{75}, p_{87}, p_{99}, p_{111}, p_{123}, p_{135}\right\}$,
$\mathcal{Q}_{8}=\left\{p_{40}, p_{52}, p_{64}, p_{76}, p_{88}, p_{100}, p_{122}, p_{124}, p_{136}\right\}$,
$\mathcal{Q}_{9}=\left\{p_{41}, p_{53}, p_{65}, p_{77}, p_{89}, p_{101}, p_{113}, p_{125}, p_{137}\right\}$,
$\mathcal{Q}_{10}=\left\{p_{42}, p_{54}, p_{66}, p_{78}, p_{90}, p_{102}, p_{114}, p_{126}, p_{138}\right\}$,
$\mathcal{Q}_{11}=\left\{p_{43}, p_{55}, p_{67}, p_{79}, p_{91}, p_{103}, p_{115}, p_{127}, p_{139}\right\}$,
$\mathcal{Q}_{12}=\left\{p_{44}, p_{56}, p_{68}, p_{80}, p_{92}, p_{104}, p_{116}, p_{128}, p_{140}\right\}$,
$\mathcal{Q}_{13}=\left\{p_{45}, p_{57}, p_{69}, p_{81}, p_{93}, p_{105}, p_{117}, p_{129}, p_{141}\right\}$,
$\mathcal{Q}_{14}=\left\{p_{46}, p_{58}, p_{70}, p_{82}, p_{94}, p_{106}, p_{118}, p_{130}, p_{142}\right\}$,
$\mathcal{Q}_{15}=\left\{p_{47}, p_{59}, p_{71}, p_{83}, p_{95}, p_{107}, p_{119}, p_{131}, p_{143}\right\}$.
There are the following $18 G$-orbits on \mathcal{B}.
$\mathcal{C}_{0}=\left\{B_{0}, B_{1}, B_{2}\right\}$,
$\mathcal{C}_{1}=\left\{B_{12}, B_{13}, B_{14}\right\}$,
$\mathcal{C}_{2}=\left\{B_{24}, B_{25}, B_{26}\right\}$,
$\mathcal{C}_{3}=\left\{B_{3}, B_{4}, B_{5}, B_{6}, B_{7}, B_{8}, B_{9}, B_{10}, B_{11}\right\}$,
$\mathcal{C}_{4}=\left\{B_{15}, B_{16}, B_{17}, B_{18}, B_{19}, B_{20}, B_{21}, B_{22}, B_{23}\right\}$,
$\mathcal{C}_{5}=\left\{B_{27}, B_{28}, B_{29}, B_{30}, B_{31}, B_{32}, B_{33}, B_{34}, B_{35}\right\}$,
$\mathcal{C}_{6}=\left\{B_{36}, B_{48}, B_{60}, B_{72}, B_{84}, B_{96}, B_{108}, B_{120}, B_{132}\right\}$,
$\mathcal{C}_{7}=\left\{B_{37}, B_{49}, B_{61}, B_{73}, B_{85}, B_{97}, B_{109}, B_{121}, B_{133}\right\}$,
$\mathcal{C}_{8}=\left\{B_{38}, B_{50}, B_{62}, B_{74}, B_{86}, B_{98}, B_{110}, B_{122}, B_{134}\right\}$,
$\mathcal{C}_{9}=\left\{B_{39}, B_{51}, B_{63}, B_{75}, B_{87}, B_{99}, B_{111}, B_{123}, B_{135}\right\}$,
$\mathcal{C}_{10}=\left\{B_{40}, B_{52}, B_{64}, B_{76}, B_{88}, B_{100}, B_{122}, B_{124}, B_{136}\right\}$,
$\mathcal{C}_{11}=\left\{B_{41}, B_{53}, B_{65}, B_{77}, B_{89}, B_{101}, B_{113}, B_{125}, B_{137}\right\}$,
$\mathcal{C}_{12}=\left\{B_{42}, B_{54}, B_{66}, B_{78}, B_{90}, B_{102}, B_{114}, B_{126}, B_{138}\right\}$,
$\mathcal{C}_{13}=\left\{B_{43}, B_{55}, B_{67}, B_{79}, B_{91}, B_{103}, B_{115}, B_{127}, B_{139}\right\}$,
$\mathcal{C}_{14}=\left\{B_{44}, B_{56}, B_{68}, B_{80}, B_{92}, B_{104}, B_{116}, B_{128}, B_{140}\right\}$,
$\mathcal{C}_{15}=\left\{B_{45}, B_{57}, B_{69}, B_{81}, B_{93}, B_{105}, B_{117}, B_{129}, B_{141}\right\}$,
$\mathcal{C}_{16}=\left\{B_{46}, B_{58}, B_{70}, B_{82}, B_{94}, B_{106}, B_{118}, B_{130}, B_{142}\right\}$,
$\mathcal{C}_{17}=\left\{B_{47}, B_{59}, B_{71}, B_{83}, B_{95}, B_{107}, B_{119}, B_{131}, B_{143}\right\}$.
Set $q_{0}=p_{0}, q_{1}=p_{3}, q_{2}=p_{6}, q_{3}=p_{9}, q_{4}=p_{36}, q_{5}=p_{37}, q_{6}=p_{38}, q_{7}=p_{39}, q_{8}=$ $p_{40}, q_{9}=p_{41}, q_{10}=p_{42}, q_{11}=p_{43}, q_{12}=p_{44}, q_{13}=p_{45}, q_{14}=p_{46}, q_{15}=p_{47}$ and $C_{0}=B_{0}, C_{1}=B_{12}, C_{2}=B_{24}, C_{3}=B_{3}, C_{4}=B_{15}, C_{5}=B_{27}, C_{6}=B_{36}, C_{7}=$ $B_{37}, C_{8}=B_{38}, C_{9}=B_{39}, C_{10}=B_{40}, C_{11}=B_{41}, C_{12}=B_{42}, C_{13}=B_{43}, C_{14}=$ $B_{44}, C_{15}=B_{45}, C_{16}=B_{46}, C_{17}=B_{47}$.

For $0 \leq i \leq 17$ and $0 \leq j \leq 15$ set $m_{i, j}=\left|\mathcal{C}_{i} \cap\left(q_{j}\right)\right|$ and $D_{i, j}=\left\{\alpha \in G \mid C_{i}^{\alpha} \in\right.$ $\left.\left(q_{j}\right)\right\}$. Then $m_{i, j}=\left|D_{i, j}\right| \quad(0 \leq i \leq 17,0 \leq j \leq 15)$. Each $m_{i, j}$ depends only on \mathcal{C}_{i} and \mathcal{Q}_{j} not on C_{i} and q_{j}. For a non-empty subset X of G, set $\widehat{X}=\sum_{\alpha \in X} \alpha \in \mathbb{Z}[G]$. Set $M=\left(m_{i, j}\right)_{0 \leq i \leq 17,0 \leq j \leq 15}$ and $A_{i, i^{\prime}}=\sum_{j=0}^{15} \widehat{D_{i, j}} \widehat{D_{i^{\prime}, j}^{(-1)}}$ for $0 \leq i, i^{\prime} \leq 17$.
(7.10.3) (i) For $0 \leq i \neq i^{\prime} \leq 17$

$$
A_{i, i^{\prime}}= \begin{cases}0 & \text { if }\left\{i, i^{\prime}\right\} \in\{\{0,3\},\{1,4\},\{2,5\}\} \\ \widehat{G \backslash\{1\}} & \text { if } 6 \leq i \neq i^{\prime} \leq 17 \\ \widehat{G} & \text { otherwise }\end{cases}
$$

(ii) For $0 \leq i \leq 17$

$$
A_{i, i}= \begin{cases}12 \widehat{\langle\tau\rangle} & \text { if } i=0 \\
12 \widehat{\langle\varphi \tau\rangle} & \text { if } i=1 \\
12\left\langle\begin{array}{l}
\text { if } i=2 \\
12
\end{array}\right. & \text { if } 3 \leq i \leq 5 \\
12+\widehat{G \backslash\{1\}} & \text { if } 6 \leq i \leq 17\end{cases}
$$

Proof. (i) Let $\alpha \in G$. Then there exist $0 \leq j \leq 15$ and $(\beta, \gamma) \in D_{i, j} \times D_{i^{\prime}, j}$ such that $\alpha=\beta \gamma^{-1}$, if and only if there exist $0 \leq j \leq 15$ and $\gamma \in G$ such that $C_{i}^{\alpha} \in\left(q_{j} \gamma^{-1}\right)$ and $C_{i^{\prime}} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$.

Suppose that $\left\{i, i^{\prime}\right\}=\{0,3\},\{1,4\}$ or $\{2,5\}$. Then there do not exist $0 \leq j \leq 15$ and $\gamma \in G$ such that $C_{i}^{\alpha} \in\left(q_{j} \gamma^{\gamma^{-1}}\right)$ and $C_{i^{\prime}} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$. Therefore $A_{i, i^{\prime}}=0$.

Suppose that $6 \leq i \neq i^{\prime} \leq 17$. If $\alpha=1$, there do not exist $0 \leq j \leq 15$ and $\gamma \in G$ such that $C_{i}^{\alpha} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$ and $C_{i^{\prime}} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$. If $\alpha \neq 1$, there exists only one $(j, \gamma) \in\{0,1, \ldots, 15\} \times G$ such that $C_{i}^{\alpha} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$ and $C_{i^{\prime}} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$. Therefore $A_{i, i^{\prime}}=\widehat{G \backslash\{1\}}$.

Suppose that $0 \leq i \neq i^{\prime} \leq 5,\left\{i, i^{\prime}\right\} \notin\{\{0,3\},\{1,4\},\{2,5\}\}$ or $0 \leq i \leq 5,6 \leq$ $i^{\prime} \leq 17$ or $0 \leq i^{\prime} \leq 5,6 \leq i \leq 17$. Then exists only one $(j, \gamma) \in\{0,1, \cdots, 15\} \times G$ such that $C_{i}^{\alpha} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$ and $C_{i^{\prime}} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$. Therefore $A_{i, i^{\prime}}=\widehat{G}$
(ii) Let $\alpha \in G$. Then, there exist $0 \leq j \leq 15$ and $(\beta, \gamma) \in D_{i, j} \times D_{i^{\prime}, j}$ such that $\alpha=\beta \gamma^{-1}$, if and only if there exist $0 \leq j \leq 15$ and $\gamma \in G$ such that $C_{i}^{\alpha} \in\left(q_{j} \gamma^{\gamma^{-1}}\right)$ and $C_{i} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$.

If $\alpha \in\langle\tau\rangle$, there exist twelve $(j, \gamma) \in\{0,1, \ldots, 15\} \times G$ such that $C_{0}=C_{0}{ }^{\alpha} \in$ $\left(q_{j}{ }^{\gamma^{-1}}\right)$ and $C_{0} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$. If $\alpha \notin\langle\tau\rangle$, there do not exist $(j, \gamma) \in\{0,1, \ldots, 15\} \times G$ such that $C_{0}=C_{i}^{\alpha} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$ and $C_{0} \in\left(q_{j} \gamma^{-1}\right)$. Therefore $A_{0,0}=12 \widehat{\langle\tau\rangle}$.

By a similar argument, $A_{1,1}=12 \widehat{\langle\varphi \tau\rangle}$ and $A_{2,2}=12 \widehat{\left\langle\varphi \tau^{2}\right\rangle}$ hold.
Suppose that $3 \leq i \leq 5$. If $\alpha=1$, there exist twelve $(j, \gamma) \in\{0,1, \ldots, 15\} \times G$ such that $C_{i}=C_{i}^{\alpha} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$ and $C_{i} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$. If $\alpha \neq 1$, there do not exist $0 \leq j \leq 15$ and $\gamma \in G$ such that $C_{i}^{\alpha} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$ and $C_{i} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$. Therefore $A_{i, i}=12$.

