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Abstract

In this paper, we prove that there are no projective planes of order 12
admitting a collineation group of order 9.

1 Introduction

A finite projective plane is one of the most fundamental concepts in finite geometry.
For every prime power q there exists a projective plane of order q, because the
desarguesian plane PG(2, q) gives an example of a projective plane of order q. But
the order of any known finite projective plane is always a prime power. Is the order
of any finite projective plane a prime power? For this question, Bruck and Ryser
proved the following remarkable theorem in 1949 [8].
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The Bruck-Ryser Theorem If n ≡ 1 or 2 (mod 4), there does not exist a projective
plane of order n unless n can be expressed a sum of two integral squares.

For example, this theorem yields that there does not exist a projective plane of
order n, where n ≤ 25, if n = 6, 14, 21, or 22. Therefore, the smallest composite
integer not covered by the Bruck-Ryser Theorem is 10.

In [26] there is an interesting description of the search for a projective plane
of order 10. There exists a projective plane of order n if and only if there exists a
complete set of n−1 mutually orthogonal Latin squares of order n. Euler conjectured
that there is no pair of orthogonal Latin squares of order n if n ≡ 2 (mod 4). It was
proved that this conjecture is false for all orders greater than six (see [9, 10, 27, 28]).
This raised the hope for the existence of a projective plane of order 10. Many
mathematicians were interested in a projective plane of order 10. At first it was
proved that the projective plane has a trivial collineation group [2, 17, 31]. Lam and
his colleagues started the research of this problem in 1980 and after a huge effort,
finally proved the non-existence of a projective plane of order 10. They examined the
weight enumerator of the vector space generated by the rows of the incidence matrix
of a putative projective plane of order 10. They used computers for the exhaustive
research and the computer time was about 2,000 hours on a CRAY.

The next composite order not covered by the Bruck-Ryser theorem is 12. Actually
it is still unknown whether or not a projective plane of order 12 exists. The study of
projective planes of order 12 was begun by Janko and van Trung in 1980. Now let
G be be a collineation group of a projective plane of order 12. Janko and van Trung
proved in their articles [15, 16, 18, 19, 20, 21, 22, 23] that G has the following four
properties.

(i) G is a {2, 3}-group.
(ii) If |G| = 6, then G is an abelian group.

(iii) If |G| = 4, then G is a cyclic group.

(iv) If |G| = 3 or 4, then G is not an elation group.

Horvatic-Baldasar, Kramer, and Matulic-Bedenic [6, 7] showed that |G| divides
16 or 9. Suetake [30], Akiyama and Suetake [3] showed that |G| divides 4 or 9.
Morover Akiyama and Suetake [4] proved that if |G| = 9, then G is an elementary
abelian group and is not planar.

Projective planes of order 15 were studied in [1, 13, 29].

Kang and Ju-Hyun Lee [25] studied an explicit formula and its fast computational
algorithm for projective planes of prime order. The GAP System for Computational
Discrete Algebra [12] is very useful (however we did not use the system). Casiello,
Indaco, and Nagy [11] , on the computational approach to the problem of the exis-
tence of a projective plane of order 10, quite recently implemented a new enumerative
procedure using the GAP System in order to considerably reduce the computational
time of some essential parts.

This paper is a sequel of [4] and we prove the following theorem.
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Theorem There are no projective planes of order 12 admitting a collineation group
of order 9.

Any finite projective plane of order n contains a symmetric transversal design
STD1[n, n] as a substructure. Conversely any symmetric transversal design STD1

[n, n] can be uniquely extended to a projective plane of order n, up to isomorphism.

Let π = (Q,L, J) be a projective plane of order 12 with a collineation group G of
order 9 and D = (P,B, I) be the symmetric transversal design STD1[12, 12] contained
in π having the automorphism group GP∪B. Then we determine explicitly all types
of the action on P and B of G in Sections 4 and 5. If G contains a nontrivial planar
element, we prove that the subplane of order 3 fixed point wise by the collineation
does not exist in Section 6. Otherwise, we prove the nonexistence of π by availing
the groupring Z[G] in Section 7. We used a computer for both cases. We also have
the following result from the theorem.

Corollary If G is a collineation group of a projective plane π of order 12, then G
is cyclic and |G| divides 3 or 4.

Throughout this paper all sets are assumed to be finite. Most definitions and
notation are standard and are taken from [5, 14, 24].

2 Preliminaries

In this section we state some basic definitions and results about a projective plane
and a symmetric transversal design, which will be needed to prove our result.

Notation 2.1 Let D = (P,B, I) be an incidence structure, where P is a point set,
B is a block set and I is an incidence relation, that is, I is a subset of P×B. Then for
p ∈ P and B ∈ B, pIB denotes (p, B) ∈ I. For p ∈ P set (p) = {X ∈ B| pIX} and for
B ∈ B set (B) = {x ∈ P| xIB}. If D is a projective plane, since B � B �−→ (B) ∈ 2P

is a one-to-one mapping, we identify B with (B) for B ∈ B.
Notation 2.2 Let (G,Λ) be a permutation group acting on the set Λ, which is not
always faithful, and H a non empty subset of G. Then set FΛ(H) = {x ∈ Λ| xμ =
x for all μ ∈ H} and θΛ(H) = |FΛ(H)|. If H = {ϕ}, especially set FΛ({ϕ}) = FΛ(ϕ)
and θΛ({ϕ}) = θΛ(ϕ). tΛ(G) = tΛ denotes the number of orbits of the permutation
group (G,Λ).

Lemma 2.3 (Burnside-Frobenius) Let G be a permutation group acting on a set
Λ and t the number of orbits of (G,Λ). Then

t|G| =
∑
α∈G

θΛ(α).

Lemma 2.4 Let π = (Q,L, J) be a projective plane. Let ϕ be a collineation and G
a collineation group of π. Then

θQ(ϕ) = θL(ϕ) and tQ(G) = tL(G).
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Lemma 2.5 Let π = (Q,L, J) be a projective plane. Let ϕ be a collineation of π
with θQ(ϕ) �= 0. Then one of the following statements holds:

(i) ϕ is a generalized elation. That is, there exist L ∈ FL(ϕ) and p ∈ FQ(ϕ) such
that FQ(ϕ) ⊆ (L), FL(ϕ) ⊆ (p), p ∈ (L), where L, p are called an axis, a
center of ϕ respectively. In this case, since the axis and the center of ϕ are
unique for π respectively, ϕ is called a (p, L)-generalized elation.

(ii) ϕ is a generalized homology. That is, there exist L ∈ FL(ϕ) and p ∈ FQ(ϕ)
such that FQ(ϕ) ⊆ (L)∪{p}, FL(ϕ) ⊆ (p)∪{L}, p �∈ (L), where L, p are called
an axis, a center of ϕ respectively. In this case, since the axis and the center
of ϕ are unique for π respectively, ϕ is called a (p, L)-generalized homology.

(iii) ϕ is planar. That is, the substructure (FQ(ϕ), FL(ϕ)) of π is a projective plane
(a subplane of π).

Lemma 2.6 Let π = (Q,L, J) be a projective plane. Let ϕ, τ ∈Aut π such that
ϕτ = τϕ. Then FQ(ϕ)τ = FQ(ϕ) and FL(ϕ)τ = FL(ϕ).

Definition 2.7 Let D = (P,B, I) be an incidence structure. Then D is called a
symmetric transversal design STDλ[k, u], if the following axioms are satisfied, where
λ, k, u are positive integers and k ≥ 2:

(i) For B ∈ B, |(B)| = k.

(ii) There exists a partition of P = P0∪P1∪· · ·∪Pk−1 such that for any 0 ≤ i ≤ k−1
|Pi| = u and for distinct p, q ∈ P

|(p) ∩ (q)| =
{

0 if p, q ∈ Pi for some i,
λ otherwise

.

(P0, . . . ,Pk−1 are called point classes of D. We denote the set of point classes
by Ω(D).)

(iii) The dual structure Dd of D also satisfies (i) and (ii).

(The point classes of Dd B0, . . . ,Bk−1 are called block classes of D. We denote the
set of block classes by Δ(D).)

In this definition we give some remarks. From the definition it follows that k = uλ
and |P| = |B| = uk. Since B � B �−→ (B) ∈ 2P is a one-to-one mapping, we identify
B with (B) for B ∈ B.
Lemma 2.8 Let D = (P,B, I) be an STDλ[k, u] with a set of point classes Ω(D) =
{P0, . . . ,Pk−1} and a set of block classes Δ(D) = {B0, . . . ,Bk−1}. Let Pi = {pui,
pui+1, . . . , pui+(u−1)} and Bj = {Buj, Buj+1, . . . , Buj+(u−1)} (0 ≤ i, j ≤ k − 1). Let

N = (nr,s)0≤r,s≤ku−1 =

⎛⎜⎝ N0,0 . . . N0,k−1
...

...
Nk−1,0 . . . Nk−1,k−1

⎞⎟⎠
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be the incidence matrix of D corresponding to these numberings of the points and the
blocks, that is

nr,s =

{
1 if prIBs

0 otherwise
,

where each Ni,j (0 ≤ i, j ≤ k − 1) is a u× u matrix. Then the following statements
hold.

(i) Each Ni,j (0 ≤ i, j ≤ k − 1) is a permutation matrix of degree u and

NNT = NTN =

⎛⎜⎜⎜⎝
kE λJ . . . λJ

λJ kE
. . .

...
...

. . .
. . . λJ

λJ . . . λJ kE

⎞⎟⎟⎟⎠ ,

where E is the identity matrix of degree u and J is the u× u all one matrix.

(ii) Let ϕ ∈ Sym P ∪ B such that Pϕ = P and Bϕ = B. We define ϕf , ϕg ∈
Sym {0, 1, . . . , ku − 1} by ϕ : pr �−→ prϕf , Bs �−→ Bsϕg (0 ≤ r, s ≤ ku − 1).
Then the following hold.
• ϕ ∈ Aut D ⇐⇒ pIB if and only if pϕIBϕ (p ∈ P, B ∈ B) ⇐⇒ nr,s =
nr

ϕf ,sϕg (0 ≤ r, s ≤ ku− 1).
• If ϕ ∈ Aut D, then from the definition of STD, it follows that ϕ induces

permutations on both Ω(D) and Δ(D). Let these permutations be ϕ̃ and ˜̃ϕ
respectively.

Lemma 2.9 [3] Let D = (P,B, I) be an STDλ[k, u] with the set of point classes
Ω = Ω(D) and the set of block classes Δ = Δ(D). Let ϕ ∈Aut D and let G an
automorphism group of D. Then

θP(ϕ) + θΔ(ϕ) = θB(ϕ) + θΩ(ϕ) and θP(G) + θΔ(G) = θB(G) + θΩ(G).

The following result is well-known (see Proposition 7.19 in [5]).

Lemma 2.10 Let π = (Q,L, J) be a projective plane of order n. Choose r∞ ∈ Q
and L∞ ∈ L such that r∞ ∈ (L∞). Set P = Q\(L∞) and B = L\(r∞). Let
(r∞)\{L∞} = {L0, L1, . . . , Ln−1} and (L∞)\{r∞} = {r0, r1, . . . , rn−1}. Set Pi =
(Li)\{r∞}, Bj = (rj)\{L∞} (0 ≤ i, j ≤ n − 1), Ω = {P0,P1, . . . ,Pn−1} and
Δ = {B0,B1, . . . ,Bn−1}. Then the substructure D = (P,B, I) (I = J ∩ (P ×B)) of π
is an STD1[n, n] having the set of point classes Ω and the set of block classes Δ. In
this case we say that D is the STD1[n, n] with respect to a point r∞ and a line L∞.

Lemma 2.11 Let π = (Q,L, J) be a projective plane of order n. Choose r∞ ∈ Q
and L∞ ∈ L such that r∞ ∈ (L∞). Let D = (P,B, I) be the STD1[n, n] with respect
to r∞ and L∞. Set Ω = Ω(D) and Δ = Δ(D). Let G be a collineation group of π
such that L∞μ = L∞ and r∞μ = r∞ for all μ ∈ G. Then the following statements
hold.
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(i) For all μ ∈ G, μ|P∪B ∈ Aut D.

(ii) G � μ �−→ μ|P∪B ∈ Aut D is a monomorphism. (In the rest of the paper, we
identify μ|P∪B with μ.)

(iii) Both G � μ �−→ μ̃ ∈ Sym Ω and G � μ �−→ ˜̃μ ∈ Sym Δ are homomorphisms.

3 Projective planes of order 12 admitting a collineation group
of order 9

We assume the following in this section.

Hypothesis 3.1 π = (Q,L, J) is a projective plane of order 12 admitting a coll-
ineation group G of order 9.

Lemma 3.2 [18] π does not have an elation of order 3.

Lemma 3.3 [4] G is an elementary abelian group of order 9 and the substructure
(FQ(G), FL(G)) of π is not a subplane of π.

Lemma 3.4 [4] Let μ ∈ G\{1}. If π1 = (FQ(μ), FL(μ)) is a subplane of π, then the
order of π1 is 3.

Lemma 3.5 Let μ ∈ G, L ∈ L and r ∈ (L). If μ is a (r, L)-generalized elation,
then r ∈ FQ(G) and L ∈ FL(G).

Proof. Let ξ ∈ G. Now ξ−1μξ = μ is a (rξ, Lξ)-generalized elation. Since the
center r and the axis L of μ are unique for μ, respectively, rξ = r and Lξ = L. �

Lemma 3.6 If μ ∈ G\{1}, then one of the following (1) to (5) holds:

μ θΩ(μ) θB(μ) θΔ(μ) θP(μ)
(1) planar 3 9 3 9
(2) (r∞, L)−g.e. n2 0 0 n2

(3) (r∞, L∞)-g.e. n3 0 n3 0
(4) (r, L∞)-g.e. 0 n4 n4 0
(5) (r∞, L∞)-g.e. 0 0 0 0

where n2, n3, n4 ∈ {3, 6, 9}, r ∈ (L∞)\{r∞} and L ∈ (r∞)\{L∞}.

Proof. If μ is planar, (1) holds by Lemma 3.4. Suppose that μ is not planar. Then
μ is a generalized elation. The axis of μ is a line through r∞ and the center of μ is
a point on L∞. If L∞ is the axis of μ, then (3), (4) or (5) holds. If L∞ is not the
axis of μ, then there exists a line L ∈ (r∞)\{L∞} such that L is the axis of μ. This
yields that the center of μ is r∞. Therefore (2) holds. �
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Lemma 3.7 G\{1} contains a planar collineation, if and only if G is not semiregular
on P = Q\(L∞) and also on B = L\(r∞).

Proof. Suppose that G is not semiregular on P and also on B. Then there exist
ϕ ∈ G\{1}, M ∈ L such that M �∈ (r∞), Mϕ = M . There also exist τ ∈ G\{1}, p ∈
P such that pτ = p. Set L = pr∞ ∈ L. Suppose that G\{1} does not have a planar
collineation. Then τ is a (r∞, L)-generalized elation and L ∈ FL(G) by Lemma 3.5.
Set M ∩L∞ = r and M ∩L = s. Thus r, s, r∞ are not collinear and these points are
fixed by ϕ. This yields that ϕ is planar, which is a contradiction. Therefore G\{1}
contains a planar collineation.

The converse is clear. Thus we have the lemma. �

Since |G| = 9, G fixes a point r∞ and a line L∞ with r∞ ∈ (L∞). Let D =
(P,B, I) be the STD1[12, 12] with respect to r∞ and L∞. Actually, P = Q\(L∞),
B = L\(r∞) and Ω = {P0,P1, . . . ,P11}, Δ = {B0,B1, . . . ,B11} are point classes and
block classes of D respectively, where (r∞)\{L∞} = {L0, L1, . . . , L11}, (L∞)\{r∞} =
{r0, r1, . . . , r11}, Pi = (Li)\{r∞} and Bj = (rj)\{L∞} (0 ≤ i, j ≤ 11).

Lemma 3.8 The sizes of G-orbits on L∞ are as follows:

Case 1 (1, 1, 1, 1, 1, 1, 1, 3, 3);
Case 2 (1, 1, 1, 1, 3, 3, 3);
Case 3 (1, 1, 1, 1, 9);
Case 4 (1, 3, 3, 3, 3);
Case 5 (1, 3, 9).

Proof. If G has G-orbits on L∞ different from Cases 1 to 5, then the sizes of
G-orbits on L∞ is (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3). Then there exists μ ∈ G\{1} such that
|F(L∞)(μ)| = 13. This is contrary to Lemma 3.2. �

4 The case that G\{1} contains a planar collineation

In this section we consider the case that G\{1} contains a planar collineation. We
assume Hypothesis 3.1 and also the following in this section.

Hypothesis 4.1 G\{1} contains a planar collineation.

Then, by Lemma 3.7, G does not act semiregularly on P, nor on B. In the rest of
this section, for each of Cases 1 to 5 obtained in Section 3, if that case occurs, we
determine the actions on Ω ∪ Δ of ϕ and τ , where G = 〈ϕ, τ〉. Moreover, if ϕ(τ)
fixes a class X ∈ Ω ∪Δ, we also determine the action on X of ϕ(τ). We will show
in Section 6 that actions on Ω ∪Δ of ϕ and τ yield explicitly the actions on P ∪ B
of ϕ(τ).

Lemma 4.2 Case 1 does not occur.
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Proof. Let ϕ be a planar collineation in G\{1}. Then θΔ(ϕ) = 3. This is contrary
to the assumption of Case 1. �

Lemma 4.3 If Case 2 occurs, then one of the following two types holds.

Type 1 (i) G = 〈ϕ, τ〉,
ϕ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃ϕ = (B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),
τ̃ = (P0)(P1)(P2)(P3,P5,P4)(P6,P7,P8)(P9,P10,P11),˜̃τ = (B0)(B1)(B2)(B3,B5,B4)(B6,B7,B8)(B9,B10,B11).

(ii) ϕ fixes three points of Pi for 0 ≤ i ≤ 2 and three blocks of Bj for 0 ≤ j ≤ 2. Also
G acts semiregularly on both P\FP(ϕ) and B\FB(ϕ), while 〈τ〉 acts semiregularly on
both FP(ϕ) and FB(ϕ).

Type 2 (i) G = 〈ϕ, τ〉,
ϕ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃ϕ = (B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),
τ̃ = (P0)(P1)(P2)(P3)(P4)(P5)(P6,P8,P7)(P9,P10,P11),˜̃τ = (B0)(B1)(B2)(B3)(B4)(B5)(B6,B8,B7)(B9,B10,B11).

(ii) ϕ fixes three points of Pi for 0 ≤ i ≤ 2 and three blocks of Bj for 0 ≤ j ≤ 2. Also
G acts semiregularly on both P\FP(ϕ) and B\FB(ϕ), while 〈τ〉 acts semiregularly on
both FP(ϕ) and FB(ϕ).

Proof. Let ϕ be a planar collineation in G\{1}. Then we can assume that ϕ̃ =

(P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11) and ˜̃ϕ = (B0)(B1)(B2)(B3,B4,B5)
(B6,B7,B8)(B9,B10,B11), where ϕ fixes three points of Pi for 0 ≤ i ≤ 2 and three
blocks of Bj for 0 ≤ j ≤ 2.

(α) Assume that there exists τ ∈ G\〈ϕ〉 with FP(τ) �= ∅. Since τ is planar
by Lemma 3.6, θΩ(τ) = θΔ(τ) = 3. Applying the Burnside-Frobenius theorem to
the permutation group (G,Δ), we have θΔ(ϕ) + θΔ(τ) + θΔ(ϕτ) + θΔ(ϕ

2τ) = 21.
This yields θΔ(ϕτ) + θΔ(ϕ

2τ) = 15. Since θΔ(ϕτ) �= 12 and θΔ(ϕ
2τ) �= 12, by

Lemma 3.2, (θΔ(ϕτ), θΔ(ϕ
2τ)) = (6, 9) or (9, 6). Considering ϕ2 instead of ϕ if

necessary, we may assume that (θΔ(ϕτ), θΔ(ϕ
2τ)) = (6, 9). Now ϕτ and ϕ2τ are

generalized elations having L∞ as an axis. Therefore θP(ϕτ) = θP(ϕ2τ) = 0. From
this we have θΩ(ϕτ) + θB(ϕτ) = θΔ(ϕτ) + θP(ϕτ) = 6 + 0 = 6. Similarly we have
θΩ(ϕ

2τ) + θB(ϕ2τ) = 9.

Suppose that FΩ(ϕ) ∩ FΩ(τ) �= ∅. Then FΩ(ϕ) = FΩ(τ) = {P0,P1,P2}. If there
exists p ∈ P0 such that pϕ = pτ = p, then (FQ(G), FL(G)) is a subplane of π of
order 3. This is contrary to Lemma 3.3. Therefore FP0(ϕ) ∩ FP0(τ) = ∅.

Since θP(ϕτ) = θP(ϕ2τ) = 0, G acts semiregularly on P0\(FP0(ϕ) ∪ FP0(τ)).
Therefore 9 = |G|||P0\(FP0(ϕ)∪FP0(τ))| = 6. This is a contradiction. Thus FΩ(ϕ)∩
FΩ(τ) = ∅. Therefore (θΩ(ϕ

2τ), θB(ϕ2τ)) = (0, 9) by Lemma 3.6. Let r0( �= r∞) be
the center of ϕ2τ . Then r0 ∈ FQ(G) by Lemma 3.5. Set B0 = (r0)\{L∞} ∈ Δ. By a
similar argument to that the above, FB0(ϕ)∩FB0(τ) = ∅. There exists L ∈ (r0) such
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that Lϕ2τ = L and L is fixed by ϕ or τ . Therefore L is fixed by ϕ and τ . This is also
a contradiction.

