On the genus of the essential graph of commutative rings

K. Selvakumar M. Subajini
Department of Mathematics
Manonmaniam Sundaranar University
Tirunelveli 627 012, Tamil Nadu
India
selva_158@yahoo.co.in subashini.m05@gmail.com
M. J. Nikmehr
Faculty of Mathematics
K.N. Toosi University of Technology, Tehran
Iran
nikmehr@kntu.ac.ir

Abstract

Let R be a commutative ring with identity and let $Z(R)$ be the set of zerodivisors of R. The essential graph of R is defined as the graph $E G(R)$ with the vertex set $Z(R)^{*}=Z(R) \backslash\{0\}$ such that two distinct vertices x and y are adjacent if and only if $\operatorname{ann}(x y)$ is an essential ideal. In this paper, we classify all finite commutative rings with identity for which the genus and crosscap of $E G(R)$ are at most one.

1 Introduction

The study linking commutative ring theory with graph theory was started with the concept of the zero-divisor graph of a commutative ring. Let R be a commutative ring and $Z(R)^{*}$ be the set of all non-zero zero-divisors of R. The zero-divisor graph of R, denoted $\Gamma(R)$, is the simple graph with $Z(R)^{*}$ as the vertex set such that two distinct vertices x and y are joined by an edge if and only if $x y=0$. This definition was introduced by Beck, Anderson and Livingston in [1,5] and later was studied extensively in $[2,6,9,12,17,18,19]$. For $a \in R$, let $\operatorname{ann}(a)=\{d \in R: d a=0\}$ be the annihilator of a in R. In 2014, Badawi [3] introduced the annihilator graph $A G(R)$ as the simple graph with vertex set $Z(R)^{*}$ such that two distinct vertices x and y are adjacent if and only if $\operatorname{ann}(x y) \neq \operatorname{ann}(x) \cup \operatorname{ann}(y)$. One can see that the zero-divisor graph $\Gamma(R)$ is a subgraph of the annihilator graph $A G(R)$. In view of this, Nikmehr et al. [11] have introduced and investigated a graph called the essential
graph of a commutative ring. A non-zero ideal I of R is called essential, denoted by $I \leq_{e} R$, if I has a non-zero intersection with any non-zero ideal of R. The essential graph of R is defined as the graph $E G(R)$ with the vertex set $Z(R)^{*}=Z(R) \backslash\{0\}$ such that distinct vertices x and y are adjacent if and only if $\operatorname{ann}(x y)$ is an essential ideal. The authors in [11] discussed some basic properties of $E G(R)$ and studied the affinity between essential graph and zero-divisor graph. One can see that the zero-divisor graph $\Gamma(R)$ is a subgraph of the essential graph $E G(R)$.

The main objective of topological graph theory is to embed a graph into a surface. There are many studies $[2,6,9,12,14,15,16,18,19]$ concerning orientable and nonorientable embeddings of the zero-divisor graph and other graphs. In this paper, we classify all finite commutative rings with identity for which the genus and crosscap of $E G(R)$ are at most one.

Let S_{g} and \bar{S}_{k} denote the sphere with g handles and k crosscaps respectively, where g and k are non-negative integers, that is S_{g} and \bar{S}_{k} are the oriented and non-oriented with g handles and k crosscaps. The genus $\gamma(G)$ of a simple graph G is the minimum g such that G can be embedded in S_{g}. Similarly, crosscap number $\bar{\gamma}(G)$ is the minimum k such that G can be embedded in \bar{S}_{k}. When considering orientability, the surfaces S_{g} and the sphere are orientable \bar{S}_{k} is not orientable. A graph G is planar if $\gamma(G)=0$. A graph G such that $\gamma(G)=1$ is called a toroidal graph and $\bar{\gamma}(G)=1$ is called a projective graph. It is easy to see that $\gamma(H) \leq \gamma(G)$ and $\bar{\gamma}(H) \leq \bar{\gamma}(G)$ for all subgraphs H of G. One of the most remarkable theorems in topological graph theory, known as Euler's formula, states that if G is a finite connected graph with n vertices, e edges and of genus g, then $n-e+f=2-2 g$, where f is the number of faces obtained when G is cellularly embedded in S_{g}.

Note that the zero divisor graph $\Gamma(R)$ is a subgraph of $E G(R)$. In [11] it has been shown that for any reduced ring $R, E G(R)$ is identical to $\Gamma(R)$. Using this result, one can establish that for any reduced ring, $E G(R)$ is complete if and only if $\Gamma(R)$ is complete if and only if $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

By a graph $G=(V, E)$, we mean an undirected simple graph with vertex set V and edge set E. A graph in which each pair of distinct vertices is joined by the edge is called a complete graph. We use K_{n} to denote the complete graph with n vertices. An r-partite graph is one whose vertex set can be partitioned into r subsets so that no edge has both ends in any one subset. A complete r-partite graph is one in which each vertex is joined to every vertex that is not in the same subset. The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by $K_{m, n}$. If $G=K_{1, n}$ where $n \geq 1$, then G is a star graph. A split graph is a simple graph in which the vertices can be partitioned into a clique and an independent set. A graph G is said to be unicyclic if it contains a unique cycle. An undirected graph is an outerplanar graph if it can be drawn in the plane without crossings in such a way that all of the vertices belong to the unbounded face of the drawing. There is a characterization for outerplanar graphs that says that a graph is outerplanar if and only if it does not contain a subdivision of K_{4} or $K_{2,3}$. An edge $e=u v$ of G is said to be contracted if it is deleted and its ends are identified and is denoted by $[u, v]$.

Throughout this paper, we assume that R is a finite commutative ring with identity, $Z(R)$ its set of zero-divisors and $\operatorname{Nil}(R)$ its set of nilpotent elements, R^{\times}its group of units, \mathbb{F}_{q} denote the field with q elements, and $R^{*}=R-\{0\}$. For every ideal I of R, we denote the annihilator of I by $\operatorname{ann}(I)$. The following results are useful in the subsequent sections.

Theorem 1.1. [1, Theorem 2.10] Let R be a finite commutative ring. If $\Gamma(R)$ is complete, then either $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or R is local with char $R=p$ or p^{2}, and $|\Gamma(R)|=p^{n}-1$, where p is prime and $n \geq 1$.