Suppose that $6 \leq i \leq 17$. If $\alpha=1$, there exist twelve $(j, \gamma) \in\{0,1, \ldots, 15\} \times G$ such that $C_{i}=C_{i}^{\alpha} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$ and $C_{i} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$. If $\alpha \in G \backslash\{1\}$, there exists only one $(j, \gamma) \in\{0,1, \ldots, 15\} \times G$ such that $C_{i}^{\alpha} \in\left(q_{j}{ }^{\gamma^{-1}}\right)$ and $C_{i} \in\left(q_{j} \gamma^{\gamma^{-1}}\right)$. Therefore $A_{i, i}=12+\widehat{G \backslash\{1\}}$
(7.10.4) (i) For $0 \leq i \neq i^{\prime} \leq 17$

$$
\sum_{j=0}^{15} m_{i, j} m_{i^{\prime}, j}= \begin{cases}0 & \text { if }\left\{i, i^{\prime}\right\} \in\{\{0,3\},\{1,4\},\{2,5\}\} \\ 8 & \text { if } 6 \leq i \neq i^{\prime} \leq 17 \\ 9 & \text { otherwise }\end{cases}
$$

(ii) For $0 \leq i \leq 17$

$$
\sum_{j=0}^{15} m_{i, j}^{2}= \begin{cases}36 & \text { if } 0 \leq i \leq 2 \\ 12 & \text { if } 3 \leq i \leq 5 \\ 20 & \text { if } 6 \leq i \leq 17\end{cases}
$$

(iii) For $0 \leq i \leq 17$

$$
\sum_{j=0}^{15} m_{i, j}=12
$$

Proof. (i) and (ii) hold by acting the trivial character of G on two equations in (7.10.3). Since there are twelve $(i, \alpha) \in\{0,1, \ldots, 15\} \times G$ such that $C_{i} \in\left(q_{j}{ }^{\alpha^{-1}}\right)$, (iii) holds.
(7.10.5) For $0 \leq i \leq 17$, the following hold, up to ordering of $m_{i, 0} m_{i, 1} \ldots m_{i, 15}$.
(i) If $0 \leq i \leq 2$, then $\left(m_{i, 0} m_{i, 1} \ldots m_{i, 15}\right)=(\underbrace{00 \ldots 0}_{12} 3333)$, $(\underbrace{00 \ldots 0}_{11} 11334)$, $(\underbrace{00 \ldots 0}_{10} 111144)$ or $(\underbrace{00 \ldots 0}_{10} 1111225)$.
(ii) If $3 \leq i \leq 5$, then $\left(m_{i, 0} m_{i, 1} \ldots m_{i, 15}\right)=(\begin{array}{lll}0 & 0 & 0\end{array} \underbrace{11 \ldots 1}_{12})$.
(iii) If $6 \leq i \leq 17$, then $\left(m_{i, 0} m_{i, 1} \ldots m_{i, 15}\right)=(\underbrace{00 \ldots 0}_{8} 111112222)$ or $(\underbrace{00 \ldots 0}_{7} \underbrace{1 \ldots 1}_{7} 23)$.
Proof. This assertion holds from (7.10.4) (ii), (iii).
(7.10.6) $\quad\left(m_{i, j}\right)_{0 \leq i \leq 5,0 \leq j \leq 15}$ coinsides with the folowing matrix, up to equivalence.

$$
\left(\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 3 & 0 & 3 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 3 & 0 & 0 & 3 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 3 & 0 & 0 & 0 & 0 & 3 & 3 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) .
$$

Proof. This assertion holds from (7.10.4) and (7.10.5).
(7.10.7) There exists the following unique M, up to equivalence.

$$
M=\left(\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 3 & 0 & 3 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 3 & 0 & 0 & 3 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 3 & 0 & 0 & 0 & 0 & 3 & 3 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 2 & 0 & 3 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 2 & 0 & 2 & 1 & 1 & 0 & 0 & 2 & 0 & 2 & 1 & 1 & 0 \\
0 & 0 & 2 & 0 & 0 & 2 & 1 & 1 & 0 & 2 & 0 & 2 & 0 & 1 & 1 & 0 \\
0 & 0 & 2 & 2 & 2 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 2 & 0 & 1 \\
0 & 2 & 0 & 0 & 2 & 0 & 1 & 1 & 0 & 0 & 2 & 2 & 0 & 1 & 1 & 0 \\
0 & 2 & 0 & 2 & 1 & 1 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 2 & 1 \\
0 & 2 & 2 & 0 & 0 & 0 & 0 & 2 & 1 & 1 & 1 & 0 & 2 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 & 2 & 0 & 1 & 1 & 0 & 2 & 0 & 0 & 2 & 1 & 1 & 0 \\
2 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 1 & 1 & 1 & 2 & 0 & 0 & 0 & 1 \\
2 & 0 & 2 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 2 & 1 \\
2 & 2 & 0 & 0 & 0 & 2 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 2 & 0 & 1
\end{array}\right) .
$$

Proof. Using a computer, the assertion holds from (7.10.4), (7.10.5) and (7.10.6).

Lemma 7.2 Type 10 does not occur.
Proof. Using a computer, it follows that there does not exist $\left(D_{i, j}\right)_{6 \leq i \leq 11,0 \leq j \leq 15}$ corresponding to the submatrix $\left(m_{i, j}\right)_{6 \leq i \leq 11,0 \leq j \leq 15}$ of the matrix M of (7.10.7). Therefore the lemma holds.

The proofs of the following results in Types 11 to 15 are omitted, because they are similar to the results in Type 10.

Type 11

(7.11.1) $\quad \varphi=\left(x_{0}, x_{12}, x_{24}\right)\left(x_{1}, x_{13}, x_{25}\right)\left(x_{2}, x_{14}, x_{26}\right)\left(x_{3}, x_{15}, x_{27}\right)$
$\left(x_{4}, x_{16}, x_{28}\right)\left(x_{5}, x_{17}, x_{29}\right)\left(x_{6}, x_{18}, x_{30}\right)\left(x_{7}, x_{19}, x_{31}\right)$
$\left(x_{8}, x_{20}, x_{32}\right)\left(x_{9}, x_{21}, x_{33}\right)\left(x_{10}, x_{22}, x_{34}\right)\left(x_{11}, x_{23}, x_{35}\right)$


```
(x}\mp@subsup{x}{72}{},\mp@subsup{x}{84}{},\mp@subsup{x}{96}{})(\mp@subsup{x}{73}{},\mp@subsup{x}{85}{},\mp@subsup{x}{97}{})(\mp@subsup{x}{74}{},\mp@subsup{x}{86}{},\mp@subsup{x}{98}{})(\mp@subsup{x}{75}{},\mp@subsup{x}{87}{},\mp@subsup{x}{99}{}
(x (x6, x88, x 100)( }\mp@subsup{x}{77}{},\mp@subsup{x}{89}{},\mp@subsup{x}{101}{})(\mp@subsup{x}{78}{},\mp@subsup{x}{90}{},\mp@subsup{x}{102}{})(\mp@subsup{x}{79}{},\mp@subsup{x}{91}{},\mp@subsup{x}{103}{}
(x80, x92, x ( }\mp@subsup{x}{104}{)}(\mp@subsup{x}{81}{},\mp@subsup{x}{93}{},\mp@subsup{x}{105}{})(\mp@subsup{x}{82}{},\mp@subsup{x}{94}{},\mp@subsup{x}{106}{})(\mp@subsup{x}{83}{},\mp@subsup{x}{95}{},\mp@subsup{x}{107}{}
(x ( 
(x112},\mp@subsup{x}{124}{},\mp@subsup{x}{136}{)}(\mp@subsup{x}{113}{},\mp@subsup{x}{125}{},\mp@subsup{x}{137}{})(\mp@subsup{x}{114}{},\mp@subsup{x}{126}{},\mp@subsup{x}{138}{})(\mp@subsup{x}{115}{},\mp@subsup{x}{127}{},\mp@subsup{x}{139}{}
(x116},\mp@subsup{x}{128}{},\mp@subsup{x}{140}{})(\mp@subsup{x}{117}{},\mp@subsup{x}{129}{},\mp@subsup{x}{141}{})(\mp@subsup{x}{118}{},\mp@subsup{x}{130}{},\mp@subsup{x}{142}{})(\mp@subsup{x}{119}{},\mp@subsup{x}{131}{},\mp@subsup{x}{143}{})\mathrm{ and
\tau=(\mp@subsup{x}{0}{},\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})(\mp@subsup{x}{3}{},\mp@subsup{x}{4}{},\mp@subsup{x}{5}{})(\mp@subsup{x}{6}{},\mp@subsup{x}{7}{},\mp@subsup{x}{8}{})(\mp@subsup{x}{9}{},\mp@subsup{x}{10}{},\mp@subsup{x}{11}{})
```



```
(x24,\mp@subsup{x}{25}{},\mp@subsup{x}{26}{})(\mp@subsup{x}{27}{},\mp@subsup{x}{28}{},\mp@subsup{x}{29}{})(\mp@subsup{x}{30}{},\mp@subsup{x}{31}{},\mp@subsup{x}{32}{})(\mp@subsup{x}{33}{},\mp@subsup{x}{34}{},\mp@subsup{x}{35}{})
```



```
(x48, x49, x50)(x51, \mp@subsup{x}{52}{},\mp@subsup{x}{53}{})(\mp@subsup{x}{54}{},\mp@subsup{x}{55}{},\mp@subsup{x}{56}{})(\mp@subsup{x}{57}{},\mp@subsup{x}{58}{},\mp@subsup{x}{59}{})
```



```
(x72, x }\mp@subsup{x}{85}{},\mp@subsup{x}{98}{})(\mp@subsup{x}{73}{},\mp@subsup{x}{86}{},\mp@subsup{x}{96}{})(\mp@subsup{x}{74}{},\mp@subsup{x}{84}{},\mp@subsup{x}{97}{})(\mp@subsup{x}{75}{},\mp@subsup{x}{88}{},\mp@subsup{x}{101}{}
```



```
(x80, x90, x 103)(x81, x94, \mp@subsup{x}{107}{})(\mp@subsup{x}{82}{},\mp@subsup{x}{95}{},\mp@subsup{x}{105}{)}(\mp@subsup{x}{83}{},\mp@subsup{x}{93}{},\mp@subsup{x}{106}{})
(x (x08, x121, x134)( }\mp@subsup{x}{109}{},\mp@subsup{x}{122}{},\mp@subsup{x}{132}{})(\mp@subsup{x}{110}{},\mp@subsup{x}{120}{},\mp@subsup{x}{133}{})(\mp@subsup{x}{111}{},\mp@subsup{x}{124}{},\mp@subsup{x}{137}{}
(x112, x 125 , x135)( }\mp@subsup{x}{113}{},\mp@subsup{x}{123}{},\mp@subsup{x}{136}{})(\mp@subsup{x}{114}{},\mp@subsup{x}{127}{},\mp@subsup{x}{140}{})(\mp@subsup{x}{115}{},\mp@subsup{x}{128}{},\mp@subsup{x}{138}{}
(x116},\mp@subsup{x}{126}{},\mp@subsup{x}{139}{)}(\mp@subsup{x}{117}{},\mp@subsup{x}{130}{},\mp@subsup{x}{143}{})(\mp@subsup{x}{118}{},\mp@subsup{x}{131}{},\mp@subsup{x}{141}{})(\mp@subsup{x}{119}{},\mp@subsup{x}{129}{},\mp@subsup{x}{142}{})\mathrm{ , where }x\in{p,B}
```

(7.11.2) There are the following $16 G$-orbits on \mathcal{P} and on \mathcal{B}.
$\mathcal{Y}_{0}=\left\{x_{0}, x_{1}, x_{2}, x_{12}, x_{13}, x_{14}, x_{24}, x_{25}, x_{26}\right\}$,
$\mathcal{Y}_{1}=\left\{x_{3}, x_{4}, x_{5}, x_{15}, x_{16}, x_{17}, x_{27}, x_{28}, x_{29}\right\}$,
$\mathcal{Y}_{2}=\left\{x_{6}, x_{7}, x_{8}, x_{18}, x_{19}, x_{20}, x_{30}, x_{31}, x_{32}\right\}$,
$\mathcal{Y}_{3}=\left\{x_{9}, x_{10}, x_{11}, x_{21}, x_{22}, x_{23}, x_{33}, x_{34}, x_{35}\right\}$,
$\mathcal{Y}_{4}=\left\{x_{36}, x_{37}, x_{38}, x_{48}, x_{49}, x_{50}, x_{60}, x_{61}, x_{62}\right\}$,
$\mathcal{Y}_{5}=\left\{x_{39}, x_{40}, x_{41}, x_{51}, x_{52}, x_{53}, x_{63}, x_{64}, x_{65}\right\}$,
$\mathcal{Y}_{6}=\left\{x_{42}, x_{43}, x_{44}, x_{54}, x_{55}, x_{56}, x_{66}, x_{67}, x_{68}\right\}$,
$\mathcal{Y}_{7}=\left\{x_{45}, x_{46}, x_{47}, x_{57}, x_{58}, x_{59}, x_{69}, x_{70}, x_{71}\right\}$,
$\mathcal{Y}_{8}=\left\{x_{72}, x_{73}, x_{74}, x_{84}, x_{85}, x_{86}, x_{96}, x_{97}, x_{98}\right\}$,
$\mathcal{Y}_{9}=\left\{x_{75}, x_{76}, x_{77}, x_{87}, x_{88}, x_{89}, x_{99}, x_{100}, x_{101}\right\}$,
$\mathcal{Y}_{10}=\left\{x_{78}, x_{79}, x_{80}, x_{90}, x_{91}, x_{92}, x_{102}, x_{103}, x_{104}\right\}$,
$\mathcal{Y}_{11}=\left\{x_{81}, x_{82}, x_{83}, x_{93}, x_{94}, x_{95}, x_{105}, x_{106}, x_{107}\right\}$,
$\mathcal{Y}_{12}=\left\{x_{108}, x_{109}, x_{110}, x_{120}, x_{121}, x_{122}, x_{132}, x_{133}, x_{134}\right\}$,
$\mathcal{Y}_{13}=\left\{x_{111}, x_{112}, x_{113}, x_{123}, x_{124}, x_{125}, x_{135}, x_{136}, x_{137}\right\}$,
$\mathcal{Y}_{14}=\left\{x_{114}, x_{115}, x_{116}, x_{126}, x_{127}, x_{128}, x_{138}, x_{139}, x_{140}\right\}$,
$\mathcal{Y}_{15}=\left\{x_{117}, x_{118}, x_{119}, x_{129}, x_{130}, x_{131}, x_{141}, x_{142}, x_{143}\right\}$, where $(\mathcal{Y}, x) \in\{(\mathcal{Q}, p),(\mathcal{C}, B)\}$.
Set $q_{0}=p_{0}, q_{1}=p_{3}, q_{2}=p_{6}, q_{3}=p_{9}, q_{4}=p_{36}, q_{5}=p_{39}, q_{6}=p_{42}, q_{7}=p_{45}, q_{8}=$ $p_{72}, q_{9}=p_{75}, q_{10}=p_{78}, q_{11}=p_{81}, q_{12}=p_{108}, q_{13}=p_{111}, q_{14}=p_{114}, q_{15}=p_{117}$ and $C_{0}=B_{0}, C_{1}=B_{3}, C_{2}=B_{6}, C_{3}=B_{9}, C_{4}=B_{36}, C_{5}=B_{39}, C_{6}=B_{42}, C_{7}=$ $B_{45}, C_{8}=B_{72}, C_{9}=B_{75}, C_{10}=B_{78}, C_{11}=B_{81}, C_{12}=B_{108}, C_{13}=B_{111}, C_{14}=$ $B_{114}, C_{15}=B_{117}$.