(β) Assume that FP(μ) = ∅ for all μ ∈ G\〈ϕ〉. Let τ ∈ G\〈ϕ〉. We may
assume that θΔ(τ) ≤ θΔ(ϕτ) ≤ θΔ(ϕ

2τ). Since θΔ(τ) + θΔ(ϕτ) + θΔ(ϕ
2τ) = 18,

(θΔ(τ), θΔ(ϕτ), θΔ(ϕ
2τ)) = (3, 6, 9) or (6, 6, 6). τ, ϕτ and ϕ2τ are generalized elations

having L∞ as an axis by Lemma 3.6. The center of each collineation of τ , ϕτ , and
ϕ2τ is an element of F(L∞)(ϕ). Set πS = (FQ(ϕ), FL(ϕ)). Then πS is a subplane of
π of order 3. Now τ |πS

= ϕτ |πS
= ϕ2τ |πS

and this is an elation of πS having L∞ as
an axis. We may assume that the center of τ |πS

is r∞. Therefore τ |πS
fixes all lines

through the point r∞. Let M0,M1,M2 be these lines except L∞. Since M0,M1,M2

are fixed by ϕ and τ , these three lines are fixed by any collineation in G.

Assume that (θΔ(τ), θΔ(ϕτ), θΔ(ϕ
2τ)) = (3, 6, 9). Then F(r∞)(ϕ) = F(r∞)(τ) and

F(r∞)(ϕ) ⊆ F(r∞)(ϕτ)∩F(r∞)(ϕ
2τ). The center of each collineation of τ , ϕτ , and ϕ2τ

is r∞. If there exists M ∈ (r∞) such that Mϕ �= M , Mϕτ = M and Mϕ2τ = M ,
then M = Mϕ, because Mϕτ = M = Mϕ2τ yields M = Mϕ. This is a contradiction.
Therefore F(r∞)(ϕτ) ∩ F(r∞)(ϕ

2τ) = {L∞,M0,M1,M2} = F(r∞)(ϕ) = F(r∞)(τ). In
this case we have Type 1.

Assume that (θΔ(τ), θΔ(ϕτ), θΔ(ϕ
2τ)) = (6, 6, 6). Then F(r∞)(ϕ) ⊆ F(r∞)(τ) ∩

F(r∞)(ϕτ) ∩ F(r∞)(ϕ
2τ). The center of each collineation of τ, ϕτ , and ϕ2τ is r∞. If

there exists M ∈ (r∞) such that Mϕ �= M , M τ = M and Mϕτ = M , then M = Mϕ,
because M τ = M = Mϕτ yields M = Mϕ. This is a contradiction. Therefore
F(r∞)(τ) ∩ F(r∞)(ϕτ) = F(r∞)(ϕ). By a similar argument, F(r∞)(τ) ∩ F(r∞)(ϕ

2τ) =
F(r∞)(ϕτ) ∩ F(r∞)(ϕ

2τ) = F(r∞)(ϕ). In this case we have Type 2. �

Lemma 4.4 If Case 3 occurs, then one of the following three types holds.

Type 3 (i) G = 〈ϕ, τ〉,
ϕ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃ϕ = (B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),
τ̃ = (P0)(P1)(P2)(P3,P6,P9)(P4,P7,P10)(P5,P8,P11),˜̃τ = (B0)(B1)(B2)(B3,B6,B9)(B4,B7,B10)(B5,B8,B11).

(ii) Each of ϕ, τ, ϕτ, ϕ2τ fixes three points of Pi for 0 ≤ i ≤ 2 and three blocks of
Bj for 0 ≤ j ≤ 2. Any two point sets of FP(ϕ), FP(τ), FP(ϕτ), and FP(ϕ2τ) are
disjoint from each other. Any two block sets of FB(ϕ), FB(τ), FB(ϕτ), and FB(ϕ2τ)
are disjoint from each other.

Type 4 (i) G = 〈ϕ, τ〉,
ϕ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃ϕ = (B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),
τ̃ = (P0,P1,P2)(P3,P6,P9)(P4,P7,P10)(P5,P8,P11),˜̃τ = (B0)(B1)(B2)(B3,B6,B9)(B4,B7,B10)(B5,B8,B11).

(ii) ϕ fixes three points of Pi for 0 ≤ i ≤ 2 and three blocks of Bj for 0 ≤ j ≤ 2.
Also G fixes any block of FB0(ϕ), and G acts semiregularly on the each block set
of B0\FB0(ϕ), B1\FB1(ϕ), and B2\FB2(ϕ). Moreover, 〈τ〉 acts regularly on the both
block sets FB1(ϕ) and FB2(ϕ).
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Type 5 (i) G = 〈ϕ, τ〉,
ϕ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃ϕ = (B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),
τ̃ = (P0)(P1)(P2)(P3,P6,P9)(P4,P7,P10)(P5,P8,P11),˜̃τ = (B0)(B1)(B2)(B3,B6,B9)(B4,B7,B10)(B5,B8,B11).

(ii) ϕ fixes three points of Pi for 0 ≤ i ≤ 2 and three blocks of Bj for 0 ≤ j ≤ 2.
Also 〈τ〉 acts regularly on FPi

(ϕ) for 0 ≤ i ≤ 2, and G acts regularly on Pi\FPi
(ϕ)

for 0 ≤ i ≤ 2. Moreover, 〈τ〉 acts regularly on FBj
(ϕ) for 0 ≤ j ≤ 2, and G acts

regularly on Bj\FBj
(ϕ) for 0 ≤ j ≤ 2.

Proof. Suppose that Case 3 occurs. Let ϕ be a planar collineation in G\{1}. Then
we may assume that ϕ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8) (P9,P10,P11) and ˜̃ϕ =
(B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11), where ϕ fixes three points of Pi for
0 ≤ i ≤ 2 and three blocks of Bj for 0 ≤ j ≤ 2. Let ϕP0 = (p0)(p1)(p2)(p3, p4, p5)
(p6, p7, p8)(p9, p10, p11), ϕP1 = (p12)(p13)(p14)(p15, p16, p17)(p18, p19, p20)(p21, p22, p23),
ϕP2 = (p24)(p25)(p26)(p27, p28, p29)(p30, p31, p32)(p33, p34, p35) and F(L∞)(ϕ) = {r∞, r0,
r1, r2}. We distinguish two cases.

Case I. Suppose that there exists τ ∈ G\〈ϕ〉 with FP(τ) �= ∅. Then τ is planar
and F(L∞)(τ) = {r∞, r0, r1, r2}. Since (FQ(G), FL(G)) is not a subplane of (Q,L, J)
by Lemma 3.3, FP(ϕ) ∩ FP(τ) = ∅.

(α) Suppose that P0
τ = P0. Since τ induces a permutation on {P0,P1,P2},

P1
τ = P1 and P2

τ = P2. Let τ
P0 = (p0, p1, p2)(p3)(p4)(p5)(p6, p8, p7)(p9, p10, p11),

τP1 = (p12, p13, p14)(p15)(p16)(p17) (p18, p20, p19)(p21, p22, p23) and
τP2 = (p24, p25, p26)(p27)(p28)(p29)(p30, p32, p31)(p33, p34, p35). Therefore
ϕτP0 = (p0, p1, p2)(p3, p4, p5)(p6)(p7)(p8)(p9, p11, p10),
ϕτP1 = (p12, p13, p14) (p15, p16, p17)(p18)(p19)(p20)(p21, p23, p22),
ϕτP2 = (p24, p25, p26)(p27, p28, p29)(p30)(p31)(p32)(p33, p35, p34),

ϕ2τ
P0 = (p0, p1, p2)(p3, p5, p4)(p6, p7, p8)(p9)(p10)(p11),

ϕ2τ
P1 = (p12, p13, p14)(p15, p17, p16)(p18, p19, p20)(p21)(p22)(p23) and

ϕ2τ
P2 = (p24, p25, p26)(p27, p29, p28)(p30, p31, p32)(p33)(p34)(p35).

Thus any collineation of ϕ, τ, ϕτ, ϕ2τ is planar. Therefore τ̃ = (P0)(P1)(P2)

(P3,P6,P9)(P4,P7,P10)(P5,P8,P11). By the assumption, ˜̃τ = (B0)(B1)(B2)
(B3,B6,B9)(B4,B7,B10)(B5,B8,B11). Thus we have Type 3.

(β) Suppose that P0
τ �= P0. Then we may assume that τ̃ = (P0,P1,P2)(P3)(P4)

(P5)(P6,P7,P8)(P9,P10,P11) or (P0,P1,P2)(P3)(P4)(P5)(P6,P8,P7)(P9,P10,P11).

If the former occurs, ϕ̃2τ = (P0,P1,P2)(P3,P5,P4)(P6)(P7)(P8)(P9)(P10)(P11) and
therefore ϕ2τ is neither a generalized elation nor a planar collineation. This is a
contradiction. Therefore τ̃ = (P0,P1,P2)(P3)(P4)(P5)(P6,P8,P7)(P9,P10,P11). Set
S = (FQ(ϕ), FL(ϕ)). Then S is a subplane of π of order 3. And also τ |S is a (ri, L∞)-
elation of S for some 0 ≤ i ≤ 2 and τ fixes all lines of F(ri)(ϕ) through ri. In this
case we can reduce to case (α) by considering ri instead of r∞.
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Case II. Suppose that for all μ ∈ G\〈ϕ〉, FP(μ) = ∅. Then θΔ(μ) = 3, θP(μ) =
0, θΩ(μ) + θB(μ) = θΔ(μ) + θP(μ) = 3 and (θΩ(μ), θB(μ)) = (0, 3) or (3, 0). Let
G = 〈ϕ, τ〉. Then we may assume that θΩ(τ) ≤ θΩ(ϕτ) ≤ θΩ(ϕ

2τ). In this case
(θΩ(τ), θΩ(ϕτ), θΩ(ϕ

2τ)) = (0, 0, 0), (0, 0, 3), (0, 3, 3) or (3, 3, 3).

(γ) Suppose that (θΩ(τ), θΩ(ϕτ), θΩ(ϕ
2τ)) = (0, 0, 0). Then τ̃ = (P0,P1,P2)

(P3,P6,P9)(P4,P7,P10)(P5,P8,P11) and (θB(τ), θB(ϕτ), θB(ϕ2τ)) = (3, 3, 3). Any
collineation of τ, ϕτ , or ϕ2τ is a generalized elation having the axis L∞. We may
assume that the center of τ is r0. We distinguish three cases.

• Suppose that both ϕτ and ϕ2τ have the center r0. Then (γ-1) FB0(τ) = FB0(ϕ)
or (γ-2) |FB0(τ)| = |FB0(ϕτ)| = |FB0(ϕ

2τ)| = |FB0(ϕ)| = 3 and B0 = FB0(τ) ∪
FB0(ϕτ) ∪ FB0(ϕ

2τ) ∪ FB0(ϕ) is a disjoint union.

• Suppose that the center of ϕτ is r0 and r0 is not the center of ϕ2τ . In
this case we may assume that the center of ϕ2τ is r1. Therefore (γ-3) |FB0(τ)| =
|FB0(ϕτ)| = |FB0(ϕ)| = 3, |FB1(ϕ

2τ)| = |FB1(ϕ)| = 3 and FB0(τ), FB0(ϕτ), FB0(ϕ)
do not intersect each other. Moreover FB1(ϕ

2τ) ∩ FB1(ϕ) = ∅.
• Suppose that the centers of τ, ϕτ, ϕ2τ are different each other. Then we

may assume that the center of ϕτ is r1 and the center of ϕ2τ is r2. Therefore (γ-
4) |FB0(τ)| = |FB0(ϕ)| = 3, |FB1(ϕτ)| = |FB1(ϕ)| = 3, |FB2(ϕ

2τ)| = |FB2(ϕ)| = 3,
FB0(τ) ∩ FB0(ϕ) = ∅, FB1(ϕτ) ∩ FB1(ϕ) = ∅ and FB2(ϕ

2τ) ∩ FB2(ϕ) = ∅.
(γ-1) yields Type 4.

Assume that (γ-2) occurs. Let p ∈ FP0(ϕ). Then pτ ∈ FP1(ϕ). Let B be the
block through p and pτ . Then B ∈ FB(ϕ). Since p, pτ ∈ (B), we have pτ , pτ

2 ∈ (Bτ ).
Therefore B and Bτ are through the point pτ . But B, Bτ ∈ Bi for some 0 ≤ i ≤ 2.
This is a contradiction. Thus (γ-2) does not occur.

Assume that (γ-3) occurs. Since G acts semiregularly on B1\(FB1(ϕ
2τ)∪FB1(ϕ)),

9||B1\(FB1(ϕ
2τ) ∪ FB1(ϕ))| = 6. This is a contradiction. Thus (γ-3) does not occur.

Assume that (γ-4) occurs. Since G acts semiregularly on B0\(FB0(τ) ∪ FB0(ϕ)),
we have 9||B0\(FB0(τ) ∪ FB0(ϕ))| = 6. This is a contradiction. Thus (γ-4) does not
occur.

(δ) Suppose that (θΩ(τ), θΩ(ϕτ), θΩ(ϕ
2τ)) = (0, 0, 3). Since θΩ(τ) = θΩ(ϕτ) = 0,

we may assume that τ̃ = (P0,P1,P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11). Therefore

ϕ̃2τ = (P0,P1,P2) (P3)(P4) . . . (P11). This is contrary to θΩ(ϕ
2τ) = 3. Thus (δ) does

not occur.

(ε) Suppose that (θΩ(τ), θΩ(ϕτ), θΩ(ϕ
2τ)) = (0, 3, 3). Since θΩ(τ) = 0, θΩ(ϕτ) =

3, we may assume that τ̃ = (P0,P1,P2)(P3,P5,P4)(P6,P7,P8)(P9,P10,P11). There-

fore ϕ̃2τ = (P0,P1,P2) (P3,P4,P5) (P6)(P7) . . . (P11). This is contrary to θΩ(ϕ
2τ) =

3. Thus (ε) does not occur.

(ζ) Suppose that (θΩ(τ), θΩ(ϕτ), θΩ(ϕ
2τ)) = (3, 3, 3). Then since

(θB(τ), θB(ϕτ), θB(ϕ2τ)) = (0, 0, 0)and θΩ(τ) = θΩ(ϕτ) = 3,
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we may assume that

τ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),

(P0)(P1)(P2)(P3,P6,P9)(P4,P7,P10)(P5,P8,P11)

or (P0,P1,P2)(P3)(P4)(P5)(P6,P8,P7)(P9,P10,P11).

If the first case on τ̃ occurs, then ϕ̃2τ = (P0)(P1) . . . (P11). This is a contradiction.
The second case on τ̃ yields Type 5. If the third case on τ̃ occurs, we have a
contradiction by the same argument as in (γ-2). �

Lemma 4.5 Let G = 〈ϕ, τ〉. In Case 4, if both ϕ and τ are planar and FΩ(ϕ) ∩
FΩ(τ) = ∅, then F(L∞)(ϕ) = F(L∞)(τ).

Proof. Suppose that both ϕ and τ are planar and FΩ(ϕ)∩FΩ(τ) = ∅, F(L∞)(ϕ) �=
F(L∞)(τ). Then F(L∞)(ϕ) ∩ F(L∞)(τ) = {r∞}. Let x ∈ FP(ϕ) and y ∈ FP(τ). Since
x, y are not contained in the same point class, there exists B ∈ B such that x ∈ (B)
and y ∈ (B).

Assume that there exists x1( �= x) ∈ (B) such that x1 ∈ FP(ϕ). Then |(B) ∩
FP(ϕ)| = 3, B ∈ FB(ϕ) and therefore (B) = (Bϕ) � yϕ. Moreover yϕ �= y and yϕ ∈
FP(τ). Let L be the extension to a line in L of B. Then (L)∩ (L∞) is fixed by both
ϕ and τ . This is a contradiction. Therefore {B}∩FP(ϕ) = {x}, (B)∩FP(τ) = {y}.

Moreover (B) ∩ (L∞) �∈ F(L∞)(ϕ) ∪ F(L∞)(τ). If we move points x ∈ FP(ϕ) and
points y ∈ FP(τ), the number of these lines L (the extensions to lines in L of the
blocks B) is 81. Therefore these lines L intersect with L∞ in the points except
F(L∞)(ϕ)∪F(L∞)(τ). But |{X ∈ L | X �= L∞, (X)∩ (L∞) �∈ F(L∞)(ϕ)∪F(L∞)(τ)}| =
6× 12 = 72. This is a contradiction. Thus we have the lemma. �

Lemma 4.6 If Case 4 occurs, then one of the following three types holds.

Type 6 (i) G = 〈ϕ, τ〉,
ϕ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃ϕ = (B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),
τ̃ = (P0,P1,P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃τ = (B0,B1,B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11).
(ii) ϕ fixes three points on Pi for 0 ≤ i ≤ 2 and three blocks of Bj for 0 ≤ j ≤ 2.
〈ϕ2τ〉 acts semiregularly on both Pi and Bj for 3 ≤ i, j ≤ 11.

Type 7 (i) G = 〈ϕ, τ〉,
ϕ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃ϕ = (B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),
τ̃ = (P0,P1,P2)(P3,P5,P4)(P6,P7,P8)(P9,P10,P11),˜̃τ = (B0,B1,B2)(B3,B5,B4)(B6,B7,B8)(B9,B10,B11).
(ii) ϕ fixes three points of Pi for 0 ≤ i ≤ 2 and three blocks of Bj for 0 ≤ j ≤ 2.
〈ϕτ〉 acts semiregularly on both Pi and Bj for 3 ≤ i, j ≤ 5. 〈ϕ2τ〉 acts semiregularly
on both Pi and Bj for 6 ≤ i, j ≤ 11.
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Type 8 (i) G = 〈ϕ, τ〉,
ϕ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃ϕ = (B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),
τ̃ = (P0,P1,P2)(P3)(P4)(P5)(P6,P8,P7)(P9,P10,P11),˜̃τ = (B0,B1,B2)(B3)(B4)(B5)(B6,B8,B7)(B9,B10,B11).
(ii) ϕ fixes three points of Pi for 0 ≤ i ≤ 2 and three blocks of Bj for 0 ≤ j ≤ 2.
〈τ〉 acts semiregularly on both Pi and Bj for 3 ≤ i, j ≤ 5. 〈ϕτ〉 acts semiregularly
on both Pi and Bj for 6 ≤ i, j ≤ 8. 〈ϕ2τ〉 acts semiregularly on both Pi and Bj for
9 ≤ i, j ≤ 11.

Proof. Suppose that Case 4 occurs. Let ϕ be a planar collineation in G\{1}. Let
G = 〈ϕ, τ〉 and F(L∞)(ϕ) = {r∞, r0, r1, r2}. Then 〈τ〉 acts regularly on {r0, r1, r2}.
We may assume that ϕ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11) and ˜̃ϕ =
(B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11), where ϕ fixes three points of Pi for
0 ≤ i ≤ 2 and three blocks of Bj for 0 ≤ j ≤ 2. Applying the Burnside-Frobenius
theorem to the permutation group (G,Δ), we have θΔ(τ) + θΔ(ϕτ) + θΔ(ϕ

2τ) =
9. Then, since we may assume that θΔ(τ) ≤ θΔ(ϕτ) ≤ θΔ(ϕ

2τ), we find that
(θΔ(τ), θΔ(ϕτ), θΔ(ϕ

2τ)) = (0, 0, 9), (0, 3, 6) or (3, 3, 3) holds.

(α) Suppose that (θΔ(τ), θΔ(ϕτ), θΔ(ϕ
2τ)) = (0, 0, 9). Since θΔ(τ) = 0, θB(τ) = 0

and θΩ(τ) = θP(τ).

Assume that θΩ(τ) �= 0. Now τ is a (r∞, L)-generalized elation for some L ∈
(r∞)\{L∞} by Lemma 3.6. Since Lϕ = L by Lemma 3.5, L ∈ FL(G). Let Li be the
line of π through r∞ corresponding to Pi (0 ≤ i ≤ 11). Then since {L0, L1, L2}τ =
{L0, L1, L2}, L0 ∈ FL(G). This is a contradiction. Therefore θΩ(τ) = θP(τ) = 0 and
θΔ(τ) = θB(τ) = 0.

Since θΔ(ϕτ) = 0, the similar argument yields θΩ(ϕτ) = θP(ϕτ) = 0 and
θΔ(ϕτ) = θB(ϕτ) = 0. Since ϕ2τ is a (r∞, L∞)-generalized elation by Lemma 3.5,
θΩ(ϕ

2τ) = 9. Therefore τ̃ = (P0,P1,P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11). It also
follows that 〈ϕ2τ〉 acts semiregulary on both Pi and Bj for 3 ≤ i, j ≤ 11. Thus we
have Type 6.

(β) Suppose that (θΔ(τ), θΔ(ϕτ), θΔ(ϕ
2τ)) = (0, 3, 6). Then, θΩ(τ) = θP(τ) = 0

and θΔ(τ) = θB(τ) = 0 hold by the same argument as in (α), because θΔ(τ) = 0.
Since θΔ(ϕτ) = 3, by Lemma 4.5 ϕτ is a generalized elation. Let F(L∞)(ϕτ) =
{r3, r4, r5, r∞}. From the assumption of Case 4, it follows that {r0, r1, r2}∩{r3, r4, r5}
= ∅. ϕτ is a (r∞, L∞)-generalized elation by Lemma 3.5. Therefore

τ̃ = (P0,P1,P2)(P3,P5,P4)(P6,P7,P8)(P9,P10,P11)

and ˜̃τ = (B0,B1,B2)(B3,B5,B4)(B6,B7,B8)(B9,B10,B11).

