On two open problems concerning weak Roman domination in trees

J. Amjadi
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz
I.R. Iran
j.amjadi@azaruniv.ac.ir

M. Chellali

LAMDA-RO Laboratory, Department of Mathematics
University of Blida
B.P. 270, Blida

Algeria
m_chellali@yahoo.com
S.M. Sheikholeslami M. Soroudi

Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz
I.R. Iran
s.m.sheikholeslami@azaruniv.ac.ir m.soroudi@azaruniv.ac.ir

Abstract

For a graph G, let $\gamma_{r}(G), \gamma_{R}(G)$ and $\gamma_{r 2}(G)$ denote the weak Roman domination number, the Roman domination number and the 2-rainbow domination number, respectively. It is well-known that for every graph G, $\gamma_{r}(G) \leq \gamma_{r 2}(G) \leq \gamma_{R}(G)$. In this paper, we characterize all trees T with $\gamma_{r}(T)=\gamma_{r 2}(T)$ or $\gamma_{r}(T)=\gamma_{R}(T)$ answering two open problems posed by Chellali, Haynes and Hedetniemi [Discrete Appl. Math. 178 (2014), 27-32].

1 Introduction

In this paper, G is a simple graph without isolated vertices, with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ of G is denoted by $n=n(G)$. For a vertex $v \in V$, the open neighborhood of v is the set $N(v)=\{u \in V(G): u v \in E(G)\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $\operatorname{deg}_{G}(v)=|N(v)|$. A vertex of degree one is called a pendant vertex or a leaf and its neighbour is called a support vertex. A strong support vertex is a support vertex adjacent to at least two leaves and an end support vertex is a support vertex having at most one non-leaf neighbor. A pendant path P of a graph G is an induced path such that one of the endpoints has degree one in G, and its other endpoint is the only vertex of P adjacent to some vertex in $G-P$. The distance between two vertices u and v in a connected graph G is the length of a shortest uv-path in G. The diameter of G, denoted by $\operatorname{diam}(G)$, is the maximum value among minimum distances between all pairs of vertices of G. For a vertex v in a rooted tree T, let $C(v)$ and $D(v)$ denote the set of children and descendants of v, respectively and let $D[v]=D(v) \cup\{v\}$. Also, the depth of $v, \operatorname{depth}(v)$, is the largest distance from v to a vertex in $D(v)$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_{v}. We write P_{n} for the path of order n. A double star $D S_{p, q}$ is a tree containing exactly two non-pendant vertices which one is adjacent to p leaves and the other is adjacent to q leaves. If $A \subseteq V(G)$ and f is a mapping from $V(G)$ into some set of numbers, then $f(A)=\sum_{x \in A} f(x)$, and the sum $f(V(G))$ is called the weight $\omega(f)$ of f.

A function $f: V(G) \rightarrow\{0,1,2\}$ is a Roman dominating function (RDF) on G if every vertex $u \in V(G)$ for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of an RDF is the value $f(V(G))=\sum_{u \in V(G)} f(u)$, and the Roman domination number $\gamma_{R}(G)$ is the minimum weight of an RDF on G. Roman domination was introduced by Cockayne et al. in [9] and was inspired by the work of ReVelle and Rosing [13], Stewart [14]. It is worth mentioning that since its introduction in 2004, several new variations of Roman domination were introduced: weak Roman domination [11], 2-rainbow domination [6], Roman \{2\}-domination [8], maximal Roman domination [1], mixed Roman domination [2], double Roman domination [5] and recently total Roman domination [12]. Two of the previous variations will be the focus of this paper.

A 2-rainbow dominating function ($2 r \mathrm{DF}$) on a graph G is a function $f: V(G) \rightarrow$ $\mathcal{P}(\{1,2\})$ if for each vertex $v \in V(G)$ such that $f(v)=\emptyset$, we have $\cup_{u \in N(v)} f(u)=$ $\{1,2\}$. The weight of a $2 r \mathrm{DF} f$ is defined as $\omega(f)=\sum_{v \in V(G)}|f(v)|$, and the 2rainbow domination number $\gamma_{r 2}(G)$ is the minimum weight of a $2 r \mathrm{DF}$ of G.

