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Abstract

Let R be a commutative ring with identity and let Z(R) be the set of zero-
divisors of R. The essential graph of R is defined as the graph EG(R)
with the vertex set Z(R)∗ = Z(R) \ {0} such that two distinct vertices
x and y are adjacent if and only if ann(xy) is an essential ideal. In this
paper, we classify all finite commutative rings with identity for which the
genus and crosscap of EG(R) are at most one.

1 Introduction

The study linking commutative ring theory with graph theory was started with the
concept of the zero-divisor graph of a commutative ring. Let R be a commutative
ring and Z(R)∗ be the set of all non-zero zero-divisors of R. The zero-divisor graph
of R, denoted Γ(R), is the simple graph with Z(R)∗ as the vertex set such that two
distinct vertices x and y are joined by an edge if and only if xy = 0. This definition
was introduced by Beck, Anderson and Livingston in [1, 5] and later was studied
extensively in [2, 6, 9, 12, 17, 18, 19]. For a ∈ R, let ann(a) = {d ∈ R : da = 0}
be the annihilator of a in R. In 2014, Badawi [3] introduced the annihilator graph
AG(R) as the simple graph with vertex set Z(R)∗ such that two distinct vertices x
and y are adjacent if and only if ann(xy) �= ann(x) ∪ ann(y). One can see that the
zero-divisor graph Γ(R) is a subgraph of the annihilator graph AG(R). In view of
this, Nikmehr et al. [11] have introduced and investigated a graph called the essential
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graph of a commutative ring. A non-zero ideal I of R is called essential, denoted by
I ≤e R, if I has a non-zero intersection with any non-zero ideal of R. The essential
graph of R is defined as the graph EG(R) with the vertex set Z(R)∗ = Z(R)� {0}
such that distinct vertices x and y are adjacent if and only if ann(xy) is an essential
ideal. The authors in [11] discussed some basic properties of EG(R) and studied
the affinity between essential graph and zero-divisor graph. One can see that the
zero-divisor graph Γ(R) is a subgraph of the essential graph EG(R).

The main objective of topological graph theory is to embed a graph into a surface.
There are many studies [2, 6, 9, 12, 14, 15, 16, 18, 19] concerning orientable and non-
orientable embeddings of the zero-divisor graph and other graphs. In this paper, we
classify all finite commutative rings with identity for which the genus and crosscap
of EG(R) are at most one.

Let Sg and S̄k denote the sphere with g handles and k crosscaps respectively,
where g and k are non-negative integers, that is Sg and S̄k are the oriented and
non-oriented with g handles and k crosscaps. The genus γ(G) of a simple graph G
is the minimum g such that G can be embedded in Sg. Similarly, crosscap number
γ(G) is the minimum k such that G can be embedded in S̄k. When considering
orientability, the surfaces Sg and the sphere are orientable S̄k is not orientable. A
graph G is planar if γ(G) = 0. A graph G such that γ(G) = 1 is called a toroidal
graph and γ(G) = 1 is called a projective graph. It is easy to see that γ(H) ≤ γ(G)
and γ(H) ≤ γ(G) for all subgraphs H of G. One of the most remarkable theorems
in topological graph theory, known as Euler’s formula, states that if G is a finite
connected graph with n vertices, e edges and of genus g, then n − e + f = 2 − 2g,
where f is the number of faces obtained when G is cellularly embedded in Sg.

Note that the zero divisor graph Γ(R) is a subgraph of EG(R). In [11] it has
been shown that for any reduced ring R, EG(R) is identical to Γ(R). Using this
result, one can establish that for any reduced ring, EG(R) is complete if and only if
Γ(R) is complete if and only if R ∼= Z2 × Z2.

By a graph G = (V,E), we mean an undirected simple graph with vertex set
V and edge set E. A graph in which each pair of distinct vertices is joined by the
edge is called a complete graph. We use Kn to denote the complete graph with n
vertices. An r-partite graph is one whose vertex set can be partitioned into r subsets
so that no edge has both ends in any one subset. A complete r-partite graph is one
in which each vertex is joined to every vertex that is not in the same subset. The
complete bipartite graph (2-partite graph) with part sizes m and n is denoted by
Km,n. If G = K1,n where n ≥ 1, then G is a star graph. A split graph is a simple
graph in which the vertices can be partitioned into a clique and an independent set.
A graph G is said to be unicyclic if it contains a unique cycle. An undirected graph
is an outerplanar graph if it can be drawn in the plane without crossings in such a
way that all of the vertices belong to the unbounded face of the drawing. There is a
characterization for outerplanar graphs that says that a graph is outerplanar if and
only if it does not contain a subdivision of K4 or K2,3. An edge e = uv of G is said
to be contracted if it is deleted and its ends are identified and is denoted by [u, v].
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Throughout this paper, we assume that R is a finite commutative ring with
identity, Z(R) its set of zero-divisors and Nil(R) its set of nilpotent elements, R× its
group of units, Fq denote the field with q elements, and R∗ = R − {0}. For every
ideal I of R, we denote the annihilator of I by ann(I). The following results are
useful in the subsequent sections.