Theorem 1.2. [1, Theorem 2.13] Let R be a finite commutative ring with $|\Gamma(R)| \geq 4$. Then $\Gamma(R)$ is a star graph if and only if $R \cong \mathbb{Z}_{2} \times F$, where F is a finite field.
Theorem 1.3. [11, Theorem 2.2] Let R be a reduced ring. Then $E G(R)=\Gamma(R)$.
Theorem 1.4. [11, Lemma 3.1] Let R be a non reduced commutative ring. Then the following statements hold.
(i) For every $x \in \operatorname{Nil}(R)^{*}, x$ is adjacent to all other vertices.
(ii) $E G(R)\left[N i l(R)^{*}\right]$ is a (induced) complete subgraph of $E G(R)$.

In view of Theorem 1.4, if R is a local ring, then $E G(R)$ is complete.

Table 1.1

2 Basic Properties of an Essential Graph

In this section, we study some fundamental properties of the essential graph. Especially we identify when the essential graph is isomorphic to some well-known graphs.
Remark 2.1. Note that $\Gamma(R)$ is a subgraph of $E G(R)$. Then by Theorems 1.1 and $1.4, R$ is a local ring or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ if and only if $E G(R)$ is complete. We list in Table 1.1, some small commutative rings R for which $E G(R)$ is complete.

Remark 2.2. Let R be a reduced ring. Then $E G(R)$ is a subgraph of $A G(R)$.
Theorem 2.3. Let R be a finite commutative ring with identity but not a field. Then $E G(R)$ is a tree if and only if R is isomorphic to one of the following rings. \mathbb{Z}_{4}, $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle}, \mathbb{Z}_{9}, \frac{\mathbb{Z}_{3}[x]}{\left\langle x^{2}\right\rangle}$, or $\mathbb{Z}_{2} \times F$, where F is a finite field.
Proof. Since R is finite, $R \cong R_{1} \times \cdots \times R_{n}$, where each R_{i} is a local ring. Suppose $E G(R)$ is a tree. Suppose $n \geq 3$. Then $(1,0, \ldots, 0)-(0,1,0, \ldots, 0)-(0,0,1,0, \ldots, 0)$ - $(1,0, \ldots, 0)$ is a cycle in $E G(R)$, a contradiction. Hence $n \leq 2$.

Suppose $R \cong R_{1} \times R_{2}$. If R_{1} is local with $\mathfrak{m}_{1} \neq\{0\}$, then there exists $x_{1} \in \mathfrak{m}_{1}^{*}$ such that $\operatorname{ann}\left(x_{1}\right)=\mathfrak{m}_{1}$. Let $x=(0,1), y=\left(x_{1}, 0\right) z=\left(x_{1}, 1\right)$ and $w=(1,0) \in Z(R)^{*}$. Then $x-y-z-w-x$ is a cycle in $E G(R)$, a contradiction. Hence R_{1} and R_{2} are fields and so $E G(R) \cong K_{\left|R_{1}\right|-1,\left|R_{2}\right|-1}$. Since $E G(R)$ is tree, $\left|R_{1}\right|=2$ or $\left|R_{2}\right|=2$ and so $R \cong \mathbb{Z}_{2} \times F$, where F is a field.

Suppose $R \cong R_{1}$. Since R is not a field, $Z(R) \neq 0$ and so $E G(R)$ is complete. Since $E G(R)$ is a tree, we have $\left|Z(R)^{*}\right| \leq 2$. Hence $R \cong \mathbb{Z}_{4}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle}, \mathbb{Z}_{9}$, or $\frac{\mathbb{Z}_{3}[x]}{\left\langle x^{2}\right\rangle}$.

Converse follows from Table 1.1 and Theorem 1.2.
Theorem 2.4. Let R be a finite commutative ring with identity but not a field. Then $E G(R)$ is unicyclic if and only if R is isomorphic to one of the following rings: \mathbb{Z}_{8}, $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{3}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{3}, x^{2}-2\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle 2 x, x^{2}\right\rangle}, \frac{\mathbb{Z}_{2}[x, y]}{\left\langle x^{2}, x y, y^{2}\right\rangle}, \frac{\mathbb{F}_{4}[x]}{\left\langle x^{2}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{2}+x+1\right\rangle}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Proof. Assume that $E G(R)$ is unicyclic. Since R is finite, $R \cong R_{1} \times \cdots \times R_{n}$, where each R_{i} is a local ring. Suppose $n \geq 4$. Let $x_{1}=(1,0,0, \ldots, 0), x_{2}=(0,1,0, \ldots, 0)$, $x_{3}=(0,0,1,0, \ldots, 0), x_{4}=(0,0,0,1,0, \ldots, 0), y_{1}=(1,1,0,0, \ldots, 0) \in Z(R)^{*}$. Then $x_{1}-x_{2}-x_{3}-x_{1}$ as well as $x_{3}-y_{1}-x_{4}-x_{3}$ are two distinct cycles in $E G(R)$, a contradiction. Hence $n \leq 3$.
Case 1. Suppose $n=3$. Suppose $\left|R_{1}\right| \geq 3$. Then $(1,0,0)-(0,1,0)-(0,0,1)-(1,0,0)$ and $(a, 0,0)-(0,1,0)-(0,0,1)-(a, 0,0)$ are cycles in $E G(R)$ for some $1 \neq a \in R_{1}^{*}$, a contradiction. Hence $\left|R_{i}\right|=2$ for all i and so $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Case 2. Suppose $n=2$. If $\mathfrak{m}_{1} \neq\{0\}$, then there exists $x \in \mathfrak{m}_{1}^{*}$ such that ann $(x)=$ \mathfrak{m}_{1}. Then $(1,0)-(x, 0)-(0,1)-(1,0)$ and $(u, 0)-(x, 0)-(0,1)-(u, 0)$ are cycles in $E G(R)$ for some $1 \neq u \in R_{1}^{\times}$, a contradiction. Hence R_{1} and R_{2} are fields and so $E G(R) \cong K_{\left|R_{1}\right|-1,\left|R_{2}\right|-1}$. Since $E G(R)$ is unicyclic, $R_{1} \cong \mathbb{Z}_{3}$ and $R_{2} \cong \mathbb{Z}_{3}$.
Case 3. Suppose $n=1$. Now R is a local ring but not a field. Then $E G(R)$ is complete. Since $E G(R)$ is unicyclic, $\left|Z(R)^{*}\right|=3$ and by Table 1.1, R is isomorphic to one of the following rings: $\mathbb{Z}_{8}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{3}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{3}, x^{2}-2\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle 2 x, x^{2}\right\rangle}, \frac{\mathbb{Z}_{2}[x, y]}{\left\langle x^{2}, x y, y^{2}\right\rangle}, \frac{\mathbb{F}_{4}[x]}{\left\langle x^{2}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{2}+x+1\right\rangle}$.