For $0 \leq i, j \leq 15$ set $m_{i, j}=\left|\mathcal{Q}_{i} \cap\left(C_{j}\right)\right|$ and $D_{i, j}=\left\{\alpha \in G \mid q_{i}{ }^{\alpha} \in\left(C_{j}\right)\right\}$. Then $m_{i, j}=\left|D_{i, j}\right|(0 \leq i, j \leq 15)$. Each $m_{i, j}$ depends only on \mathcal{Q}_{i} and \mathcal{C}_{j} not on q_{i} and C_{j}.
Set $M=\left(m_{i, j}\right)_{0 \leq i, j \leq 15}$ and $A_{i, i^{\prime}}=\sum_{j=0}^{15} \widehat{D_{i, j}} \widehat{D_{i^{\prime}, j}^{(-1)}}$ for $0 \leq i, i^{\prime} \leq 15$.
(7.11.3)

Set $I_{0}=\{0,1,2,3\}, I_{1}=\{4,5,6,7\}, I_{2}=\{8,9,10,11\}$ and $I_{3}=\{12,13,14,15\}$.
(i) For $0 \leq i \neq i^{\prime} \leq 15$

$$
A_{i, i^{\prime}}= \begin{cases}\widehat{G \backslash\langle\tau\rangle} & \text { if } i \neq i^{\prime} \in I_{k} \text { for some } k \in\{0,1\} \\ \widehat{G \backslash\left\langle\varphi^{2} \tau\right\rangle} & \text { if } i \neq i^{\prime} \in I_{k} \text { for some } k \in\{2,3\}, \\ \widehat{G} & \text { if } i \in I_{k}, i^{\prime} \in I_{l} \text { for some } k \neq l \in\{0,1,2,3\}\end{cases}
$$

(ii) For $0 \leq i \leq 15$

$$
A_{i, i}=\left\{\begin{array}{lll}
12+\widehat{G \backslash\langle\tau\rangle} & \text { if } i \in I_{k} & \text { for some } k \in\{0,1\}, \\
12+\widehat{G \backslash\left\langle\varphi^{2} \tau\right\rangle} & \text { if } i \in I_{k} & \text { for some } k \in\{2,3\} .
\end{array}\right.
$$

(7.11.4) Let I_{0}, \ldots, I_{3} be the symbols used in (7.11.3).
(i) For $0 \leq i \neq i^{\prime} \leq 15$

$$
\sum_{j=0}^{15} m_{i, j} m_{i^{\prime}, j}= \begin{cases}6 & \text { if } i \neq i^{\prime} \in I_{k} \quad \text { for some } k \in\{0,1,2,3\}, \\ 9 & \text { if } i \in I_{k}, i^{\prime} \in I_{l} \quad \text { for some } k \neq l \in\{0,1,2,3\} .\end{cases}
$$

(ii) For $0 \leq i \leq 15$

$$
\sum_{j=0}^{15} m_{i, j}^{2}=18
$$

(iii) For $0 \leq i \leq 15$

$$
\sum_{j=0}^{15} m_{i, j}=12
$$

Lemma 7.3 There does not exist an $M=\left(m_{i, j}\right)_{0 \leq i, j \leq 15}$. Therefore Type 11 does not occur.

Type 12

```
(7.12.1) }\varphi=(\mp@subsup{x}{0}{},\mp@subsup{x}{12}{},\mp@subsup{x}{24}{})(\mp@subsup{x}{1}{},\mp@subsup{x}{13}{},\mp@subsup{x}{25}{\prime})(\mp@subsup{x}{2}{},\mp@subsup{x}{14}{},\mp@subsup{x}{26}{})(\mp@subsup{x}{3}{},\mp@subsup{x}{15}{\prime,},\mp@subsup{x}{27}{}
```



```
(x8, x 20, , x32)( }\mp@subsup{x}{9}{},\mp@subsup{x}{21}{},\mp@subsup{x}{33}{})(\mp@subsup{x}{10}{},\mp@subsup{x}{22}{},\mp@subsup{x}{34}{})(\mp@subsup{x}{11}{},\mp@subsup{x}{23}{},\mp@subsup{x}{35}{}
```



```
( }\mp@subsup{x}{40}{},\mp@subsup{x}{52}{},\mp@subsup{x}{64}{})(\mp@subsup{x}{41}{},\mp@subsup{x}{53}{},\mp@subsup{x}{65}{})(\mp@subsup{x}{42}{},\mp@subsup{x}{54}{},\mp@subsup{x}{66}{})(\mp@subsup{x}{43}{},\mp@subsup{x}{55}{},\mp@subsup{x}{67}{}
(x44,\mp@subsup{x}{56}{},\mp@subsup{x}{68}{})(\mp@subsup{x}{45}{},\mp@subsup{x}{57}{},\mp@subsup{x}{69}{})(\mp@subsup{x}{46}{},\mp@subsup{x}{58}{},\mp@subsup{x}{70}{})(\mp@subsup{x}{47}{},\mp@subsup{x}{59}{},\mp@subsup{x}{71}{})
(x (x2, x }\mp@subsup{\mp@code{84}}{,}{,}\mp@subsup{x}{96}{})(\mp@subsup{x}{73}{},\mp@subsup{x}{85}{},\mp@subsup{x}{97}{})(\mp@subsup{x}{74}{},\mp@subsup{x}{86}{},\mp@subsup{x}{98}{})(\mp@subsup{x}{75}{},\mp@subsup{x}{87}{},\mp@subsup{x}{99}{}
```



```
(x ( 
(x112},\mp@subsup{x}{124}{},\mp@subsup{x}{136}{})(\mp@subsup{x}{113}{},\mp@subsup{x}{125}{},\mp@subsup{x}{137}{})(\mp@subsup{x}{114}{},\mp@subsup{x}{126}{},\mp@subsup{x}{138}{})(\mp@subsup{x}{115}{},\mp@subsup{x}{127}{},\mp@subsup{x}{139}{}
(x116},\mp@subsup{x}{128}{,},\mp@subsup{x}{140}{)}(\mp@subsup{x}{117}{},\mp@subsup{x}{129}{},\mp@subsup{x}{141}{})(\mp@subsup{x}{118}{},\mp@subsup{x}{130}{},\mp@subsup{x}{142}{})(\mp@subsup{x}{119}{},\mp@subsup{x}{131}{},\mp@subsup{x}{143}{})\mathrm{ and
\tau=(\mp@subsup{x}{0}{},\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})(\mp@subsup{x}{3}{},\mp@subsup{x}{4}{},\mp@subsup{x}{5}{})(\mp@subsup{x}{6}{},\mp@subsup{x}{7}{},\mp@subsup{x}{8}{})(\mp@subsup{x}{9}{},\mp@subsup{x}{10}{},\mp@subsup{x}{11}{})
(x12,\mp@subsup{x}{13}{},\mp@subsup{x}{14}{})(\mp@subsup{x}{15}{},\mp@subsup{x}{16}{},\mp@subsup{x}{17}{})(\mp@subsup{x}{18}{},\mp@subsup{x}{19}{},\mp@subsup{x}{20}{})(\mp@subsup{x}{21}{},\mp@subsup{x}{22}{},\mp@subsup{x}{23}{})
(x24,\mp@subsup{x}{25}{},\mp@subsup{x}{26}{})(\mp@subsup{x}{27}{},\mp@subsup{x}{28}{},\mp@subsup{x}{29}{})(\mp@subsup{x}{30}{},\mp@subsup{x}{31}{},\mp@subsup{x}{32}{})(\mp@subsup{x}{33}{},\mp@subsup{x}{34}{},\mp@subsup{x}{35}{})
```



```
(x48, \mp@subsup{x}{49}{},\mp@subsup{x}{50}{})(\mp@subsup{x}{51}{},\mp@subsup{x}{52}{},\mp@subsup{x}{53}{})(\mp@subsup{x}{54}{},\mp@subsup{x}{55}{},\mp@subsup{x}{56}{})(\mp@subsup{x}{57}{},\mp@subsup{x}{58}{},\mp@subsup{x}{59}{})
(x60, x}\mp@subsup{x}{61}{},\mp@subsup{x}{62}{})(\mp@subsup{x}{63}{},\mp@subsup{x}{64}{},\mp@subsup{x}{65}{})(\mp@subsup{x}{66}{},\mp@subsup{x}{67}{},\mp@subsup{x}{68}{})(\mp@subsup{x}{69}{},\mp@subsup{x}{70}{},\mp@subsup{x}{71}{}
(x72, x }\mp@subsup{x}{85}{},\mp@subsup{x}{98}{})(\mp@subsup{x}{73}{},\mp@subsup{x}{86}{},\mp@subsup{x}{96}{})(\mp@subsup{x}{74}{},\mp@subsup{x}{84}{},\mp@subsup{x}{97}{})(\mp@subsup{x}{75}{},\mp@subsup{x}{88}{},\mp@subsup{x}{101}{}
(x}\mp@subsup{x}{76}{},\mp@subsup{x}{89}{},\mp@subsup{x}{99}{})(\mp@subsup{x}{77}{},\mp@subsup{x}{87}{},\mp@subsup{x}{100}{})(\mp@subsup{x}{78}{},\mp@subsup{x}{91}{},\mp@subsup{x}{104}{})(\mp@subsup{x}{79}{},\mp@subsup{x}{92}{},\mp@subsup{x}{102}{}
```



```
(x112, x137},\mp@subsup{x}{123}{})(\mp@subsup{x}{113}{},\mp@subsup{x}{135}{},\mp@subsup{x}{124}{})(\mp@subsup{x}{114}{},\mp@subsup{x}{139}{},\mp@subsup{x}{128}{})(\mp@subsup{x}{115}{},\mp@subsup{x}{140}{},\mp@subsup{x}{126}{}
```