It also follows that 〈ϕτ〉 acts semiregularly on both Pi and Bj (3 ≤ i, j ≤ 5) and
〈ϕ2τ〉 acts semiregularly on both Pi and Bj (6 ≤ i, j ≤ 11). Thus we have Type 7.
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(γ) Suppose that (θΔ(τ), θΔ(ϕτ), θΔ(ϕ
2τ)) = (3, 3, 3). Then all τ, ϕτ, ϕ2τ are

generalized elations by Lemmas 3.5 and 4.5. For μ �= ξ ∈ {ϕ, τ, ϕτ, ϕ2τ}, FΔ(μ) ∩
FΔ(ξ) = ∅ and FΩ(μ) ∩ FΩ(ξ) = ∅. In this case we have Type 8. �

Lemma 4.7 If Case 5 occurs, then the following holds.

Type 9 (i) G = 〈ϕ, τ〉,
ϕ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃ϕ = (B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),
τ̃ = (P0,P1,P2)(P3,P6,P9)(P4,P7,P10)(P5,P8,P11),˜̃τ = (B0,B1,B2)(B3,B6,B9)(B4,B7,B10)(B5,B8,B11).
(ii) ϕ fixes three points of Pi for 0 ≤ i ≤ 2 and three blocks of Bj for 0 ≤ j ≤ 2.

Proof. Suppose that Case 5 occurs. Let ϕ be a planar collineation in G\{1}. Let
G = 〈ϕ, τ〉. Then θΩ(τ) = θP(τ) = 0 and θΔ(τ) = θB(τ) = 0. By considering the
assumption of Case 5, we have Type 9. �

5 The case that G\{1} does not contain a planar collineation

If G\{1} does not contain a planar collineation, then G is semiregular on P =
Q\(L∞) or G is semiregular on B = L\(r∞) by Lemma 3.7. In this section we
assume Hypothesis 3.1 and the following.

Hypothesis 5.1 G\{1} does not contain a planar collineation and G is semiregular
on Q\(L∞).

Then every μ ∈ G is a generalized elation of π with L∞ as an axis.

In the rest of this section, we investigate the actions on both Ω∪Δ and P ∪B of
ϕ and τ , where G = 〈ϕ, τ〉, as in Section 4 under these assumptions. The extensions
of ϕ and τ on P ∪ B will be determined in Section 7.

Lemma 5.2 Case 1 does not occur.

Proof. Suppose that Case 1 occurs. Let G = 〈ϕ, τ〉 and F(L∞)(G) = {r∞, r0, r1,
r2, r3, r4, r5}. Since |{ri| ri is the center of μ for some μ ∈ G\{1} }| ≤ 4, there exists
1 ≤ j ≤ 5 such that rj is not a center of any collineation of ϕ, τ, ϕτ, ϕ2τ . Therefore
G acts semiregularly on (rj)\{L∞} and therefore 9 = |G|||(rj)\{L∞}| = 12. This is
a contradiction. �

Lemma 5.3 Case 2 does not occur.

Proof. Suppose that Case 2 occurs. Let G = 〈ϕ, τ〉 and F(L∞)(G) = {r∞, r0, r1, r2}.
If there exists i ∈ {∞, 0, 1, 2} such that ri is not the center of any collineation ∈

G\{1}, then G acts semiregularly on (ri)\{L∞} and therefore 9 = |G|||(ri)\{L∞}| =
12. This is a contradiction. Thus the centers of ϕ, ϕτ, ϕ2τ, τ are different each other.
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The Burnside-Frobenius Theorem yields θΔ(ϕ)+ θΔ(ϕτ)+ θΔ(ϕ
2τ)+ θΔ(τ) = 21.

Since we may assume that θΔ(ϕ) ≤ θΔ(ϕτ) ≤ θΔ(ϕ
2τ) ≤ θΔ(τ), we find that

(θΔ(ϕ), θΔ(ϕτ), θΔ(ϕ
2τ), θΔ(τ)) = (3, 3, 6, 9) or (3, 6, 6, 6),

here we may also assume that the center of τ is r∞. Set Φ1 = {L ∈ (r∞)\{L∞}| Lτ =
L} and Φ2 = {L ∈ (r∞)\{L∞}| Lτ �= L}. We remark that |Φ2| = 3 or 6, because
θΔ(τ) = |Φ1| = 9 or 6. Then G induces a permutation group on Φi (i = 1, 2). Since
G acts semiregularly on Φ2, we have 9 = |G|||Φ2|. This is a contradiction. �

Lemma 5.4 If Case 3 occurs, then the following hold.

Type 10 (i) G = 〈ϕ, τ〉,
ϕ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃ϕ = (B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),
τ̃ = (P0,P1,P2)(P3,P6,P9)(P4,P7,P10)(P5,P8,P11),˜̃τ = (B0)(B1)(B2)(B3,B6,B9)(B4,B7,B10)(B5,B8,B11).
(ii) G acts semiregularly on P and |FB0(τ)| = |FB1(ϕτ)| = |FB2(ϕ

2τ)| = 3.

Proof. Let G = 〈ϕ, τ〉. Then we may assume that

˜̃ϕ = (B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),

and ˜̃τ = (B0)(B1)(B2)(B3,B6,B9)(B4,B7,B10)(B5,B8,B11).

Let F(L∞)(G) = {r∞, r0, r1, r2}. A similar argument as in Lemma 5.2 yields that
centers of ϕ, τ, ϕτ, ϕ2τ are different from each other. Therefore we may assume
that the center of ϕ is r∞. Since θΩ(ϕ) = 3 by Lemma 3.6, we may assume
that ϕ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11). Since θΩ(μ) = 0 for
all μ ∈ G\〈ϕ〉, τ̃ = (P0,P1,P2)(P3,P6,P9)(P4,P7,P10)(P5,P8,P11). Since the cen-
ters of ϕ, τ, ϕτ, ϕ2τ are different from each other, we may assume that |FB0(τ)| =
|FB1(ϕτ)| = |FB2(ϕ

2τ)| = 3. �

Lemma 5.5 If Case 4 occurs, then one of the following four types holds.

Type 11 (i) G = 〈ϕ, τ〉,
ϕ̃ = (P0,P1,P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃ϕ = (B0,B1,B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),
τ̃ = (P0)(P1)(P2)(P3)(P4)(P5)(P6,P7,P8)(P9,P10,P11),˜̃τ = (B0)(B1)(B2)(B3)(B4)(B5)(B6,B7,B8)(B9,B10,B11).
(ii) G acts semiregularly on both P and B.
Type 12 (i) G = 〈ϕ, τ〉,
ϕ̃ = (P0,P1,P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃ϕ = (B0,B1,B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),
τ̃ = (P0)(P1)(P2)(P3)(P4)(P5)(P6,P7,P8)(P9,P11,P10),˜̃τ = (B0)(B1)(B2)(B3)(B4)(B5)(B6,B7,B8)(B9,B11,B10).
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(ii) G acts semiregularly on both P and B.
Type 13 (i) G = 〈ϕ, τ〉,
ϕ̃ = (P0,P1,P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃ϕ = (B0,B1,B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),
τ̃ = (P0)(P1)(P2)(P3)(P4)(P5)(P6)(P7)(P8)(P9,P10,P11),˜̃τ = (B0)(B1)(B2)(B3)(B4)(B5)(B6)(B7)(B8)(B9,B10,B11).

(ii) G acts semiregularly on both P and B.
Type 14 (i) G = 〈ϕ, τ〉,
ϕ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃ϕ = (B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),
τ̃ = (P0,P1,P2)(P3)(P4)(P5)(P6,P7,P8)(P9,P11,P10),˜̃τ = (B0,B1,B2)(B3)(B4)(B5)(B6,B7,B8)(B9,B11,B10).

(ii) G acts semiregularly on both P and B.

Proof. Let G = 〈ϕ, τ〉. By the assumption of Case 4, any collineation in G is a
(r∞, L∞)-generalized elation. Therefore G acts semiregularly on B. We may assume
that θΔ(ϕ) ≤ θΔ(μ) ≤ θΔ(τ) for all μ ∈ G\{1}. The Burnside-Frobenius theorem
yields θΔ(ϕ) + θΔ(ϕτ) + θΔ(ϕ

2τ) + θΔ(τ) = 12 and therefore θΔ(ϕ) = 0, 3.

Suppose that θΔ(ϕ) = 0. Then we may assume that˜̃ϕ = (B0,B1,B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11) and
ϕ̃ = (P0,P1,P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11). Since θΔ(τ) = 6, 9,˜̃τ = (B0)(B1)(B2)(B3)(B4)(B5)(B6,B7,B8)(B9,B10,B11),
(B0)(B1)(B2)(B3)(B4)(B5)(B6,B7,B8)(B9,B11,B10) or
(B0)(B1)(B2)(B3)(B4)(B5)(B6)(B7)(B8)(B9,B10,B11).

(α) Suppose that ˜̃τ = (B0)(B1)(B2)(B3)(B4)(B5)(B6,B7,B8)(B9,B10,B11). Then

θΩ(τ) = 6. Since ˜̃ϕτ = (B0,B1,B2)(B3,B4,B5)(B6,B8,B7)(B9,B11,B10), θΩ(ϕτ) = 0.
Therefore τ̃ = (P0)(P1)(P2)(P3)(P4)(P5)(P6,P7,P8)(P9,P10,P11). In this case we
have Type 11.

(β) Suppose that ˜̃τ = (B0)(B1)(B2)(B3)(B4)(B5)(B6,B7,B8)(B9,B11,B10). Then

θΩ(τ) = 6. Since ˜̃ϕτ = (B0,B1,B2)(B3,B4,B5)(B6,B8,B7)(B9)(B11)(B10), θΩ(ϕτ) = 3.
Therefore τ̃ = (P0)(P1)(P2)(P3)(P4)(P5)(P6,P7,P8)(P9,P11,P10). In this case we
have Type 12.

(γ) Suppose that ˜̃τ = (B0)(B1)(B2)(B3)(B4)(B5)(B6)(B7)(B8)(B9,B10,B11).
Then θΩ(τ) = 9. Since

˜̃ϕτ = (B0,B1,B2)(B3,B4,B5)(B6,B7,B8)(B9,B11,B10),

θΩ(ϕτ) = 0. Therefore τ̃ = (P0)(P1)(P2)(P3)(P4)(P5)(P6)(P7)(P8)(P9,P10,P11). In
this case we have Type 13.

Suppose that θΩ(ϕ) = 3. Then θΩ(ϕ) = θΩ(ϕτ) = θΩ(ϕ
2τ) = θΩ(τ) = 3. Since˜̃ϕ = (B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11), θΩ(ϕ) = 3. Therefore ϕ̃ =
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(P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11) and ˜̃τ = (B0,B1,B2)(B3)(B4)
(B5)(B6,B7,B8)(B9,B11,B10). Since θΩ(τ) = θΩ(ϕτ) = 3, τ̃ = (P0,P1,P2)(P3)(P4)
(P5)(P6,P7,P8)(P9,P11,P10). In this case we have Type 14. �

Lemma 5.6 If Case 5 occurs, then the following hold.

Type 15 (i) G = 〈ϕ, τ〉,
ϕ̃ = (P0)(P1)(P2)(P3,P4,P5)(P6,P7,P8)(P9,P10,P11),˜̃ϕ = (B0)(B1)(B2)(B3,B4,B5)(B6,B7,B8)(B9,B10,B11),
τ̃ = (P0,P1,P2)(P3,P6,P9)(P4,P7,P10)(P5,P8,P11),˜̃τ = (B0,B1,B2)(B3,B6,B9)(B4,B7,B10)(B5,B8,B11).

(ii) G acts semiregularly on both P and B.

Proof. There exists ϕ ∈ G\{1} such that θΔ(ϕ) = 3 by the assumption of Case 5.
Since θP(ϕ) + θΔ(ϕ) = θB(ϕ) + θΩ(ϕ) and θP(ϕ) = 0, θB(ϕ) + θΩ(ϕ) = 3. Since ϕ
is a (r∞, L∞)-generalized elation, θΩ(ϕ) = 3 and therefore θB(ϕ) = 0. There exists
τ ∈ G\〈ϕ〉 such that θΔ(τ) = 0 by the assumption of Case 5. Then θΔ(ϕτ) =
θΔ(ϕ

2τ) = 0. Therefore τ, ϕτ, ϕ2τ are (r∞, L∞)-generalized elations. Hence θΩ(τ) =
θΩ(ϕτ) = θΩ(ϕ

2τ) = 0 and θB(τ) = θB(ϕτ) = θB(ϕ2τ) = 0. Thus we have Type 15.�

Lemma 5.7 Let G be a collineation group of order 9 of π = (Q,L, J). If G\{1} does
not contain a planar collineation, then one of Types 10 to 15 occurs, up to duality
of π.

Proof. From Lemmas 5.2 to 5.6, and Lemma 3.7, the lemma holds. �

6 Types 1 to 9

In this section we consider Types 1 to 9 in Section 4 and we show that none of these
types occurs, by considering the first 36 rows of the incidence matrix of D, which
corresponds to the subplane of order 3.

Let D = (P,B, I) be the STD1[12, 12] with the set of point classes Ω = {P0, . . . ,
P11} (0 ≤ i ≤ 11) and the set of block classes Δ = {B0, . . . ,B11} (0 ≤ j ≤ 11). Let
Pi = {p12i, p12i+1, . . . , p12i+11} (0 ≤ i ≤ 11) and Bj = {B12j , B12j+1, . . . , B12j+11} (0 ≤
j ≤ 11). Let H = (hi,j)0≤i,j≤143 be the incidence matrix corresponding to the
numberings p0, . . . , p143 and B0, . . . , B143 of points and blocks of D and set Hr,s =
(h12r+i,12s+j)0≤i,j≤11 for 0 ≤ r, s ≤ 11. Then Hr,s (0 ≤ r, s ≤ 11) is a permuta-
tion matrix and H = (Hr,s)0≤r,s≤11. Moreover set H1 = (hi,j)0≤i≤35,0≤j≤143. Then
H1 = (Hr,s)0≤r≤2,0≤s≤11. At first we determine the form of H1 for each type of Types
1 to 9. We need several symbols for that.

Notation 6.1 (i) Let Λ1 be the set of 12× 12 permutation matrices
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⎛⎜⎜⎝
C0 O3 O3 O3

O3 C1 C2 C3

O3 C3 C1 C2

O3 C2 C3 C1

⎞⎟⎟⎠,

where Ci (0 ≤ i ≤ 3) are 3× 3 cyclic matrices.

Let Λ2 be the set of 12× 12 permutation matrices

S =

⎛⎜⎜⎝
P O3 O3 O3

O3 C0 C1 C2

O3 C3 C4 C5

O3 C6 C7 C8

⎞⎟⎟⎠,

where P is a 3× 3 permutation matrix and Ci (0 ≤ i ≤ 8) are 3× 3 cyclic matrices.

Let Λ3 be the set of 12× 12 permutation matrices

⎛⎜⎜⎝
A O3 O3 O3

O3 B O3 O3

O3 O3 C O3

O3 O3 O3 D

⎞⎟⎟⎠, where

A,B,C,D are 3× 3 permutation matrices.

(ii) For a 3 × 3 matrix X =

⎛⎝ x0,0 x0,1 x0,2

x1,0 x1,1 x1,2

x2,0 x2,1 x2,2

⎞⎠ = (xi,j)0≤i,j≤2 with entries from

{0, 1} and f, g ∈Sym{0, 1, 2}, we define X(f,g) = (yi,j)0≤i,j≤2 by yi,j = xif ,jg (0 ≤
i, j ≤ 2). In particular, for r, s ∈ {1, 2}, set X(fr ,fs) = X(r,s) where f = (0, 1, 2).

Then, let Φ1 be the set of 12× 12 permutation matrices⎛⎜⎜⎝
C0 C1 C2 C3

X0 X1 X2 X3

X0
(1,1) X1

(1,1) X2
(1,1) X3

(1,1)

X0
(2,2) X1

(2,2) X2
(2,2) X3

(2,2)

⎞⎟⎟⎠, Φ2 the set of 12 × 12 permutation matrices

⎛⎜⎜⎝
C0 C1 C2 C3

X0 X1 X2 X3

X0
(2,1) X1

(2,1) X2
(2,1) X3

(2,1)

X0
(1,2) X1

(1,2) X2
(1,2) X3

(1,2)

⎞⎟⎟⎠ and Φ3 the set of 12×12 permutation matrices

⎛⎜⎜⎝
C0 C1 C2 C3

X0 X1 X2 X3

X0
(0,1) X1

(0,1) X2
(0,1) X3

(0,1)

X0
(0,2) X1

(0,2) X2
(0,2) X3

(0,2)

⎞⎟⎟⎠, where Ci (0 ≤ i ≤ 3) are cyclic matrices and

Xi (0 ≤ i ≤ 3) are 3× 3 matrices.

We remark that |Λi| and |Φi| (1 ≤ i ≤ 3) are not big. Actually, |Λ1| = 34 = 81,
|Λ2| = 62 × 32 = 972, |Λ3| = 64 = 1296 and |Φ1| = |Φ2| = |Φ3| = 4× 3× 9× 6× 3 =
1944.

(iii) We define a 12×12 permutation matrixX(f,g) = (yi,j)0≤i,j≤11 by yi,j = xif ,jg (0 ≤
i, j ≤ 11) for a 12× 12 permutation matrix X = (xi,j)0≤i,j≤11 and f ∈ Sym{0, 1, . . . ,
11}. In particular, we set X(f,1) = Xf .
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It follows that the actions of ϕ and τ on both P and B in Types 1 to 9 are determined
explicitly from Section 4.

Type 1

(6.1.1) ϕ = (x0)(x1)(x2)(x3, x4, x5)(x6, x7, x8)(x9, x10, x11)(x12)(x13)(x14)(x15, x16, x17)(x18, x19, x20)

(x21, x22, x23)(x24)(x25)(x26)(x27, x28, x29)(x30, x31, x32)(x33, x34, x35)(x36, x48, x60)(x37, x49, x61)(x38, x50, x62)

(x39, x51, x63)(x40, x52, x64)(x41, x53, x65)(x42, x54, x66)(x43, x55, x67)(x44, x56, x68)(x45, x57, x69)(x46, x58, x70)

(x47, x59, x71)(x72, x84, x96)(x73, x85, x97)(x74, x86, x98)(x75, x87, x99)(x76, x88, x100)(x77, x89, x101)(x78, x90, x102)

(x79, x91, x103)(x80, x92, x104)(x81, x93, x105)(x82, x94, x106)(x83, x95, x107)(x108, x120, x132)(x109, x121, x133)

(x110, x122, x134)(x111, x123, x135)(x112 , x124, x136)(x113, x125, x137) (x114, x126, x138)(x115, x127, x139)

(x116, x128, x140)(x117, x129, x141) (x118, x130, x142)(x119, x131, x143) and

τ = (x0, x1, x2)(x3, x6, x9)(x4, x7, x10)(x5, x8, x11)(x12, x13, x14)(x15, x18, x21)(x16, x19, x22)(x17, x20, x23)

(x24, x25, x26)(x27, x30, x33)(x28, x31, x34)(x29, x32, x35)(x36, x61, x50)(x37, x62, x48)(x38, x60, x49)(x39, x64, x53)

(x40, x65, x51)(x41, x63, x52)(x42, x67, x56)(x43, x68, x54)(x44, x66, x55)(x45, x70, x59)(x46, x71, x57)(x47, x69, x58)

(x72, x85, x98)(x73, x86, x96)(x74, x84, x97)(x75, x88, x101)(x76, x89, x99)(x77, x87, x100)(x78, x91, x104)

(x79, x92, x102)(x80, x90, x103)(x81, x94, x107)(x82, x95, x105)(x83, x93, x106)(x108, x121, x134)(x109, x122, x132)

(x110, x120, x133)(x111, x124, x137)(x112 , x125, x135)(x113, x123, x136)(x114, x127, x140)(x115, x128, x138)

(x116, x126, x139)(x117, x130, x143)(x118 , x131, x141)(x119, x129, x142), where x ∈ {p,B}.

Proof. Since |FPi
(ϕ)| = 3 (0 ≤ i ≤ 2), let FP0(ϕ) = {p0, p1, p2}, FP1(ϕ) =

{p12, p13, p14} and FP2(ϕ) = {p24, p25, p26}. Since〈ϕ〉acts semiregularly on P0\FP0(ϕ),
let ϕP0 = (p0)(p1)(p2) (p3, p4, p5)(p6, p7, p8)(p9, p10, p11). Since 〈τ〉 acts semiregularly
on P0, we may assume that τP0 = (p0, p1, p2)(p3, p6, p9) . . . . From this, we have
p3

τ = p6 and therefore p3
ϕτ = p3

τϕ = p6
ϕ. This yields p4

τ = p7. By a similar
argument, it follows that

τP0 = (p0, p1, p2)(p3, p6, p9) (p4, p7, p10)(p5, p8, p11). Similarly, we have
ϕP1 = (p12)(p13)(p14)(p15, p16, p17) (p18, p19, p20)(p21, p22, p23),
τP1 = (p12, p13, p14)(p15, p18, p21)(p16, p19, p22)(p17, p20, p23),
ϕP2 = (p24)(p25)(p26)(p27, p28, p29)(p30, p31, p32)(p33, p34, p35) and
τP2 = (p24, p25, p26)(p27, p30, p33)(p28, p31, p34)(p29, p32, p35).