Theorem 2.5. Let G be a connected graph. Then G is a split graph if and only if G contains no induced subgraph isomorphic to $2 K_{2}, C_{4}, C_{5}$.

Theorem 2.6. Let R be a finite commutative non-local ring with identity and $\left|Z(R)^{*}\right|$ ≥ 2. Then $E G(R)$ is a split graph if and only if $R \cong \mathbb{Z}_{2} \times F$, where F is a field or $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Proof. Assume that $E G(R)$ is a split graph. By the assumption on $R, R \cong R_{1} \times \cdots \times$ R_{n} where each R_{i} is local and $n \geq 2$. If $n \geq 4$, then $(1,1,0, \ldots, 0)-(0,0,1,1,0, \ldots, 0)$ and $(1,0,1,0 \ldots, 0)-(0,1,0,1,0, \ldots, 0)$ induce $2 K_{2}$ in $E G(R)$ and by Theorem 2.5, $E G(R)$ is not split, a contradiction. Hence $n \leq 3$.
Case 1. Suppose that $n=3$. If $\left|R_{1}\right| \geq 3$, then $(1,0,0)-(0,1,1)-(u, 0,0)-(0,1,0)-$ $(1,0,0)$ is a cycle of length 4 in $E G(R)$ for some $1 \neq u \in R_{1}^{\times}$, a contradiction. Hence $\left|R_{i}\right|=2$ for all i and hence $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Case 2. Suppose $n=2$. If $\mathfrak{m}_{1} \neq\{0\}$, then there exists $x \in \mathfrak{m}_{1}^{*}$ such that ann $(x)=$ \mathfrak{m}_{1}. Consider $\Omega=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ where $x_{1}=(1,0), x_{2}=(0,1), x_{3}=(v, 0), x_{4}=$ $(x, 1), 1 \neq v \in R_{1}^{\times}$. Clearly $x_{1} x_{2}=x_{2} x_{3}=0$. Also ann $\left(x_{1} x_{4}\right)=\mathfrak{m}_{1} \times R_{2}=\operatorname{ann}\left(x_{3} x_{4}\right)$, which is essential. Hence $x_{1}-x_{2}-x_{3}-x_{4}-x_{1}$ is a cycle of length 4 in $E G(R)$, a contradiction. Thus R_{1} and R_{2} are fields and so $E G(R) \cong K_{\left|R_{1}\right|-1,\left|R_{2}\right|-1}$. Since $E G(R)$ is split, $\left|R_{1}\right|-1=1$ or $\left|R_{2}\right|-1=1$ and so $R \cong \mathbb{Z}_{2} \times F$ where F is a field.

Theorem 2.7. Let R be a finite commutative ring with identity. Then $E G(R)$ is outerplanar if and only if R is isomorphic to one of the following rings: $\mathbb{Z}_{4}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle}$, $\mathbb{Z}_{9}, \frac{\mathbb{Z}_{3}[x]}{\left\langle x^{2}\right\rangle}, \mathbb{Z}_{8}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{3}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{3}, x^{2}-2\right\rangle}, \frac{\mathbb{Z}_{2}[x, y]}{\left\langle x^{2}, x y, y^{2}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle 2 x, x^{2}\right\rangle}, \frac{\mathbb{F}_{4}[x]}{\left\langle x^{2}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{2}+x+1\right\rangle}, \mathbb{Z}_{2} \times F, \mathbb{Z}_{3} \times \mathbb{Z}_{3}$, where F is a field or $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Proof. Since R is finite, $R \cong R_{1} \times \cdots \times R_{n}$, where each R_{i} is a local ring. Assume that $E G(R)$ is outerplanar. Suppose $n \geq 4$. Consider $\Omega=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ where $x_{1}=$ $(1,0,0, \ldots, 0), x_{2}=(0,1,0, \ldots, 0), x_{3}=(0,0,1,0, \ldots, 0), x_{4}=(0,0,0,1,0 \ldots, 0)$. Then the subgraph induced by Ω in $E G(R)$ is isomorphic to K_{4}, a contradiction. Hence $n \leq 3$.
Case 1. Assume that $n=3$. Suppose $\left|R_{1}\right| \geq 3$. Consider $\Omega^{\prime}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ where $x_{1}=(1,0,0), x_{2}=(a, 0,0), x_{3}=(0,1,0), x_{4}=(0,0,1), x_{5}=(0,1,1)$, $1 \neq a \in R_{1}^{*}$. Then the subgraph induced by Ω^{\prime} in $E G(R)$ contains $K_{2,3}$ as a subgraph, a contradiction. Therefore $\left|R_{i}\right|=2$ for all i and $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Case 2. Assume that $n=2$. If $\mathfrak{m}_{1} \neq\{0\}$, then there exists $x \in \mathfrak{m}_{1}^{*}$ such that $\operatorname{ann}(x)=\mathfrak{m}_{1}$ for some $x \in R_{1}$. Consider the set $\Omega^{\prime \prime}=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$ where $y_{1}=(1,0), y_{2}=(x, 0), y_{3}=(u, 0), y_{4}=(x, 1), y_{5}=(0,1), 1 \neq u \in R_{1}^{\times}$. Then the subgraph induced by $\Omega^{\prime \prime}$ in $E G(R)$ contains $K_{2,3}$ as a subgraph, a contradiction. Hence R_{1} and R_{2} are fields and so $E G(R) \cong K_{\left|R_{1}\right|-1,\left|R_{2}\right|-1}$. Since $E G(R)$ is outerplanar, R is isomorphic to $\mathbb{Z}_{2} \times F$ where F is a finite field or $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
Case 3. Suppose that $n=1$. Since R is local, $E G(R)$ is complete. Since $E G(R)$ is outerplanar, $1 \leq\left|Z(R)^{*}\right| \leq 3$ and hence R is isomorphic to one of the following rings:

$$
\mathbb{Z}_{4}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle}, \mathbb{Z}_{8}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{3}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{3}, x^{2}-2\right\rangle}, \frac{\mathbb{Z}_{2}[x, y]}{\left\langle x^{2}, x y, y^{2}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle 2 x, x^{2}\right\rangle}, \frac{\mathbb{F}_{4}[x]}{\left\langle x^{2}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{2}+x+1\right\rangle}, \mathbb{Z}_{9}, \frac{\mathbb{Z}_{3}[x]}{\left\langle x^{2}\right\rangle} .
$$

3 Planarity of $E G(R)$

In this section, we characterize all finite commutative rings R with identity whose essential graph $E G(R)$ is planar. The followings results are useful in this section.

Theorem 3.1. ([8], Kuratowski) A graph G is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$.

Theorem 3.2. [17, Theorem 3.5.1] Let (R, \mathfrak{m}) be a finite local ring and $\Gamma(R)$ be the zero-divisor graph of R. Then $\Gamma(R)$ is planar if and only if R is isomorphic to one of the following rings:

$$
\begin{aligned}
& \mathbb{Z}_{4}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle}, \mathbb{Z}_{9}, \frac{\mathbb{Z}_{3}[x]}{\left\langle x^{2}\right\rangle}, \mathbb{Z}_{8}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{3}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{3}, x^{2}-2\right\rangle}, \frac{\mathbb{Z}_{2}[x, y]}{\left\langle x^{2}, x y, y^{2}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle 2 x, x^{2}\right\rangle}, \frac{\mathbb{F}_{4}[x]}{\left\langle x^{2}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{2}+x+1\right\rangle}, \mathbb{Z}_{25}, \frac{\mathbb{Z}_{5}[x]}{\left\langle x^{2}\right\rangle}, \\
& \mathbb{Z}_{16}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{4}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{2}-2, x^{4}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{3}-2, x^{4}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{3}+x^{2}-2, x^{4}\right\rangle}, \frac{\mathbb{Z}_{2}[x, y]}{\left\langle x^{3}, x y, y^{2}-x^{2}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{3}, x^{2}-2 x\right\rangle}, \frac{\mathbb{Z}_{8}[x]}{\left\langle x^{2}-4,2 x\right\rangle}, \\
& \frac{\mathbb{Z}_{4}[x, y]}{\left\langle x^{3}, x^{2}-2, x y, y^{2}-2, y^{3}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{2}\right\rangle}, \frac{\mathbb{Z}_{4}[x, y]}{\left\langle x^{2}, y^{2}, x y-2\right\rangle}, \frac{\mathbb{Z}_{2}[x, y]}{\left\langle x^{2}, y^{2}\right\rangle}, \mathbb{Z}_{27}, \frac{\mathbb{Z}_{3}[x]}{\left\langle x^{3}\right\rangle}, \frac{\mathbb{Z}_{9}[x]}{\left\langle x^{2}-3, x^{3}\right\rangle}, \frac{\mathbb{Z}_{9}[x]}{\left\langle x^{2}+3, x^{3}\right\rangle} .
\end{aligned}
$$

Theorem 3.3. [12, Theorem 3.7] Let $R=F_{1} \times \cdots \times F_{n}$ be a finite ring, where each F_{i} is a field and $n \geq 2$. Then $\Gamma(R)$ is planar if and only if R is isomorphic to one of the following rings: $\mathbb{Z}_{2} \times F, \mathbb{Z}_{3} \times F, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$ where F is a finite field.

Theorem 3.4. Let (R, \mathfrak{m}) be a finite commutative local ring with identity. Then $E G(R)$ is planar if and only if R is isomorphic to one of the following rings: \mathbb{Z}_{4}, $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle}, \mathbb{Z}_{9}, \frac{\mathbb{Z}_{3}[x]}{\left\langle x^{2}\right\rangle}, \mathbb{Z}_{8}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{3}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{3}, x^{2}-2\right\rangle}, \frac{\mathbb{Z}_{2}[x, y]}{\left\langle x^{2}, x y, y^{2}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle 2 x, x^{2}\right\rangle}, \frac{\mathbb{F}_{4}[x]}{\left\langle x^{2}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{2}+x+1\right\rangle}, \mathbb{Z}_{25}$ or $\frac{\mathbb{Z}_{5}[x]}{\left\langle x^{2}\right\rangle}$.

Proof. Since $E G(R)$ is complete, the proof follows from Theorem 3.1 and Table 1.1.

Theorem 3.5. Let $R=F_{1} \times \cdots \times F_{n}$ be a finite ring, where each F_{i} is a field and $n \geq 2$. Then $E G(R)$ is planar if and only if R is isomorphic to one of the following rings: $\mathbb{Z}_{2} \times F, \mathbb{Z}_{3} \times F, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$ where F is a finite field.

Proof. Since R is reduced and by Theorem 1.3, $\Gamma(R)=E G(R)$. Now the proof follows from Theorem 3.3.

Note that if $R \cong R_{1} \times \cdots \times R_{n}$ is a commutative ring with identity where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq 0$ and $n \geq 2$, then $K_{5,5}$ is a subgraph of $E G(R)$ and hence $\gamma(E G(R)) \geq 3$. Hence if $\gamma(E G(R))=0$ or 1 , then one of the component R_{i} must be a field.

Theorem 3.6. Let $R \cong R_{1} \times \cdots \times R_{n} \times F_{1} \times \cdots \times F_{m}$ be a finite commutative ring with identity, where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring but not field, F_{j} is a field and $m, n \geq 1$. Then $E G(R)$ is planar if and only if R is isomorphic to one of the following rings: $\mathbb{Z}_{4} \times \mathbb{Z}_{2}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle} \times \mathbb{Z}_{2}$.