(7.12.2) There are the following $16 G$-orbits on \mathcal{P} and on \mathcal{B}.
$\mathcal{Y}_{0}=\left\{x_{0}, x_{1}, x_{2}, x_{12}, x_{13}, x_{14}, x_{24}, x_{25}, x_{26}\right\}$,
$\mathcal{Y}_{1}=\left\{x_{3}, x_{4}, x_{5}, x_{15}, x_{16}, x_{17}, x_{27}, x_{28}, x_{29}\right\}$,
$\mathcal{Y}_{2}=\left\{x_{6}, x_{7}, x_{8}, x_{18}, x_{19}, x_{20}, x_{30}, x_{31}, x_{32}\right\}$,
$\mathcal{Y}_{3}=\left\{x_{9}, x_{10}, x_{11}, x_{21}, x_{22}, x_{23}, x_{33}, x_{34}, x_{35}\right\}$,
$\mathcal{Y}_{4}=\left\{x_{36}, x_{37}, x_{38}, x_{48}, x_{49}, x_{50}, x_{60}, x_{61}, x_{62}\right\}$,
$\mathcal{Y}_{5}=\left\{x_{39}, x_{40}, x_{41}, x_{51}, x_{52}, x_{53}, x_{63}, x_{64}, x_{65}\right\}$,
$\mathcal{Y}_{6}=\left\{x_{42}, x_{43}, x_{44}, x_{54}, x_{55}, x_{56}, x_{66}, x_{67}, x_{68}\right\}$,
$\mathcal{Y}_{7}=\left\{x_{45}, x_{46}, x_{47}, x_{57}, x_{58}, x_{59}, x_{69}, x_{70}, x_{71}\right\}$,
$\mathcal{Y}_{8}=\left\{x_{72}, x_{73}, x_{74}, x_{84}, x_{85}, x_{86}, x_{96}, x_{97}, x_{98}\right\}$,
$\mathcal{Y}_{9}=\left\{x_{75}, x_{76}, x_{77}, x_{87}, x_{88}, x_{89}, x_{99}, x_{100}, x_{101}\right\}$,
$\mathcal{Y}_{10}=\left\{x_{78}, x_{79}, x_{80}, x_{90}, x_{91}, x_{92}, x_{102}, x_{103}, x_{104}\right\}$,
$\mathcal{Y}_{11}=\left\{x_{81}, x_{82}, x_{83}, x_{93}, x_{94}, x_{95}, x_{105}, x_{106}, x_{107}\right\}$,
$\mathcal{Y}_{12}=\left\{x_{108}, x_{109}, x_{110}, x_{120}, x_{121}, x_{122}, x_{132}, x_{133}, x_{134}\right\}$,
$\mathcal{Y}_{13}=\left\{x_{111}, x_{112}, x_{113}, x_{123}, x_{124}, x_{125}, x_{135}, x_{136}, x_{137}\right\}$,
$\mathcal{Y}_{14}=\left\{x_{114}, x_{115}, x_{116}, x_{126}, x_{127}, x_{128}, x_{138}, x_{139}, x_{140}\right\}$,
$\mathcal{Y}_{15}=\left\{x_{117}, x_{118}, x_{119}, x_{129}, x_{130}, x_{131}, x_{141}, x_{142}, x_{143}\right\}$,where $(\mathcal{Y}, x) \in\{(\mathcal{Q}, p),(\mathcal{C}, B)\}$.
Set $q_{0}=p_{0}, q_{1}=p_{3}, q_{2}=p_{6}, q_{3}=p_{9}, q_{4}=p_{36}, q_{5}=p_{39}, q_{6}=p_{42}, q_{7}=p_{45}, q_{8}=$ $p_{72}, q_{9}=p_{75}, q_{10}=p_{78}, q_{11}=p_{81}, q_{12}=p_{108}, q_{13}=p_{111}, q_{14}=p_{114}, q_{15}=p_{117}$ and $C_{0}=B_{0}, C_{1}=B_{3}, C_{2}=B_{6}, C_{3}=B_{9}, C_{4}=B_{36}, C_{5}=B_{39}, C_{6}=B_{42}, C_{7}=$ $B_{45}, C_{8}=B_{72}, C_{9}=B_{75}, C_{10}=B_{78}, C_{11}=B_{81}, C_{12}=B_{108}, C_{13}=B_{111}, C_{14}=$ $B_{114}, C_{15}=B_{117}$.

The symbols $m_{i, j}, D_{i, j}, M$ and $A_{i, i^{\prime}}$ are the same as in Type 11.

(7.12.3)

Set $I_{0}=\{0,1,2,3\}, I_{1}=\{4,5,6,7\}, I_{2}=\{8,9,10,11\}$ and $I_{3}=\{12,13,14,15\}$.
(i) For $0 \leq i \neq i^{\prime} \leq 15$

$$
A_{i, i^{\prime}}= \begin{cases}\widehat{G \backslash\langle\tau\rangle} & \text { if } i \neq i^{\prime} \in I_{k} \text { for some } k \in\{0,1\}, \\ \widehat{G \backslash\left\langle\varphi^{2} \tau\right\rangle} & \text { if } i \neq i^{\prime} \in I_{2}, \\ \widehat{G \backslash\langle\varphi \tau\rangle} & \text { if } i \neq i^{\prime} \in I_{3}, \\ \widehat{G} & \text { if } i \in I_{k}, i^{\prime} \in I_{l} \quad \text { for some } k \neq l \in\{0,1,2,3\}\end{cases}
$$

(ii) For $0 \leq i \leq 15$

$$
A_{i, i}= \begin{cases}12+\widehat{G \backslash\langle\tau\rangle} & \text { if } i \in I_{k} \quad \text { for some } k \in\{0,1\}, \\ 12+\widehat{G \backslash\left\langle\varphi^{2} \tau\right\rangle} & \text { if } i \in I_{2}, \\ 12+\widehat{G \backslash\langle\varphi \tau\rangle} & \text { if } i \in I_{3} .\end{cases}
$$

(7.12.4) Let I_{0}, \ldots, I_{3} be the symbols used in (7.12.3).
(i) For $0 \leq i \neq i^{\prime} \leq 15$

$$
\sum_{j=0}^{15} m_{i, j} m_{i^{\prime}, j}= \begin{cases}6 & \text { if } i \neq i^{\prime} \in I_{k} \quad \text { for some } k \in\{0,1,2,3\}, \\ 9 & \text { if } i \in I_{k}, i^{\prime} \in I_{l} \quad \text { for some } k \neq l \in\{0,1,2,3\}\end{cases}
$$

(ii) For $0 \leq i \leq 15$

$$
\sum_{j=0}^{15} m_{i, j}^{2}=18
$$

(iii) For $0 \leq i \leq 15$

$$
\sum_{j=0}^{15} m_{i, j}=12
$$

Lemma 7.4 There does not exist an $M=\left(m_{i, j}\right)_{0 \leq i, j \leq 15}$. Therefore Type 12 does not occur.

Type 13

```
(7.13.1) }\varphi=(\mp@subsup{x}{0}{},\mp@subsup{x}{12}{},\mp@subsup{x}{24}{})(\mp@subsup{x}{1}{},\mp@subsup{x}{13}{},\mp@subsup{x}{25}{})(\mp@subsup{x}{2}{},\mp@subsup{x}{14}{},\mp@subsup{x}{26}{})(\mp@subsup{x}{3}{},\mp@subsup{x}{15}{},\mp@subsup{x}{27}{}
(x4, x 16, x 28)( }\mp@subsup{x}{5}{},\mp@subsup{x}{17}{},\mp@subsup{x}{29}{})(\mp@subsup{x}{6}{},\mp@subsup{x}{18}{},\mp@subsup{x}{30}{})(\mp@subsup{x}{7}{},\mp@subsup{x}{19}{},\mp@subsup{x}{31}{}
(x},\mp@subsup{x}{20}{},\mp@subsup{x}{32}{})(\mp@subsup{x}{9}{},\mp@subsup{x}{21}{},\mp@subsup{x}{33}{})(\mp@subsup{x}{10}{},\mp@subsup{x}{22}{},\mp@subsup{x}{34}{})(\mp@subsup{x}{11}{},\mp@subsup{x}{23}{},\mp@subsup{x}{35}{}
(x36, x48, x60)( }\mp@subsup{x}{37}{},\mp@subsup{x}{49}{},\mp@subsup{x}{61}{})(\mp@subsup{x}{38}{},\mp@subsup{x}{50}{},\mp@subsup{x}{62}{})(\mp@subsup{x}{39}{},\mp@subsup{x}{51}{},\mp@subsup{x}{63}{}
(x}40,\mp@subsup{x}{52}{},\mp@subsup{x}{64}{})(\mp@subsup{x}{41}{},\mp@subsup{x}{53}{},\mp@subsup{x}{65}{})(\mp@subsup{x}{42}{},\mp@subsup{x}{54}{},\mp@subsup{x}{66}{})(\mp@subsup{x}{43}{},\mp@subsup{x}{55}{},\mp@subsup{x}{67}{}
(x44, \mp@subsup{x}{56}{},\mp@subsup{x}{68}{})(\mp@subsup{x}{45}{},\mp@subsup{x}{57}{},\mp@subsup{x}{69}{})(\mp@subsup{x}{46}{},\mp@subsup{x}{58}{},\mp@subsup{x}{70}{})(\mp@subsup{x}{47}{},\mp@subsup{x}{59}{},\mp@subsup{x}{71}{})
(x (x2, x 84, x96 )( }\mp@subsup{x}{73}{},\mp@subsup{x}{85}{},\mp@subsup{x}{97}{})(\mp@subsup{x}{74}{},\mp@subsup{x}{86}{},\mp@subsup{x}{98}{})(\mp@subsup{x}{75}{},\mp@subsup{x}{87}{},\mp@subsup{x}{99}{}
(x}\mp@subsup{x}{76}{},\mp@subsup{x}{88}{},\mp@subsup{x}{100}{})(\mp@subsup{x}{77}{},\mp@subsup{x}{89}{},\mp@subsup{x}{101}{})(\mp@subsup{x}{78}{},\mp@subsup{x}{90}{},\mp@subsup{x}{102}{})(\mp@subsup{x}{79}{},\mp@subsup{x}{91}{},\mp@subsup{x}{103}{}
(x}\mp@subsup{x}{80}{},\mp@subsup{x}{92}{},\mp@subsup{x}{104}{})(\mp@subsup{x}{81}{},\mp@subsup{x}{93}{},\mp@subsup{x}{105}{})(\mp@subsup{x}{82}{},\mp@subsup{x}{94}{},\mp@subsup{x}{106}{})(\mp@subsup{x}{83}{},\mp@subsup{x}{95}{},\mp@subsup{x}{107}{}
(x
(x}\mp@subsup{x}{112}{},\mp@subsup{x}{124}{},\mp@subsup{x}{136}{})(\mp@subsup{x}{113}{},\mp@subsup{x}{125}{},\mp@subsup{x}{137}{})(\mp@subsup{x}{114}{},\mp@subsup{x}{126}{},\mp@subsup{x}{138}{})(\mp@subsup{x}{115}{},\mp@subsup{x}{127}{},\mp@subsup{x}{139}{}
( }\mp@subsup{x}{116}{},\mp@subsup{x}{128}{},\mp@subsup{x}{140}{})(\mp@subsup{x}{117}{},\mp@subsup{x}{129}{},\mp@subsup{x}{141}{})(\mp@subsup{x}{118}{},\mp@subsup{x}{130}{},\mp@subsup{x}{142}{})(\mp@subsup{x}{119}{},\mp@subsup{x}{131}{},\mp@subsup{x}{143}{})\mathrm{ and
\tau=(\mp@subsup{x}{0}{},\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})(\mp@subsup{x}{3}{},\mp@subsup{x}{4}{},\mp@subsup{x}{5}{})(\mp@subsup{x}{6}{},\mp@subsup{x}{7}{},\mp@subsup{x}{8}{})(\mp@subsup{x}{9}{},\mp@subsup{x}{10}{},\mp@subsup{x}{11}{})
```



```
(x48, x49, x 50 )(x (x1, x x2, x 53)( (x54, \mp@subsup{x}{55}{},\mp@subsup{x}{56}{})(\mp@subsup{x}{57}{},\mp@subsup{x}{58}{},\mp@subsup{x}{59}{})
(x60, x 61, x}\mp@subsup{x}{62}{})(\mp@subsup{x}{63}{},\mp@subsup{x}{64}{},\mp@subsup{x}{65}{})(\mp@subsup{x}{66}{},\mp@subsup{x}{67}{},\mp@subsup{x}{68}{})(\mp@subsup{x}{69}{},\mp@subsup{x}{70}{},\mp@subsup{x}{71}{}
( }\mp@subsup{x}{72}{},\mp@subsup{x}{73}{},\mp@subsup{x}{74}{})(\mp@subsup{x}{75}{},\mp@subsup{x}{76}{},\mp@subsup{x}{77}{})(\mp@subsup{x}{78}{},\mp@subsup{x}{79}{},\mp@subsup{x}{80}{})(\mp@subsup{x}{81}{},\mp@subsup{x}{82}{},\mp@subsup{x}{83}{}
( }\mp@subsup{x}{84}{},\mp@subsup{x}{85}{},\mp@subsup{x}{86}{})(\mp@subsup{x}{87}{},\mp@subsup{x}{88}{},\mp@subsup{x}{89}{})(\mp@subsup{x}{90}{},\mp@subsup{x}{91}{},\mp@subsup{x}{92}{})(\mp@subsup{x}{93}{},\mp@subsup{x}{94}{},\mp@subsup{x}{95}{}
( }\mp@subsup{x}{96}{},\mp@subsup{x}{97}{},\mp@subsup{x}{98}{})(\mp@subsup{x}{99}{},\mp@subsup{x}{100}{},\mp@subsup{x}{101}{})(\mp@subsup{x}{102}{},\mp@subsup{x}{103}{},\mp@subsup{x}{104}{})(\mp@subsup{x}{105}{},\mp@subsup{x}{106}{},\mp@subsup{x}{107}{}
( }\mp@subsup{x}{108}{},\mp@subsup{x}{121}{},\mp@subsup{x}{134}{})(\mp@subsup{x}{109}{},\mp@subsup{x}{122}{},\mp@subsup{x}{132}{})(\mp@subsup{x}{110}{},\mp@subsup{x}{120}{},\mp@subsup{x}{133}{})(\mp@subsup{x}{111}{},\mp@subsup{x}{124}{},\mp@subsup{x}{137}{}
( }\mp@subsup{x}{112}{},\mp@subsup{x}{125}{},\mp@subsup{x}{135}{)})(\mp@subsup{x}{113}{},\mp@subsup{x}{123}{},\mp@subsup{x}{136}{})(\mp@subsup{x}{114}{},\mp@subsup{x}{127}{},\mp@subsup{x}{140}{})(\mp@subsup{x}{115}{},\mp@subsup{x}{128}{},\mp@subsup{x}{138}{}
( }\mp@subsup{x}{116}{},\mp@subsup{x}{126}{},\mp@subsup{x}{139}{)})(\mp@subsup{x}{117}{},\mp@subsup{x}{130}{},\mp@subsup{x}{143}{})(\mp@subsup{x}{118}{},\mp@subsup{x}{131}{},\mp@subsup{x}{141}{})(\mp@subsup{x}{119}{},\mp@subsup{x}{129}{},\mp@subsup{x}{142}{})\mathrm{ , where }x\in{p,B}
```