Theorem 1.1. [1, Theorem 2.10] Let R be a finite commutative ring. If Γ(R)
is complete, then either R ∼= Z2 × Z2 or R is local with char R = p or p2, and
|Γ(R)| = pn − 1, where p is prime and n ≥ 1.

Theorem 1.2. [1, Theorem 2.13] Let R be a finite commutative ring with |Γ(R)| ≥ 4.
Then Γ(R) is a star graph if and only if R ∼= Z2 × F , where F is a finite field.

Theorem 1.3. [11, Theorem 2.2] Let R be a reduced ring. Then EG(R) = Γ(R).

Theorem 1.4. [11, Lemma 3.1] Let R be a non reduced commutative ring. Then
the following statements hold.
(i) For every x ∈ Nil(R)∗, x is adjacent to all other vertices.
(ii) EG(R)[Nil(R)∗] is a (induced) complete subgraph of EG(R).

In view of Theorem 1.4, if R is a local ring, then EG(R) is complete.

|Z(R)∗| Local Ring R EG(R)

1 Z4,
Z2[x]
〈x2〉 K1

2 Z9,
Z3[x]
〈x2〉 K2

3 Z8,
Z2[x]
〈x3〉 ,

Z4[x]
〈x3,x2−2〉 ,

F4[x]
〈x2〉 K3

Z4[x]
〈2x,x2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

Z4[x]
〈x2+x+1〉 K3

4 Z25,
Z5[x]
〈x2〉 K4

6 Z49,
Z7[x]
〈x2〉 K6

7 Z16,
Z2[x]
〈x4〉 ,

Z4[x]
〈x4,x2−2〉 ,

Z2[x]
〈x3−2,x4〉 K7

Z4[x]
〈x4,x3+x2−2〉 ,

Z2[x]
〈x3,x2−2x〉 ,

Z2[x,y]
〈x3,xy,y2−x2〉 K7

Z8[x]
〈x2−4,2x〉 ,

Z4[x,y]
〈x3,xy,x2−2,y2−2,y3〉 ,

Z4[x]
〈x2〉 K7

Z4[x,y]
〈x2,y2,xy−2〉 ,

Z2[x,y]
〈x2,y2〉 ,

Z2[x,y]
〈x2,y2,xy〉 K7

Z4[x]
〈x3,2x〉 ,

Z4[x,y]
〈x3,x2−2,xy,y2〉 ,

Z8[x]
〈x2,2x〉 ,

F8[x]
〈x2〉 K7

Z4[x]
〈x3+x+1〉 ,

Z4[x,y]
〈2x,2y,x2,y2,xy〉 ,

Z2[x,y,z]

〈x,y,z〉2 K7

Table 1.1
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2 Basic Properties of an Essential Graph

In this section, we study some fundamental properties of the essential graph. Espe-
cially we identify when the essential graph is isomorphic to some well-known graphs.

Remark 2.1. Note that Γ(R) is a subgraph of EG(R). Then by Theorems 1.1 and
1.4, R is a local ring or Z2 × Z2 if and only if EG(R) is complete. We list in Table
1.1, some small commutative rings R for which EG(R) is complete.

Remark 2.2. Let R be a reduced ring. Then EG(R) is a subgraph of AG(R).

Theorem 2.3. Let R be a finite commutative ring with identity but not a field. Then
EG(R) is a tree if and only if R is isomorphic to one of the following rings. Z4,
Z2[x]
〈x2〉 , Z9,

Z3[x]
〈x2〉 , or Z2 × F , where F is a finite field.

Proof. Since R is finite, R ∼= R1 × · · · × Rn, where each Ri is a local ring. Suppose
EG(R) is a tree. Suppose n ≥ 3. Then (1, 0, . . . , 0)−(0, 1, 0, . . . , 0)−(0, 0, 1, 0, . . . , 0)
− (1, 0, . . . , 0) is a cycle in EG(R), a contradiction. Hence n ≤ 2.

Suppose R ∼= R1×R2. If R1 is local with m1 �= {0}, then there exists x1 ∈ m∗
1 such

that ann(x1) = m1. Let x = (0, 1), y = (x1, 0) z = (x1, 1) and w = (1, 0) ∈ Z(R)∗.
Then x− y − z − w − x is a cycle in EG(R), a contradiction. Hence R1 and R2 are
fields and so EG(R) ∼= K|R1|−1,|R2|−1. Since EG(R) is tree, |R1| = 2 or |R2| = 2 and
so R ∼= Z2 × F , where F is a field.