Proof. Suppose $E G(R)$ is planar. Note that $\left|\mathfrak{m}_{i}^{*}\right| \geq 1$ and $\left|R_{i}^{*}\right| \geq 3$ for all i, $1 \leq i \leq n$. Suppose $n+m \geq 3$. Consider $\Omega=\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}$, where $x_{1}=\left(a_{1}, 0, \ldots, 0\right), x_{2}=\left(a_{2}, 0, \ldots, 0\right), x_{3}=\left(a_{3}, 0, \ldots, 0\right), y_{1}=(0,1,0, \ldots, 0), y_{2}=$ $(0,0,1,0, \ldots, 0), y_{3}=(0,1,1,0 \ldots, 0) \in Z(R)^{*}$, where $a_{i} \in R_{1}^{*}$. Then the subgraph induced by Ω of $E G(R)$ contains $K_{3,3}$ as a subgraph, a contradiction. Hence $n+m=2$ and so $R \cong R_{1} \times F_{1}$.

Suppose $\left|\mathfrak{m}_{1}^{*}\right| \geq 2$. Then $\left|R_{1}^{\times}\right| \geq 3$. Note that $\left|F_{1}\right| \geq 2$. Since R_{1} is local, $\operatorname{ann}(x)=\mathfrak{m}_{1}$ for some $x \in \mathfrak{m}_{1}^{*}$. Consider $\Omega^{\prime}=\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}$, where $a_{1}=$ $\left(u_{1}, 0\right), a_{2}=\left(u_{2}, 0\right), a_{3}=\left(u_{3}, 0\right), b_{1}=(0,1), b_{2}=(x, 0), b_{3}=(x, 1) \in Z(R)^{*}$, where u_{1}, u_{2} and u_{3} are distinct units in R_{1}. Then $a_{i} b_{1}=0$ in R for $i=1,2,3$. Clearly $\operatorname{ann}\left(a_{i} b_{j}\right)=\mathfrak{m}_{1} \times F_{1}$, which is essential and so a_{i} is adjacent to b_{j} in $E G(R)$ for $i=1,2,3$ and $j=2,3$. From this, we get $K_{3,3}$ is a subgraph of $\left\langle\Omega^{\prime}\right\rangle$ in $E G(R)$, a contradiction. Hence $\left|\mathfrak{m}_{1}^{*}\right|=1$ and so $R \cong \mathbb{Z}_{4}$ or $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle}$.

Suppose $\left|F_{1}\right| \geq 3$. Let $a \in \mathfrak{m}_{1}^{*}$ such that $a^{2}=0$. Consider $\Omega^{\prime \prime}=\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right.$, $\left.y_{3}\right\}$, where $x_{1}=(1,0), x_{2}=(a, 0), x_{3}=(u, 0), y_{1}=(0,1), y_{2}=(0, v), y_{3}=(a, 1) \in$ $Z(R)^{*}$, where $1 \neq u \in R_{1}^{\times}$and $1 \neq v \in F_{1}^{*}$. Then the subgraph induced by $\Omega^{\prime \prime}$ in $E G(R)$ contains $K_{3,3}$ as a subgraph, a contradiction. Hence $\left|F_{1}\right|=2$ and so $F_{1} \cong \mathbb{Z}_{2}$.

4 Genus of $E G(R)$

In this section, we characterize all finite commutative rings R with identity whose essential graph $E G(R)$ is toroidal. The following results are useful in this section.

Lemma 4.1. [20] $\gamma\left(K_{n}\right)=\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil$ if $n \geq 3$. In particular, $\gamma\left(K_{n}\right)=1$ if $n=5,6,7$.
Lemma 4.2. [20] $\gamma\left(K_{m, n}\right)=\left\lceil\frac{(m-2)(n-2)}{4}\right\rceil$ if $m, n \geq 2$. In particular, $\gamma\left(K_{4,4}\right)=$ $\gamma\left(K_{3, n}\right)=1$ if $n=3,4,5,6$. Also $\gamma\left(K_{5,4}\right)=\gamma\left(K_{6,4}\right)=\gamma\left(K_{m, 3}\right)=2$ if $m=7,8,9,10$.
Theorem 4.3. [17, Theorem 3.5.2] Let (R, \mathfrak{m}) be a finite local ring and $\Gamma(R)$ be the zero-divisor graph of R. Then $\gamma(\Gamma(R))=1$ if and only if R is isomorphic to one of the following rings:
$\mathbb{Z}_{49}, \frac{\mathbb{Z}_{7}[x]}{\left\langle x^{2}\right\rangle}, \frac{\mathbb{Z}_{2}[x, y]}{\left\langle x^{3}, x y, y^{2}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{3}, 2 x\right\rangle}, \frac{\mathbb{Z}_{4}[x, y]}{\left\langle x^{3}, x^{2}-2, x y, y^{2}\right\rangle}, \frac{\mathbb{Z}_{8}[x]}{\left\langle x^{2}, 2 x\right\rangle}, \frac{\mathbb{F}_{8}[x]}{\left\langle x^{2}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{3}+x+1\right\rangle}, \frac{\mathbb{Z}_{4}[x, y]}{\left\langle 2 x, 2 y, x^{2}, x y, y^{2}\right\rangle}$, $\frac{\mathbb{Z}_{2}[x, y, z]}{\langle x, y, z\rangle^{2}}, \mathbb{Z}_{32}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{5}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{3}-2, x^{5}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{4}-2, x^{5}\right\rangle}, \frac{\mathbb{Z}_{8}[x]}{\left\langle x^{2}-2, x^{5}\right\rangle}, \frac{\mathbb{Z}_{8}[x]}{\left\langle x^{2}-2 x+2, x^{5}\right\rangle}, \frac{\mathbb{Z}_{8}[x]}{\left\langle x^{2}+2 x-2, x^{5}\right\rangle}$.
Theorem 4.4. [19, Theorem 3.1] Let $R=F_{1} \times \cdots F_{n}$ where each F_{i} is a finite field. Then $\gamma(\Gamma(R))=1$ if and only if R is isomorphic to one of the following rings:
$\mathbb{F}_{4} \times \mathbb{F}_{4}, \mathbb{F}_{4} \times \mathbb{Z}_{5}, \mathbb{Z}_{5} \times \mathbb{Z}_{5}, \mathbb{F}_{4} \times \mathbb{Z}_{7}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{F}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{7}$, $\mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{F}_{4}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Theorem 4.5. Let (R, \mathfrak{m}) be a finite commutative local ring with identity. Then $\gamma(E G(R))=1$ if and only if R is isomorphic to one of the following rings:

$$
\begin{aligned}
& \mathbb{Z}_{16}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{4}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{4}, x^{2}-2\right\rangle}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{3}-2, x^{4}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{4}, x^{3}+x^{2}-2\right\rangle}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{3}, x^{2}-2 x\right\rangle}, \frac{\mathbb{Z}_{2}[x, y]}{\left\langle x^{3}, x y, y^{2}-x^{2}\right\rangle}, \frac{\mathbb{Z}_{8}[x]}{\left\langle x^{2}-4,2 x\right\rangle}, \\
& \frac{\mathbb{Z}_{4}[x, y]}{\left\langle x^{3}, x y, x^{2}-2, y^{2}-2, y^{3}\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{2}\right\rangle}, \frac{\mathbb{Z}_{4}[x, y]}{\left\langle x^{2}, y^{2}, x y-2\right\rangle}, \frac{\mathbb{Z}_{2}[x, y]}{\left\langle x^{2}, y^{2}\right\rangle}, \frac{\mathbb{Z}_{2}[x, y]}{\left\langle x^{2}, y^{2}, x y\right\rangle}, \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{3}, 2 x\right\rangle}, \frac{\mathbb{Z}_{4}[x, y]}{\left\langle x^{3}, x^{2}-2, x y, y^{2}\right\rangle}, \frac{\mathbb{Z}_{8}[x]}{\left\langle x^{2}, 2 x\right\rangle}, \frac{\mathbb{F}_{8}[x]}{\left\langle x^{2}\right\rangle} \text {, } \\
& \frac{\mathbb{Z}_{4}[x]}{\left\langle x^{3}+x+1\right\rangle}, \frac{\mathbb{Z}_{4}[x, y]}{\left\langle 2 x, 2 y, x^{2}, y^{2}, x y\right\rangle}, \frac{\mathbb{Z}_{2}[x, y, z]}{\langle x, y, z\rangle^{2}}, \mathbb{Z}_{49} \text { or } \frac{\mathbb{Z}_{7}[x]}{\left\langle x^{2}\right\rangle} \text {. }
\end{aligned}
$$

Proof. Since $E G(R)$ is complete, by Lemma 4.1, $5 \leq\left|Z(R)^{*}\right| \leq 7$. Now the proof follows from Table 1.1.

Theorem 4.6. Let $R=F_{1} \times \cdots \times F_{n}$ be a finite ring, where each F_{i} is a field and $n \geq 2$. Then $\gamma(E G(R))=1$ if and only if R is isomorphic to one of the following rings: $\mathbb{F}_{4} \times \mathbb{F}_{4}, \mathbb{F}_{4} \times \mathbb{Z}_{5}, \mathbb{Z}_{5} \times \mathbb{Z}_{5}, \mathbb{F}_{4} \times \mathbb{Z}_{7}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{F}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{7}$, $\mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{F}_{4}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Proof. Since R is a reduced ring, by Theorem 1.3, $E G(R)=\Gamma(R)$. Then the proof completes by Theorem 4.4.

Theorem 4.7. Let $R=R_{1} \times \cdots \times R_{n} \times F_{1} \times \cdots \times F_{m}$ be a finite commutative ring with identity, where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq 0, F_{j}$ is a field and $m, n \geq 1$. Then $\gamma(E G(R))=1$ if and only if R is isomorphic to $\mathbb{Z}_{4} \times \mathbb{Z}_{3}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle} \times \mathbb{Z}_{3}$, $\mathbb{Z}_{4} \times \mathbb{F}_{4}, \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle} \times \mathbb{F}_{4}$.

Proof. By Fig. 4.2 and Fig. 4.3, $\gamma(E G(R))=1$ where R is isomorphic to $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$, $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle} \times \mathbb{Z}_{3}, \mathbb{Z}_{4} \times \mathbb{F}_{4}$, or $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle} \times \mathbb{F}_{4}$.

Assume $\gamma(E G(R))=1$. Suppose $n+m \geq 3$. Since R_{1} is local, there exists $a \in \mathfrak{m}_{1}^{*}$ with ann $(a)=\mathfrak{m}_{1}$. Consider $\Omega=\left\{x_{1}, \ldots, x_{10}\right\}$, where $x_{1}=(1,0, \ldots, 0), x_{2}=$ $(a, 0, \ldots, 0), x_{3}=(u, 0, \ldots, 0), x_{4}=(0,1,0, \ldots, 0), x_{5}=(0,0,1,0, \ldots, 0), x_{6}=$ $(0,1,1,0, \ldots, 0), x_{7}=(a, 1,0, \ldots, 0), x_{8}=(a, 0,1,0 \ldots, 0), x_{9}=(a, 1,1,0, \ldots, 0)$, $x_{10}=(1,0,1,0, \ldots, 0), 1 \neq u \in R_{1}^{\times}$. Consider $G_{1}=\langle\Omega\rangle$. Then G_{1} is a subgraph of $E G(R)$ and G_{1} contains G^{\prime} in Fig. 4.1 as a subgraph. By Fig. 4.1, $K_{3,6}$ is a subgraph of G^{\prime} and hence by Theorem 4.2, $\gamma\left(G^{\prime}\right) \geq 1$.