Since Pi
ϕτ = Pi (3 ≤ i ≤ 5), we may assume that

ϕτP3 = (p36, p37, p38)(p39, p40, p41)(p42, p43, p44)(p45, p46, p47),
ϕτP4 = (p48, p49, p50)(p51, p52, p53)(p54, p55, p56)(p57, p58, p59) and
ϕτP5 = (p60, p61, p62)(p63, p64, p65)(p66, p67, p68)(p69, p70, p71).
Since ϕ̃ = . . . (P3,P4,P5) . . . , we may assume that ϕP3∪P4∪P5 = (p36, p48, p60) . . . .
From this, we have p36

ϕ = p48 and therefore p36
ϕτϕ = p36

ϕϕτ = p48
ϕτ = p49. This

yields p37
ϕ = p49. By a similar argument, it follows that

ϕP3∪P4∪P5 = (p36, p48, p60)(p37, p49, p61)(p38, p50, p62) . . . . Similarly, we have
ϕP3∪P4∪P5 = . . . (p39, p51, p63)(p40, p52, p64)(p41, p53, p65) . . . ,
ϕP3∪P4∪P5 = . . . (p42, p54, p66)(p43, p55, p67)(p44, p56, p68) . . . and
ϕP3∪P4∪P5 = . . . (p45, p57, p69)(p46, p58, p70)(p47, p59, p71) . . . . Thus
ϕP3∪P4∪P5 = (p36, p48, p60)(p37, p49, p61)(p38, p50, p62)(p39, p51, p63) (p40, p52, p64)
(p41, p53, p65) (p42, p54, p66)(p43, p55, p67) (p44, p56, p68)(p45, p57, p69)(p46, p58, p70)
(p47, p59, p71). Since
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ϕτP3∪P4∪P5 = (p36, p37, p38)(p39, p40, p41)(p42, p43, p44)(p45, p46, p47) (p48, p49, p50)
(p51, p52, p53)(p54, p55, p56)(p57, p58, p59) (p60, p61, p62)(p63, p64, p65)(p66, p67, p68)
(p69, p70, p71), from τ = ϕ2(ϕτ), it follows that
τP3∪P4∪P5 = (p36, p61, p50)(p37, p62, p48)(p38, p60, p49)(p39, p64, p53) (p40, p65, p51)
(p41, p63, p52)(p42, p67, p56)(p43, p68, p54) (p44, p66, p55)(p45, p70, p59)(p46, p71, p57)
(p47, p69, p58).

Since Pi
ϕ2τ = Pi (6 ≤ i ≤ 8), we may assume that

ϕ2τP6 = (p72, p73, p74)(p75, p76, p77)(p78, p79, p80)(p81, p82, p83),
ϕ2τP7 = (p84, p85, p86)(p87, p88, p89)(p90, p91, p92)(p93, p94, p95) and
ϕ2τP8 = (p96, p97, p98)(p99, p100, p101)(p102, p103, p104)(p105, p106, p107).
Since ϕ̃ = . . . (P6,P7,P8) . . . , we may assume that ϕP6∪P7∪P8 = (p72, p84, p96)
. . . . From this, we have p72

ϕ = p84 and therefore p72
ϕ2τϕ = p72

ϕϕ2τ = p84
ϕ2τ

= p85. This yields p73
ϕ = p85. By a similar argument, it follows that

ϕP6∪P7∪P8 = (p72, p84, p96)(p73, p85, p97)(p74, p86, p98) . . . . Similarly, we have
ϕP6∪P7∪P8 = . . . (p75, p87, p99)(p76, p88, p100)(p77, p89, p101) . . . ,
ϕP6∪P7∪P8 = . . . (p78, p90, p102)(p79, p91, p103)(p80, p92, p104) . . . and
ϕP6∪P7∪P8 = . . . (p81, p93, p105)(p82, p94, p106)(p83, p95, p107) . . . . Thus
ϕP6∪P7∪P8 = (p72, p84, p96)(p73, p85, p97)(p74, p86, p98)(p75, p87, p99) (p76, p88, p100)
(p77, p89, p101)(p78, p90, p102)(p79, p91, p103) (p80, p92, p104)(p81, p93, p105)(p82, p94, p106)
(p83, p95, p107). Since
ϕ2τP6∪P7∪P8 = (p72, p73, p74)(p75, p76, p77)(p78, p79, p80)(p81, p82, p83) (p84, p85, p86)
(p87, p88, p89)(p90, p91, p92)(p93, p94, p95) (p96, p97, p98)(p99, p100, p101)(p102, p103, p104)
(p105, p106, p107), from τ = ϕ(ϕ2τ), it follows that
τP6∪P7∪P8 = (p72, p85, p98)(p73, p86, p96) (p74, p84, p97)(p75, p88, p101) (p76, p89, p99)
(p77, p87, p100) (p78, p91, p104)(p79, p92, p102) (p80, p90, p103)(p81, p94, p107) (p82, p95, p105)
(p83, p93, p106).

The actions of ϕ and τ on P9 ∪ P10 ∪ P11 are obtained by the same argument as
the above, because Pi

ϕ2τ = Pi (9 ≤ i ≤ 11). That is
ϕP9∪P10∪P11 = (p108, p120, p132)(p109, p121, p133) (p110, p122, p134)(p111, p123, p135)
(p112, p124, p136)(p113, p125, p137) (p114, p126, p138)(p115, p127, p139) (p116, p128, p140)
(p117, p129, p141) (p118, p130, p142)(p119, p131, p143) and
τP9∪P10∪P11 = (p108, p121, p134)(p109, p122, p132) (p110, p120, p133)(p111, p124, p137)
(p112, p125, p135)(p113, p123, p136)(p114, p127, p140)(p115, p128, p138) (p116, p126, p139)
(p117, p130, p143) (p118, p131, p141)(p119, p129, p142).

Therefore we have the actions of ϕ and τ on P described in (6.1.1). Since the
permutation group (G,P) is isomorphic to the permutation group (G,B), we may
assume that the numbering of the actions of ϕ and τ on B are the same as these on
the points. �

(6.1.2) Let f = (0)(1)(2)(3, 4, 5)(6, 7, 8)(9, 10, 11) ∈Sym{0, 1, . . . , 11}. Then

H1 =

⎛⎜⎝ S0 S1 S2 A0 A0
f A0

f2

A1 A1
f A1

f2

A2 A2
f A2

f2

S3 S4 S5 B0 B0
f B0

f2

B1 B1
f B1

f2

B2 B2
f B2

f2

S6 S7 S8 C0 C0
f C0

f2

C1 C1
f C1

f2

C2 C2
f C2

f2

⎞⎟⎠,
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where S0, . . . , S8 ∈ Λ1, A0, B0, C0 ∈ Φ1, Ai, Bi, Ci ∈ Φ2 (i = 1, 2).

Proof. We remark that hi,j = 1 ⇐⇒ piIBj ⇐⇒ pi
μIBj

μ ⇐⇒ hi′,j′ = 1 and
hi,j = 0 ⇐⇒ pi � IBj ⇐⇒ pi

μ � IBj
μ ⇐⇒ hi′,j′ = 0, where pi

μ = pi′ and Bj
μ = Bj′,

for 0 ≤ i, j ≤ 143, μ ∈ G.

We define an action on P × B of G by (p, B)μ = (pμ, Bμ) for (p, B) ∈ P × B.
Then, if A ⊆ P × B is a G-orbit, hi,j = hi′,j′ for (pi, Bj), (pi′, Bj′) ∈ A.

Since (p3, B3)
G = {(p3, B3), (p4, B4), . . . , (p11, B11)},

(p3, B4)
G = {(p3, B4), (p4, B5), (p5, B3), (p6, B7), (p7, B8), (p8, B6), (p9, B10),

(p10, B11), (p11, B9)},
(p3, B5)

G = {(p3, B5), (p4, B3), (p5, B4), (p6, B8), (p7, B6), (p8, B7), (p9, B11),
(p10, B9), (p11, B10)},

(p3, B6)
G = {(p3, B6), (p4, B7), (p5, B8), (p6, B9), (p7, B10), (p8, B11), (p9, B3),

(p10, B4), (p11, B5)},
(p3, B7)

G = {(p3, B7), (p4, B8), (p5, B6), (p6, B10), (p7, B11), (p8, B9), (p9, B4),
(p10, B5), (p11, B3)},

(p3, B8)
G = {(p3, B8), (p4, B6), (p5, B7), (p6, B11), (p7, B9), (p8, B10), (p9, B5),

(p10, B3), (p11, B4)},
(p3, B9)

G = {(p3, B9), (p4, B10), (p5, B11), (p6, B3), (p7, B4), (p8, B5), (p9, B6),
(p10, B7), (p11, B8)},

(p3, B10)
G = {(p3, B10), (p4, B11), (p5, B9), (p6, B4), (p7, B5), (p8, B3), (p9, B7),

(p10, B8), (p11, B6)}, and

(p3, B11)
G = {(p3, B11), (p4, B9), (p5, B10), (p6, B5), (p7, B3), (p8, B4), (p9, B8),

(p10, B6), (p11, B7)},
if we set h0 = h0,0, h1 = h0,1, h2 = h0,2 and h3 = h3,3, h4 = h3,4, . . . , h11 = h3,11, then

H0,0 =

⎛
⎜⎜⎝

C0 O3 O3 O3

O3 C1 C2 C3

O3 C3 C1 C2

O3 C2 C3 C1

⎞
⎟⎟⎠, where C0 =

⎛
⎝

h0 h1 h2

h2 h0 h1

h1 h2 h0

⎞
⎠, C1 =

⎛
⎝

h3 h4 h5

h5 h3 h4

h4 h5 h3

⎞
⎠,

C2 =

⎛
⎝

h6 h7 h8

h8 h6 h7

h7 h8 h6

⎞
⎠ and C3 =

⎛
⎝

h9 h10 h11

h11 h9 h10

h10 h11 h9

⎞
⎠. Set S0 = H0,0 ∈ Λ1.

By repeating the argument similarly, we obtain

H1 =

⎛
⎝

S0 S1 S2

S3 S4 S5 ∗ ∗∗ ∗ ∗ ∗
S6 S7 S8

⎞
⎠, where S0, S1, . . . , S8 ∈ Λ1. By a simi-

lar argument as above, we can find the remaining submatrices of H1. Note that
G acts semiregularly on

⋃
0≤i≤2Pi ×

⋃
3≤j≤11 Bj . For example, since (p3, B36)

G =
{(p3, B36), (p7, B37), (p11, B38), (p4, B48), (p8, B49), (p9, B50), (p5, B60), (p6, B61), (p10,
B62)}, we have h3,36 = h7,37 = h11,38 = h4,48 = h8,49 = h9,50 = h5,60 = h6,61 = h10,62.�

The proof of statements which will appear in the remaining types are omitted,
because we can prove these by arguments similar to those used in Type 1.
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Type 2

(6.2.1) ϕ = (x0)(x1)(x2)(x3, x4, x5)(x6, x7, x8)(x9, x10, x11)

(x12)(x13)(x14)(x15, x16, x17)(x18, x19, x20)(x21, x22, x23)

(x24)(x25)(x26)(x27, x28, x29)(x30, x31, x32)(x33, x34, x35)

(x36, x48, x60)(x37, x49, x61)(x38, x50, x62)(x39, x51, x63)

(x40, x52, x64)(x41, x53, x65)(x42, x54, x66)(x43, x55, x67)

(x44, x56, x68)(x45, x57, x69)(x46, x58, x70)(x47, x59, x71)

(x72, x84, x96)(x73, x85, x97)(x74, x86, x98)(x75, x87, x99)

(x76, x88, x100)(x77, x89, x101)(x78, x90, x102)(x79, x91, x103)

(x80, x92, x104)(x81, x93, x105)(x82, x94, x106)(x83, x95, x107)

(x108, x120, x132)(x109, x121, x133)(x110 , x122, x134)(x111, x123, x135)

(x112, x124, x136)(x113, x125, x137)(x114 , x126, x138)(x115, x127, x139)

(x116, x128, x140)(x117, x129, x141)(x118 , x130, x142)(x119, x131, x143) and

τ = (x0, x1, x2)(x3, x6, x9)(x4, x7, x10)(x5, x8, x11)

(x12, x13, x14)(x15, x18, x21)(x16, x19, x22)(x17, x20, x23)

(x24, x25, x26)(x27, x30, x33)(x28, x31, x34)(x29, x32, x35)

(x36, x37, x38)(x39, x40, x41)(x42, x43, x44)(x45, x46, x47)

(x48, x49, x50)(x51, x52, x53)(x54, x55, x56)(x57, x58, x59)

(x60, x61, x62)(x63, x64, x65)(x66, x67, x68)(x69, x70, x71)

(x72, x97, x86)(x73, x98, x84)(x74, x96, x85)(x75, x100, x89)

(x76, x101, x87)(x77, x99, x88)(x78, x103, x92)(x79, x104, x90)

(x80, x102, x91)(x81, x106, x95)(x82, x107, x93)(x83, x105, x94)

(x108, x121, x134)(x109, x122, x132)(x110 , x120, x133)(x111, x124, x137)

(x112, x125, x135)(x113, x123, x136)(x114 , x127, x140)(x115, x128, x138)

(x116, x126, x139)(x117, x130, x143)(x118 , x131, x141)(x119, x129, x142), where x ∈ {p,B}.

(6.2.2) Let f = (0)(1)(2)(3, 4, 5)(6, 7, 8)(9, 10, 11) ∈Sym{0, 1, . . . , 11}. Then

H1 =

⎛⎜⎝ S0 S0 S2 A0 A0
f A0

f2

A1 A1
f A1

f2

A2 A2
f A2

f2

S3 S4 S5 B0 B0
f B0

f2

B1 B1
f B1

f2

B2 B2
f B2

f2

S6 S7 S8 C0 C0
f C0

f2

C1 C1
f C1

f2

C2 C2
f C2

f2

⎞⎟⎠,

where S0, . . . , S8 ∈ Λ1, A0, B0, C0 ∈ Φ3, A1, B1, C1 ∈ Φ1, A2, B2, C2 ∈ Φ2.

Type 3

(6.3.1) ϕ = (x0)(x1)(x2)(x3, x4, x5)(x6, x7, x8)(x9, x10, x11)

(x12)(x13)(x14)(x15, x16, x17)(x18, x19, x20)(x21, x22, x23)

(x24)(x25)(x26)(x27, x28, x29)(x30, x31, x32)(x33, x34, x35)

(x36, x48, x60)(x37, x49, x61)(x38, x50, x62)(x39, x51, x63)

(x40, x52, x64)(x41, x53, x65)(x42, x54, x66)(x43, x55, x67)

(x44, x56, x68)(x45, x57, x69)(x46, x58, x70)(x47, x59, x71)

(x72, x84, x96)(x73, x85, x97)(x74, x86, x98)(x75, x87, x99)

(x76, x88, x100)(x77, x89, x101)(x78, x90, x102)(x79, x91, x103)

(x80, x92, x104)(x81, x93, x105)(x82, x94, x106)(x83, x95, x107)

(x108, x120, x132)(x109, x121, x133)(x110 , x122, x134)(x111, x123, x135)

(x112, x124, x136)(x113, x125, x137)(x114 , x126, x138)(x115, x127, x139)
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(x116, x128, x140)(x117, x129, x141)(x118 , x130, x142)(x119, x131, x143) and

τ = (x0, x1, x2)(x3)(x4)(x5)(x6, x8, x7)(x9, x10, x11)

(x12, x13, x14)(x15)(x16)(x17)(x18, x20, x19)(x21, x22, x23)

(x24, x25, x26)(x27)(x28)(x29)(x30, x32, x31)(x33, x34, x35)

(x36, x72, x108)(x48, x84, x120)(x60, x96, x132)(x37, x73, x109)

(x49, x85, x121)(x61, x97, x133)(x38, x74, x110)(x50, x86, x122)

(x62, x98, x134)(x39, x75, x111)(x51, x87, x123)(x63, x99, x135)

(x40, x76, x112)(x52, x88, x124)(x64, x100, x136)(x41, x77, x113)

(x53, x89, x125)(x65, x101, x137)(x42, x78, x114)(x54, x90, x126)

(x66, x102, x138)(x43, x79, x115)(x55, x91, x127)(x67, x103, x139)

(x44, x80, x116)(x56, x92, x128)(x68, x104, x140)(x45, x81, x117)

(x57, x93, x129)(x69, x105, x141)(x46, x82, x118)(x58, x94, x130)

(x70, x106, x142)(x47, x83, x119)(x59, x95, x131)(x71, x107, x143), where x ∈ {p,B}.

(6.3.2) Let f = (0)(1)(2)(3, 5, 4)(6, 8, 7)(9, 11, 10),
g = (0, 2, 1)(3)(4)(5)(6, 7, 8)(9, 11, 10), h = (0, 2, 1)(3, 5, 4)(6)(7)(8)(9, 10, 11),
k = (0, 2, 1)(3, 4, 5)(6, 8, 7)(9)(10)(11) ∈Sym{0, 1, . . . , 11}. Then

H1 =

⎛⎜⎝ S0 S1 S2 A0 A0
f A0

f2
A0

g A0
h A0

k A0
g2 A0

k2 A0
h2

S3 S4 S5 A1 A1
f A1

f2
A1

g A1
h A1

k A1
g2 A1

k2 A1
h2

S6 S7 S8 A2 A2
f A2

f2
A2

g A2
h A2

k A2
g2 A2

k2 A2
h2

⎞⎟⎠,

where S0, S1, . . . , S8 ∈ Λ3 and A0, A1, A2 are 12× 12 permutation matrices.

Type 4

(6.4.1) ϕ = (x0)(x1)(x2)(x3, x4, x5)(x6, x7, x8)(x9, x10, x11)

(x12)(x13)(x14)(x15, x16, x17)(x18, x19, x20)(x21, x22, x23)

(x24)(x25)(x26)(x27, x28, x29)(x30, x31, x32)(x33, x34, x35)

(x36, x48, x60)(x37, x49, x61)(x38, x50, x62)(x39, x51, x63)

(x40, x52, x64)(x41, x53, x65)(x42, x54, x66)(x43, x55, x67)

(x44, x56, x68)(x45, x57, x69)(x46, x58, x70)(x47, x59, x71)

(x72, x84, x96)(x73, x85, x97)(x74, x86, x98)(x75, x87, x99)

(x76, x88, x100)(x77, x89, x101)(x78, x90, x102)(x79, x91, x103)

(x80, x92, x104)(x81, x93, x105)(x82, x94, x106)(x83, x95, x107)

(x108, x120, x132)(x109, x121, x133)(x110 , x122, x134)(x111, x123, x135)

(x112, x124, x136)(x113, x125, x137)(x114 , x126, x138)(x115, x127, x139)

(x116, x128, x140)(x117, x129, x141)(x118 , x130, x142)(x119, x131, x143), where x ∈ {p,B}.

τ = (p0, p12, p24)(p1, p13, p25)(p2, p14, p26)(p3, p15, p27)

(p4, p16, p28)(p5, p17, p29)(p6, p18, p30)(p7, p19, p31)

(p8, p20, p32)(p9, p21, p33)(p10, p22, p34)(p11, p23, p35)

(p36, p72, p108)(p48, p84, p120)(p60, p96, p132)(p37, p73, p109)

(p49, p85, p121)(p61, p97, p133)(p38, p74, p110)(p50, p86, p122)

(p62, p98, p134)(p39, p75, p111)(p51, p87, p123)(p63, p99, p135)

(p40, p76, p112)(p52, p88, p124)(p64, p100, p136)(p41, p77, p113)

(p53, p89, p125)(p65, p101, p137)(p42, p78, p114)(p54, p90, p126)

(p66, p102, p138)(p43, p79, p115)(p55, p91, p127)(p67, p103, p139)
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(p44, p80, p116)(p56, p92, p128)(p68, p104, p140)(p45, p81, p117)

(p57, p93, p129)(p69, p105, p141)(p46, p82, p118)(p58, p94, p130)

(p70, p106, p142)(p47, p83, p119)(p59, p95, p131)(p71, p107, p143) and

τ = (B0)(B1)(B2)(B3, B6, B9)(B4, B7, B10)(B5, B8, B11)

(B12, B13, B14)(B15 , B18, B21)(B16, B19, B22)(B17, B20, B23)

(B24, B25, B26)(B27 , B30, B33)(B28, B31, B34)(B29, B32, B35)

(B36, B72, B108)(B48, B84, B120)(B60, B96, B132)(B37, B73, B109)

(B49, B85, B121)(B61, B97, B133)(B38, B74, B110)(B50, B86, B122)

(B62, B98, B134)(B39, B75, B111)(B51, B87, B123)(B63, B99, B135)

(B40, B76, B112)(B52, B88, B124)(B64, B100, B136)(B41, B77, B113)

(B53, B89, B125)(B65, B101, B137)(B42, B78, B114)(B54, B90, B126)

(B66, B102, B138)(B43, B79, B115)(B55, B91, B127)(B67, B103, B139)

(B44, B80, B116)(B56, B92, B128)(B68, B104, B140)(B45, B81, B117)

(B57, B93, B129)(B69, B105, B141)(B46, B82, B118)(B58, B94, B130)

(B70, B106, B142)(B47, B83, B119)(B59, B95, B131)(B71, B107, B143).

(6.4.2) (i) For a 3× 3 matrix P = (pi,j)0≤i,j≤2, set

P [1] =

⎛⎝ p0,2 p0,0 p0,1
p1,2 p1,0 p1,1
p2,2 p2,0 p2,1

⎞⎠ and P [2] =

⎛⎝ p0,1 p0,2 p0,0
p1,1 p1,2 p1,0
p2,1 p2,2 p2,0

⎞⎠.