For a graph G, let $f: V(G) \rightarrow\{0,1,2\}$ be a function. If $V_{i}=\{v \in V \mid f(v)=i\}$ for $i \in\{0,1,2\}$, then f can be denoted by $f=\left(V_{0}, V_{1}, V_{2}\right)$. A vertex v with $f(v)=0$ is said to be undefended with respect to f if it is not adjacent to a vertex w with $f(w)>0$. A function f is called a weak Roman dominating function (WRDF) if each vertex v with $f(v)=0$ is adjacent to a vertex w with $f(w)>0$, such that the function f^{\prime} defined by $f^{\prime}(v)=1, f^{\prime}(w)=f(w)-1$, and $f^{\prime}(u)=f(u)$ for all $u \in V \backslash\{v, w\}$, has
no undefended vertex. The weight of a WRDF is the value $f(V)=\sum_{u \in V(G)} f(u)$, and the weak Roman domination number $\gamma_{r}(G)$ is the minimum weight of a WRDF of G.

We note that a relation relating the three parameters defined above is given by the following chain of inequalities which can be found in [7]. For every graph G,

$$
\begin{equation*}
\gamma_{r}(G) \leq \gamma_{r 2}(G) \leq \gamma_{R}(G) \tag{1}
\end{equation*}
$$

Moreover, the authors [7] posed the following two problems.
Problem 1. Characterize the trees T satisfying $\gamma_{r}(T)=\gamma_{r 2}(T)$.
Problem 2. Characterize the trees T satisfying $\gamma_{r}(T)=\gamma_{R}(T)$.
In this paper, we address these two problems by giving a constructive characterization of trees T with $\gamma_{r}(T)=\gamma_{r 2}(T)$ or $\gamma_{r}(T)=\gamma_{R}(T)$. Before presenting our results, we mention that Alvarado, Dantas and Rautenbach [3] showed that the problem of deciding whether $\gamma_{r}(G)=\gamma_{R}(G)$ for a given graph G is NP-hard. In addition, they gave a characterization of trees T with strong equality between $\gamma_{r}(T)$ and $\gamma_{R}(T)$, that is, those trees for which every minimum WRDF is an RDF. In another paper, the same authors [4] show that it is NP-hard to decide whether $\gamma_{r 2}(G)=\gamma_{R}(G)$ for a given connected K_{4}-free graph G. Clearly, because of the above, a solution of Problems 1 and 2 will be quite interesting even for the class of trees.

2 Preliminaries

In this section we provide some observations and definitions that will be useful throughout the paper.

Observation 2.1. Let H be a subgraph of a graph G. If $\gamma_{r}(H)=\gamma_{r 2}(H), \gamma_{r 2}(G) \leq$ $\gamma_{r 2}(H)+s$ and $\gamma_{r}(G) \geq \gamma_{r}(H)+s$ for some non-negative integer s, then $\gamma_{r}(G)=$ $\gamma_{r 2}(G)$.

Proof. It follows from the assumptions and (1) that

$$
\gamma_{r}(G) \geq \gamma_{r}(H)+s=\gamma_{r 2}(H)+s \geq \gamma_{r 2}(G) \geq \gamma_{r}(G)
$$

and thus $\gamma_{r}(G)=\gamma_{r 2}(G)$.
Observation 2.2. Let H be a subgraph of a graph G. If $\gamma_{r}(G)=\gamma_{r 2}(G), \gamma_{r}(G) \leq$ $\gamma_{r}(H)+s$ and $\gamma_{r 2}(G) \geq \gamma_{r 2}(H)+s$ for some non-negative integer s, then $\gamma_{r}(H)=$ $\gamma_{r 2}(H)$.

Proof. By (1) and the assumptions, we have

$$
\gamma_{r 2}(G)=\gamma_{r}(G) \leq \gamma_{r}(H)+s \leq \gamma_{r 2}(H)+s \leq \gamma_{r 2}(G)
$$

and the desired result follows.

Observation 2.3. Let H be a subgraph of a graph G. If $\gamma_{r}(H)=\gamma_{R}(H), \gamma_{R}(G) \leq$ $\gamma_{R}(H)+s$ and $\gamma_{r}(G) \geq \gamma_{r}(H)+s$ for some non-negative integer s, then $\gamma_{r}(G)=$ $\gamma_{R}(G)$.