Suppose R ∼= R1. Since R is not a field, Z(R) �= 0 and so EG(R) is complete.

Since EG(R) is a tree, we have |Z(R)∗| ≤ 2. Hence R ∼= Z4,
Z2[x]
〈x2〉 , Z9, or

Z3[x]
〈x2〉 .

Converse follows from Table 1.1 and Theorem 1.2.

Theorem 2.4. Let R be a finite commutative ring with identity but not a field. Then
EG(R) is unicyclic if and only if R is isomorphic to one of the following rings: Z8,
Z2[x]
〈x3〉 ,

Z4[x]
〈x3,x2−2〉 ,

Z4[x]
〈2x,x2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

F4[x]
〈x2〉 ,

Z4[x]
〈x2+x+1〉 , Z3 × Z3, Z2 × Z2 × Z2.

Proof. Assume that EG(R) is unicyclic. Since R is finite, R ∼= R1 × · · ·×Rn, where
each Ri is a local ring. Suppose n ≥ 4. Let x1 = (1, 0, 0, . . . , 0), x2 = (0, 1, 0, . . . , 0),
x3 = (0, 0, 1, 0, . . . , 0), x4 = (0, 0, 0, 1, 0, . . . , 0), y1 = (1, 1, 0, 0, . . . , 0) ∈ Z(R)∗. Then
x1 − x2 − x3 − x1 as well as x3 − y1 − x4 − x3 are two distinct cycles in EG(R), a
contradiction. Hence n ≤ 3.

Case 1. Suppose n = 3. Suppose |R1| ≥ 3. Then (1, 0, 0)−(0, 1, 0)−(0, 0, 1)−(1, 0, 0)
and (a, 0, 0)− (0, 1, 0)− (0, 0, 1)− (a, 0, 0) are cycles in EG(R) for some 1 �= a ∈ R∗

1,
a contradiction. Hence |Ri| = 2 for all i and so R ∼= Z2 × Z2 × Z2.

Case 2. Suppose n = 2. If m1 �= {0}, then there exists x ∈ m∗
1 such that ann(x) =

m1. Then (1, 0)− (x, 0)− (0, 1)− (1, 0) and (u, 0)− (x, 0)− (0, 1)− (u, 0) are cycles
in EG(R) for some 1 �= u ∈ R×

1 , a contradiction. Hence R1 and R2 are fields and so
EG(R) ∼= K|R1|−1,|R2|−1. Since EG(R) is unicyclic, R1

∼= Z3 and R2
∼= Z3.

Case 3. Suppose n = 1. Now R is a local ring but not a field. Then EG(R) is
complete. Since EG(R) is unicyclic, |Z(R)∗| = 3 and by Table 1.1, R is isomorphic

to one of the following rings: Z8,
Z2[x]
〈x3〉 ,

Z4[x]
〈x3,x2−2〉 ,

Z4[x]
〈2x,x2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

F4[x]
〈x2〉 ,

Z4[x]
〈x2+x+1〉 .
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Theorem 2.5. Let G be a connected graph. Then G is a split graph if and only if
G contains no induced subgraph isomorphic to 2K2, C4, C5.

Theorem 2.6. Let R be a finite commutative non-local ring with identity and |Z(R)∗|
≥ 2. Then EG(R) is a split graph if and only if R ∼= Z2 × F , where F is a field or
Z2 × Z2 × Z2.

Proof. Assume that EG(R) is a split graph. By the assumption on R, R ∼= R1×· · ·×
Rn where each Ri is local and n ≥ 2. If n ≥ 4, then (1, 1, 0, . . . , 0)−(0, 0, 1, 1, 0, . . . , 0)
and (1, 0, 1, 0 . . . , 0)− (0, 1, 0, 1, 0, . . . , 0) induce 2K2 in EG(R) and by Theorem 2.5,
EG(R) is not split, a contradiction. Hence n ≤ 3.

Case 1. Suppose that n = 3. If |R1| ≥ 3, then (1, 0, 0)−(0, 1, 1)−(u, 0, 0)−(0, 1, 0)−
(1, 0, 0) is a cycle of length 4 in EG(R) for some 1 �= u ∈ R×

1 , a contradiction. Hence
|Ri| = 2 for all i and hence R ∼= Z2 × Z2 × Z2.