(7.13.2) There are the following $16 G$-orbits on \mathcal{P} and on \mathcal{B}.
$\mathcal{Y}_{0}=\left\{x_{0}, x_{1}, x_{2}, x_{12}, x_{13}, x_{14}, x_{24}, x_{25}, x_{26}\right\}$,
$\mathcal{Y}_{1}=\left\{x_{3}, x_{4}, x_{5}, x_{15}, x_{16}, x_{17}, x_{27}, x_{28}, x_{29}\right\}$,
$\mathcal{Y}_{2}=\left\{x_{6}, x_{7}, x_{8}, x_{18}, x_{19}, x_{20}, x_{30}, x_{31}, x_{32}\right\}$,
$\mathcal{Y}_{3}=\left\{x_{9}, x_{10}, x_{11}, x_{21}, x_{22}, x_{23}, x_{33}, x_{34}, x_{35}\right\}$,
$\mathcal{Y}_{4}=\left\{x_{36}, x_{37}, x_{38}, x_{48}, x_{49}, x_{50}, x_{60}, x_{61}, x_{62}\right\}$,
$\mathcal{Y}_{5}=\left\{x_{39}, x_{40}, x_{41}, x_{51}, x_{52}, x_{53}, x_{63}, x_{64}, x_{65}\right\}$,
$\mathcal{Y}_{6}=\left\{x_{42}, x_{43}, x_{44}, x_{54}, x_{55}, x_{56}, x_{66}, x_{67}, x_{68}\right\}$,
$\mathcal{Y}_{7}=\left\{x_{45}, x_{46}, x_{47}, x_{57}, x_{58}, x_{59}, x_{69}, x_{70}, x_{71}\right\}$,
$\mathcal{Y}_{8}=\left\{x_{72}, x_{73}, x_{74}, x_{84}, x_{85}, x_{86}, x_{96}, x_{97}, x_{98}\right\}$,
$\mathcal{Y}_{9}=\left\{x_{75}, x_{76}, x_{77}, x_{87}, x_{88}, x_{89}, x_{99}, x_{100}, x_{101}\right\}$,
$\mathcal{Y}_{10}=\left\{x_{78}, x_{79}, x_{80}, x_{90}, x_{91}, x_{92}, x_{102}, x_{103}, x_{104}\right\}$,
$\mathcal{Y}_{11}=\left\{x_{81}, x_{82}, x_{83}, x_{93}, x_{94}, x_{95}, x_{105}, x_{106}, x_{107}\right\}$,
$\mathcal{Y}_{12}=\left\{x_{108}, x_{109}, x_{110}, x_{120}, x_{121}, x_{122}, x_{132}, x_{133}, x_{134}\right\}$,
$\mathcal{Y}_{13}=\left\{x_{111}, x_{112}, x_{113}, x_{123}, x_{124}, x_{125}, x_{135}, x_{136}, x_{137}\right\}$,
$\mathcal{Y}_{14}=\left\{x_{114}, x_{115}, x_{116}, x_{126}, x_{127}, x_{128}, x_{138}, x_{139}, x_{140}\right\}$,
$\mathcal{Y}_{15}=\left\{x_{117}, x_{118}, x_{119}, x_{129}, x_{130}, x_{131}, x_{141}, x_{142}, x_{143}\right\}$, where $(\mathcal{Y}, x) \in\{(\mathcal{Q}, p),(\mathcal{C}, B)\}$.
Set $q_{0}=p_{0}, q_{1}=p_{3}, q_{2}=p_{6}, q_{3}=p_{9}, q_{4}=p_{36}, q_{5}=p_{39}, q_{6}=p_{42}, q_{7}=p_{45}, q_{8}=$ $p_{72}, q_{9}=p_{75}, q_{10}=p_{78}, q_{11}=p_{81}, q_{12}=p_{108}, q_{13}=p_{111}, q_{14}=p_{114}, q_{15}=p_{117}$ and $C_{0}=B_{0}, C_{1}=B_{3}, C_{2}=B_{6}, C_{3}=B_{9}, C_{4}=B_{36}, C_{5}=B_{39}, C_{6}=B_{42}, C_{7}=$ $B_{45}, C_{8}=B_{72}, C_{9}=B_{75}, C_{10}=B_{78}, C_{11}=B_{81}, C_{12}=B_{108}, C_{13}=B_{111}, C_{14}=$ $B_{114}, C_{15}=B_{117}$.

The symbols $m_{i, j}, D_{i, j}, M$ and $A_{i, i^{\prime}}$ are the same as in Type 11.
(7.13.3)

Set $I_{0}=\{0,1,2,3\}, I_{1}=\{4,5,6,7\}, I_{2}=\{8,9,10,11\}$ and $I_{3}=\{12,13,14,15\}$.
(i) For $0 \leq i \neq i^{\prime} \leq 15$,

$$
A_{i, i^{\prime}}= \begin{cases}\widehat{G \backslash\langle\tau\rangle} & \text { if } i \neq i^{\prime} \in I_{k} \quad \text { for some } k \in\{0,1,2\}, \\ \widehat{G \backslash\left\langle\varphi^{2} \tau\right\rangle} & \text { if } i \neq i^{\prime} \in I_{3}, \\ \widehat{G} & \text { if } i \in I_{k}, i^{\prime} \in I_{l} \quad \text { for some } k \neq l \in\{0,1,2,3\}\end{cases}
$$

(ii) For $0 \leq i \leq 15$

$$
A_{i, i}= \begin{cases}12+\widehat{G \backslash\langle\tau\rangle} & \text { if } i \in I_{k} \quad \text { for some } k \in\{0,1,2\}, \\ 12+\widehat{G \backslash\left\langle\varphi^{2} \tau\right\rangle} & \text { if } i \in I_{3} .\end{cases}
$$

(7.13.4) Let I_{0}, \ldots, I_{3} be the symbols used in (7.13.3).
(i) For $0 \leq i \neq i^{\prime} \leq 15$

$$
\sum_{j=0}^{15} m_{i, j} m_{i^{\prime}, j}= \begin{cases}6 & \text { if } i \neq i^{\prime} \in I_{k} \quad \text { for some } k \in\{0,1,2,3\}, \\ 9 & \text { if } i \in I_{k}, i^{\prime} \in I_{l} \quad \text { for some } k \neq l \in\{0,1,2,3\} .\end{cases}
$$

(ii) For $0 \leq i \leq 15$,

$$
\sum_{j=0}^{15} m_{i, j}^{2}=18
$$

(iii) For $0 \leq i \leq 15$

$$
\sum_{j=0}^{15} m_{i, j}=12
$$

Lemma 7.5 There does not exist an $M=\left(m_{i, j}\right)_{0 \leq i, j \leq 15}$. Therefore Type 13 does not occur.

Type 14

(7.14.1) $\varphi=\left(x_{0}, x_{1}, x_{2}\right)\left(x_{3}, x_{4}, x_{5}\right)\left(x_{6}, x_{7}, x_{8}\right)\left(x_{9}, x_{10}, x_{11}\right)$
$\left(x_{12}, x_{13}, x_{14}\right)\left(x_{15}, x_{16}, x_{17}\right)\left(x_{18}, x_{19}, x_{20}\right)\left(x_{21}, x_{22}, x_{23}\right)$
$\left(x_{24}, x_{25}, x_{26}\right)\left(x_{27}, x_{28}, x_{29}\right)\left(x_{30}, x_{31}, x_{32}\right)\left(x_{33}, x_{34}, x_{35}\right)$
$\left(x_{36}, x_{48}, x_{60}\right)\left(x_{37}, x_{49}, x_{61}\right)\left(x_{38}, x_{50}, x_{62}\right)\left(x_{39}, x_{51}, x_{63}\right)$
$\left(x_{40}, x_{52}, x_{64}\right)\left(x_{41}, x_{53}, x_{65}\right)\left(x_{42}, x_{54}, x_{66}\right)\left(x_{43}, x_{55}, x_{67}\right)$
$\left(x_{44}, x_{56}, x_{68}\right)\left(x_{45}, x_{57}, x_{69}\right)\left(x_{46}, x_{58}, x_{70}\right)\left(x_{47}, x_{59}, x_{71}\right)$
$\left(x_{72}, x_{84}, x_{96}\right)\left(x_{73}, x_{85}, x_{97}\right)\left(x_{74}, x_{86}, x_{98}\right)\left(x_{75}, x_{87}, x_{99}\right)$
$\left(x_{76}, x_{88}, x_{100}\right)\left(x_{77}, x_{89}, x_{101}\right)\left(x_{78}, x_{90}, x_{102}\right)\left(x_{79}, x_{91}, x_{103}\right)$
$\left(x_{80}, x_{92}, x_{104}\right)\left(x_{81}, x_{93}, x_{105}\right)\left(x_{82}, x_{94}, x_{106}\right)\left(x_{83}, x_{95}, x_{107}\right)$
$\left(x_{108}, x_{120}, x_{132}\right)\left(x_{109}, x_{121}, x_{133}\right)\left(x_{110}, x_{122}, x_{134}\right)\left(x_{111}, x_{123}, x_{135}\right)$
$\left(x_{112}, x_{124}, x_{136}\right)\left(x_{113}, x_{125}, x_{137}\right)\left(x_{114}, x_{126}, x_{138}\right)\left(x_{115}, x_{127}, x_{139}\right)$
$\left(x_{116}, x_{128}, x_{140}\right)\left(x_{117}, x_{129}, x_{141}\right)\left(x_{118}, x_{130}, x_{142}\right)\left(x_{119}, x_{131}, x_{143}\right)$ and
$\tau=\left(x_{0}, x_{12}, x_{24}\right)\left(x_{1}, x_{13}, x_{25}\right)\left(x_{2}, x_{14}, x_{26}\right)\left(x_{3}, x_{15}, x_{27}\right)$
$\left(x_{4}, x_{16}, x_{28}\right)\left(x_{5}, x_{17}, x_{29}\right)\left(x_{6}, x_{18}, x_{30}\right)\left(x_{7}, x_{19}, x_{31}\right)$
$\left(x_{8}, x_{20}, x_{32}\right)\left(x_{9}, x_{21}, x_{33}\right)\left(x_{10}, x_{22}, x_{34}\right)\left(x_{11}, x_{23}, x_{35}\right)$
$\left(x_{36}, x_{37}, x_{38}\right)\left(x_{39}, x_{40}, x_{41}\right)\left(x_{42}, x_{43}, x_{44}\right)\left(x_{45}, x_{46}, x_{47}\right)$
$\left(x_{48}, x_{49}, x_{50}\right)\left(x_{51}, x_{52}, x_{53}\right)\left(x_{54}, x_{55}, x_{56}\right)\left(x_{57}, x_{58}, x_{59}\right)$
$\left(x_{60}, x_{61}, x_{62}\right)\left(x_{63}, x_{64}, x_{65}\right)\left(x_{66}, x_{67}, x_{68}\right)\left(x_{69}, x_{70}, x_{71}\right)$
$\left(x_{72}, x_{85}, x_{98}\right)\left(x_{73}, x_{86}, x_{96}\right)\left(x_{74}, x_{84}, x_{97}\right)\left(x_{75}, x_{88}, x_{101}\right)$
$\left(x_{76}, x_{89}, x_{99}\right)\left(x_{77}, x_{87}, x_{100}\right)\left(x_{78}, x_{91}, x_{104}\right)\left(x_{79}, x_{92}, x_{102}\right)$

```
(x80, x90, x ( 
```



```
(x112},\mp@subsup{x}{137}{},\mp@subsup{x}{123}{})(\mp@subsup{x}{113}{},\mp@subsup{x}{135}{},\mp@subsup{x}{124}{})(\mp@subsup{x}{114}{},\mp@subsup{x}{139}{},\mp@subsup{x}{128}{})(\mp@subsup{x}{115}{},\mp@subsup{x}{140}{},\mp@subsup{x}{126}{}
( }\mp@subsup{x}{116}{},\mp@subsup{x}{138}{},\mp@subsup{x}{127}{})(\mp@subsup{x}{117}{},\mp@subsup{x}{142}{},\mp@subsup{x}{131}{})(\mp@subsup{x}{118}{},\mp@subsup{x}{143}{},\mp@subsup{x}{129}{})(\mp@subsup{x}{119}{},\mp@subsup{x}{141}{},\mp@subsup{x}{130}{})\mathrm{ , where }x\in{p,B}
```