Proof. It follows from the assumptions and (1) that

$$
\gamma_{r}(G) \geq \gamma_{r}(H)+s=\gamma_{R}(H)+s \geq \gamma_{R}(G) \geq \gamma_{r}(G)
$$

and thus $\gamma_{r}(G)=\gamma_{R}(G)$.
Observation 2.4. Let H be a subgraph of a graph G. If $\gamma_{r}(G)=\gamma_{R}(G), \gamma_{r}(G) \leq$ $\gamma_{r}(H)+s$ and $\gamma_{R}(G) \geq \gamma_{R}(H)+s$ for some non-negative integer s, then $\gamma_{r}(H)=$ $\gamma_{R}(H)$.

Proof. By (1) and the assumptions, we have

$$
\gamma_{R}(G)=\gamma_{r}(G) \leq \gamma_{r}(H)+s \leq \gamma_{R}(H)+s \leq \gamma_{R}(G)
$$

and the desired result follows.

We close this section with some definitions.
Definition 2.5. Let v be a vertex of a graph G. A function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ is said to be an almost 2 -rainbow dominating function (almost $2 r \mathrm{DF}$) with respect to v, if for every vertex $x \in V(G)-\{v\}$ for which $f(x)=\emptyset$ we have $\cup_{u \in N(x)} f(u)=\{1,2\}$. Let

$$
\gamma_{r 2}(G ; v)=\min \{\omega(f) \mid f \text { is an almost } 2 r \text { DF with respect to } v\} .
$$

Observe that any $2 r \mathrm{DF}$ on G is an almost $2 r \mathrm{DF}$ with respect to any vertex of G. Therefore $\gamma_{r 2}(G ; v)$ is well-defined and $\gamma_{r 2}(G ; v) \leq \gamma_{r 2}(G)$ for each $v \in V(G)$. Define $W_{G}^{1}=\left\{v \in V(G) \mid \gamma_{r 2}(G ; v)=\gamma_{r 2}(G)\right\}$.

Definition 2.6. Let v be a vertex of a graph G. A function $f: V(G) \rightarrow\{0,1,2\}$ is said to be an almost weak Roman dominating function (almost WRDF) with respect to v, if every vertex $x \in V(G)-\{v\}$ for which $f(x)=0$ is adjacent to at least one vertex $y \in V(G)$ for which $f(y) \geq 1$ such that the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(x)=1, g(y)=f(y)-1$ and $g(z)=f(z)$ otherwise has no undefended vertex. Let

$$
\gamma_{r}(G ; v)=\min \{\omega(f) \mid f \text { is an almost WRDF with respect to } v\} .
$$

Observe that any WRDF on G is an almost WRDF with respect to any vertex of G. Therefore $\gamma_{r}(G ; v)$ is well-defined and $\gamma_{r}(G ; v) \leq \gamma_{r}(G)$ for each $v \in V(G)$. Define $W_{G}^{2}=\left\{v \in V(G) \mid \gamma_{r}(G ; v)=\gamma_{r}(G)\right\}$.

Definition 2.7. For a graph G and $v \in V(G)$, we say that v has property \mathcal{P} in G if there exists a $\gamma_{r 2}(G)$-function f such that $f(v) \neq \emptyset$. Let $W_{G}^{3}=\{v \mid$ v has property \mathcal{P} in $G\}$.

Definition 2.8. Let v be a vertex of a graph G. A function $f: V(G) \rightarrow\{0,1,2\}$ is said to be an almost Roman dominating function (almost RDF) with respect to v, if every vertex $x \in V(G)-\{v\}$ for which $f(x)=0$ is adjacent to at least one vertex $y \in V(G)$ for which $f(y)=2$. Let

$$
\gamma_{R}(G ; v)=\min \{\omega(f) \mid f \text { is an almost RDF with respect to } v\} .
$$

Observe that any RDF on G is an almost RDF with respect to any vertex of G. Therefore $\gamma_{R}(G ; v)$ is well-defined and $\gamma_{R}(G ; v) \leq \gamma_{R}(G)$ for each $v \in V(G)$. Define $W_{G}^{4}=\left\{v \in V(G) \mid \gamma_{R}(G ; v)=\gamma_{R}(G)\right\}$.