Case 2. Suppose n = 2. If m1 �= {0}, then there exists x ∈ m∗
1 such that ann(x) =

m1. Consider Ω = {x1, x2, x3, x4} where x1 = (1, 0), x2 = (0, 1), x3 = (v, 0), x4 =
(x, 1), 1 �= v ∈ R×

1 . Clearly x1x2 = x2x3 = 0. Also ann(x1x4) = m1×R2 = ann(x3x4),
which is essential. Hence x1 − x2 − x3 − x4 − x1 is a cycle of length 4 in EG(R),
a contradiction. Thus R1 and R2 are fields and so EG(R) ∼= K|R1|−1,|R2|−1. Since
EG(R) is split, |R1|−1 = 1 or |R2|−1 = 1 and so R ∼= Z2×F where F is a field.

Theorem 2.7. Let R be a finite commutative ring with identity. Then EG(R) is

outerplanar if and only if R is isomorphic to one of the following rings: Z4,
Z2[x]
〈x2〉 ,

Z9,
Z3[x]
〈x2〉 , Z8,

Z2[x]
〈x3〉 ,

Z4[x]
〈x3,x2−2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

Z4[x]
〈2x,x2〉 ,

F4[x]
〈x2〉 ,

Z4[x]
〈x2+x+1〉 , Z2 × F, Z3 × Z3, where

F is a field or Z2 × Z2 × Z2.

Proof. Since R is finite, R ∼= R1×· · ·×Rn, where each Ri is a local ring. Assume that
EG(R) is outerplanar. Suppose n ≥ 4. Consider Ω = {x1, x2, x3, x4} where x1 =
(1, 0, 0, . . . , 0), x2 = (0, 1, 0, . . . , 0), x3 = (0, 0, 1, 0, . . . , 0), x4 = (0, 0, 0, 1, 0 . . . , 0).
Then the subgraph induced by Ω in EG(R) is isomorphic to K4, a contradiction.
Hence n ≤ 3.

Case 1. Assume that n = 3. Suppose |R1| ≥ 3. Consider Ω′ = {x1, x2, x3, x4, x5}
where x1 = (1, 0, 0), x2 = (a, 0, 0), x3 = (0, 1, 0), x4 = (0, 0, 1), x5 = (0, 1, 1),
1 �= a ∈ R∗

1. Then the subgraph induced by Ω′ in EG(R) contains K2,3 as a subgraph,
a contradiction. Therefore |Ri| = 2 for all i and R ∼= Z2 × Z2 × Z2.

Case 2. Assume that n = 2. If m1 �= {0}, then there exists x ∈ m∗
1 such that

ann(x) = m1 for some x ∈ R1. Consider the set Ω′′ = {y1, y2, y3, y4, y5} where
y1 = (1, 0), y2 = (x, 0), y3 = (u, 0), y4 = (x, 1), y5 = (0, 1), 1 �= u ∈ R×

1 . Then
the subgraph induced by Ω′′ in EG(R) contains K2,3 as a subgraph, a contradic-
tion. Hence R1 and R2 are fields and so EG(R) ∼= K|R1|−1,|R2|−1. Since EG(R) is
outerplanar, R is isomorphic to Z2 × F where F is a finite field or Z3 × Z3.

Case 3. Suppose that n = 1. Since R is local, EG(R) is complete. Since EG(R)
is outerplanar, 1 ≤ |Z(R)∗| ≤ 3 and hence R is isomorphic to one of the following
rings:
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Z4,
Z2[x]
〈x2〉 , Z8,

Z2[x]
〈x3〉 ,

Z4[x]
〈x3,x2−2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

Z4[x]
〈2x,x2〉 ,

F4[x]
〈x2〉 ,

Z4[x]
〈x2+x+1〉 , Z9,

Z3[x]
〈x2〉 .

3 Planarity of EG(R)

In this section, we characterize all finite commutative rings R with identity whose
essential graph EG(R) is planar. The followings results are useful in this section.

Theorem 3.1. ([8], Kuratowski) A graph G is planar if and only if it contains no
subdivision of K5 or K3,3.

Theorem 3.2. [17, Theorem 3.5.1] Let (R,m) be a finite local ring and Γ(R) be
the zero-divisor graph of R. Then Γ(R) is planar if and only if R is isomorphic to
one of the following rings:

Z4,
Z2[x]
〈x2〉 , Z9,

Z3[x]
〈x2〉 , Z8,

Z2[x]
〈x3〉 ,

Z4[x]
〈x3,x2−2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

Z4[x]
〈2x,x2〉 ,

F4[x]
〈x2〉 ,

Z4[x]
〈x2+x+1〉 , Z25,

Z5[x]
〈x2〉 ,

Z16,
Z2[x]
〈x4〉 ,

Z4[x]
〈x2−2,x4〉 ,

Z4[x]
〈x3−2,x4〉 ,

Z4[x]
〈x3+x2−2,x4〉 ,

Z2[x,y]
〈x3,xy,y2−x2〉 ,

Z4[x]
〈x3,x2−2x〉 ,

Z8[x]
〈x2−4,2x〉 ,

Z4[x,y]
〈x3,x2−2,xy,y2−2,y3〉 ,

Z4[x]
〈x2〉 ,

Z4[x,y]
〈x2,y2,xy−2〉 ,

Z2[x,y]
〈x2,y2〉 , Z27,

Z3[x]
〈x3〉 ,

Z9[x]
〈x2−3,x3〉 ,

Z9[x]
〈x2+3,x3〉 .