(7.14.2) There are the following $16 G$-orbits on \mathcal{P} and on \mathcal{B}.

```
\mathcal{Y}}={\mp@subsup{x}{0}{},\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{12}{},\mp@subsup{x}{13}{},\mp@subsup{x}{14}{},\mp@subsup{x}{24}{},\mp@subsup{x}{25}{},\mp@subsup{x}{26}{}}
\mp@subsup{\mathcal{Y}}{1}{}={\mp@subsup{x}{3}{},\mp@subsup{x}{4}{},\mp@subsup{x}{5}{},\mp@subsup{x}{15}{\prime},\mp@subsup{x}{16}{},\mp@subsup{x}{17}{},\mp@subsup{x}{27}{},\mp@subsup{x}{28}{},\mp@subsup{x}{29}{}},
\mp@subsup{\mathcal{Y}}{2}{}={\mp@subsup{x}{6}{},\mp@subsup{x}{7}{},\mp@subsup{x}{8}{},\mp@subsup{x}{18}{},\mp@subsup{x}{19}{},\mp@subsup{x}{20}{},\mp@subsup{x}{30}{},\mp@subsup{x}{31}{},\mp@subsup{x}{32}{}},
\mathcal{Y}
\mp@subsup{Y}{4}{}={\mp@subsup{x}{36}{},\mp@subsup{x}{37}{},\mp@subsup{x}{38}{},\mp@subsup{x}{48}{},\mp@subsup{x}{49}{},\mp@subsup{x}{50}{},\mp@subsup{x}{60}{},\mp@subsup{x}{61}{},\mp@subsup{x}{62}{}},
\mp@subsup{\mathcal{Y}}{5}{}={\mp@subsup{x}{39}{},\mp@subsup{x}{40}{},\mp@subsup{x}{41}{},\mp@subsup{x}{51}{},\mp@subsup{x}{52}{},\mp@subsup{x}{53}{},\mp@subsup{x}{63}{},\mp@subsup{x}{64}{},\mp@subsup{x}{65}{}},
\mp@subsup{\mathcal{Y}}{6}{}={\mp@subsup{x}{42}{},\mp@subsup{x}{43}{},\mp@subsup{x}{44}{},\mp@subsup{x}{54}{},\mp@subsup{x}{55}{},\mp@subsup{x}{56}{},\mp@subsup{x}{66}{},\mp@subsup{x}{67}{},\mp@subsup{x}{68}{}},
\mathcal{Y}}={\mp@subsup{x}{45}{},\mp@subsup{x}{46}{},\mp@subsup{x}{47}{},\mp@subsup{x}{57}{},\mp@subsup{x}{58}{},\mp@subsup{x}{59}{},\mp@subsup{x}{69}{},\mp@subsup{x}{70}{},\mp@subsup{x}{71}{}}
\mathcal{Y}
\mp@subsup{\mathcal{Y}}{9}{}={\mp@subsup{x}{75}{},\mp@subsup{x}{76}{},\mp@subsup{x}{77}{},\mp@subsup{x}{87}{},\mp@subsup{x}{88}{},\mp@subsup{x}{89}{},\mp@subsup{x}{99}{},\mp@subsup{x}{100}{},\mp@subsup{x}{101}{}},
\mathcal{Y}
\mathcal{Y}}11={\mp@subsup{x}{81}{},\mp@subsup{x}{82}{},\mp@subsup{x}{83}{},\mp@subsup{x}{93}{},\mp@subsup{x}{94}{},\mp@subsup{x}{95}{},\mp@subsup{x}{105}{},\mp@subsup{x}{106}{},\mp@subsup{x}{107}{}}
\mp@subsup{\mathcal{Y}}{12}{}={\mp@subsup{x}{108}{},\mp@subsup{x}{109}{},\mp@subsup{x}{110}{},\mp@subsup{x}{120}{},\mp@subsup{x}{121}{},\mp@subsup{x}{122}{},\mp@subsup{x}{132}{},\mp@subsup{x}{133}{},\mp@subsup{x}{134}{}},
\mp@subsup{\mathcal{Y}}{13}{}={\mp@subsup{x}{111}{},\mp@subsup{x}{112}{},\mp@subsup{x}{113}{},\mp@subsup{x}{123}{},\mp@subsup{x}{124}{},\mp@subsup{x}{125}{},\mp@subsup{x}{135}{},\mp@subsup{x}{136}{},\mp@subsup{x}{137}{}},
\mathcal{Y}
\mathcal{Y}
```

Set $q_{0}=p_{0}, q_{1}=p_{3}, q_{2}=p_{6}, q_{3}=p_{9}, q_{4}=p_{36}, q_{5}=p_{39}, q_{6}=p_{42}, q_{7}=p_{45}, q_{8}=$ $p_{72}, q_{9}=p_{75}, q_{10}=p_{78}, q_{11}=p_{81}, q_{12}=p_{108}, q_{13}=p_{111}, q_{14}=p_{114}, q_{15}=p_{117}$ and $C_{0}=B_{0} C_{1}=B_{3}, C_{2}=B_{6}, C_{3}=B_{9}, C_{4}=B_{36}, C_{5}=B_{39}, C_{6}=B_{42}, C_{7}=$ $B_{45}, C_{8}=B_{72}, C_{9}=B_{75}, C_{10}=B_{78}, C_{11}=B_{81}, C_{12}=B_{108}, C_{13}=B_{111}, C_{14}=$ $B_{114}, C_{15}=B_{117}$.

The symbols $m_{i, j}, D_{i, j}, M$ and $A_{i, i^{\prime}}$ are the same as in Type 11.
(7.14.3) Set $I_{0}=\{0,1,2,3\}, I_{1}=\{4,5,6,7\}, I_{2}=\{8,9,10,11\}$, and $I_{3}=$ $\{12,13,14,15\}$.
(i) For $0 \leq i \neq i^{\prime} \leq 15$,

$$
A_{i, i^{\prime}}= \begin{cases}\widehat{G \backslash\langle\varphi\rangle} & \text { if } i \neq i^{\prime} \in I_{0}, \\ \widehat{G \backslash\langle\tau\rangle} & \text { if } i \neq i^{\prime} \in I_{1}, \\ \widehat{G \backslash\left\langle\varphi^{2} \tau\right\rangle} & \text { if } i \neq i^{\prime} \in I_{2}, \\ \widehat{G \backslash\langle\varphi \tau\rangle} & \text { if } i \neq i^{\prime} \in I_{3}, \\ \widehat{G} & \text { if } i \in I_{k}, i^{\prime} \in I_{l} \quad \text { for some } k \neq l \in\{0,1,2,3\} .\end{cases}
$$

(ii) For $0 \leq i \leq 15$

$$
A_{i, i}= \begin{cases}12+\widehat{G \backslash\langle\varphi\rangle} & \text { if } i \in I_{0}, \\ 12+\widehat{G \backslash\langle\tau\rangle} & \text { if } i \in I_{1}, \\ 12+\widehat{G \backslash\left\langle\varphi^{2} \tau\right\rangle} & \text { if } i \in I_{2}, \\ 12+\widehat{G \backslash\langle\varphi \tau\rangle} & \text { if } i \in I_{3} .\end{cases}
$$

(7.14.4) Let I_{0}, \ldots, I_{3} be the symbols used in (7.14.3).
(i) For $0 \leq i \neq i^{\prime} \leq 15$

$$
\sum_{j=0}^{15} m_{i, j} m_{i^{\prime}, j}= \begin{cases}6 & \text { if } i \neq i^{\prime} \in I_{k} \quad \text { for some } k \in\{0,1,2,3\}, \\ 9 & \text { if } i \in I_{k}, i^{\prime} \in I_{l} \quad \text { for some } k \neq l \in\{0,1,2,3\}\end{cases}
$$

(ii) For $0 \leq i \leq 15$

$$
\sum_{j=0}^{15} m_{i, j}^{2}=18
$$

(iii) For $0 \leq i \leq 15$

$$
\sum_{j=0}^{15} m_{i, j}=12
$$

Lemma 7.6 There does not exist an $M=\left(m_{i, j}\right)_{0 \leq i, j \leq 15}$. Therefore Type 14 does not occur.

Type 15

```
(7.15.1) }\varphi=(\mp@subsup{x}{0}{},\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})(\mp@subsup{x}{3}{},\mp@subsup{x}{4}{},\mp@subsup{x}{5}{\prime})(\mp@subsup{x}{6}{},\mp@subsup{x}{7}{},\mp@subsup{x}{8}{\prime})(\mp@subsup{x}{9}{},\mp@subsup{x}{10}{},\mp@subsup{x}{11}{}
```



```
(x40, x52, x64)(x41, x53, x65)(x42, \mp@subsup{x}{54}{},\mp@subsup{x}{66}{})(\mp@subsup{x}{43}{},\mp@subsup{x}{55}{},\mp@subsup{x}{67}{})
```



```
(x}\mp@subsup{x}{72}{},\mp@subsup{x}{84}{},\mp@subsup{x}{96}{})(\mp@subsup{x}{73}{},\mp@subsup{x}{85}{},\mp@subsup{x}{97}{})(\mp@subsup{x}{74}{},\mp@subsup{x}{86}{},\mp@subsup{x}{98}{})(\mp@subsup{x}{75}{},\mp@subsup{x}{87}{},\mp@subsup{x}{99}{}
(x76,\mp@subsup{x}{88}{},\mp@subsup{x}{100}{})(\mp@subsup{x}{77}{},\mp@subsup{x}{89}{},\mp@subsup{x}{101}{})(\mp@subsup{x}{78}{},\mp@subsup{x}{90}{},\mp@subsup{x}{102}{})(\mp@subsup{x}{79}{},\mp@subsup{x}{91}{},\mp@subsup{x}{103}{})
(x
```



```
(x112, x ( 
(x116},\mp@subsup{x}{128}{},\mp@subsup{x}{140}{})(\mp@subsup{x}{117}{},\mp@subsup{x}{129}{},\mp@subsup{x}{141}{})(\mp@subsup{x}{118}{},\mp@subsup{x}{130}{},\mp@subsup{x}{142}{})(\mp@subsup{x}{119}{},\mp@subsup{x}{131}{},\mp@subsup{x}{143}{})\mathrm{ and
\tau=(\mp@subsup{x}{0}{},\mp@subsup{x}{12}{},\mp@subsup{x}{24}{})(\mp@subsup{x}{1}{},\mp@subsup{x}{13}{},\mp@subsup{x}{25}{})(\mp@subsup{x}{2}{},\mp@subsup{x}{14}{},\mp@subsup{x}{26}{})(\mp@subsup{x}{3}{},\mp@subsup{x}{15}{},\mp@subsup{x}{27}{})
```



```
(x8,\mp@subsup{x}{20}{},\mp@subsup{x}{32}{})(\mp@subsup{x}{9}{},\mp@subsup{x}{21}{},\mp@subsup{x}{33}{})(\mp@subsup{x}{10}{},\mp@subsup{x}{22}{},\mp@subsup{x}{34}{})(\mp@subsup{x}{11}{},\mp@subsup{x}{23}{},\mp@subsup{x}{35}{})
(x}\mp@subsup{x}{36}{},\mp@subsup{x}{72}{},\mp@subsup{x}{108}{})(\mp@subsup{x}{37}{},\mp@subsup{x}{73}{},\mp@subsup{x}{109}{})(\mp@subsup{x}{38}{},\mp@subsup{x}{74}{},\mp@subsup{x}{110}{})(\mp@subsup{x}{39}{},\mp@subsup{x}{75}{},\mp@subsup{x}{111}{}
(x}\mp@subsup{x}{40}{},\mp@subsup{x}{76}{},\mp@subsup{x}{112}{})(\mp@subsup{x}{41}{},\mp@subsup{x}{77}{},\mp@subsup{x}{113}{})(\mp@subsup{x}{42}{},\mp@subsup{x}{78}{},\mp@subsup{x}{114}{})(\mp@subsup{x}{43}{},\mp@subsup{x}{79}{},\mp@subsup{x}{115}{}
(x44, x80, x116)(x45, x (x1, x117 )(x46, x ( 
(x48, x84, x120)(x49, x85, x121)(x50, x ( 
```



```
(x68, x 104 , x 140)(x69, x (105, x (141) (x (x0, x ( 
```