Definition 2.9. For a graph G and $v \in V(G)$, we say that v has property \mathcal{Q} in G if there exists a $\gamma_{R}(G)$-function f such that $f(v) \neq 0$. Let $W_{G}^{5}=\{v \mid$ v has property \mathcal{Q} in $G\}$.

3 Settlement of Problem 1

In this section we provide a constructive characterization of all trees T with $\gamma_{r}(T)=$ $\gamma_{r 2}(T)$. For this purpose, we define the family \mathcal{T} of unlabeled trees T that can be obtained from a sequence $T_{1}, T_{2}, \ldots, T_{m}(m \geq 1)$ of trees such that T_{1} is a path P_{3}, and, if $m \geq 2, T_{i+1}$ can be obtained recursively from T_{i} by one of the following operations.
Operation \mathcal{O}_{1}. If $x \in V\left(T_{i}\right)$ and x is a strong support vertex, then T_{i+1} is obtained by adding a new vertex y attached by an edge $x y$.
Operation \mathcal{O}_{2}. If $x \in W_{T_{i}}^{3}$, then T_{i+1} is obtained by adding a path P_{2} attached by an edge joining x and a leaf of P_{2}.
Operation \mathcal{O}_{3}. If $x \in W_{T_{i}}^{1} \cap W_{T_{i}}^{2}$, then T_{i+1} is obtained by adding a path P_{3} attached by an edge joining x and the central vertex of P_{3}.

Operation \mathcal{O}_{4}. If $x \in V\left(T_{i}\right)$ is not a support vertex and is adjacent to a strong support vertex of T_{i}, then T_{i+1} is obtained by adding a new vertex y attached by an edge $x y$.

Operation \mathcal{O}_{5}. If $x \in V\left(T_{i}\right)$, then T_{i+1} is obtained by adding a star $K_{1,3}$ attached by an edge joining x and a leaf of $K_{1,3}$.

Lemma 3.1. If T_{i} is a tree with $\gamma_{r}\left(T_{i}\right)=\gamma_{r 2}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{1}, then $\gamma_{r}\left(T_{i+1}\right)=\gamma_{r 2}\left(T_{i+1}\right)$.

Proof. Clearly $\gamma_{r}\left(T_{i+1}\right)=\gamma_{r}\left(T_{i}\right)$ and $\gamma_{r 2}\left(T_{i+1}\right)=\gamma_{r 2}\left(T_{i}\right)$ i, and thus $\gamma_{r}\left(T_{i+1}\right)=$ $\gamma_{r 2}\left(T_{i+1}\right)$.

Lemma 3.2. If T_{i} is a tree with $\gamma_{r}\left(T_{i}\right)=\gamma_{r 2}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{2}, then $\gamma_{r}\left(T_{i+1}\right)=\gamma_{r 2}\left(T_{i+1}\right)$.

Proof. Let Operation \mathcal{O}_{2} add a path $P_{2}=y z$ and join x to y. Since $x \in W_{T_{i}}^{3}$, let f be a $\gamma_{r 2}\left(T_{i}\right)$-function such that $f(x) \neq \emptyset$. Then f can be extended to a $2 r \mathrm{DF}$ of T_{i+1} by assigning \emptyset to y and $\{1\}$ (or $\{2\}$) to z, implying that $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+1$. Now let g be a $\gamma_{r}\left(T_{i+1}\right)$-function. If $g(y)=2$, then clearly $g(x)=0$ and thus the function $h: V\left(T_{i}\right) \rightarrow\{0,1,2\}$ defined by $h(x)=1$ and $h(u)=g(u)$ otherwise, is a WRDF of T_{i}. Hence $\gamma_{r}\left(T_{i}\right) \leq \omega(h) \leq \gamma_{r}\left(T_{i+1}\right)-1$. If $g(y) \in\{0,1\}$, then either $g(x)>0$ or can be defended by one of its neighbors in T_{i}, and thus the restriction of g to T_{i} yields a WRDF of T_{i}. Hence $\gamma_{r}\left(T_{i+1}\right) \geq \gamma_{r}\left(T_{i}\right)+1$. By Observation 2.1, we obtain $\gamma_{r}\left(T_{i+1}\right)=\gamma_{r 2}\left(T_{i+1}\right)$.