(ii) For S =

⎛⎜⎜⎝
P O3 O3 O3

O3 C0 C1 C2

O3 C3 C4 C5

O3 C6 C7 C8

⎞⎟⎟⎠ ∈ Φ1 set

S(∗0) =

⎛⎜⎜⎝
P O3 O3 O3

O3 C2 C0 C1

O3 C5 C3 C4

O3 C8 C6 C7

⎞⎟⎟⎠, S(∗1) =

⎛⎜⎜⎝
P [1] O3 O3 O3

O3 C2 C0 C1

O3 C5 C3 C4

O3 C8 C6 C7

⎞⎟⎟⎠,

S(∗∗0) =

⎛⎜⎜⎝
P O3 O3 O3

O3 C1 C2 C0

O3 C4 C5 C3

O3 C7 C8 C6

⎞⎟⎟⎠ and S(∗∗1) =

⎛⎜⎜⎝
P [2] O3 O3 O3

O3 C1 C2 C0

O3 C4 C5 C3

O3 C7 C8 C6

⎞⎟⎟⎠.

(6.4.3) Let f = (0)(1)(2)(3, 5, 4)(6, 8, 7)(9, 11, 10) ∈Sym{0, 1, . . . , 11}. Then

H1 =

⎛⎜⎝ S0 S1 S2 A0 A0
f A0

f2

A2 A2
f A2

f2

S0
(∗0) S1

(∗1) S2
(∗1) A1 A1

f A1
f2

A0 A0
f A0

f2

S0
(∗∗0) S1

(∗∗1) S2
(∗∗1) A2 A2

f A2
f2

A1 A1
f A1

f2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A1 A1

f A1
f2

A2 A2
f A2

f2

A0 A0
f A0

f2

⎞⎟⎠,

where S0, S1, S2 ∈ Λ2 and A0, A1, A2 are 12× 12 permutation matrices.
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Type 5

(6.5.1) ϕ = (x0)(x1)(x2)(x3, x4, x5)(x6, x7, x8)(x9, x10, x11)

(x12)(x13)(x14)(x15, x16, x17)(x18, x19, x20)(x21, x22, x23)

(x24)(x25)(x26)(x27, x28, x29)(x30, x31, x32)(x33, x34, x35)

(x36, x48, x60)(x37, x49, x61)(x38, x50, x62)(x39, x51, x63)

(x40, x52, x64)(x41, x53, x65)(x42, x54, x66)(x43, x55, x67)

(x44, x56, x68)(x45, x57, x69)(x46, x58, x70)(x47, x59, x71)

(x72, x84, x96)(x73, x85, x97)(x74, x86, x98)(x75, x87, x99)

(x76, x88, x100)(x77, x89, x101)(x78, x90, x102)(x79, x91, x103)

(x80, x92, x104)(x81, x93, x105)(x82, x94, x106)(x83, x95, x107)

(x108, x120, x132)(x109, x121, x133)(x110 , x122, x134)(x111, x123, x135)

(x112, x124, x136)(x113, x125, x137)(x114 , x126, x138)(x115, x127, x139)

(x116, x128, x140)(x117, x129, x141)(x118 , x130, x142)(x119, x131, x143) and

τ = (x0, x1, x2)(x3, x6, x9)(x4, x7, x10)(x5, x8, x11)

(x12, x13, x14)(x15, x18, x21)(x16, x19, x22)(x17, x20, x23)

(x24, x25, x26)(x27, x30, x33)(x28, x31, x34)(x29, x32, x35)

(x36, x72, x108)(x48, x84, x120)(x60, x96, x132)(x37, x73, x109)

(x49, x85, x121)(x61, x97, x133)(x38, x74, x110)(x50, x86, x122)

(x62, x98, x134)(x39, x75, x111)(x51, x87, x123)(x63, x99, x135)

(x40, x76, x112)(x52, x88, x124)(x64, x100, x136)(x41, x77, x113)

(x53, x89, x125)(x65, x101, x137)(x42, x78, x114)(x54, x90, x126)

(x66, x102, x138)(x43, x79, x115)(x55, x91, x127)(x67, x103, x139)

(x44, x80, x116)(x56, x92, x128)(x68, x104, x140)(x45, x81, x117)

(x57, x93, x129)(x69, x105, x141)(x46, x82, x118)(x58, x94, x130)

(x70, x106, x142)(x47, x83, x119)(x59, x95, x131)(x71, x107, x143), where x ∈ {p,B}.

(6.5.2) Let f = (0)(1)(2)(3, 5, 4)(6, 8, 7)(9, 11, 10),
g = (0, 2, 1)(3, 9, 6)(4, 10, 7)(5, 11, 8), h = (0, 2, 1)(3, 11, 7)(4, 9, 8)(5, 10, 6),
k = (0, 2, 1)(3, 10, 8)(4, 11, 6)(5, 9, 7) ∈ Sym{0, 1, . . . , 11}. Then

H1 =

⎛⎜⎝ S0 S1 S2 A0 A0
f A0

f2

A0
g A0

h A0
k A0

g2 A0
k2 A0

h2

S3 S4 S5 A1 A1
f A1

f2

A1
g A1

h A1
k A1

g2 A1
k2 A1

h2

S6 S7 S8 A2 A2
f A2

f2

A2
g A2

h A2
k A2

g2 A2
k2 A2

h2

⎞⎟⎠,

where S0, . . . , S8 ∈ Λ1 and A0, A1, A2 are 12× 12 permutation matrices.

Type 6

(6.6.1) ϕ = (x0)(x1)(x2)(x3, x4, x5)(x6, x7, x8)(x9, x10, x11)

(x12)(x13)(x14)(x15, x16, x17)(x18, x19, x20)(x21, x22, x23)

(x24)(x25)(x26)(x27, x28, x29)(x30, x31, x32)(x33, x34, x35)

(x36, x48, x60)(x37, x49, x61)(x38, x50, x62)(x39, x51, x63)

(x40, x52, x64)(x41, x53, x65)(x42, x54, x66)(x43, x55, x67)

(x44, x56, x68)(x45, x57, x69)(x46, x58, x70)(x47, x59, x71)

(x72, x84, x96)(x73, x85, x97)(x74, x86, x98)(x75, x87, x99)

(x76, x88, x100)(x77, x89, x101)(x78, x90, x102)(x79, x91, x103)

(x80, x92, x104)(x81, x93, x105)(x82, x94, x106)(x83, x95, x107)
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(x108, x120, x132)(x109, x121, x133)(x110 , x122, x134)(x111, x123, x135)

(x112, x124, x136)(x113, x125, x137)(x114 , x126, x138)(x115, x127, x139)

(x116, x128, x140)(x117, x129, x141)(x118 , x130, x142)(x119, x131, x143) and

τ = (x0, x12, x24)(x1, x13, x25)(x2, x14, x26)(x3, x16, x29)

(x4, x17, x27)(x5, x15, x28)(x6, x19, x32)(x7, x20, x30)

(x8, x18, x31)(x9, x22, x35)(x10, x23, x33)(x11, x21, x34)

(x36, x49, x62)(x37, x50, x60)(x38, x48, x61)(x39, x52, x65)

(x40, x53, x63)(x41, x51, x64)(x42, x55, x68)(x43, x56, x66)

(x44, x54, x67)(x45, x58, x71)(x46, x59, x69)(x47, x57, x70)

(x72, x85, x98)(x73, x86, x96)(x74, x84, x97)(x75, x88, x101)

(x76, x89, x99)(x77, x87, x100)(x78, x91, x104)(x79, x92, x102)

(x80, x90, x103)(x81, x94, x107)(x82, x95, x105)(x83, x93, x106)

(x108, x121, x134)(x109, x122, x132)(x110 , x120, x133)(x111, x124, x137)

(x112, x125, x135)(x113, x123, x136)(x114 , x127, x140)(x115, x128, x138)

(x116, x126, x139)(x117, x130, x143)(x118 , x131, x141)(x119, x129, x142), where x ∈ {p,B}.

(6.6.2) Let f = (0)(1)(2)(3, 4, 5)(6, 7, 8)(9, 10, 11),
g = (0, 1, 2)(3, 4, 5)(6, 7, 8)(9, 10, 11) ∈ Sym{0, 1, . . . , 11}. Then

H1 =

⎛⎜⎝ S0 S1 S2 A0 A0
(f2,1) A0

(f,1)

S2 S0 S1 A0
(1,g2) A0

(f2,g2) A0
(f,g2)

S1 S2 S0 A0
(1,g) A0

(f2,g) A0
(f,g)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A1 A1

(f2,1) A1
(f,1) A2 A2

(f2,1) A2
(f,1)

A1
(1,g2) A1

(f2,g2) A1
(f,g2) A2

(1,g2) A2
(f2,g2) A2

(f,g2)

A1
(1,g) A1

(f2,g) A1
(f,g) A2

(1,g) A2
(f2,g) A2

(f,g)

⎞⎟⎠,

where S0, S1, S2 ∈ Λ2 and A0, A1 and A2 are 12× 12 permutation matrices.

Type 7

(6.7.1) ϕ = (x0)(x1)(x2)(x3, x4, x5)(x6, x7, x8)(x9, x10, x11)

(x12)(x13)(x14)(x15, x16, x17)(x18, x19, x20)(x21, x22, x23)

(x24)(x25)(x26)(x27, x28, x29)(x30, x31, x32)(x33, x34, x35)

(x36, x48, x60)(x37, x49, x61)(x38, x50, x62)(x39, x51, x63)

(x40, x52, x64)(x41, x53, x65)(x42, x54, x66)(x43, x55, x67)

(x44, x56, x68)(x45, x57, x69)(x46, x58, x70)(x47, x59, x71)

(x72, x84, x96)(x73, x85, x97)(x74, x86, x98)(x75, x87, x99)

(x76, x88, x100)(x77, x89, x101)(x78, x90, x102)(x79, x91, x103)

(x80, x92, x104)(x81, x93, x105)(x82, x94, x106)(x83, x95, x107)

(x108, x120, x132)(x109, x121, x133)(x110 , x122, x134)(x111, x123, x135)

(x112, x124, x136)(x113, x125, x137)(x114 , x126, x138)(x115, x127, x139)

(x116, x128, x140)(x117, x129, x141)(x118 , x130, x142)(x119, x131, x143) and

τ = (x0, x12, x24)(x1, x13, x25)(x2, x14, x26)(x3, x16, x29)

(x4, x17, x27)(x5, x15, x28)(x6, x19, x32)(x7, x20, x30)

(x8, x18, x31)(x9, x22, x35)(x10, x23, x33)(x11, x21, x34)

(x36, x61, x50)(x37, x62, x48)(x38, x60, x49)(x39, x64, x53)
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(x40, x65, x51)(x41, x63, x52)(x42, x67, x56)(x43, x68, x54)

(x44, x66, x55)(x45, x70, x59)(x46, x71, x57)(x47, x69, x58)

(x72, x85, x98)(x73, x86, x96)(x74, x84, x97)(x75, x88, x101)

(x76, x89, x99)(x77, x87, x100)(x78, x91, x104)(x79, x92, x102)

(x80, x90, x103)(x81, x94, x107)(x82, x95, x105)(x83, x93, x106)

(x108, x121, x134)(x109, x122, x132)(x110 , x120, x133)(x111, x124, x137)

(x112, x125, x135)(x113, x123, x136)(x114 , x127, x140)(x115, x128, x138)

(x116, x126, x139)(x117, x130, x143)(x118 , x131, x141)(x119, x129, x142), where x ∈ {p,B}.

(6.7.2) Let f = (0)(1)(2)(3, 4, 5)(6, 7, 8)(9, 10, 11),
g = (0, 1, 2)(3, 4, 5)(6, 7, 8)(9, 10, 11) ∈Sym{0, 1, . . . , 11}. Then

H1 =

⎛⎜⎝ S0 S1 S2 A0 A0
(f2,1) A0

(f,1)

S2 S0 S1 A0
(f,g2) A0

(1,g2) A0
(f2,g2)

S1 S2 S0 A0
(f2,g) A0

(f,g) A0
(1,g)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A1 A1

(f2,1) A1
(f,1) A2 A2

(f2,1) A2
(f,1)

A1
(1,g2) A1

(f2,g2) A1
(f,g2) A2

(1,g2) A2
(f2,g2) A2

(f,g2)

A1
(1,g) A1

(f2,g) A1
(f,g) A2

(1,g) A2
(f2,g) A2

(f,g)

⎞⎟⎠,

where S0, S1, S2 ∈ Λ2 and A0, A1, A2 are 12× 12 permutation matrices.

Type 8

(6.8.1) ϕ = (x0)(x1)(x2)(x3, x4, x5)(x6, x7, x8)(x9, x10, x11)

(x12)(x13)(x14)(x15, x16, x17)(x18, x19, x20)(x21, x22, x23)

(x24)(x25)(x26)(x27, x28, x29)(x30, x31, x32)(x33, x34, x35)

(x36, x48, x60)(x37, x49, x61)(x38, x50, x62)(x39, x51, x63)

(x40, x52, x64)(x41, x53, x65)(x42, x54, x66)(x43, x55, x67)

(x44, x56, x68)(x45, x57, x69)(x46, x58, x70)(x47, x59, x71)

(x72, x84, x96)(x73, x85, x97)(x74, x86, x98)(x75, x87, x99)

(x76, x88, x100)(x77, x89, x101)(x78, x90, x102)(x79, x91, x103)

(x80, x92, x104)(x81, x93, x105)(x82, x94, x106)(x83, x95, x107)

(x108, x120, x132)(x109, x121, x133)(x110 , x122, x134)(x111, x123, x135)

(x112, x124, x136)(x113, x125, x137)(x114 , x126, x138)(x115, x127, x139)

(x116, x128, x140)(x117, x129, x141)(x118 , x130, x142)(x119, x131, x143) and

τ = (x0, x12, x24)(x1, x13, x25)(x2, x14, x26)(x3, x16, x29)

(x4, x17, x27)(x5, x15, x28)(x6, x19, x32)(x7, x20, x30)

(x8, x18, x31)(x9, x22, x35)(x10, x23, x33)(x11, x21, x34)

(x36, x37, x38)(x39, x40, x41)(x42, x43, x44)(x45, x46, x47)

(x48, x49, x50)(x51, x52, x53)(x54, x55, x56)(x57, x58, x59)

(x60, x61, x62)(x63, x64, x65)(x66, x67, x68)(x69, x70, x71)

(x72, x97, x86)(x73, x98, x84)(x74, x96, x85)(x75, x100, x89)

(x76, x101, x87)(x77, x99, x88)(x78, x103, x92)(x79, x104, x90)

(x80, x102, x91)(x81, x106, x95)(x82, x107, x93)(x83, x105, x94)

(x108, x121, x134)(x109, x122, x132)(x110 , x120, x133)(x111, x124, x137)

(x112, x125, x135)(x113, x123, x136)(x114 , x127, x140)(x115, x128, x138)
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(x116, x126, x139)(x117, x130, x143)(x118 , x131, x141)(x119, x129, x142), where x ∈ {p,B}.

(6.8.2) Let f = (0)(1)(2)(3, 4, 5)(6, 7, 8)(9, 10, 11),
g = (0, 1, 2)(3, 4, 5)(6, 7, 8)(9, 10, 11) ∈Sym{0, 1, . . . , 11}. Then

H1 =

⎛⎜⎝ S0 S1 S2 A0 A0
(f2,1) A0

(f,1)

S2 S0 S1 A0
(f2,g2) A0

(f,g2) A0
(1,g2)

S1 S2 S0 A0
(f,g) A0

(1,g) A0
(f2,g)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A1 A1

(f2,1) A1
(f,1) A2 A2

(f2,1) A2
(f,1)

A1
(f,g2) A1

(1,g2) A1
(f2,g2) A2

(1,g2) A2
(f2,g2) A2

(f,g2)

A1
(f2,g) A1

(f,g) A1
(1,g) A2

(1,g) A2
(f2,g) A2

(f,g)

⎞⎟⎠,

where S0, S1, S2 ∈ Λ2 and A0, A1, A2 are 12× 12 permutation matrices.

Type 9

(6.9.1) ϕ = (x0)(x1)(x2)(x3, x4, x5)(x6, x7, x8)(x9, x10, x11)

(x12)(x13)(x14)(x15, x16, x17)(x18, x19, x20)(x21, x22, x23)

(x24)(x25)(x26)(x27, x28, x29)(x30, x31, x32)(x33, x34, x35)

(x36, x48, x60)(x37, x49, x61)(x38, x50, x62)(x39, x51, x63)

(x40, x52, x64)(x41, x53, x65)(x42, x54, x66)(x43, x55, x67)

(x44, x56, x68)(x45, x57, x69)(x46, x58, x70)(x47, x59, x71)

(x72, x84, x96)(x73, x85, x97)(x74, x86, x98)(x75, x87, x99)

(x76, x88, x100)(x77, x89, x101)(x78, x90, x102)(x79, x91, x103)

(x80, x92, x104)(x81, x93, x105)(x82, x94, x106)(x83, x95, x107)

(x108, x120, x132)(x109, x121, x133)(x110 , x122, x134)(x111, x123, x135)

(x112, x124, x136)(x113, x125, x137)(x114 , x126, x138)(x115, x127, x139)

(x116, x128, x140)(x117, x129, x141)(x118 , x130, x142)(x119, x131, x143) and

τ = (x0, x12, x24)(x1, x13, x25)(x2, x14, x26)(x3, x16, x29)

(x4, x17, x27)(x5, x15, x28)(x6, x19, x32)(x7, x20, x30)

(x8, x18, x31)(x9, x22, x35)(x10, x23, x33)(x11, x21, x34)

(x36, x72, x108)(x37, x73, x109)(x38, x74, x110)(x39, x75, x111)

(x40, x76, x112)(x41, x77, x113)(x42, x78, x114)(x43, x79, x115)

(x44, x80, x116)(x45, x81, x117)(x46, x82, x118)(x47, x83, x119)

(x48, x84, x120)(x49, x85, x121)(x50, x86, x122)(x51, x87, x123)

(x52, x88, x124)(x53, x89, x125)(x54, x90, x126)(x55, x91, x127)

(x56, x92, x128)(x57, x93, x129)(x58, x94, x130)(x59, x95, x131)

(x60, x96, x132)(x61, x97, x133)(x62, x98, x134)(x63, x99, x135)

(x64, x100, x136)(x65, x101, x137)(x66, x102, x138)(x67, x103, x139)

(x68, x104, x140)(x69, x105, x141)(x70, x106, x142)(x71, x107, x143), where x ∈ {p,B}.

(6.9.2) Let f = (0)(1)(2)(3, 4, 5)(6, 7, 8)(9, 10, 11) ∈Sym{0, 1, . . . , 11}. Then

H1 =

⎛⎜⎝ S0 S1 S2 A0 A0
f2

A0
f A2

f2

A2
f A2 A1

f A1 A1
f2

S2 S0 S1 A1 A1
f2

A1
f A0

f2

A0
f A0 A2

f A2 A2
f2

S1 S2 S0 A2 A2
f2

A2
f A1

f2

A1
f A1 A0

f A0 A0
f2

⎞⎟⎠,

where S0, S1, S2 ∈ Λ2 and A0, A1, A2 are 12× 12 permutation matrices.
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Lemma 6.2 All matrices H1 of (6.1.2), (6.2.2), (6.3.2), (6.4.3), (6.5.2), (6.6.2),
(6.7.2), (6.8.2) and (6.9.2) do not exist. Therefore none of Types 1 to 9 can occur.

Proof. Any matrix H1 of (6.1.2), (6.2.2), (6.3.2), (6.4.3), (6.5.2), (6.6.2), (6.7.2),

(6.8.2) and (6.9.2) must satisfy H1H
T
1 =

⎛⎝ E12 J12 J12

J12 E12 J12

J12 J12 E12

⎞⎠, where E12 is the

identity matrix of degree 12 and J12 is the all one 12×12 matrix by Lemma 2.8. But
it follows that there do not exist matrices H1 having these forms and satisfying this
equation, using a computer. �

7 Types 10 to 15

In this section we consider Types 10 to 15 in Section 5 and we show that none of
these types can occur.

Definition 7.1 Let m,n be positive integers. Let R, S be m × n matrices with
entries from Z. Then we say that R is equivalent to S if there exist a permutation
matrix X of degree m and a permutation matrix Y of degree n such that S = XRY .

The actions of ϕ and τ on both P and B in Types 10 to 15 are determined explicitly
from Section 5.