(7.15.2) There are the following $16 G$-orbits on \mathcal{P} and on \mathcal{B}.
$\mathcal{y}_{0}=\left\{x_{0}, x_{1}, x_{2}, x_{12}, x_{13}, x_{14}, x_{24}, x_{25}, x_{26}\right\}$,
$\mathcal{Y}_{1}=\left\{x_{3}, x_{4}, x_{5}, x_{15}, x_{16}, x_{17}, x_{27}, x_{28}, x_{29}\right\}$,
$\mathcal{Y}_{2}=\left\{x_{6}, x_{7}, x_{8}, x_{18}, x_{19}, x_{20}, x_{30}, x_{31}, x_{32}\right\}$,
$\mathcal{Y}_{3}=\left\{x_{9}, x_{10}, x_{11}, x_{21}, x_{22}, x_{23}, x_{33}, x_{34}, x_{35}\right\}$,
$\mathcal{Y}_{4}=\left\{x_{36}, x_{48}, x_{60}, x_{72}, x_{84}, x_{96}, x_{108}, x_{120}, x_{132}\right\}$,
$\mathcal{Y}_{5}=\left\{x_{37}, x_{49}, x_{61}, x_{73}, x_{85}, x_{97}, x_{109}, x_{121}, x_{133}\right\}$,
$\mathcal{Y}_{6}=\left\{x_{38}, x_{50}, x_{62}, x_{74}, x_{86}, x_{98}, x_{110}, x_{122}, x_{134}\right\}$,
$\mathcal{Y}_{7}=\left\{x_{39}, x_{51}, x_{63}, x_{75}, x_{87}, x_{99}, x_{111}, x_{123}, x_{135}\right\}$,
$\mathcal{Y}_{8}=\left\{x_{40}, x_{52}, x_{64}, x_{76}, x_{88}, x_{100}, x_{112}, x_{124}, x_{136}\right\}$,
$\mathcal{Y}_{9}=\left\{x_{41}, x_{53}, x_{65}, x_{77}, x_{89}, x_{101}, x_{113}, x_{125}, x_{137}\right\}$,
$\mathcal{Y}_{10}=\left\{x_{42}, x_{54}, x_{66}, x_{78}, x_{90}, x_{102}, x_{114}, x_{126}, x_{138}\right\}$,
$\mathcal{Y}_{11}=\left\{x_{43}, x_{55}, x_{67}, x_{79}, x_{91}, x_{103}, x_{115}, x_{127}, x_{139}\right\}$,
$\mathcal{Y}_{12}=\left\{x_{44}, x_{56}, x_{68}, x_{80}, x_{92}, x_{104}, x_{116}, x_{128}, x_{140}\right\}$,
$\mathcal{Y}_{13}=\left\{x_{45}, x_{57}, x_{69}, x_{81}, x_{93}, x_{105}, x_{117}, x_{129}, x_{141}\right\}$,
$\mathcal{Y}_{14}=\left\{x_{46}, x_{58}, x_{70}, x_{82}, x_{94}, x_{106}, x_{118}, x_{130}, x_{142}\right\}$,
$\mathcal{Y}_{15}=\left\{x_{47}, x_{59}, x_{71}, x_{83}, x_{95}, x_{107}, x_{119}, x_{131}, x_{143}\right\}$, where $(\mathcal{Y}, x) \in\{(\mathcal{Q}, p),(\mathcal{C}, B)\}$.
Set $q_{0}=p_{0}, q_{1}=p_{3}, q_{2}=p_{6}, q_{3}=p_{9}, q_{4}=p_{36}, q_{5}=p_{37}, q_{6}=p_{38}, q_{7}=p_{39}, q_{8}=$ $p_{40}, q_{9}=p_{41}, q_{10}=p_{42}, q_{11}=p_{43}, q_{12}=p_{44}, q_{13}=p_{45}, q_{14}=p_{46}, q_{15}=p_{47}$ and $C_{0}=B_{0}, C_{1}=B_{3}, C_{2}=B_{6}, C_{3}=B_{9}, C_{4}=B_{36}, C_{5}=B_{37}, C_{6}=B_{38}, C_{7}=$ $B_{39}, C_{8}=B_{40}, C_{9}=B_{41}, C_{10}=B_{42}, C_{11}=B_{43}, C_{12}=B_{44}, C_{13}=B_{45}, C_{14}=$ $B_{46}, C_{15}=B_{47}$.

The symbols $m_{i, j}, D_{i, j}, M$ and $A_{i, i^{\prime}}$ are the same as in Type 11.
(7.15.3) (i) For $0 \leq i \neq i^{\prime} \leq 15$

$$
A_{i, i^{\prime}}= \begin{cases}\widehat{G \backslash\langle\varphi\rangle} & \text { if } 0 \leq i \neq i^{\prime} \leq 3, \\ \widehat{G \backslash\{1\}} & \text { if } 4 \leq i \neq i^{\prime} \leq 15, \\ \widehat{G} & \text { if } 0 \leq i \leq 3,4 \leq i^{\prime} \leq 15 .\end{cases}
$$

(ii) For $0 \leq i \leq 15$

$$
A_{i, i}= \begin{cases}12+\widehat{G \backslash\langle\varphi\rangle} & \text { if } 0 \leq i \leq 3 \\ 12+\widehat{G \backslash\{1\}} & \text { if } 4 \leq i \leq 15\end{cases}
$$

(7.15.4) (i) For $0 \leq i \neq i^{\prime} \leq 15$

$$
\sum_{j=0}^{15} m_{i, j} m_{i^{\prime}, j}= \begin{cases}6 & \text { if } 0 \leq i \neq i^{\prime} \leq 3 \\ 8 & \text { if } 4 \leq i \neq i^{\prime} \leq 15, \\ 9 & \text { if } 0 \leq i \leq 3,4 \leq i^{\prime} \leq 15\end{cases}
$$

(ii) For $0 \leq i \leq 15$

$$
\sum_{j=0}^{15} m_{i, j}^{2}= \begin{cases}18 & \text { if } 0 \leq i \leq 3 \\ 20 & \text { if } 4 \leq i \leq 15\end{cases}
$$

(iii) For $0 \leq i \leq 15$

$$
\sum_{j=0}^{15} m_{i, j}=12
$$

(7.15.5) For $0 \leq i \leq 15$, the following hold, up to ordering of $m_{i, 0}, m_{i, 1}, \ldots, m_{i, 15}$.
(i) If $0 \leq i \leq 3,\left(m_{i, 0}, m_{i, 1}, \ldots, m_{i, 15}\right)=(\underbrace{00 \ldots 0}_{7} \underbrace{1 \ldots 1}_{6} 222)$ or
$(\underbrace{00 \ldots 0}_{6} \underbrace{1 \ldots 1}_{9} 3)$.
(ii) If $4 \leq i \leq 15,\left(m_{i, 0}, m_{i, 1}, \ldots, m_{i, 15}\right)=(\underbrace{00 \ldots 0}_{8} 11112222)$ or $(\underbrace{00 \ldots 0}_{7} \underbrace{11 \ldots 1}_{7} 23)$.
(7.15.6) There are exactly $119 M$, up to equivalence. They are $M_{1}, M_{2}, \ldots, M_{119}$, where each matrix of M_{1}, \ldots, M_{13} contains 3 as an entry but each matrix of M_{14}, \ldots, M_{119} does not. $M_{1}, M_{2}, \ldots, M_{13}, M_{14}$ are given in the Appendix and the authors have the list of the remaining matrices M_{15}, \ldots, M_{119}.
(7.15.7) There does not exist $\left(D_{i, j}\right)_{4 \leq i \leq 9,0 \leq j \leq 15}$ corresponding to the submatrix $\left(m_{i, j}\right)_{4 \leq i \leq 9,0 \leq j \leq 15}$ of $M_{k}=\left(m_{i, j}\right)_{0 \leq i \leq 9,0 \leq j \leq 15}$ for $1 \leq k \leq 119$.

Lemma 7.7 Type 15 does not occur.

THEOREM There are no projective planes of order 12 admitting a collineation group of order 9 .
Proof. The theorem holds from Lemmas 6.2, 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7.
The theorem and [3] yield the following corollary.
Corollary If G is a collineation group of a projective plane π of order 12 , then G is cyclic and $|G|$ divides 3 or 4 .

Appendix

$$
M_{1}=\left(\begin{array}{lllll|lllllllllll}
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 2 & 2 & 0 & 1 & 0 & 2 & 1 \\
1 & 0 & 2 & 1 & 0 & 0 & 0 & 2 & 2 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 2 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 2 \\
1 & 1 & 1 & 1 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 2 & 2 & 1 & 0 & 0 \\
\hline 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
0 & 3 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 2 & 1 \\
0 & 1 & 3 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 2 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 3 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 3 & 0 & 0 & 1 & 1 & 2 & 0 & 0 & 1 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 2 & 0 & 1 & 2 & 0 & 0 & 1 & 2 & 0 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 & 0 & 1 & 2 & 1 & 2 & 1 & 0 & 0 & 2 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & 0 & 2 & 1 & 1 & 0 & 2 & 0 & 2 & 0 & 2 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 2 & 0 & 1 & 0 & 0 & 2 & 2 & 0 \\
1 & 0 & 1 & 2 & 1 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 \\
1 & 1 & 0 & 0 & 1 & 2 & 0 & 0 & 2 & 0 & 2 & 2 & 1 & 0 & 0 & 0 \\
2 & 2 & 0 & 1 & 0 & 1 & 2 & 2 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& M_{2}=\left(\begin{array}{lll|lllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 1 & 0 & 1 & 1 & 2 \\
1 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 2 & 1 & 0 & 0 & 0 & 2 & 2 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 2 & 0 \\
\hline 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
1 & 3 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 3 & 0 & 0 & 0 & 2 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 1 & 2 & 0 & 0 & 2 & 2 & 0 \\
0 & 0 & 1 & 0 & 2 & 1 & 0 & 0 & 2 & 1 & 0 & 2 & 2 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 2 \\
0 & 1 & 0 & 2 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 1 \\
0 & 1 & 2 & 2 & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 2 \\
1 & 0 & 0 & 1 & 2 & 0 & 1 & 2 & 0 & 0 & 1 & 2 & 0 & 0 & 2 & 0 \\
1 & 0 & 0 & 2 & 1 & 0 & 2 & 0 & 1 & 0 & 1 & 0 & 2 & 2 & 0 & 0 \\
1 & 2 & 0 & 0 & 2 & 1 & 2 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 1 & 1 & 0 & 2 & 1 & 2 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& M_{3}=\left(\begin{array}{lll|lllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 1 & 0 & 1 & 1 & 2 \\
1 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 2 & 1 & 0 & 0 & 0 & 2 & 2 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 2 & 0 \\
\hline 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
1 & 3 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 3 & 0 & 0 & 0 & 2 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 1 & 2 & 0 & 0 & 2 & 2 & 0 \\
0 & 0 & 1 & 0 & 2 & 1 & 0 & 0 & 2 & 1 & 0 & 2 & 2 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 2 \\
0 & 1 & 0 & 2 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 1 \\
0 & 2 & 1 & 1 & 2 & 0 & 1 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 2 \\
1 & 0 & 0 & 1 & 2 & 0 & 1 & 2 & 0 & 0 & 1 & 2 & 0 & 0 & 2 & 0 \\
1 & 0 & 0 & 2 & 1 & 0 & 2 & 0 & 1 & 0 & 1 & 0 & 2 & 2 & 0 & 0 \\
1 & 0 & 2 & 2 & 0 & 1 & 0 & 2 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
2 & 1 & 0 & 0 & 1 & 2 & 2 & 1 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& M_{4}=\left(\begin{array}{lll|lllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 1 & 0 & 1 & 1 & 2 \\
1 & 1 & 1 & 0 & 2 & 1 & 1 & 0 & 0 & 0 & 2 & 2 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 1 \\
1 & 1 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 2 & 0 \\
\hline 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
1 & 3 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 3 & 0 & 0 & 0 & 2 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 1 & 2 & 0 & 0 & 2 & 2 & 0 \\
0 & 0 & 1 & 1 & 0 & 2 & 0 & 0 & 2 & 1 & 0 & 2 & 2 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 2 \\
0 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 1 \\
0 & 1 & 2 & 2 & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 2 \\
1 & 0 & 0 & 2 & 0 & 1 & 1 & 2 & 0 & 0 & 1 & 2 & 0 & 0 & 2 & 0 \\
1 & 0 & 0 & 2 & 1 & 0 & 2 & 0 & 1 & 0 & 1 & 0 & 2 & 2 & 0 & 0 \\
1 & 2 & 0 & 1 & 0 & 2 & 2 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 1 & 0 & 2 & 1 & 1 & 2 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& M_{5}=\left(\begin{array}{lll|lllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 1 & 0 & 1 & 1 & 2 \\
1 & 1 & 1 & 0 & 2 & 1 & 1 & 0 & 0 & 0 & 2 & 2 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 1 \\
1 & 1 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 2 & 0 \\
\hline 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
1 & 3 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 3 & 0 & 0 & 0 & 2 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 1 & 2 & 0 & 0 & 2 & 2 & 0 \\
0 & 0 & 1 & 1 & 0 & 2 & 0 & 0 & 2 & 1 & 0 & 2 & 2 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 2 \\
0 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 1 \\
0 & 2 & 1 & 2 & 0 & 1 & 1 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 2 \\
1 & 0 & 0 & 2 & 0 & 1 & 1 & 2 & 0 & 0 & 1 & 2 & 0 & 0 & 2 & 0 \\
1 & 0 & 0 & 2 & 1 & 0 & 2 & 0 & 1 & 0 & 1 & 0 & 2 & 2 & 0 & 0 \\
1 & 0 & 2 & 1 & 2 & 0 & 0 & 2 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
2 & 1 & 0 & 0 & 1 & 2 & 2 & 1 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
M_{6}=\left(\begin{array}{lll|lllllllllllll}
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 0 & 0 & 1 & 2 & 2 \\
1 & 1 & 1 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 2 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 1 & 2 & 0 & 0 \\
\hline 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
1 & 3 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 3 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 2 & 0 \\
\hline 0 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 1 & 1 & 2 & 2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 2 & 0 & 0 & 2 & 1 & 0 & 2 & 2 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 2 \\
0 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 0 & 2 & 1 \\
0 & 1 & 2 & 2 & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 2 \\
1 & 0 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 0 & 1 & 1 & 0 & 2 & 1 & 0 \\
1 & 0 & 0 & 2 & 1 & 0 & 2 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 2 & 0 \\
1 & 2 & 0 & 1 & 0 & 2 & 2 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 1 & 0 & 2 & 1 & 1 & 2 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
M_{7}=\left(\begin{array}{lll|lllllllllllll}
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 0 & 0 & 1 & 2 & 2 \\
1 & 1 & 1 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 2 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 1 & 2 & 0 & 0 \\
\hline 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
1 & 3 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 3 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 2 & 0 \\
\hline 0 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 1 & 1 & 2 & 2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 2 & 0 & 0 & 2 & 1 & 0 & 2 & 2 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 2 \\
0 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 0 & 2 & 1 \\
0 & 2 & 1 & 2 & 0 & 1 & 1 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 2 \\
1 & 0 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 0 & 1 & 1 & 0 & 2 & 1 & 0 \\
1 & 0 & 0 & 2 & 1 & 0 & 2 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 2 & 0 \\
1 & 0 & 2 & 1 & 2 & 0 & 0 & 2 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
2 & 1 & 0 & 0 & 1 & 2 & 2 & 1 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
M_{8}=\left(\begin{array}{lll|lllllllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 2 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 2 & 0 & 2 & 1 & 1 & 2 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 2 & 1 & 1 & 1 & 0 & 0 & 0 & 2 & 0 & 0 & 2 \\
1 & 1 & 1 & 0 & 2 & 0 & 0 & 2 & 0 & 2 & 0 & 1 & 1 & 1 & 0 & 0 \\
\hline 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
1 & 3 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 2 & 0 \\
0 & 1 & 3 & 0 & 1 & 1 & 0 & 0 & 2 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 1 & 2 & 0 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 1 & 2 & 1 & 1 & 2 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 2 & 1 & 2 & 1 & 0 & 0 & 0 & 2 & 0 & 1 & 1 & 2 \\
0 & 0 & 2 & 2 & 0 & 0 & 1 & 2 & 0 & 1 & 0 & 0 & 1 & 0 & 2 & 1 \\
0 & 2 & 0 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 1 & 1 & 0 & 0 & 0 & 2 \\
1 & 1 & 1 & 1 & 0 & 2 & 0 & 2 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 2 & 2 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 0 & 0 \\
1 & 1 & 1 & 1 & 2 & 0 & 2 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\
2 & 0 & 0 & 2 & 2 & 1 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