Assume that $\gamma\left(G^{\prime}\right)=1$. Fix an embedding of $K_{3,6}$ on the surface of torus. By Euler's formula, there are 9 faces in the embedding of $K_{3,6}$, say $\left\{F_{1}^{\prime}, \ldots, F_{9}^{\prime}\right\}$. Let f_{i} be the length of the face F_{i}^{\prime}. Note that $\sum_{i=1}^{9} f_{i}=2 e=36$ and $f_{i} \geq 4$ for every i. Thus $f_{i}=4$ for every i. Let $S=\left\{x_{7}, x_{8},\left[x_{4}, x_{10}\right]\right\} \subset V\left(G^{\prime}\right)$. Further, the subgraph H of G^{\prime} induced by the vertices in S is $K_{3}, E(H) \cap E\left(K_{3,6}\right)=\emptyset$. Since K_{3} cannot be embedded in the torus along with an embedding with only rectangles as faces, one cannot have an embedding of H and $K_{3,6}$ together in the torus. This implies that $\gamma\left(G^{\prime}\right) \geq 2$. Since G^{\prime} is a subgraph of $E G(R), \gamma(E G(R)) \geq 2$. Hence $n+m=2$, $R \cong R_{1} \times F_{1}$ and by Theorem 3.6, $R \not \approx Z_{4} \times \mathbb{Z}_{2}$ and $\frac{\mathbb{Z}_{3}[x]}{\left\langle x^{2}\right\rangle} \times \mathbb{Z}_{2}$.

Fig. 4.1 Graph G^{\prime}
Now we claim that if $\left|\mathfrak{m}_{1}^{*}\right| \geq 2$, then $\gamma(E G(R)) \geq 2$. Suppose $\left|\mathfrak{m}_{1}^{*}\right|=2$. Then $R_{1} \cong \mathbb{Z}_{9}$ or $\frac{\mathbb{Z}_{3}[x]}{\left\langle x^{2}\right\rangle}$ and hence $\left|R_{1}^{\times}\right|=6$. Let $a, b \in \mathfrak{m}_{1}^{*}$ such that $a b=0$ and $\operatorname{ann}(a)=\mathfrak{m}_{1}$. Consider $\Omega^{\prime}=\left\{x_{1}, \ldots, x_{7}, y_{1}, y_{2}, y_{3}\right\} \subseteq Z(R)^{*}$ where $x_{1}=\left(u_{1}, 0\right), x_{2}=\left(u_{2}, 0\right)$, $x_{3}=\left(u_{3}, 0\right), x_{4}=\left(u_{4}, 0\right), x_{5}=\left(u_{5}, 0\right), x_{6}=\left(u_{6}, 0\right), x_{7}=(b, 0), y_{1}=(0,1)$, $y_{2}=(a, 0), y_{3}=(a, 1)$. Then the subgraph induced by Ω^{\prime} of $E G(R)$ contains $K_{3,7}$ as a subgraph and by Lemma $4.2, \gamma(E G(R)) \geq 2$, a contradiction.

Suppose $\left|\mathfrak{m}_{1}^{*}\right| \geq 3$. Then $\left|R_{1}^{\times}\right| \geq 4$. Let $x, y, z \in \mathfrak{m}_{1}^{*}$ such that $x y=y z=0$ and $\operatorname{ann}(y)=\mathfrak{m}_{1}$ and let $\left\{v_{1}, \ldots, v_{4}\right\} \subseteq R_{1}^{\times}$. Consider $\Omega^{\prime \prime}=\left\{a_{1}, \ldots, a_{5}, b_{1}, \ldots, b_{4}\right\} \subseteq$ $Z(R)^{*}$, where $a_{1}=\left(v_{1}, 0\right), a_{2}=\left(v_{2}, 0\right), a_{3}=\left(v_{3}, 0\right), a_{4}=\left(v_{4}, 0\right), a_{5}=(x, 0), b_{1}=$ $(0,1), b_{2}=(y, 0), b_{3}=(y, 1), b_{4}=(x, 0), b_{5}=(x, 1)$. Then $a_{i} b_{1}=0$ for $1 \leq i \leq 5$ and $a_{5} b_{2}=a_{5} b_{3}=0$. Since $b_{4} \in \operatorname{Nil}(R)^{*}$, by Theorem 1.4, $\operatorname{ann}\left(a_{i} b_{4}\right)=(y) \times F_{1}$ is essential for $1 \leq i \leq 5$. Also $\operatorname{ann}\left(a_{i} b_{2}\right)=\mathfrak{m}_{1} \times F_{1}=\operatorname{ann}\left(a_{i} b_{3}\right)$ for $1 \leq i \leq 4$. Then the subgraph induced by $\Omega^{\prime \prime}$ of $E G(R)$ contains $K_{4,5}$ as a subgraph and by Lemma 4.2, $\gamma(E G(R)) \geq 2$, a contradiction.

Hence we conclude that $\left|\mathfrak{m}_{1}^{*}\right|=1$ and so $R_{1} \cong \mathbb{Z}_{4}$ or $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle}$. By Theorem 3.6, $F_{1} \nexists \mathbb{Z}_{2}$ and so $\left|F_{1}\right| \geq 3$. Suppose $\left|F_{1}\right| \geq 5$. Let $a \in \mathfrak{m}_{1}^{*}$ with $a^{2}=0$. Consider $S=\left\{x_{1}, \ldots, x_{11}\right\} \subset Z(R)^{*}$, where $x_{1}=\left(u_{1}, 0\right), x_{2}=\left(u_{2}, 0\right), x_{3}=(a, 0), x_{4}=$ $\left(0, v_{1}\right), x_{5}=\left(0, v_{2}\right), x_{6}=\left(0, v_{3}\right), x_{7}=\left(0, v_{4}\right), x_{8}=\left(a, v_{1}\right), x_{9}=\left(a, v_{2}\right), x_{10}=\left(a, v_{3}\right)$, $x_{11}=\left(a, v_{4}\right)$ and $u_{1}, u_{2} \in R_{1}^{\times}, v_{j} \in F_{1}^{*}$. Then the subgraph induced by S of $E G(R)$ contains $K_{3,8}$ as a subgraph and by Lemma 4.2, $\gamma(E G(R)) \geq 2$, a contradiction. Hence F_{1} is isomorphic to either \mathbb{Z}_{3} or \mathbb{F}_{4}.