Theorem 3.3. [12, Theorem 3.7] Let R = F1×· · ·×Fn be a finite ring, where each
Fi is a field and n ≥ 2. Then Γ(R) is planar if and only if R is isomorphic to one
of the following rings: Z2 × F , Z3 × F , Z2 × Z2 × Z2, Z2 × Z2 × Z3 where F is a
finite field.

Theorem 3.4. Let (R,m) be a finite commutative local ring with identity. Then
EG(R) is planar if and only if R is isomorphic to one of the following rings: Z4,
Z2[x]
〈x2〉 , Z9,

Z3[x]
〈x2〉 , Z8,

Z2[x]
〈x3〉 ,

Z4[x]
〈x3,x2−2〉 ,

Z2[x,y]
〈x2,xy,y2〉 ,

Z4[x]
〈2x,x2〉 ,

F4[x]
〈x2〉 ,

Z4[x]
〈x2+x+1〉 , Z25 or Z5[x]

〈x2〉 .

Proof. Since EG(R) is complete, the proof follows from Theorem 3.1 and Table 1.1.

Theorem 3.5. Let R = F1 × · · · × Fn be a finite ring, where each Fi is a field and
n ≥ 2. Then EG(R) is planar if and only if R is isomorphic to one of the following
rings: Z2 × F , Z3 × F , Z2 × Z2 × Z2, Z2 × Z2 × Z3 where F is a finite field.

Proof. Since R is reduced and by Theorem 1.3, Γ(R) = EG(R). Now the proof
follows from Theorem 3.3.

Note that if R ∼= R1 × · · · × Rn is a commutative ring with identity where each
(Ri,mi) is a local ring with mi �= 0 and n ≥ 2, then K5,5 is a subgraph of EG(R)
and hence γ(EG(R)) ≥ 3. Hence if γ(EG(R)) = 0 or 1, then one of the component
Ri must be a field.
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Theorem 3.6. Let R ∼= R1×· · ·×Rn×F1×· · ·×Fm be a finite commutative ring with
identity, where each (Ri,mi) is a local ring but not field, Fj is a field and m,n ≥ 1.
Then EG(R) is planar if and only if R is isomorphic to one of the following rings:

Z4 × Z2,
Z2[x]
〈x2〉 × Z2.

Proof. Suppose EG(R) is planar. Note that |m∗
i | ≥ 1 and |R∗

i | ≥ 3 for all i,
1 ≤ i ≤ n. Suppose n + m ≥ 3. Consider Ω = {x1, x2, x3, y1, y2, y3}, where
x1 = (a1, 0, . . . , 0), x2 = (a2, 0, . . . , 0), x3 = (a3, 0, . . . , 0), y1 = (0, 1, 0, . . . , 0), y2 =
(0, 0, 1, 0, . . . , 0), y3 = (0, 1, 1, 0 . . . , 0) ∈ Z(R)∗, where ai ∈ R∗

1. Then the sub-
graph induced by Ω of EG(R) contains K3,3 as a subgraph, a contradiction. Hence
n +m = 2 and so R ∼= R1 × F1.

Suppose |m∗
1| ≥ 2. Then |R×

1 | ≥ 3. Note that |F1| ≥ 2. Since R1 is local,
ann(x) = m1 for some x ∈ m∗

1. Consider Ω′ = {a1, a2, a3, b1, b2, b3}, where a1 =
(u1, 0), a2 = (u2, 0), a3 = (u3, 0), b1 = (0, 1), b2 = (x, 0), b3 = (x, 1) ∈ Z(R)∗, where
u1, u2 and u3 are distinct units in R1. Then aib1 = 0 in R for i = 1, 2, 3. Clearly
ann(aibj) = m1 × F1, which is essential and so ai is adjacent to bj in EG(R) for
i = 1, 2, 3 and j = 2, 3. From this, we get K3,3 is a subgraph of 〈Ω′〉 in EG(R), a

contradiction. Hence |m∗
1| = 1 and so R ∼= Z4 or Z2[x]

〈x2〉 .