$$
M_{9}=\left(\begin{array}{lll|lllllllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 2 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 2 & 0 & 2 & 1 & 1 & 2 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 2 \\
1 & 1 & 1 & 0 & 2 & 0 & 0 & 2 & 0 & 2 & 0 & 1 & 1 & 1 & 0 & 0 \\
\hline 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
1 & 3 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 2 & 0 \\
0 & 1 & 3 & 0 & 1 & 1 & 0 & 0 & 2 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & 2 & 2 & 0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 2 & 2 & 1 & 0 & 1 & 1 & 2 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 2 & 2 & 1 & 0 & 0 & 1 & 0 & 2 & 0 & 1 & 2 & 1 \\
0 & 0 & 2 & 2 & 0 & 0 & 1 & 2 & 0 & 1 & 0 & 0 & 0 & 1 & 2 & 1 \\
0 & 2 & 0 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 1 & 1 & 0 & 0 & 0 & 2 \\
1 & 1 & 1 & 1 & 0 & 2 & 0 & 2 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 2 & 2 & 0 & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 2 & 0 & 2 & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 0 & 0 \\
2 & 0 & 0 & 2 & 2 & 1 & 0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

$M_{10}=\left(\begin{array}{lll|lllllllllllll}0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 2 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 2 & 0 & 2 & 1 & 1 & 2 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 2 \\ 1 & 1 & 1 & 0 & 2 & 0 & 0 & 2 & 0 & 2 & 0 & 1 & 1 & 1 & 0 & 0 \\ \hline 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\ 1 & 3 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 2 & 0 \\ 0 & 1 & 3 & 0 & 1 & 1 & 0 & 0 & 2 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & 2 & 2 & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 2 & 2 & 1 & 0 & 1 & 1 & 2 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 & 0 & 2 & 0 & 2 & 0 & 1 & 0 & 2 & 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 & 2 & 0 & 2 & 0 & 0 & 1 & 0 & 0 & 0 & 2 & 2 & 1 \\ 0 & 2 & 0 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 1 & 1 & 0 & 0 & 0 & 2 \\ 1 & 1 & 0 & 0 & 2 & 2 & 1 & 0 & 0 & 0 & 2 & 2 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 2 & 2 & 0 & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 0 \\ 1 & 1 & 2 & 2 & 0 & 0 & 1 & 2 & 0 & 0 & 2 & 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 2 & 2 & 1 & 0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 2 & 2 \\ 1 & 0 & 1 & 1 & 0 & 0 & 2 & 0 & 2 & 1 & 1 & 1 & 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 2 & 1 & 1 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 1 \\ 1 & 1 & 1 & 0 & 2 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & 1 & 1 & 1 & 0 \\ \hline 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\ 1 & 3 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 2 & 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 1 & 2 & 2 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 2 & 2 & 1 & 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 2 \\ 0 & 0 & 2 & 2 & 0 & 0 & 1 & 2 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 2 \\ 0 & 2 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 2 & 1 & 2 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 2 & 0 & 2 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 2 & 2 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 2 & 0 \\ 1 & 1 & 1 & 1 & 2 & 0 & 2 & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 0 & 0 \\ 2 & 0 & 0 & 2 & 2 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0\end{array}\right)$

$$
M_{14}=\left(\begin{array}{llll|llllllllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 2 & 2 & 0 & 2 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 2 & 0 & 1 & 2 & 0 & 0 & 2 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 2 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 2 & 2 \\
\hline 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 0 & 2 \\
0 & 0 & 1 & 2 & 0 & 1 & 0 & 2 & 0 & 1 & 2 & 2 & 0 & 0 & 0 & 1 \\
0 & 1 & 2 & 0 & 2 & 2 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 2 & 2 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & 1 & 1 & 2 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 1 & 1 & 0 & 0 & 0 & 2 & 1 \\
2 & 0 & 0 & 1 & 1 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & 2 \\
1 & 0 & 0 & 2 & 0 & 1 & 1 & 0 & 2 & 2 & 0 & 0 & 0 & 2 & 0 & 1 \\
1 & 0 & 2 & 0 & 2 & 0 & 1 & 0 & 2 & 0 & 1 & 1 & 0 & 0 & 0 & 2 \\
2 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 & 1 & 0 & 2 & 2 & 0 \\
0 & 2 & 0 & 1 & 1 & 2 & 2 & 0 & 1 & 0 & 2 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 & 0 & 2 & 2 & 1 & 0 & 0 & 0 & 2 & 1 & 1 & 0 \\
2 & 1 & 0 & 0 & 1 & 0 & 2 & 1 & 0 & 2 & 0 & 2 & 1 & 0 & 0 & 0
\end{array}\right)
$$

References

[1] A. Aguglia and A. Bonisoli, On the non-existence of a projective plane of order 15 with an A_{4}-invariant oval, Discrete Math. 288 (2004), 1-7.
[2] R. P. Anstee, M. Hall Jr. and J. G. Thompson, Planes of order 10 do not have a collineation of order 5, J. Combin. Theory Ser. A 29 (1980), 39-58.
[3] K. Akiyama and C. Suetake, The nonexistence of projective planes of order 12 with a collineation group of order 8, J. Combin. Des. 16 (2008), 411-430.
[4] K. Akiyama and C. Suetake, On projective planes of order 12 with a collineation group of order 9, Australas. J. Combin. 43 (2009), 133-162.
[5] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Vols. I and II, Cambridge University Press, Cambridge, 1999.
[6] K. Horvatic-Baldasar, E. Kramer and I. Matulic-Bedenic, Projective planes of order 12 do not have an abelian group of order 6 as a collineation group, Punime Mat. 1 (1986), 75-81.
[7] K. Horvatic-Baldasar, E. Kramer and I. Matulic-Bedenic, On the full collineation group of projective planes of order 12, Punime Mat. 2 (1987), 9-11.
[8] R. H. Bruck and H. J. Ryser, The nonexistence of certain finite projective planes, Canad. J. Math. 1 (1949), 88-93.
[9] R. C. Bose and S. S. Shrikhande, On the falsity of Euler's conjecture about the non-existence of two orthogonal latin squares of order $4 t+2$, Proc. Nat. Acad. Sci. 45 (1959), 734-737.
[10] R. C. Bose, S. S. Shrikhande and E. T. Parker, Further results on the construction of mutually orthogonal latin squares and the falsity of Euler's conjecture, Canad. J. Math. 12 (1960), 189-203.
[11] D. Casiello, L. Indaco and G. P. Nagy, Sull'approccio computazionale al problema dell'esistenza di un piano proiettivo di ordine 10, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 57 (2010), 69-88.
[12] GAP-Groups, Algorithms, Programming-System for Computational Discrete Algebra, GAP 4.10.0, https://www gap-system.org.
[13] C. Y. Ho, Projective planes of order 15 and other odd composite orders, Geom. Dedicata 27 (1988), 49-64.
[14] D. R. Hughes and F. C. Piper, Projective Planes, Springer-Verlag, Berlin, Heidelberg, New Vork, 1973.
[15] Z. Janko and T. van Trung, On projective planes of order 12 which have a subplane of order three I, J. Combin. Theory Ser. A 29 (1980), 254-256.
[16] Z. Janko and T. van Trung, Projective planes of order 12 do not have a nonabelian group of order 6 as a collineation group, J. Reine Angew. Math. 326 (1981), 152-157.
[17] Z. Janko and T. van Trung, Projective planes of order 10 do not have a collineation of order 3, J. Reine Angew. Math. 325 (1981), 189-209.
[18] Z. Janko and T. van Trung, Projective planes of order 12 do not possess an elation of order 3, Stud. Sci. Math. 16 (1981), 115-118.
[19] Z. Janko and T. van Trung, On projective planes of order 12 with an automorphism of order 13, Part I: Kirkman designs of order 27, Geom. Dedicata 11 (1981), 257-284.
[20] Z. Janko and T. van Trung, On projective planes of order 12 with an automorphism of order 13, Part II: Orbit matrices and conclusion, Geom. Dedicata 12 (1982), 87-99.
[21] Z. Janko and T. van Trung, The full collineation group of any projective plane of order 12 in a $\{2,3\}$ group, Geom. Dedicata 12 (1982), 101-110.
[22] Z. Janko and T. van Trung, A generalization of a result of L. Baumert and M. Hall about projective planes of order 12, J. Combin. Theory Ser. A 32 (1982), 378-385.
[23] Z. Janko and T. van Trung, Projective planes of order 12 do not have a four group as a collineation group, J. Combin. Theory Ser. A 32 (1982), 401-404.
[24] M. J. Kallaher, Affine Planes with Transitive Collineation Groups, NorthHolland, New York, Amsterdam, Oxford, 1982.
[25] S. Kang and J.-H. Lee, An explicit formula and its fast algorithm for a class of symmetric balanced incomplete block designs, J. Appl. Math. Comput. 19 (2005), 105-125.
[26] C. W. H. Lam, The search for a finite projective plane of order 10, Amer. Math. Monthly 98 (1991), 305-318.
[27] E. T. Parker, Construction of some sets of mutually orthogonal Latin squares, Proc. Amer. Math. Soc. 10 (1959), 946-949.
[28] E. T. Parker, Orthogonal Latin squares, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 859-862.
[29] C. Suetake, On projective planes of order 15 admitting a collineation of order 7, Geom. Dedicata 81 (2000), 61-86.
[30] C. Suetake, The nonexistence of projective planes of order 12 with a collineation group of order 16, J. Combin. Theory Ser. A 107 (2004), 21-48.
[31] S. H. Whitesides, Collineations of projective planes of order 10, part I and II, J. Combin. Theory Ser. A 26 (1979), 249-277.