Lemma 3.3. If T_{i} is a tree with $\gamma_{r}\left(T_{i}\right)=\gamma_{r 2}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{3}, then $\gamma_{r}\left(T_{i+1}\right)=\gamma_{r 2}\left(T_{i+1}\right)$.

Proof. Let Operation \mathcal{O}_{3} add a path $y z w$ and the edge $x z$. Then $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+$ 2 since any $\gamma_{r 2}\left(T_{i}\right)$-function f can be extended to a $2 r \mathrm{DF}$ of T_{i+1} by assigning $\{1,2\}$ to z and \emptyset to y and w. Now let g be a $\gamma_{r}\left(T_{i+1}\right)$-function. Clearly we may assume that $g(z) \in\{0,2\}$. If $g(z)=0$, then $g(y)=g(w)=1$ and so the restriction of g to T_{i} is a WRDF of T_{i}, yielding $\gamma_{r}\left(T_{i+1}\right) \geq \gamma_{r}\left(T_{i}\right)+2$. Hence we assume that $g(z)=2$. Then the restriction of g to T_{i} is an almost WRDF of T_{i} with respect to x and since $x \in W_{T_{i}}^{2}$, we conclude that $\gamma_{r}\left(T_{i+1}\right) \geq \gamma_{r}\left(T_{i} ; x\right)+2=\gamma_{r}\left(T_{i}\right)+2$. Now the result follows by Observation 2.1.

Lemma 3.4. If T_{i} is a tree with $\gamma_{r}\left(T_{i}\right)=\gamma_{r 2}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{4}, then $\gamma_{r}\left(T_{i+1}\right)=\gamma_{r 2}\left(T_{i+1}\right)$.

Proof. Let Operation \mathcal{O}_{4} add a vertex y and the edge $x y$, and let z be the strong support vertex of T_{i} adjacent to x. Clearly, $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+1$ since any $\gamma_{r 2}\left(T_{i}\right)-$ function f can be extended to a $2 r \mathrm{DF}$ of T_{i+1} by assigning $\{1\}$ to y. Now let g be a $\gamma_{r}\left(T_{i+1}\right)$-function. Then $g(z)=2$ an so $g(x) \in\{0,1\}$. If $g(x)=0$, then the restriction of g to T_{i} is a WRDF of T_{i} implying that $\gamma_{r}\left(T_{i+1}\right) \geq \gamma_{r}\left(T_{i}\right)+1$. If $g(x)=1$, then $g(y)=0$ and thus reassigning the values 0 and 1 to x and y instead of 1 and 0 , respectively, brings us back to the previous situation, and so $\gamma_{r}\left(T_{i+1}\right) \geq \gamma_{r}\left(T_{i}\right)+1$. Now by Observation 2.1, we obtain $\gamma_{r}\left(T_{i+1}\right)=\gamma_{r 2}\left(T_{i+1}\right)$.

Lemma 3.5. If T_{i} is a tree with $\gamma_{r}\left(T_{i}\right)=\gamma_{r 2}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{5}, then $\gamma_{r}\left(T_{i+1}\right)=\gamma_{r 2}\left(T_{i+1}\right)$.

Proof. Let Operation \mathcal{O}_{5} add a star $K_{1,3}$ centered at z and the edge $x y$, where y is a leaf of $K_{1,3}$. Clearly, $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+2$. Let g be a $\gamma_{r}\left(T_{i+1}\right)$-function. Without loss of generality, we may assume that $g(z)=2$. It follows that $g(u)=0$ for every $u \in N(z)$ and thus the restriction of g to T_{i} is a WRDF of T_{i}. Hence $\gamma_{r}\left(T_{i+1}\right) \geq \gamma_{r}\left(T_{i}\right)+2$, and the desired result follows from Observation 2.1.

We recall the following proposition from [10].

Proposition 3.6. Let G be a connected graph. If there is a path $v_{3} v_{2} v_{1}$ in G with $\operatorname{deg}\left(v_{2}\right)=2$ and $\operatorname{deg}\left(v_{1}\right)=1$, then G has a $\gamma_{r 2}(G)$-function f such that $\left|f\left(v_{1}\right)\right|=1$, $\left|f\left(v_{3}\right)\right| \geq 1$ and $f\left(v_{1}\right) \neq f\left(v_{3}\right)$.