Fig. $4.2: E G\left(\mathbb{Z}_{4} \times \mathbb{Z}_{3}\right) \cong E G\left(\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle} \times \mathbb{Z}_{3}\right)$ in S_{1}

Fig. 4.3: $E G\left(\mathbb{Z}_{4} \times \mathbb{F}_{4}\right) \cong E G\left(\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle} \times \mathbb{F}_{4}\right)$ in S_{1}

5 Crosscap of $E G(R)$

In this section, we characterize all finite commutative rings R with identity whose essential graph $E G(R)$ is projective. The following result is very useful for further reference in this section.

Theorem 5.1. [7] Let m, n be integers and for a real number $x,\lceil x\rceil$ is the least integer that is greater than or equal to x. Then
(i) $\bar{\gamma}\left(K_{n}\right)= \begin{cases}\left\lceil\frac{1}{6}(n-3)(n-4)\right\rceil & \text { if } n \geq 3 \text { and } n \neq 7 ; \\ 3 & \text { if } n=7\end{cases}$
(ii) $\bar{\gamma}\left(K_{m, n}\right)=\left\lceil\frac{1}{2}(m-2)(n-2)\right\rceil$, where $m, n \geq 2$.

Theorem 5.2. [9] Let $R=F_{1} \times \cdots \times F_{n}$, where each F_{i} is finite field. Then $\bar{\gamma}(\Gamma(R))=1$ if and only if R is isomorphic to one of the following rings: $\mathbb{F}_{4} \times \mathbb{F}_{4}$, $\mathbb{F}_{4} \times \mathbb{F}_{5}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{F}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{F}_{5}, \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Theorem 5.3. Let R be a finite local ring with identity. Then $\bar{\gamma}(E G(R))=1$ if and only if R is isomorphic to one of the following rings: $\mathbb{Z}_{49}, \frac{\mathbb{Z}_{7}[x]}{\left\langle x^{2}\right\rangle}$.

Proof. Since $E G(R)$ is complete, proof follows from Theorem 5.1.
Theorem 5.4. Let $R=F_{1} \times \cdots \times F_{n}$, where each F_{i} is finite field. Then $\bar{\gamma}(E G(R))=$ 1 if and only if R is isomorphic to one of the following rings: $\mathbb{F}_{4} \times \mathbb{F}_{4}, \mathbb{F}_{4} \times \mathbb{F}_{5}$, $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{F}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{F}_{5}, \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Proof. The proof follows from Theorems 1.3 and 5.2.
By slight modifications in the proof of Theorem 3.6 with Lemma 5.1 and Fig. 5.1, one can prove the following theorem.

Theorem 5.5. Let $R=R_{1} \times \cdots \times R_{n} \times F_{1} \times \cdots \times F_{m}$, where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring and F_{j} is finite field and $n, m \geq 1$. Then $\bar{\gamma}(E G(R))=1$ if and only if R is isomorphic to either $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$ or $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle} \times \mathbb{Z}_{3}$.

Fig. 5.1 Embedding of $E G\left(\mathbb{Z}_{4} \times \mathbb{Z}_{3}\right) \cong E G\left(\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}\right\rangle} \times \mathbb{Z}_{3}\right)$ in \bar{S}_{1}

Acknowledgments

The authors would like to thank the referees for careful reading of the manuscript and helpful comments. The work reported here is supported by the INSPIRE programme (IF 140700) of the Department of Science and Technology, Government of India, for the third author.

References

[1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447.
[2] S. Akbari, H. R. Maimani and S. Yassemi, When a zero-divisor graph is planar or a complete r-partite graph, J. Algebra 270 (2003), 169-180.
[3] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42 (2014), 108-121.
[4] J. Battle, F. Harary, Y. Kodama and J. W. T. Youngs, Additivity of the genus of a graph, Bull. Amer. Math. Soc. 68 (1962), 565-568.
[5] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226.
[6] R. Belshoff, and J. Chapman, Planar zero-divisor graphs, J. Algebra 316 (1) (2007), 471-480.
[7] A. Bouchet, Orientable and non-orientable genus of the complete bipartite graph, J. Combin. Theory, Ser. B 24 (1) (1978), 24-33.
[8] G. Chartrand and L. Lesniak, Graphs and Digraphs, Monterey: Wadsworth and Brooks/Cole, 1986.
[9] H. J. Chiang-Hsieh, Classification of rings with projective zero-divisor graphs, J. Algebra 307 (2008), 2789-2802.
[10] W. Massey, Algebraic Topology: An Introduction, New York: Harcourt, Brace \& World, Inc, 1967.
[11] M. J. Nikmehr, R. Nikandish and M. Bakhtyiaria, On the Essential Graph of a Commutative Ring, J. Algebra Appl. 16 (7) (2017), 1750132 (14pp.).
[12] N. O. Smith, Planar zero-divisor graphs, Int. J. Comm. Rings 2 (4) (2002), 177188.
[13] K. Selvakumar and V. Ramanathan, Classification of nonlocal rings with genus one 3-zero-divisor hypergraphs, Comm. Algebra 45 (1) (2017), 275-284.
[14] K. Selvakumar and M. Subajini, Commutative rings with genus two annihilator graphs, Comm. Algebra 46 (1) (2018), 28-37.
[15] T. Tamizh Chelvam, K. Selvakumar and V. Ramanathan, On the planarity of the k-zero-divisor hypergraphs, AKCE Int. J. Graphs Combin. 12 (2) (2015), 169-176.
[16] T. Tamizh Chelvam and K. Selvakumar, On the genus of the annihilator graph of a commutative ring, Algebra \& Discrete Math. 24 (2) (2017), 191-208.
[17] H. J. Wang, Zero-divisor graphs of genus one, J. Algebra 304 (2) (2006), 666678.
[18] H.J. Wang and N.O. Smith, Commutative rings with toroidal zero-divisor graphs, Houston J. Math. 36 (1) (2010), 1-31.
[19] C. Wickham, Classification of rings with genus one zero-divisor graphs, Comm. Algebra 36 (2008), 325-345.
[20] A. T. White, Graphs, Groups and Surfaces, Amsterdam: North-Holland, 1973.
(Received 11 Mar 2018; revised 28 Dec 2018)