Suppose |F1| ≥ 3. Let a ∈ m∗
1 such that a2 = 0. Consider Ω′′ = {x1, x2, x3, y1, y2,

y3}, where x1 = (1, 0), x2 = (a, 0), x3 = (u, 0), y1 = (0, 1), y2 = (0, v), y3 = (a, 1) ∈
Z(R)∗, where 1 �= u ∈ R×

1 and 1 �= v ∈ F ∗
1 . Then the subgraph induced by Ω′′

in EG(R) contains K3,3 as a subgraph, a contradiction. Hence |F1| = 2 and so
F1

∼= Z2.

4 Genus of EG(R)

In this section, we characterize all finite commutative rings R with identity whose
essential graph EG(R) is toroidal. The following results are useful in this section.

Lemma 4.1. [20] γ(Kn) =
⌈
(n−3)(n−4)

12

⌉
if n ≥ 3. In particular, γ(Kn) = 1 if

n = 5, 6, 7.

Lemma 4.2. [20] γ(Km,n) =
⌈
(m−2)(n−2)

4

⌉
if m,n ≥ 2. In particular, γ(K4,4) =

γ(K3,n) = 1 if n = 3, 4, 5, 6. Also γ(K5,4) = γ(K6,4) = γ(Km,3) = 2 if m = 7, 8, 9, 10.

Theorem 4.3. [17, Theorem 3.5.2] Let (R,m) be a finite local ring and Γ(R) be the
zero-divisor graph of R. Then γ(Γ(R)) = 1 if and only if R is isomorphic to one of
the following rings:

Z49,
Z7[x]
〈x2〉 ,

Z2[x,y]
〈x3,xy,y2〉 ,

Z4[x]
〈x3,2x〉 ,

Z4[x,y]
〈x3,x2−2,xy,y2〉 ,

Z8[x]
〈x2,2x〉 ,

F8[x]
〈x2〉 ,

Z4[x]
〈x3+x+1〉 ,

Z4[x,y]
〈2x,2y,x2,xy,y2〉 ,

Z2[x,y,z]

〈x,y,z〉2 , Z32,
Z2[x]
〈x5〉 ,

Z4[x]
〈x3−2,x5〉 ,

Z4[x]
〈x4−2,x5〉 ,

Z8[x]
〈x2−2,x5〉 ,

Z8[x]
〈x2−2x+2,x5〉 ,

Z8[x]
〈x2+2x−2,x5〉 .

Theorem 4.4. [19, Theorem 3.1] Let R = F1 × · · ·Fn where each Fi is a finite
field. Then γ(Γ(R)) = 1 if and only if R is isomorphic to one of the following rings:
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F4 × F4, F4 × Z5, Z5 × Z5, F4 × Z7, Z2 × Z2 × F4, Z2 × Z2 × Z5, Z2 × Z2 × Z7,
Z2 × Z3 × Z3, Z3 × Z3 × Z3, Z2 × Z3 × F4 or Z2 × Z2 × Z2 × Z2.

Theorem 4.5. Let (R,m) be a finite commutative local ring with identity. Then
γ(EG(R)) = 1 if and only if R is isomorphic to one of the following rings:

Z16,
Z2[x]
〈x4〉 ,

Z4[x]
〈x4,x2−2〉 ,

Z2[x]
〈x3−2,x4〉 ,

Z4[x]
〈x4,x3+x2−2〉 ,

Z2[x]
〈x3,x2−2x〉 ,

Z2[x,y]
〈x3,xy,y2−x2〉 ,

Z8[x]
〈x2−4,2x〉 ,

Z4[x,y]
〈x3,xy,x2−2,y2−2,y3〉 ,

Z4[x]
〈x2〉 ,

Z4[x,y]
〈x2,y2,xy−2〉 ,

Z2[x,y]
〈x2,y2〉 ,

Z2[x,y]
〈x2,y2,xy〉 ,

Z4[x]
〈x3,2x〉 ,

Z4[x,y]
〈x3,x2−2,xy,y2〉 ,

Z8[x]
〈x2,2x〉 ,

F8[x]
〈x2〉 ,

Z4[x]
〈x3+x+1〉 ,

Z4[x,y]
〈2x,2y,x2,y2,xy〉 ,

Z2[x,y,z]

〈x,y,z〉2 , Z49 or Z7[x]
〈x2〉 .

Proof. Since EG(R) is complete, by Lemma 4.1, 5 ≤ |Z(R)∗| ≤ 7. Now the proof
follows from Table 1.1.

Theorem 4.6. Let R = F1 × · · · × Fn be a finite ring, where each Fi is a field and
n ≥ 2. Then γ(EG(R)) = 1 if and only if R is isomorphic to one of the following
rings: F4 ×F4, F4×Z5, Z5 ×Z5, F4×Z7, Z2 ×Z2 ×F4, Z2 ×Z2 ×Z5, Z2×Z2 ×Z7,
Z2 × Z3 × Z3, Z3 × Z3 × Z3, Z2 × Z3 × F4 or Z2 × Z2 × Z2 × Z2.