Now we are ready to prove the main result of this section.
Theorem 3.7. Let T be a tree of order $n \geq 3$. Then $\gamma_{r}(T)=\gamma_{r 2}(T)$ if and only if $T \in \mathcal{T}$.

Proof. First we prove the sufficiency. Let $T \in \mathcal{T}$. Then there exists a sequence of trees $T_{1}, T_{2}, \ldots, T_{k}(k \geq 1)$ such that T_{1} is P_{3}, and if $k \geq 2$, then T_{i+1} can be obtained recursively from T_{i} by one of the aforementioned Operations.

We proceed by induction on the number of operations applied to construct T. If $k=1$, then $T=P_{3}$ and $\gamma_{r}\left(P_{3}\right)=\gamma_{r 2}\left(P_{3}\right)=2$. Suppose that the result is true for each tree $T^{\prime} \in \mathcal{T}$ which can be obtained from a sequence of operations of length $k-1$ and let $T^{\prime}=T_{k-1}$. By the induction hypothesis, we have $\gamma_{r}\left(T^{\prime}\right)=\gamma_{r 2}\left(T^{\prime}\right)$. Since $T=T_{k}$ is obtained from T^{\prime} by one of the Operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}, \mathcal{O}_{4}$ or \mathcal{O}_{5}, we conclude from Lemmas 3.1, 3.2, 3.3, 3.4 and 3.5 that $\gamma_{r}(T)=\gamma_{r 2}(T)$.

Now we prove the necessity. Let T be a tree with $\gamma_{r}(T)=\gamma_{r 2}(T)$. We use an induction on the order n of T. If $n=3$, then the only tree T of order 3 with $\gamma_{r}(T)=\gamma_{r 2}(T)$ is P_{3} that belongs to \mathcal{T}. Let $n \geq 4$ and let the statement hold for all trees T^{\prime} of order less than n and $\gamma_{r}\left(T^{\prime}\right)=\gamma_{r 2}\left(T^{\prime}\right)$. Let T be a tree of order n with $\gamma_{r}(T)=\gamma_{r 2}(T)$ and let f be a $\gamma_{r}(T)$-function. If $\operatorname{diam}(T)=2$, then T is a star belongs to \mathcal{T} since it can be obtained from P_{3} by applying Operation \mathcal{O}_{1}. If $\operatorname{diam}(T)=3$, then T is a double star $D S_{p, q}(q \geq p \geq 1)$ different from a path P_{4} (since $2=\gamma_{r}\left(P_{4}\right)<\gamma_{r 2}\left(P_{4}\right)=3$). Hence $q \geq 2$. If $p=1$, then $T \in \mathcal{T}$ because it is obtained from P_{3} by applying first Operation \mathcal{O}_{2}, and then Operation \mathcal{O}_{1} so that the support vertex can have any number of leaves. If $p \geq 2$, then $T \in \mathcal{T}$ because it is obtained from P_{3} by applying first Operation \mathcal{O}_{3}, and then Operation \mathcal{O}_{1} so that the support vertices can have any number of leaves. Henceforth we may assume that $\operatorname{diam}(T) \geq 4$.