Type 10

(7.10.1) ϕ = (x0, x1, x2)(x3, x4, x5)(x6, x7, x8)(x9, x10, x11)

(x12, x13, x14)(x15, x16, x17)(x18, x19, x20)(x21, x22, x23)

(x24, x25, x26)(x27, x28, x29)(x30, x31, x32)(x33, x34, x35)

(x36, x48, x60)(x37, x49, x61)(x38, x50, x62)(x39, x51, x63)

(x40, x52, x64)(x41, x53, x65)(x42, x54, x66)(x43, x55, x67)

(x44, x56, x68)(x45, x57, x69)(x46, x58, x70)(x47, x59, x71)

(x72, x84, x96)(x73, x85, x97)(x74, x86, x98)(x75, x87, x99)

(x76, x88, x100)(x77, x89, x101)(x78, x90, x102)(x79, x91, x103)

(x80, x92, x104)(x81, x93, x105)(x82, x94, x106)(x83, x95, x107)

(x108, x120, x132)(x109, x121, x133)(x110 , x122, x134)(x111, x123, x135)

(x112, x124, x136)(x113, x125, x137)(x114 , x126, x138)(x115, x127, x139)

(x116, x128, x140)(x117, x129, x141)(x118 , x130, x142)(x119, x131, x143), where x ∈ {p,B},

τ = (p0, p12, p24)(p1, p13, p25)(p2, p14, p26)(p3, p15, p27)

(p4, p16, p28)(p5, p17, p29)(p6, p18, p30)(p7, p19, p31)

(p8, p20, p32)(p9, p21, p33)(p10, p22, p34)(p11, p23, p35)

(p36, p72, p108)(p37, p73, p109)(p38, p74, p110)(p39, p75, p111)

(p40, p76, p112)(p41, p77, p113)(p42, p78, p114)(p43, p79, p115)

(p44, p80, p116)(p45, p81, p117)(p46, p82, p118)(p47, p83, p119)

(p48, p84, p120)(p49, p85, p121)(p50, p86, p122)(p51, p87, p123)

(p52, p88, p124)(p53, p89, p125)(p54, p90, p126)(p55, p91, p127)
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(p56, p92, p128)(p57, p93, p129)(p58, p94, p130)(p59, p95, p131)

(p60, p96, p132)(p61, p97, p133)(p62, p98, p134)(p63, p99, p135)

(p64, p100, p136)(p65, p101, p137)(p66, p102, p138)(p67, p103, p139)

(p68, p104, p140)(p69, p105, p141)(p70, p106, p142)(p71, p107, p143) and

τ = (B0)(B1)(B2)(B3, B6, B9)(B4, B7, B10)(B5, B8, B11)

(B12, B14, B13)(B15 , B18, B21)(B16, B19, B22)(B17, B20, B23)

(B24, B25, B26)(B27 , B30, B33)(B28, B31, B34)(B29, B32, B35)

(B36, B72, B108)(B37, B73, B109)(B38, B74, B110)(B39, B75, B111)

(B40, B76, B112)(B41, B77, B113)(B42, B78, B114)(B43, B79, B115)

(B44, B80, B116)(B45, B81, B117)(B46, B82, B118)(B47, B83, B119)

(B48, B84, B120)(B49, B85, B121)(B50, B86, B122)(B51, B87, B123)

(B52, B88, B124)(B53, B89, B125)(B54, B90, B126)(B55, B91, B127)

(B56, B92, B128)(B57, B93, B129)(B58, B94, B130)(B59, B95, B131)

(B60, B96, B132)(B61, B97, B133)(B62, B98, B134)(B63, B99, B135)

(B64, B100, B136)(B65, B101, B137)(B66, B102, B138)(B67, B103, B139)

(B68, B104, B140)(B69, B105, B141)(B70, B106, B142)(B71, B107, B143).

(7.10.2) There are the following 16 G-orbits on P.

Q0 = {p0, p1, p2, p12, p13, p14, p24, p25, p26},
Q1 = {p3, p4, p5, p15, p16, p17, p27, p28, p29},
Q2 = {p6, p7, p8, p18, p19, p20, p30, p31, p32},
Q3 = {p9, p10, p11, p21, p22, p23, p33, p34, p35},
Q4 = {p36, p48, p60, p72, p84, p96, p108, p120, p132},
Q5 = {p37, p49, p61, p73, p85, p97, p109, p121, p133},
Q6 = {p38, p50, p62, p74, p86, p98, p110, p122, p134},
Q7 = {p39, p51, p63, p75, p87, p99, p111, p123, p135},
Q8 = {p40, p52, p64, p76, p88, p100, p122, p124, p136},
Q9 = {p41, p53, p65, p77, p89, p101, p113, p125, p137},
Q10 = {p42, p54, p66, p78, p90, p102, p114, p126, p138},
Q11 = {p43, p55, p67, p79, p91, p103, p115, p127, p139},
Q12 = {p44, p56, p68, p80, p92, p104, p116, p128, p140},
Q13 = {p45, p57, p69, p81, p93, p105, p117, p129, p141},
Q14 = {p46, p58, p70, p82, p94, p106, p118, p130, p142},
Q15 = {p47, p59, p71, p83, p95, p107, p119, p131, p143}.

There are the following 18 G-orbits on B.
C0 = {B0, B1, B2},
C1 = {B12, B13, B14},
C2 = {B24, B25, B26},
C3 = {B3, B4, B5, B6, B7, B8, B9, B10, B11},
C4 = {B15, B16, B17, B18, B19, B20, B21, B22, B23},
C5 = {B27, B28, B29, B30, B31, B32, B33, B34, B35},
C6 = {B36, B48, B60, B72, B84, B96, B108, B120, B132},
C7 = {B37, B49, B61, B73, B85, B97, B109, B121, B133},
C8 = {B38, B50, B62, B74, B86, B98, B110, B122, B134},
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C9 = {B39, B51, B63, B75, B87, B99, B111, B123, B135},
C10 = {B40, B52, B64, B76, B88, B100, B122, B124, B136},
C11 = {B41, B53, B65, B77, B89, B101, B113, B125, B137},
C12 = {B42, B54, B66, B78, B90, B102, B114, B126, B138},
C13 = {B43, B55, B67, B79, B91, B103, B115, B127, B139},
C14 = {B44, B56, B68, B80, B92, B104, B116, B128, B140},
C15 = {B45, B57, B69, B81, B93, B105, B117, B129, B141},
C16 = {B46, B58, B70, B82, B94, B106, B118, B130, B142},
C17 = {B47, B59, B71, B83, B95, B107, B119, B131, B143}.

Set q0 = p0, q1 = p3, q2 = p6, q3 = p9, q4 = p36, q5 = p37, q6 = p38, q7 = p39, q8 =
p40, q9 = p41, q10 = p42, q11 = p43, q12 = p44, q13 = p45, q14 = p46, q15 = p47 and
C0 = B0, C1 = B12, C2 = B24, C3 = B3, C4 = B15, C5 = B27, C6 = B36, C7 =
B37, C8 = B38, C9 = B39, C10 = B40, C11 = B41, C12 = B42, C13 = B43, C14 =
B44, C15 = B45, C16 = B46, C17 = B47.

For 0 ≤ i ≤ 17 and 0 ≤ j ≤ 15 set mi,j = |Ci ∩ (qj)| and Di,j = {α ∈ G| Ci
α ∈

(qj)}. Then mi,j = |Di,j| (0 ≤ i ≤ 17, 0 ≤ j ≤ 15). Each mi,j depends only on Ci
and Qj not on Ci and qj . For a non-empty subset X of G, set X̂ =

∑
α∈X

α ∈ Z[G].

Set M = (mi,j)0≤i≤17, 0≤j≤15 and Ai,i′ =

15∑
j=0

D̂i,j
̂Di′,j

(−1) for 0 ≤ i, i′ ≤ 17.

(7.10.3) (i) For 0 ≤ i �= i′ ≤ 17

Ai,i′ =

⎧⎪⎨⎪⎩
0 if {i, i′} ∈ {{0, 3}, {1, 4}, {2, 5}},
Ĝ\{1} if 6 ≤ i �= i′ ≤ 17,

Ĝ otherwise.

.

(ii) For 0 ≤ i ≤ 17

Ai,i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

12〈̂τ〉 if i = 0,

12〈̂ϕτ〉 if i = 1,

12〈̂ϕ2τ〉 if i = 2,
12 if 3 ≤ i ≤ 5,

12 + Ĝ\{1} if 6 ≤ i ≤ 17.

.

Proof. (i) Let α ∈ G. Then there exist 0 ≤ j ≤ 15 and (β, γ) ∈ Di,j × Di′,j
such that α = βγ−1, if and only if there exist 0 ≤ j ≤ 15 and γ ∈ G such that
Ci

α ∈ (qj
γ−1

) and Ci′ ∈ (qj
γ−1

).

Suppose that {i, i′} = {0, 3}, {1, 4} or {2, 5}. Then there do not exist 0 ≤ j ≤ 15
and γ ∈ G such that Ci

α ∈ (qj
γ−1

) and Ci′ ∈ (qj
γ−1

). Therefore Ai,i′ = 0.

Suppose that 6 ≤ i �= i′ ≤ 17. If α = 1, there do not exist 0 ≤ j ≤ 15 and
γ ∈ G such that Ci

α ∈ (qj
γ−1

) and Ci′ ∈ (qj
γ−1

). If α �= 1, there exists only one
(j, γ) ∈ {0, 1, . . . , 15} × G such that Ci

α ∈ (qj
γ−1

) and Ci′ ∈ (qj
γ−1

). Therefore

Ai,i′ = Ĝ\{1}.
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Suppose that 0 ≤ i �= i′ ≤ 5, {i, i′} �∈ {{0, 3}, {1, 4}, {2, 5}} or 0 ≤ i ≤ 5, 6 ≤
i′ ≤ 17 or 0 ≤ i′ ≤ 5, 6 ≤ i ≤ 17. Then exists only one (j, γ) ∈ {0, 1, · · · , 15} × G

such that Ci
α ∈ (qj

γ−1
) and Ci′ ∈ (qj

γ−1
). Therefore Ai,i′ = Ĝ

(ii) Let α ∈ G. Then, there exist 0 ≤ j ≤ 15 and (β, γ) ∈ Di,j × Di′,j such that
α = βγ−1, if and only if there exist 0 ≤ j ≤ 15 and γ ∈ G such that Ci

α ∈ (qj
γ−1

)
and Ci ∈ (qj

γ−1
).

If α ∈ 〈τ〉, there exist twelve (j, γ) ∈ {0, 1, . . . , 15} × G such that C0 = C0
α ∈

(qj
γ−1

) and C0 ∈ (qj
γ−1

). If α �∈ 〈τ〉, there do not exist (j, γ) ∈ {0, 1, . . . , 15} × G

such that C0 = Ci
α ∈ (qj

γ−1
) and C0 ∈ (qj

γ−1
). Therefore A0,0 = 12〈̂τ〉.

By a similar argument, A1,1 = 12〈̂ϕτ〉 and A2,2 = 12〈̂ϕτ 2〉 hold.
Suppose that 3 ≤ i ≤ 5. If α = 1, there exist twelve (j, γ) ∈ {0, 1, . . . , 15} × G

such that Ci = Ci
α ∈ (qj

γ−1
) and Ci ∈ (qj

γ−1
). If α �= 1, there do not exist 0 ≤ j ≤ 15

and γ ∈ G such that Ci
α ∈ (qj

γ−1
) and Ci ∈ (qj

γ−1
). Therefore Ai,i = 12.

Suppose that 6 ≤ i ≤ 17. If α = 1, there exist twelve (j, γ) ∈ {0, 1, . . . , 15} ×G
such that Ci = Ci

α ∈ (qj
γ−1

) and Ci ∈ (qj
γ−1

). If α ∈ G\{1}, there exists only
one (j, γ) ∈ {0, 1, . . . , 15} × G such that Ci

α ∈ (qj
γ−1

) and Ci ∈ (qj
γ−1

). Therefore

Ai,i = 12 + Ĝ\{1} �

(7.10.4) (i) For 0 ≤ i �= i′ ≤ 17

15∑
j=0

mi,jmi′,j =

⎧⎨⎩
0 if {i, i′} ∈ {{0, 3}, {1, 4}, {2, 5}},
8 if 6 ≤ i �= i′ ≤ 17,
9 otherwise.

(ii) For 0 ≤ i ≤ 17
15∑
j=0

mi,j
2 =

⎧⎨⎩
36 if 0 ≤ i ≤ 2,
12 if 3 ≤ i ≤ 5,
20 if 6 ≤ i ≤ 17.

(iii) For 0 ≤ i ≤ 17
15∑
j=0

mi,j = 12.

Proof. (i) and (ii) hold by acting the trivial character of G on two equations in
(7.10.3). Since there are twelve (i, α) ∈ {0, 1, . . . , 15} × G such that Ci ∈ (qj

α−1
),

(iii) holds. �

(7.10.5) For 0 ≤ i ≤ 17, the following hold, up to ordering of mi,0 mi,1 . . . mi,15.

(i) If 0 ≤ i ≤ 2, then (mi,0 mi,1 . . . mi,15) = (0 0 . . . 0︸ ︷︷ ︸
12

3 3 3 3), (0 0 . . . 0︸ ︷︷ ︸
11

1 1 3 3 4),

(0 0 . . . 0︸ ︷︷ ︸
10

1 1 1 1 4 4) or (0 0 . . . 0︸ ︷︷ ︸
10

1 1 1 1 2 2 5).

(ii) If 3 ≤ i ≤ 5, then (mi,0 mi,1 . . . mi,15) = (0 0 0 0 1 1 . . . 1︸ ︷︷ ︸
12

).
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(iii) If 6 ≤ i ≤ 17, then (mi,0mi,1 . . . mi,15) = (0 0 . . . 0︸ ︷︷ ︸
8

1 1 1 1 2 2 2 2) or

(0 0 . . . 0︸ ︷︷ ︸
7

1 1 . . . 1︸ ︷︷ ︸
7

2 3).

Proof. This assertion holds from (7.10.4) (ii), (iii). �

(7.10.6) (mi,j)0≤i≤5, 0≤j≤15 coinsides with the folowing matrix, up to equivalence.⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0 0 0 0 0 0 3 3 0 3 3
0 0 0 0 0 0 0 0 0 3 3 0 0 3 0 3
0 0 0 0 0 0 0 3 3 0 0 0 0 3 3 0
1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0
1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0
1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Proof. This assertion holds from (7.10.4) and (7.10.5). �

(7.10.7) There exists the following unique M , up to equivalence.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 3 3 0 3 3
0 0 0 0 0 0 0 0 0 3 3 0 0 3 0 3
0 0 0 0 0 0 0 3 3 0 0 0 0 3 3 0
1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0
1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0
1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1
0 0 0 0 1 1 2 0 3 1 1 1 1 0 0 1
1 1 1 1 0 0 3 1 0 0 0 0 0 1 1 2
0 0 0 2 0 2 1 1 0 0 2 0 2 1 1 0
0 0 2 0 0 2 1 1 0 2 0 2 0 1 1 0
0 0 2 2 2 0 0 0 1 0 0 1 1 2 0 1
0 2 0 0 2 0 1 1 0 0 2 2 0 1 1 0
0 2 0 2 1 1 0 0 1 2 0 0 0 0 2 1
0 2 2 0 0 0 0 2 1 1 1 0 2 0 0 1
2 0 0 0 2 0 1 1 0 2 0 0 2 1 1 0
2 0 0 2 0 0 0 2 1 1 1 2 0 0 0 1
2 0 2 0 1 1 0 0 1 0 2 0 0 0 2 1
2 2 0 0 0 2 0 0 1 0 0 1 1 2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof. Using a computer, the assertion holds from (7.10.4), (7.10.5) and (7.10.6).
�

Lemma 7.2 Type 10 does not occur.

Proof. Using a computer, it follows that there does not exist (Di,j)6≤i≤11, 0≤j≤15

corresponding to the submatrix (mi,j)6≤i≤11, 0≤j≤15 of the matrix M of (7.10.7).
Therefore the lemma holds. �

The proofs of the following results in Types 11 to 15 are omitted, because they
are similar to the results in Type 10.

Type 11

(7.11.1) ϕ = (x0, x12, x24)(x1, x13, x25)(x2, x14, x26)(x3, x15, x27)

(x4, x16, x28)(x5, x17, x29)(x6, x18, x30)(x7, x19, x31)

(x8, x20, x32)(x9, x21, x33)(x10, x22, x34)(x11, x23, x35)
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(x36, x48, x60)(x37, x49, x61)(x38, x50, x62)(x39, x51, x63)

(x40, x52, x64)(x41, x53, x65)(x42, x54, x66)(x43, x55, x67)

(x44, x56, x68)(x45, x57, x69)(x46, x58, x70)(x47, x59, x71)

(x72, x84, x96)(x73, x85, x97)(x74, x86, x98)(x75, x87, x99)

(x76, x88, x100)(x77, x89, x101)(x78, x90, x102)(x79, x91, x103)

(x80, x92, x104)(x81, x93, x105)(x82, x94, x106)(x83, x95, x107)

(x108, x120, x132)(x109, x121, x133)(x110 , x122, x134)(x111, x123, x135)

(x112, x124, x136)(x113, x125, x137)(x114 , x126, x138)(x115, x127, x139)

(x116, x128, x140)(x117, x129, x141)(x118 , x130, x142)(x119, x131, x143) and

τ = (x0, x1, x2)(x3, x4, x5)(x6, x7, x8)(x9, x10, x11)

(x12, x13, x14)(x15, x16, x17)(x18, x19, x20)(x21, x22, x23)

(x24, x25, x26)(x27, x28, x29)(x30, x31, x32)(x33, x34, x35)

(x36, x37, x38)(x39, x40, x41)(x42, x43, x44)(x45, x46, x47)

(x48, x49, x50)(x51, x52, x53)(x54, x55, x56)(x57, x58, x59)

(x60, x61, x62)(x63, x64, x65)(x66, x67, x68)(x69, x70, x71)

(x72, x85, x98)(x73, x86, x96)(x74, x84, x97)(x75, x88, x101)

(x76, x89, x99)(x77, x87, x100)(x78, x91, x104)(x79, x92, x102)

(x80, x90, x103)(x81, x94, x107)(x82, x95, x105)(x83, x93, x106)

(x108, x121, x134)(x109, x122, x132)(x110 , x120, x133)(x111, x124, x137)

(x112, x125, x135)(x113, x123, x136)(x114 , x127, x140)(x115, x128, x138)

(x116, x126, x139)(x117, x130, x143)(x118 , x131, x141)(x119, x129, x142), where x ∈ {p,B}.

(7.11.2) There are the following 16 G-orbits on P and on B.
Y0 = {x0, x1, x2, x12, x13, x14, x24, x25, x26},
Y1 = {x3, x4, x5, x15, x16, x17, x27, x28, x29},
Y2 = {x6, x7, x8, x18, x19, x20, x30, x31, x32},
Y3 = {x9, x10, x11, x21, x22, x23, x33, x34, x35},
Y4 = {x36, x37, x38, x48, x49, x50, x60, x61, x62},
Y5 = {x39, x40, x41, x51, x52, x53, x63, x64, x65},
Y6 = {x42, x43, x44, x54, x55, x56, x66, x67, x68},
Y7 = {x45, x46, x47, x57, x58, x59, x69, x70, x71},
Y8 = {x72, x73, x74, x84, x85, x86, x96, x97, x98},
Y9 = {x75, x76, x77, x87, x88, x89, x99, x100, x101},
Y10 = {x78, x79, x80, x90, x91, x92, x102, x103, x104},
Y11 = {x81, x82, x83, x93, x94, x95, x105, x106, x107},
Y12 = {x108, x109, x110, x120, x121, x122, x132, x133, x134},
Y13 = {x111, x112, x113, x123, x124, x125, x135, x136, x137},
Y14 = {x114, x115, x116, x126, x127, x128, x138, x139, x140},
Y15 = {x117, x118, x119, x129, x130, x131, x141, x142, x143}, where (Y , x) ∈ {(Q, p), (C, B)}.

Set q0 = p0, q1 = p3, q2 = p6, q3 = p9, q4 = p36, q5 = p39, q6 = p42, q7 = p45, q8 =
p72, q9 = p75, q10 = p78, q11 = p81, q12 = p108, q13 = p111, q14 = p114, q15 = p117
and C0 = B0, C1 = B3, C2 = B6, C3 = B9, C4 = B36, C5 = B39, C6 = B42, C7 =
B45, C8 = B72, C9 = B75, C10 = B78, C11 = B81, C12 = B108, C13 = B111, C14 =
B114, C15 = B117.
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For 0 ≤ i, j ≤ 15 set mi,j = |Qi ∩ (Cj)| and Di,j = {α ∈ G| qiα ∈ (Cj)}. Then
mi,j = |Di,j| (0 ≤ i, j ≤ 15). Each mi,j depends only on Qi and Cj not on qi and Cj.

Set M = (mi,j)0≤i,j≤15 and Ai,i′ =
15∑
j=0

D̂i,j
̂Di′,j

(−1) for 0 ≤ i, i′ ≤ 15.

(7.11.3)
Set I0 = {0, 1, 2, 3}, I1 = {4, 5, 6, 7}, I2 = {8, 9, 10, 11} and I3 = {12, 13, 14, 15}.
(i) For 0 ≤ i �= i′ ≤ 15

Ai,i′ =

⎧⎪⎨⎪⎩
Ĝ\〈τ〉 if i �= i′ ∈ Ik for some k ∈ {0, 1},
Ĝ\〈ϕ2τ〉 if i �= i′ ∈ Ik for some k ∈ {2, 3},
Ĝ if i ∈ Ik, i

′ ∈ Il for some k �= l ∈ {0, 1, 2, 3}.
(ii) For 0 ≤ i ≤ 15

Ai,i =

{
12 + Ĝ\〈τ〉 if i ∈ Ik for some k ∈ {0, 1},
12 + Ĝ\〈ϕ2τ〉 if i ∈ Ik for some k ∈ {2, 3}.

(7.11.4) Let I0, . . . , I3 be the symbols used in (7.11.3).
(i) For 0 ≤ i �= i′ ≤ 15

15∑
j=0

mi,jmi′,j =

{
6 if i �= i′ ∈ Ik for some k ∈ {0, 1, 2, 3},
9 if i ∈ Ik, i

′ ∈ Il for some k �= l ∈ {0, 1, 2, 3}.

(ii) For 0 ≤ i ≤ 15
15∑
j=0

mi,j
2 = 18.

(iii) For 0 ≤ i ≤ 15
15∑
j=0

mi,j = 12.

Lemma 7.3 There does not exist an M = (mi,j)0≤i,j≤15. Therefore Type 11 does
not occur.