Proof. Since R is a reduced ring, by Theorem 1.3, EG(R) = Γ(R). Then the proof
completes by Theorem 4.4.

Theorem 4.7. Let R = R1 × · · · × Rn × F1 × · · · × Fm be a finite commutative
ring with identity, where each (Ri,mi) is a local ring with mi �= 0, Fj is a field and

m,n ≥ 1. Then γ(EG(R)) = 1 if and only if R is isomorphic to Z4 × Z3,
Z2[x]
〈x2〉 ×Z3,

Z4 × F4,
Z2[x]
〈x2〉 × F4.

Proof. By Fig. 4.2 and Fig. 4.3, γ(EG(R)) = 1 where R is isomorphic to Z4 × Z3,
Z2[x]
〈x2〉 × Z3, Z4 × F4, or

Z2[x]
〈x2〉 × F4.

Assume γ(EG(R)) = 1. Suppose n + m ≥ 3. Since R1 is local, there exists
a ∈ m∗

1 with ann(a) = m1. Consider Ω = {x1, . . . , x10}, where x1 = (1, 0, . . . , 0), x2 =
(a, 0, . . . , 0), x3 = (u, 0, . . . , 0), x4 = (0, 1, 0, . . . , 0), x5 = (0, 0, 1, 0, . . . , 0), x6 =
(0, 1, 1, 0, . . . , 0), x7 = (a, 1, 0, . . . , 0), x8 = (a, 0, 1, 0 . . . , 0), x9 = (a, 1, 1, 0, . . . , 0),
x10 = (1, 0, 1, 0, . . . , 0), 1 �= u ∈ R×

1 . Consider G1 = 〈Ω〉. Then G1 is a subgraph of
EG(R) and G1 contains G

′ in Fig. 4.1 as a subgraph. By Fig. 4.1, K3,6 is a subgraph
of G′ and hence by Theorem 4.2, γ(G′) ≥ 1.

Assume that γ(G′) = 1. Fix an embedding of K3,6 on the surface of torus. By
Euler’s formula, there are 9 faces in the embedding of K3,6, say {F ′

1, . . . , F
′
9}. Let

fi be the length of the face F ′
i . Note that

9∑
i=1

fi = 2e = 36 and fi ≥ 4 for every i.

Thus fi = 4 for every i. Let S = {x7, x8, [x4, x10]} ⊂ V (G′). Further, the subgraph
H of G′ induced by the vertices in S is K3, E(H)∩E(K3,6) = ∅. Since K3 cannot be
embedded in the torus along with an embedding with only rectangles as faces, one
cannot have an embedding of H and K3,6 together in the torus. This implies that
γ(G′) ≥ 2. Since G′ is a subgraph of EG(R), γ(EG(R)) ≥ 2. Hence n + m = 2,

R ∼= R1 × F1 and by Theorem 3.6, R � Z4 × Z2 and Z3[x]
〈x2〉 × Z2.
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[x4, x10] x7
x8

x1 x2 x3

x9
x5

x6

Fig. 4.1 Graph G′

Now we claim that if |m∗
1| ≥ 2, then γ(EG(R)) ≥ 2. Suppose |m∗

1| = 2. Then

R1
∼= Z9 or

Z3[x]
〈x2〉 and hence |R×

1 | = 6. Let a, b ∈ m∗
1 such that ab = 0 and ann(a) = m1.

Consider Ω′ = {x1, . . . , x7, y1, y2, y3} ⊆ Z(R)∗ where x1 = (u1, 0), x2 = (u2, 0),
x3 = (u3, 0), x4 = (u4, 0), x5 = (u5, 0), x6 = (u6, 0), x7 = (b, 0), y1 = (0, 1),
y2 = (a, 0), y3 = (a, 1). Then the subgraph induced by Ω′ of EG(R) contains K3,7

as a subgraph and by Lemma 4.2, γ(EG(R)) ≥ 2, a contradiction.

Suppose |m∗
1| ≥ 3. Then |R×

1 | ≥ 4. Let x, y, z ∈ m∗
1 such that xy = yz = 0 and

ann(y) = m1 and let {v1, . . . , v4} ⊆ R×
1 . Consider Ω′′ = {a1, . . . , a5, b1, . . . , b4} ⊆

Z(R)∗, where a1 = (v1, 0), a2 = (v2, 0), a3 = (v3, 0), a4 = (v4, 0), a5 = (x, 0), b1 =
(0, 1), b2 = (y, 0), b3 = (y, 1), b4 = (x, 0), b5 = (x, 1). Then aib1 = 0 for 1 ≤ i ≤ 5
and a5b2 = a5b3 = 0. Since b4 ∈ Nil(R)∗, by Theorem 1.4, ann(aib4) = (y) × F1

is essential for 1 ≤ i ≤ 5 . Also ann(aib2) = m1 × F1 = ann(aib3) for 1 ≤ i ≤ 4.
Then the subgraph induced by Ω′′ of EG(R) contains K4,5 as a subgraph and by
Lemma 4.2, γ(EG(R)) ≥ 2, a contradiction.