Type 12

(7.12.1) ϕ = (x0, x12, x24)(x1, x13, x25)(x2, x14, x26)(x3, x15, x27)

(x4, x16, x28)(x5, x17, x29)(x6, x18, x30)(x7, x19, x31)

(x8, x20, x32)(x9, x21, x33)(x10, x22, x34)(x11, x23, x35)

(x36, x48, x60)(x37, x49, x61)(x38, x50, x62)(x39, x51, x63)

(x40, x52, x64)(x41, x53, x65)(x42, x54, x66)(x43, x55, x67)

(x44, x56, x68)(x45, x57, x69)(x46, x58, x70)(x47, x59, x71)

(x72, x84, x96)(x73, x85, x97)(x74, x86, x98)(x75, x87, x99)

(x76, x88, x100)(x77, x89, x101)(x78, x90, x102)(x79, x91, x103)
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(x80, x92, x104)(x81, x93, x105)(x82, x94, x106)(x83, x95, x107)

(x108, x120, x132)(x109, x121, x133)(x110 , x122, x134)(x111, x123, x135)

(x112, x124, x136)(x113, x125, x137)(x114 , x126, x138)(x115, x127, x139)

(x116, x128, x140)(x117, x129, x141)(x118 , x130, x142)(x119, x131, x143) and

τ = (x0, x1, x2)(x3, x4, x5)(x6, x7, x8)(x9, x10, x11)

(x12, x13, x14)(x15, x16, x17)(x18, x19, x20)(x21, x22, x23)

(x24, x25, x26)(x27, x28, x29)(x30, x31, x32)(x33, x34, x35)

(x36, x37, x38)(x39, x40, x41)(x42, x43, x44)(x45, x46, x47)

(x48, x49, x50)(x51, x52, x53)(x54, x55, x56)(x57, x58, x59)

(x60, x61, x62)(x63, x64, x65)(x66, x67, x68)(x69, x70, x71)

(x72, x85, x98)(x73, x86, x96)(x74, x84, x97)(x75, x88, x101)

(x76, x89, x99)(x77, x87, x100)(x78, x91, x104)(x79, x92, x102)

(x80, x90, x103)(x81, x94, x107)(x82, x95, x105)(x83, x93, x106)

(x108, x133, x122)(x109, x134, x120)(x110 , x132, x121)(x111, x136, x125)

(x112, x137, x123)(x113, x135, x124)(x114 , x139, x128)(x115, x140, x126)

(x116, x138, x127)(x117, x142, x131)(x118 , x143, x129)(x119, x141, x130), where x ∈ {p,B}.

(7.12.2) There are the following 16 G-orbits on P and on B.
Y0 = {x0, x1, x2, x12, x13, x14, x24, x25, x26},
Y1 = {x3, x4, x5, x15, x16, x17, x27, x28, x29},
Y2 = {x6, x7, x8, x18, x19, x20, x30, x31, x32},
Y3 = {x9, x10, x11, x21, x22, x23, x33, x34, x35},
Y4 = {x36, x37, x38, x48, x49, x50, x60, x61, x62},
Y5 = {x39, x40, x41, x51, x52, x53, x63, x64, x65},
Y6 = {x42, x43, x44, x54, x55, x56, x66, x67, x68},
Y7 = {x45, x46, x47, x57, x58, x59, x69, x70, x71},
Y8 = {x72, x73, x74, x84, x85, x86, x96, x97, x98},
Y9 = {x75, x76, x77, x87, x88, x89, x99, x100, x101},
Y10 = {x78, x79, x80, x90, x91, x92, x102, x103, x104},
Y11 = {x81, x82, x83, x93, x94, x95, x105, x106, x107},
Y12 = {x108, x109, x110, x120, x121, x122, x132, x133, x134},
Y13 = {x111, x112, x113, x123, x124, x125, x135, x136, x137},
Y14 = {x114, x115, x116, x126, x127, x128, x138, x139, x140},
Y15 = {x117, x118, x119, x129, x130, x131, x141, x142, x143},where (Y , x) ∈ {(Q, p), (C, B)}.

Set q0 = p0, q1 = p3, q2 = p6, q3 = p9, q4 = p36, q5 = p39, q6 = p42, q7 = p45, q8 =
p72, q9 = p75, q10 = p78, q11 = p81, q12 = p108, q13 = p111, q14 = p114, q15 = p117
and C0 = B0, C1 = B3, C2 = B6, C3 = B9, C4 = B36, C5 = B39, C6 = B42, C7 =
B45, C8 = B72, C9 = B75, C10 = B78, C11 = B81, C12 = B108, C13 = B111, C14 =
B114, C15 = B117.

The symbols mi,j, Di,j, M and Ai,i′ are the same as in Type 11.

(7.12.3)
Set I0 = {0, 1, 2, 3}, I1 = {4, 5, 6, 7}, I2 = {8, 9, 10, 11} and I3 = {12, 13, 14, 15}.
(i) For 0 ≤ i �= i′ ≤ 15
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Ai,i′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ĝ\〈τ〉 if i �= i′ ∈ Ik for some k ∈ {0, 1},
Ĝ\〈ϕ2τ〉 if i �= i′ ∈ I2,

Ĝ\〈ϕτ〉 if i �= i′ ∈ I3,

Ĝ if i ∈ Ik, i
′ ∈ Il for some k �= l ∈ {0, 1, 2, 3}.

(ii) For 0 ≤ i ≤ 15

Ai,i =

⎧⎪⎨⎪⎩
12 + Ĝ\〈τ〉 if i ∈ Ik for some k ∈ {0, 1},
12 + Ĝ\〈ϕ2τ〉 if i ∈ I2,

12 + Ĝ\〈ϕτ〉 if i ∈ I3.

(7.12.4) Let I0, . . . , I3 be the symbols used in (7.12.3).
(i) For 0 ≤ i �= i′ ≤ 15

15∑
j=0

mi,jmi′,j =

{
6 if i �= i′ ∈ Ik for some k ∈ {0, 1, 2, 3},
9 if i ∈ Ik, i

′ ∈ Il for some k �= l ∈ {0, 1, 2, 3}.

(ii) For 0 ≤ i ≤ 15
15∑
j=0

mi,j
2 = 18.

(iii) For 0 ≤ i ≤ 15
15∑
j=0

mi,j = 12.

Lemma 7.4 There does not exist an M = (mi,j)0≤i,j≤15. Therefore Type 12 does
not occur.

Type 13

(7.13.1) ϕ = (x0, x12, x24)(x1, x13, x25)(x2, x14, x26)(x3, x15, x27)

(x4, x16, x28)(x5, x17, x29)(x6, x18, x30)(x7, x19, x31)

(x8, x20, x32)(x9, x21, x33)(x10, x22, x34)(x11, x23, x35)

(x36, x48, x60)(x37, x49, x61)(x38, x50, x62)(x39, x51, x63)

(x40, x52, x64)(x41, x53, x65)(x42, x54, x66)(x43, x55, x67)

(x44, x56, x68)(x45, x57, x69)(x46, x58, x70)(x47, x59, x71)

(x72, x84, x96)(x73, x85, x97)(x74, x86, x98)(x75, x87, x99)

(x76, x88, x100)(x77, x89, x101)(x78, x90, x102)(x79, x91, x103)

(x80, x92, x104)(x81, x93, x105)(x82, x94, x106)(x83, x95, x107)

(x108, x120, x132)(x109, x121, x133)(x110 , x122, x134)(x111, x123, x135)

(x112, x124, x136)(x113, x125, x137)(x114 , x126, x138)(x115, x127, x139)

(x116, x128, x140)(x117, x129, x141)(x118 , x130, x142)(x119, x131, x143) and

τ = (x0, x1, x2)(x3, x4, x5)(x6, x7, x8)(x9, x10, x11)

(x12, x13, x14)(x15, x16, x17)(x18, x19, x20)(x21, x22, x23)
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(x24, x25, x26)(x27, x28, x29)(x30, x31, x32)(x33, x34, x35)

(x36, x37, x38)(x39, x40, x41)(x42, x43, x44)(x45, x46, x47)

(x48, x49, x50)(x51, x52, x53)(x54, x55, x56)(x57, x58, x59)

(x60, x61, x62)(x63, x64, x65)(x66, x67, x68)(x69, x70, x71)

(x72, x73, x74)(x75, x76, x77)(x78, x79, x80)(x81, x82, x83)

(x84, x85, x86)(x87, x88, x89)(x90, x91, x92)(x93, x94, x95)

(x96, x97, x98)(x99, x100, x101)(x102, x103, x104)(x105, x106, x107)

(x108, x121, x134)(x109, x122, x132)(x110 , x120, x133)(x111, x124, x137)

(x112, x125, x135)(x113, x123, x136)(x114 , x127, x140)(x115, x128, x138)

(x116, x126, x139)(x117, x130, x143)(x118 , x131, x141)(x119, x129, x142), where x ∈ {p,B}.

(7.13.2) There are the following 16 G-orbits on P and on B.
Y0 = {x0, x1, x2, x12, x13, x14, x24, x25, x26},
Y1 = {x3, x4, x5, x15, x16, x17, x27, x28, x29},
Y2 = {x6, x7, x8, x18, x19, x20, x30, x31, x32},
Y3 = {x9, x10, x11, x21, x22, x23, x33, x34, x35},
Y4 = {x36, x37, x38, x48, x49, x50, x60, x61, x62},
Y5 = {x39, x40, x41, x51, x52, x53, x63, x64, x65},
Y6 = {x42, x43, x44, x54, x55, x56, x66, x67, x68},
Y7 = {x45, x46, x47, x57, x58, x59, x69, x70, x71},
Y8 = {x72, x73, x74, x84, x85, x86, x96, x97, x98},
Y9 = {x75, x76, x77, x87, x88, x89, x99, x100, x101},
Y10 = {x78, x79, x80, x90, x91, x92, x102, x103, x104},
Y11 = {x81, x82, x83, x93, x94, x95, x105, x106, x107},
Y12 = {x108, x109, x110, x120, x121, x122, x132, x133, x134},
Y13 = {x111, x112, x113, x123, x124, x125, x135, x136, x137},
Y14 = {x114, x115, x116, x126, x127, x128, x138, x139, x140},
Y15 = {x117, x118, x119, x129, x130, x131, x141, x142, x143}, where (Y , x) ∈ {(Q, p), (C, B)}.

Set q0 = p0, q1 = p3, q2 = p6, q3 = p9, q4 = p36, q5 = p39, q6 = p42, q7 = p45, q8 =
p72, q9 = p75, q10 = p78, q11 = p81, q12 = p108, q13 = p111, q14 = p114, q15 = p117
and C0 = B0, C1 = B3, C2 = B6, C3 = B9, C4 = B36, C5 = B39, C6 = B42, C7 =
B45, C8 = B72, C9 = B75, C10 = B78, C11 = B81, C12 = B108, C13 = B111, C14 =
B114, C15 = B117.

The symbols mi,j, Di,j, M and Ai,i′ are the same as in Type 11.

(7.13.3)
Set I0 = {0, 1, 2, 3}, I1 = {4, 5, 6, 7}, I2 = {8, 9, 10, 11} and I3 = {12, 13, 14, 15}.
(i) For 0 ≤ i �= i′ ≤ 15,

Ai,i′ =

⎧⎪⎨⎪⎩
Ĝ\〈τ〉 if i �= i′ ∈ Ik for some k ∈ {0, 1, 2},
Ĝ\〈ϕ2τ〉 if i �= i′ ∈ I3,

Ĝ if i ∈ Ik, i
′ ∈ Il for some k �= l ∈ {0, 1, 2, 3}.
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(ii) For 0 ≤ i ≤ 15

Ai,i =

{
12 + Ĝ\〈τ〉 if i ∈ Ik for some k ∈ {0, 1, 2},
12 + Ĝ\〈ϕ2τ〉 if i ∈ I3.

(7.13.4) Let I0, . . . , I3 be the symbols used in (7.13.3).

(i) For 0 ≤ i �= i′ ≤ 15

15∑
j=0

mi,jmi′,j =

{
6 if i �= i′ ∈ Ik for some k ∈ {0, 1, 2, 3},
9 if i ∈ Ik, i

′ ∈ Il for some k �= l ∈ {0, 1, 2, 3}.

(ii) For 0 ≤ i ≤ 15,
15∑
j=0

mi,j
2 = 18.

(iii) For 0 ≤ i ≤ 15
15∑
j=0

mi,j = 12.

Lemma 7.5 There does not exist an M = (mi,j)0≤i,j≤15. Therefore Type 13 does
not occur.

Type 14

(7.14.1) ϕ = (x0, x1, x2)(x3, x4, x5)(x6, x7, x8)(x9, x10, x11)

(x12, x13, x14)(x15, x16, x17)(x18, x19, x20)(x21, x22, x23)

(x24, x25, x26)(x27, x28, x29)(x30, x31, x32)(x33, x34, x35)

(x36, x48, x60)(x37, x49, x61)(x38, x50, x62)(x39, x51, x63)

(x40, x52, x64)(x41, x53, x65)(x42, x54, x66)(x43, x55, x67)

(x44, x56, x68)(x45, x57, x69)(x46, x58, x70)(x47, x59, x71)

(x72, x84, x96)(x73, x85, x97)(x74, x86, x98)(x75, x87, x99)

(x76, x88, x100)(x77, x89, x101)(x78, x90, x102)(x79, x91, x103)

(x80, x92, x104)(x81, x93, x105)(x82, x94, x106)(x83, x95, x107)

(x108, x120, x132)(x109, x121, x133)(x110 , x122, x134)(x111, x123, x135)

(x112, x124, x136)(x113, x125, x137)(x114 , x126, x138)(x115, x127, x139)

(x116, x128, x140)(x117, x129, x141)(x118 , x130, x142)(x119, x131, x143) and

τ = (x0, x12, x24)(x1, x13, x25)(x2, x14, x26)(x3, x15, x27)

(x4, x16, x28)(x5, x17, x29)(x6, x18, x30)(x7, x19, x31)

(x8, x20, x32)(x9, x21, x33)(x10, x22, x34)(x11, x23, x35)

(x36, x37, x38)(x39, x40, x41)(x42, x43, x44)(x45, x46, x47)

(x48, x49, x50)(x51, x52, x53)(x54, x55, x56)(x57, x58, x59)

(x60, x61, x62)(x63, x64, x65)(x66, x67, x68)(x69, x70, x71)

(x72, x85, x98)(x73, x86, x96)(x74, x84, x97)(x75, x88, x101)

(x76, x89, x99)(x77, x87, x100)(x78, x91, x104)(x79, x92, x102)
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(x80, x90, x103)(x81, x94, x107)(x82, x95, x105)(x83, x93, x106)

(x108, x133, x122)(x109, x134, x120)(x110 , x132, x121)(x111, x136, x125)

(x112, x137, x123)(x113, x135, x124)(x114 , x139, x128)(x115, x140, x126)

(x116, x138, x127)(x117, x142, x131)(x118 , x143, x129)(x119, x141, x130), where x ∈ {p,B}.

(7.14.2) There are the following 16 G-orbits on P and on B.
Y0 = {x0, x1, x2, x12, x13, x14, x24, x25, x26},
Y1 = {x3, x4, x5, x15, x16, x17, x27, x28, x29},
Y2 = {x6, x7, x8, x18, x19, x20, x30, x31, x32},
Y3 = {x9, x10, x11, x21, x22, x23, x33, x34, x35},
Y4 = {x36, x37, x38, x48, x49, x50, x60, x61, x62},
Y5 = {x39, x40, x41, x51, x52, x53, x63, x64, x65},
Y6 = {x42, x43, x44, x54, x55, x56, x66, x67, x68},
Y7 = {x45, x46, x47, x57, x58, x59, x69, x70, x71},
Y8 = {x72, x73, x74, x84, x85, x86, x96, x97, x98},
Y9 = {x75, x76, x77, x87, x88, x89, x99, x100, x101},
Y10 = {x78, x79, x80, x90, x91, x92, x102, x103, x104},
Y11 = {x81, x82, x83, x93, x94, x95, x105, x106, x107},
Y12 = {x108, x109, x110, x120, x121, x122, x132, x133, x134},
Y13 = {x111, x112, x113, x123, x124, x125, x135, x136, x137},
Y14 = {x114, x115, x116, x126, x127, x128, x138, x139, x140},
Y15 = {x117, x118, x119, x129, x130, x131, x141, x142, x143}, where (Y , x) ∈ {(Q, p), (C, B)}.

Set q0 = p0, q1 = p3, q2 = p6, q3 = p9, q4 = p36, q5 = p39, q6 = p42, q7 = p45, q8 =
p72, q9 = p75, q10 = p78, q11 = p81, q12 = p108, q13 = p111, q14 = p114, q15 = p117
and C0 = B0 C1 = B3, C2 = B6, C3 = B9, C4 = B36, C5 = B39, C6 = B42, C7 =
B45, C8 = B72, C9 = B75, C10 = B78, C11 = B81, C12 = B108, C13 = B111, C14 =
B114, C15 = B117.

The symbols mi,j, Di,j, M and Ai,i′ are the same as in Type 11.

(7.14.3) Set I0 = {0, 1, 2, 3}, I1 = {4, 5, 6, 7}, I2 = {8, 9, 10, 11}, and I3 =
{12, 13, 14, 15}.
(i) For 0 ≤ i �= i′ ≤ 15,

Ai,i′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ĝ\〈ϕ〉 if i �= i′ ∈ I0,

Ĝ\〈τ〉 if i �= i′ ∈ I1,

Ĝ\〈ϕ2τ〉 if i �= i′ ∈ I2,

Ĝ\〈ϕτ〉 if i �= i′ ∈ I3,

Ĝ if i ∈ Ik, i
′ ∈ Il for some k �= l ∈ {0, 1, 2, 3}.

(ii) For 0 ≤ i ≤ 15

Ai,i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
12 + Ĝ\〈ϕ〉 if i ∈ I0,

12 + Ĝ\〈τ〉 if i ∈ I1,

12 + Ĝ\〈ϕ2τ〉 if i ∈ I2,

12 + Ĝ\〈ϕτ〉 if i ∈ I3.
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(7.14.4) Let I0, . . . , I3 be the symbols used in (7.14.3).
(i) For 0 ≤ i �= i′ ≤ 15

15∑
j=0

mi,jmi′,j =

{
6 if i �= i′ ∈ Ik for some k ∈ {0, 1, 2, 3},
9 if i ∈ Ik, i

′ ∈ Il for some k �= l ∈ {0, 1, 2, 3}.

(ii) For 0 ≤ i ≤ 15
15∑
j=0

mi,j
2 = 18.

(iii) For 0 ≤ i ≤ 15
15∑
j=0

mi,j = 12.

Lemma 7.6 There does not exist an M = (mi,j)0≤i,j≤15. Therefore Type 14 does
not occur.

Type 15

(7.15.1) ϕ = (x0, x1, x2)(x3, x4, x5)(x6, x7, x8)(x9, x10, x11)

(x12, x13, x14)(x15, x16, x17)(x18, x19, x20)(x21, x22, x23)

(x24, x25, x26)(x27, x28, x29)(x30, x31, x32)(x33, x34, x35)

(x36, x48, x60)(x37, x49, x61)(x38, x50, x62)(x39, x51, x63)

(x40, x52, x64)(x41, x53, x65)(x42, x54, x66)(x43, x55, x67)

(x44, x56, x68)(x45, x57, x69)(x46, x58, x70)(x47, x59, x71)

(x72, x84, x96)(x73, x85, x97)(x74, x86, x98)(x75, x87, x99)

(x76, x88, x100)(x77, x89, x101)(x78, x90, x102)(x79, x91, x103)

(x80, x92, x104)(x81, x93, x105)(x82, x94, x106)(x83, x95, x107)

(x108, x120, x132)(x109, x121, x133)(x110 , x122, x134)(x111, x123, x135)

(x112, x124, x136)(x113, x125, x137)(x114 , x126, x138)(x115, x127, x139)

(x116, x128, x140)(x117, x129, x141)(x118 , x130, x142)(x119, x131, x143) and

τ = (x0, x12, x24)(x1, x13, x25)(x2, x14, x26)(x3, x15, x27)

(x4, x16, x28)(x5, x17, x29)(x6, x18, x30)(x7, x19, x31)

(x8, x20, x32)(x9, x21, x33)(x10, x22, x34)(x11, x23, x35)

(x36, x72, x108)(x37, x73, x109)(x38, x74, x110)(x39, x75, x111)

(x40, x76, x112)(x41, x77, x113)(x42, x78, x114)(x43, x79, x115)

(x44, x80, x116)(x45, x81, x117)(x46, x82, x118)(x47, x83, x119)

(x48, x84, x120)(x49, x85, x121)(x50, x86, x122)(x51, x87, x123)

(x52, x88, x124)(x53, x89, x125)(x54, x90, x126)(x55, x91, x127)

(x56, x92, x128)(x57, x93, x129)(x58, x94, x130)(x59, x95, x131)

(x60, x96, x132)(x61, x97, x133)(x62, x98, x134)(x63, x99, x135)

(x64, x100, x136)(x65, x101, x137)(x66, x102, x138)(x67, x103, x139)

(x68, x104, x140)(x69, x105, x141)(x70, x106, x142)(x71, x107, x143), where x ∈ {p,B}.

(7.15.2) There are the following 16 G-orbits on P and on B.
Y0 = {x0, x1, x2, x12, x13, x14, x24, x25, x26},
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Y1 = {x3, x4, x5, x15, x16, x17, x27, x28, x29},
Y2 = {x6, x7, x8, x18, x19, x20, x30, x31, x32},
Y3 = {x9, x10, x11, x21, x22, x23, x33, x34, x35},
Y4 = {x36, x48, x60, x72, x84, x96, x108, x120, x132},
Y5 = {x37, x49, x61, x73, x85, x97, x109, x121, x133},
Y6 = {x38, x50, x62, x74, x86, x98, x110, x122, x134},
Y7 = {x39, x51, x63, x75, x87, x99, x111, x123, x135},
Y8 = {x40, x52, x64, x76, x88, x100, x112, x124, x136},
Y9 = {x41, x53, x65, x77, x89, x101, x113, x125, x137},
Y10 = {x42, x54, x66, x78, x90, x102, x114, x126, x138},
Y11 = {x43, x55, x67, x79, x91, x103, x115, x127, x139},
Y12 = {x44, x56, x68, x80, x92, x104, x116, x128, x140},
Y13 = {x45, x57, x69, x81, x93, x105, x117, x129, x141},
Y14 = {x46, x58, x70, x82, x94, x106, x118, x130, x142},
Y15 = {x47, x59, x71, x83, x95, x107, x119, x131, x143}, where (Y , x) ∈ {(Q, p), (C, B)}.

Set q0 = p0, q1 = p3, q2 = p6, q3 = p9, q4 = p36, q5 = p37, q6 = p38, q7 = p39, q8 =
p40, q9 = p41, q10 = p42, q11 = p43, q12 = p44, q13 = p45, q14 = p46, q15 = p47 and
C0 = B0, C1 = B3, C2 = B6, C3 = B9, C4 = B36, C5 = B37, C6 = B38, C7 =
B39, C8 = B40, C9 = B41, C10 = B42, C11 = B43, C12 = B44, C13 = B45, C14 =
B46, C15 = B47.

The symbols mi,j, Di,j, M and Ai,i′ are the same as in Type 11.

(7.15.3) (i) For 0 ≤ i �= i′ ≤ 15

Ai,i′ =

⎧⎪⎨⎪⎩
Ĝ\〈ϕ〉 if 0 ≤ i �= i′ ≤ 3,

Ĝ\{1} if 4 ≤ i �= i′ ≤ 15,

Ĝ if 0 ≤ i ≤ 3, 4 ≤ i′ ≤ 15.

(ii) For 0 ≤ i ≤ 15

Ai,i =

{
12 + Ĝ\〈ϕ〉 if 0 ≤ i ≤ 3,

12 + Ĝ\{1} if 4 ≤ i ≤ 15.

(7.15.4) (i) For 0 ≤ i �= i′ ≤ 15

15∑
j=0

mi,jmi′,j =

⎧⎨⎩
6 if 0 ≤ i �= i′ ≤ 3,
8 if 4 ≤ i �= i′ ≤ 15,
9 if 0 ≤ i ≤ 3, 4 ≤ i′ ≤ 15.

(ii) For 0 ≤ i ≤ 15
15∑
j=0

mi,j
2 =

{
18 if 0 ≤ i ≤ 3,
20 if 4 ≤ i ≤ 15.

(iii) For 0 ≤ i ≤ 15
15∑
j=0

mi,j = 12.



K. AKIYAMA ET AL. /AUSTRALAS. J. COMBIN. 74 (1) (2019), 112–160 154

(7.15.5) For 0 ≤ i ≤ 15, the following hold, up to ordering of mi,0, mi,1, . . . , mi,15.

(i) If 0 ≤ i ≤ 3, (mi,0, mi,1, . . . , mi,15) = (0 0 . . . 0︸ ︷︷ ︸
7

1 1 . . . 1︸ ︷︷ ︸
6

2 2 2) or

(0 0 . . . 0︸ ︷︷ ︸
6

1 1 . . . 1︸ ︷︷ ︸
9

3).

(ii) If 4 ≤ i ≤ 15, (mi,0, mi,1, . . . , mi,15) = (0 0 . . . 0︸ ︷︷ ︸
8

1 1 1 1 2 2 2 2) or

(0 0 . . . 0︸ ︷︷ ︸
7

1 1 . . . 1︸ ︷︷ ︸
7

2 3).

(7.15.6) There are exactly 119 M , up to equivalence. They are M1,M2, . . . ,M119,
where each matrix of M1, . . . ,M13 contains 3 as an entry but each matrix of M14, . . . ,
M119 does not. M1,M2, . . . ,M13,M14 are given in the Appendix and the authors have
the list of the remaining matrices M15, . . . ,M119.

(7.15.7) There does not exist (Di,j)4≤i≤9,0≤j≤15 corresponding to the submatrix
(mi,j)4≤i≤9,0≤j≤15 of Mk = (mi,j)0≤i≤9,0≤j≤15 for 1 ≤ k ≤ 119.

Lemma 7.7 Type 15 does not occur.

THEOREM There are no projective planes of order 12 admitting a collineation
group of order 9.

Proof. The theorem holds from Lemmas 6.2, 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7. �

The theorem and [3] yield the following corollary.

Corollary If G is a collineation group of a projective plane π of order 12, then G
is cyclic and |G| divides 3 or 4.

Appendix

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 1 1 0 0 2 2 0 1 0 2 1
1 0 2 1 0 0 0 2 2 1 1 1 0 0 1 0
1 1 0 1 1 2 0 1 1 0 0 0 0 2 0 2
1 1 1 1 1 0 2 0 0 0 0 2 2 1 0 0
3 0 1 0 0 0 0 0 0 1 1 1 1 1 1 2
0 3 1 0 0 0 0 1 1 0 0 1 1 1 2 1
0 1 3 1 1 1 1 0 0 0 2 0 0 1 0 1
0 1 0 3 0 0 0 0 1 2 1 1 1 1 0 1
1 1 1 0 3 0 0 1 1 2 0 0 1 1 0 0
0 0 0 1 2 0 1 2 0 0 1 2 0 0 1 2
0 0 1 0 0 1 2 1 2 1 0 0 2 0 0 2
0 0 1 0 0 2 1 1 0 2 0 2 0 2 1 0
1 0 0 1 1 0 2 0 2 0 1 0 0 2 2 0
1 0 1 2 1 2 0 1 0 0 0 0 2 0 2 0
1 1 0 0 1 2 0 0 2 0 2 2 1 0 0 0
2 2 0 1 0 1 2 2 0 1 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 2 1 2 1 1 1 0 1 1 2
1 1 1 0 2 1 0 2 0 0 0 0 1 2 0 1
1 1 1 1 0 2 1 0 0 0 2 2 1 0 0 0
1 1 1 2 1 0 0 0 1 2 0 0 1 0 2 0
3 0 1 0 0 0 0 0 0 1 1 1 1 1 1 2
1 3 0 0 0 0 0 1 2 0 1 1 1 1 1 0
0 1 3 0 0 0 2 1 0 1 0 1 1 1 1 0
0 0 1 0 1 2 0 0 1 1 2 0 0 2 2 0
0 0 1 0 2 1 0 0 2 1 0 2 2 0 0 1
0 1 0 1 0 2 1 1 0 0 0 0 2 0 2 2
0 1 0 2 0 1 0 1 0 2 0 2 0 2 0 1
0 1 2 2 1 0 0 1 1 0 2 0 0 0 0 2
1 0 0 1 2 0 1 2 0 0 1 2 0 0 2 0
1 0 0 2 1 0 2 0 1 0 1 0 2 2 0 0
1 2 0 0 2 1 2 0 0 2 1 0 0 0 0 1
2 0 1 1 0 2 1 2 2 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 2 1 2 1 1 1 0 1 1 2
1 1 1 0 2 1 0 2 0 0 0 0 1 2 0 1
1 1 1 1 0 2 1 0 0 0 2 2 1 0 0 0
1 1 1 2 1 0 0 0 1 2 0 0 1 0 2 0
3 0 1 0 0 0 0 0 0 1 1 1 1 1 1 2
1 3 0 0 0 0 0 1 2 0 1 1 1 1 1 0
0 1 3 0 0 0 2 1 0 1 0 1 1 1 1 0
0 0 1 0 1 2 0 0 1 1 2 0 0 2 2 0
0 0 1 0 2 1 0 0 2 1 0 2 2 0 0 1
0 1 0 1 0 2 1 1 0 0 0 0 2 0 2 2
0 1 0 2 0 1 0 1 0 2 0 2 0 2 0 1
0 2 1 1 2 0 1 0 0 1 2 0 0 0 0 2
1 0 0 1 2 0 1 2 0 0 1 2 0 0 2 0
1 0 0 2 1 0 2 0 1 0 1 0 2 2 0 0
1 0 2 2 0 1 0 2 2 0 1 0 0 0 0 1
2 1 0 0 1 2 2 1 1 2 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 2 1 2 1 1 1 0 1 1 2
1 1 1 0 2 1 1 0 0 0 2 2 1 0 0 0
1 1 1 1 0 2 0 2 0 0 0 0 1 2 0 1
1 1 1 2 1 0 0 0 1 2 0 0 1 0 2 0
3 0 1 0 0 0 0 0 0 1 1 1 1 1 1 2
1 3 0 0 0 0 0 1 2 0 1 1 1 1 1 0
0 1 3 0 0 0 2 1 0 1 0 1 1 1 1 0
0 0 1 0 1 2 0 0 1 1 2 0 0 2 2 0
0 0 1 1 0 2 0 0 2 1 0 2 2 0 0 1
0 1 0 0 2 1 1 1 0 0 0 0 2 0 2 2
0 1 0 1 2 0 0 1 0 2 0 2 0 2 0 1
0 1 2 2 1 0 0 1 1 0 2 0 0 0 0 2
1 0 0 2 0 1 1 2 0 0 1 2 0 0 2 0
1 0 0 2 1 0 2 0 1 0 1 0 2 2 0 0
1 2 0 1 0 2 2 0 0 2 1 0 0 0 0 1
2 0 1 0 2 1 1 2 2 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 2 1 2 1 1 1 0 1 1 2
1 1 1 0 2 1 1 0 0 0 2 2 1 0 0 0
1 1 1 1 0 2 0 2 0 0 0 0 1 2 0 1
1 1 1 2 1 0 0 0 1 2 0 0 1 0 2 0
3 0 1 0 0 0 0 0 0 1 1 1 1 1 1 2
1 3 0 0 0 0 0 1 2 0 1 1 1 1 1 0
0 1 3 0 0 0 2 1 0 1 0 1 1 1 1 0
0 0 1 0 1 2 0 0 1 1 2 0 0 2 2 0
0 0 1 1 0 2 0 0 2 1 0 2 2 0 0 1
0 1 0 0 2 1 1 1 0 0 0 0 2 0 2 2
0 1 0 1 2 0 0 1 0 2 0 2 0 2 0 1
0 2 1 2 0 1 1 0 0 1 2 0 0 0 0 2
1 0 0 2 0 1 1 2 0 0 1 2 0 0 2 0
1 0 0 2 1 0 2 0 1 0 1 0 2 2 0 0
1 0 2 1 2 0 0 2 2 0 1 0 0 0 0 1
2 1 0 0 1 2 2 1 1 2 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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M6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 1 1 2 1 1 0 0 1 2 2
1 1 1 0 2 2 0 0 0 0 2 1 1 0 1 0
1 1 1 1 0 0 2 2 0 0 0 2 1 0 0 1
1 1 1 2 1 0 0 0 1 2 0 0 1 2 0 0
3 0 1 0 0 0 0 0 0 1 1 1 1 1 1 2
1 3 0 0 0 0 0 1 2 0 1 1 1 1 1 0
0 1 3 0 0 1 1 1 0 1 0 0 1 1 2 0
0 0 1 0 1 0 2 0 1 1 2 2 0 2 0 0
0 0 1 1 0 2 0 0 2 1 0 2 2 0 0 1
0 1 0 0 2 1 1 1 0 0 0 0 2 2 0 2
0 1 0 1 2 0 0 1 0 2 0 2 0 0 2 1
0 1 2 2 1 0 0 1 1 0 2 0 0 0 0 2
1 0 0 2 0 2 0 2 0 0 1 1 0 2 1 0
1 0 0 2 1 0 2 0 1 0 1 0 2 0 2 0
1 2 0 1 0 2 2 0 0 2 1 0 0 0 0 1
2 0 1 0 2 1 1 2 2 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 1 1 2 1 1 0 0 1 2 2
1 1 1 0 2 2 0 0 0 0 2 1 1 0 1 0
1 1 1 1 0 0 2 2 0 0 0 2 1 0 0 1
1 1 1 2 1 0 0 0 1 2 0 0 1 2 0 0
3 0 1 0 0 0 0 0 0 1 1 1 1 1 1 2
1 3 0 0 0 0 0 1 2 0 1 1 1 1 1 0
0 1 3 0 0 1 1 1 0 1 0 0 1 1 2 0
0 0 1 0 1 0 2 0 1 1 2 2 0 2 0 0
0 0 1 1 0 2 0 0 2 1 0 2 2 0 0 1
0 1 0 0 2 1 1 1 0 0 0 0 2 2 0 2
0 1 0 1 2 0 0 1 0 2 0 2 0 0 2 1
0 2 1 2 0 1 1 0 0 1 2 0 0 0 0 2
1 0 0 2 0 2 0 2 0 0 1 1 0 2 1 0
1 0 0 2 1 0 2 0 1 0 1 0 2 0 2 0
1 0 2 1 2 0 0 2 2 0 1 0 0 0 0 1
2 1 0 0 1 2 2 1 1 2 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 0 0 0 0 2 0 0 2 2 1
1 0 1 1 0 0 2 0 2 1 1 2 0 0 1 0
1 1 0 1 0 2 1 1 1 0 0 0 2 0 0 2
1 1 1 0 2 0 0 2 0 2 0 1 1 1 0 0
3 0 1 0 0 0 0 0 0 1 1 1 1 1 1 2
1 3 0 0 0 0 1 1 1 0 0 1 1 1 2 0
0 1 3 0 1 1 0 0 2 0 0 1 1 1 0 1
0 0 0 0 0 0 1 2 2 1 2 0 1 2 0 1
0 0 0 0 1 2 0 0 1 2 1 1 2 0 2 0
0 0 0 0 2 1 2 1 0 0 0 2 0 1 1 2
0 0 2 2 0 0 1 2 0 1 0 0 1 0 2 1
0 2 0 2 1 0 0 0 1 2 1 1 0 0 0 2
1 1 1 1 0 2 0 2 0 0 2 2 0 0 0 0
1 1 1 1 0 2 2 0 0 2 0 0 0 2 0 0
1 1 1 1 2 0 2 0 0 0 2 0 2 0 0 0
2 0 0 2 2 1 0 1 2 0 0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M9 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 0 0 0 0 2 0 2 0 2 1
1 0 1 1 0 0 2 0 2 1 1 2 0 0 1 0
1 1 0 1 0 2 1 1 1 0 0 0 0 2 0 2
1 1 1 0 2 0 0 2 0 2 0 1 1 1 0 0
3 0 1 0 0 0 0 0 0 1 1 1 1 1 1 2
1 3 0 0 0 0 1 1 1 0 0 1 1 1 2 0
0 1 3 0 1 1 0 0 2 0 0 1 1 1 0 1
0 0 0 0 0 1 0 1 2 2 2 0 1 2 1 0
0 0 0 0 1 0 2 2 1 0 1 1 2 0 0 2
0 0 0 0 2 2 1 0 0 1 0 2 0 1 2 1
0 0 2 2 0 0 1 2 0 1 0 0 0 1 2 1
0 2 0 2 1 0 0 0 1 2 1 1 0 0 0 2
1 1 1 1 0 2 0 2 0 0 2 2 0 0 0 0
1 1 1 1 0 2 2 0 0 2 0 0 2 0 0 0
1 1 1 1 2 0 2 0 0 0 2 0 0 2 0 0
2 0 0 2 2 1 0 1 2 0 0 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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M10 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 0 0 0 0 2 0 2 0 2 1
1 0 1 1 0 0 2 0 2 1 1 2 0 0 1 0
1 1 0 1 0 2 1 1 1 0 0 0 0 2 0 2
1 1 1 0 2 0 0 2 0 2 0 1 1 1 0 0
3 0 1 0 0 0 0 0 0 1 1 1 1 1 1 2
1 3 0 0 0 0 1 1 1 0 0 1 1 1 2 0
0 1 3 0 1 1 0 0 2 0 0 1 1 1 0 1
0 0 0 0 0 1 0 1 2 2 2 0 1 2 1 0
0 0 0 0 1 0 2 2 1 0 1 1 2 0 0 2
0 0 1 1 0 2 0 2 0 1 0 2 0 0 2 1
0 0 1 1 2 0 2 0 0 1 0 0 0 2 2 1
0 2 0 2 1 0 0 0 1 2 1 1 0 0 0 2
1 1 0 0 2 2 1 0 0 0 2 2 0 1 0 0
1 1 1 1 0 2 2 0 0 2 0 0 2 0 0 0
1 1 2 2 0 0 1 2 0 0 2 0 0 1 0 0
2 0 0 2 2 1 0 1 2 0 0 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 0 0 1 0 2 0 0 0 2 2
1 0 1 1 0 0 2 0 2 1 1 1 2 0 0 0
1 1 0 1 0 2 1 1 0 0 0 2 0 2 0 1
1 1 1 0 2 0 0 2 0 2 0 0 1 1 1 0
3 0 1 0 0 0 0 0 0 1 1 1 1 1 1 2
1 3 0 0 0 0 1 1 2 0 0 0 1 1 1 1
0 1 3 0 1 1 0 0 1 0 0 2 1 1 1 0
0 0 0 0 0 0 1 2 1 1 2 2 0 1 2 0
0 0 0 0 1 2 0 0 2 2 1 0 1 2 0 1
0 0 0 0 2 1 2 1 0 0 0 1 2 0 1 2
0 0 2 2 0 0 1 2 1 1 0 0 0 1 0 2
0 2 0 2 1 0 0 0 0 2 1 2 1 0 0 1
1 1 1 1 0 2 0 2 0 0 2 0 2 0 0 0
1 1 1 1 0 2 2 0 0 2 0 0 0 0 2 0
1 1 1 1 2 0 2 0 0 0 2 0 0 2 0 0
2 0 0 2 2 1 0 1 2 0 0 1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 0 0 1 0 2 0 0 2 0 2
1 0 1 1 0 0 2 0 2 1 1 1 2 0 0 0
1 1 0 1 0 2 1 1 0 0 0 2 0 0 2 1
1 1 1 0 2 0 0 2 0 2 0 0 1 1 1 0
3 0 1 0 0 0 0 0 0 1 1 1 1 1 1 2
1 3 0 0 0 0 1 1 2 0 0 0 1 1 1 1
0 1 3 0 1 1 0 0 1 0 0 2 1 1 1 0
0 0 0 0 0 1 0 1 2 2 2 1 0 1 2 0
0 0 0 0 1 0 2 2 0 0 1 2 1 2 0 1
0 0 0 0 2 2 1 0 1 1 0 0 2 0 1 2
0 0 2 2 0 0 1 2 1 1 0 0 0 0 1 2
0 2 0 2 1 0 0 0 0 2 1 2 1 0 0 1
1 1 1 1 0 2 0 2 0 0 2 0 2 0 0 0
1 1 1 1 0 2 2 0 0 2 0 0 0 2 0 0
1 1 1 1 2 0 2 0 0 0 2 0 0 0 2 0
2 0 0 2 2 1 0 1 2 0 0 1 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M13 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 0 0 1 0 2 0 0 2 0 2
1 0 1 1 0 0 2 0 2 1 1 1 2 0 0 0
1 1 0 1 0 2 1 1 0 0 0 2 0 0 2 1
1 1 1 0 2 0 0 2 0 2 0 0 1 1 1 0
3 0 1 0 0 0 0 0 0 1 1 1 1 1 1 2
1 3 0 0 0 0 1 1 2 0 0 0 1 1 1 1
0 1 3 0 1 1 0 0 1 0 0 2 1 1 1 0
0 0 0 0 0 1 0 1 2 2 2 1 0 1 2 0
0 0 0 0 1 0 2 2 0 0 1 2 1 2 0 1
0 0 1 1 0 2 0 2 1 1 0 0 2 0 0 2
0 0 1 1 2 0 2 0 1 1 0 0 0 0 2 2
0 2 0 2 1 0 0 0 0 2 1 2 1 0 0 1
1 1 0 0 2 2 1 0 0 0 2 0 2 0 1 0
1 1 1 1 0 2 2 0 0 2 0 0 0 2 0 0
1 1 2 2 0 0 1 2 0 0 2 0 0 0 1 0
2 0 0 2 2 1 0 1 2 0 0 1 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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M14 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1 0 0 0 1 2 2 0 2 0 1 0
1 1 1 0 0 2 0 1 2 0 0 2 1 1 0 0
1 1 0 1 2 0 1 2 0 0 1 0 0 2 0 1
0 1 1 1 0 1 2 0 0 1 0 1 0 0 2 2
0 2 1 0 0 0 0 0 0 1 1 1 2 2 0 2
0 0 1 2 0 1 0 2 0 1 2 2 0 0 0 1
0 1 2 0 2 2 0 1 0 2 0 0 0 1 1 0
0 1 0 2 2 0 0 0 1 0 0 2 1 1 2 0
1 2 0 0 0 0 0 2 2 1 1 0 0 0 2 1
2 0 0 1 1 2 0 1 0 0 0 0 2 0 1 2
1 0 0 2 0 1 1 0 2 2 0 0 0 2 0 1
1 0 2 0 2 0 1 0 2 0 1 1 0 0 0 2
2 0 1 0 0 1 1 0 0 0 2 1 0 2 2 0
0 2 0 1 1 2 2 0 1 0 2 0 1 0 0 0
0 0 2 1 0 0 2 2 1 0 0 0 2 1 1 0
2 1 0 0 1 0 2 1 0 2 0 2 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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