Hence we conclude that |m∗
1| = 1 and so R1

∼= Z4 or Z2[x]
〈x2〉 . By Theorem 3.6,

F1 � Z2 and so |F1| ≥ 3. Suppose |F1| ≥ 5. Let a ∈ m∗
1 with a2 = 0. Consider

S = {x1, . . . , x11} ⊂ Z(R)∗, where x1 = (u1, 0), x2 = (u2, 0), x3 = (a, 0), x4 =
(0, v1), x5 = (0, v2), x6 = (0, v3), x7 = (0, v4), x8 = (a, v1), x9 = (a, v2), x10 = (a, v3),
x11 = (a, v4) and u1, u2 ∈ R×

1 , vj ∈ F ∗
1 . Then the subgraph induced by S of EG(R)

contains K3,8 as a subgraph and by Lemma 4.2, γ(EG(R)) ≥ 2, a contradiction.
Hence F1 is isomorphic to either Z3 or F4.

(2, 0) (2, 0)

(2, 0) (2, 0)

(0, 1) (0, 2)

(0, 1) (0, 2)

(2, 1)

(2, 2)

(2, 1)

(2, 2)

(3, 0)

(1, 0)

Fig. 4.2 : EG(Z4 × Z3) ∼= EG

(
Z2[x]〈
x2
〉 × Z3

)
in S1

(2, 0) (2, 0)

(2, 0) (2, 0)

(0, 1)

(0, 1)

(0, ω)

(0, ω)

(0, ω2) (0, ω2)

(2, 1) (2, 1)

(2, ω) (1, 0)

(3, 0) (2, ω2)

Fig. 4.3 : EG(Z4 × F4) ∼= EG

(
Z2[x]〈
x2
〉 × F4

)
in S1
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5 Crosscap of EG(R)

In this section, we characterize all finite commutative rings R with identity whose
essential graph EG(R) is projective. The following result is very useful for further
reference in this section.

Theorem 5.1. [7] Let m,n be integers and for a real number x, �x� is the least
integer that is greater than or equal to x. Then

(i) γ(Kn) =

{⌈
1
6
(n− 3)(n− 4)

⌉
if n ≥ 3 and n �= 7;

3 if n = 7

(ii) γ(Km,n) =
⌈
1
2
(m− 2)(n− 2)

⌉
, where m,n ≥ 2.

Theorem 5.2. [9] Let R = F1 × · · · × Fn, where each Fi is finite field. Then
γ(Γ(R)) = 1 if and only if R is isomorphic to one of the following rings: F4 × F4,
F4 ×F5, Z2 ×Z2 ×F4, Z2 ×Z2 ×F5, Z2 ×Z3 ×Z3, Z3 ×Z3 ×Z3, Z2 ×Z2 ×Z2 ×Z2.

Theorem 5.3. Let R be a finite local ring with identity. Then γ(EG(R)) = 1 if and

only if R is isomorphic to one of the following rings: Z49,
Z7[x]
〈x2〉 .

Proof. Since EG(R) is complete, proof follows from Theorem 5.1.

Theorem 5.4. Let R = F1×· · ·×Fn, where each Fi is finite field. Then γ(EG(R)) =
1 if and only if R is isomorphic to one of the following rings: F4 × F4, F4 × F5,
Z2 × Z2 × F4, Z2 × Z2 × F5, Z2 × Z3 × Z3, Z3 × Z3 × Z3, Z2 × Z2 × Z2 × Z2.

Proof. The proof follows from Theorems 1.3 and 5.2.

By slight modifications in the proof of Theorem 3.6 with Lemma 5.1 and Fig. 5.1,
one can prove the following theorem.

Theorem 5.5. Let R = R1 × · · · × Rn × F1 × · · · × Fm, where each (Ri,mi) is a
local ring and Fj is finite field and n,m ≥ 1. Then γ(EG(R)) = 1 if and only if R

is isomorphic to either Z4 × Z3 or Z2[x]
〈x2〉 × Z3.

C C

A B

B A

(2, 0) (0, 1)

(0, 2)

(2, 1)

(2, 2)

(1, 0)

(3, 0)

Fig. 5.1 Embedding of EG(Z4 × Z3) ∼= EG
(

Z2[x]
〈x2〉 × Z3

)
in S̄1
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