Let $v_{1} v_{2} \ldots v_{k}$, with $k \geq 5$, be a diametral path in T such that $\operatorname{deg}\left(v_{2}\right)$ is as large as possible and root T at v_{k}. If $\operatorname{deg}_{T}\left(v_{2}\right) \geq 4$, then clearly $\gamma_{r}(T)=\gamma_{r}\left(T-v_{1}\right)$ and $\gamma_{r 2}(T)=\gamma_{r 2}\left(T-v_{1}\right)$, implying that $\gamma_{r}\left(T-v_{1}\right)=\gamma_{r 2}\left(T-v_{1}\right)$. By the induction hypothesis on $T-v_{1}$, we have $T-v_{1} \in \mathcal{T}$. Therefore $T \in \mathcal{T}$ because it is obtained from $T-v_{1}$ by using Operation \mathcal{O}_{1}. Hence we can assume that $\operatorname{deg}_{T}\left(v_{2}\right) \leq 3$. We consider two cases.
Case 1. $\operatorname{deg}_{T}\left(v_{2}\right)=3$. Consider the following subcases.
Subcase 1.1. v_{3} has at least one child, say y, with depth 1 . Clearly $\operatorname{deg}_{T}(y) \in\{2,3\}$. Let $T^{\prime}=T-T_{v_{2}}$. If $\operatorname{deg}_{T}(y)=2$, then clearly, the restriction of any $\gamma_{r 2}(T)$-function g satisfying the condition of Proposition 3.6, to T^{\prime} is a $2 r \mathrm{DF}$ of T^{\prime} of weight $\gamma_{r 2}(T)-2$. If $\operatorname{deg}_{T}(y)=3$, then there is a $\gamma_{r 2}(T)$-function that assigns the set $\{1,2\}$ to v_{2} and y, and so the restriction of such a $\gamma_{r 2}(T)$-function to T^{\prime} is a $2 r \mathrm{DF}$ of T^{\prime} of weight $\gamma_{r 2}(T)-2$. In each case, we obtain $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+2$. Moreover, if h is a $\gamma_{r}\left(T^{\prime}\right)-$ function, then it can be extended to a WRDF of T by assigning a 2 to v_{2} and a 0
to its leaves yielding that $\gamma_{r}(T) \leq \gamma_{r}\left(T^{\prime}\right)+2$. By Observation 2.2, we deduce that $\gamma_{r}\left(T^{\prime}\right)=\gamma_{r 2}\left(T^{\prime}\right)$, and thus $\gamma_{r 2}(T)=\gamma_{r 2}\left(T^{\prime}\right)+2$ and $\gamma_{r}(T)=\gamma_{r}\left(T^{\prime}\right)+2$. By induction on T^{\prime}, we have $T^{\prime} \in \mathcal{T}$. Next we shall show that $v_{3} \in W_{T^{\prime}}^{1} \cap W_{T^{\prime}}^{2}$. Clearly, if $v_{3} \notin W_{T^{\prime}}^{1}$, then $\gamma_{r 2}\left(T^{\prime} ; v_{3}\right)<\gamma_{r 2}\left(T^{\prime}\right)$, and so any minimum almost $2 r \mathrm{DF}$ of T^{\prime} with respect to v_{3} can be extended to a $2 r$ DF of T by assigning the sets $\{1,2\}$ and \emptyset to v_{2} and its leaves, respectively. Hence $\gamma_{r 2}(T) \leq \gamma_{r 2}\left(T^{\prime} ; v_{3}\right)+2<\gamma_{r 2}\left(T^{\prime}\right)+2$, a contradiction. Hence $v_{3} \in W_{T^{\prime}}^{1}$. Likewise, if $v_{3} \notin W_{T^{\prime}}^{2}$, then $\gamma_{r}(T) \leq \gamma_{r}\left(T^{\prime} ; v_{3}\right)+2<\gamma_{r}\left(T^{\prime}\right)+2$, which leads to a contradiction. Hence $v_{3} \in W_{T^{\prime}}^{2}$ and therefore $v_{3} \in W_{T^{\prime}}^{1} \cap W_{T^{\prime}}^{2}$. Consequently, $T \in \mathcal{T}$ since it is obtained from T^{\prime} by using Operation \mathcal{O}_{3}.
Subcase 1.2. v_{3} is a support vertex. Assume first that v_{3} has at least three leaves. Let T^{\prime} be the tree obtained from T by removing a leaf neighbor of v_{3}. Note that v_{3} remains a strong support vertex in T^{\prime}, and so one can check that $\gamma_{r}(T)=\gamma_{r}\left(T^{\prime}\right)$ and $\gamma_{r 2}(T)=\gamma_{r 2}\left(T^{\prime}\right)$. It follows that $\gamma_{r}\left(T^{\prime}\right)=\gamma_{r 2}\left(T^{\prime}\right)$, and the induction on T^{\prime} implies that $T^{\prime} \in \mathcal{T}$. Therefore $T \in \mathcal{T}$ because it is obtained from T^{\prime} by using Operation \mathcal{O}_{1}. Hence we can assume that v_{3} has either one or two leaves.

Suppose that v_{3} is adjacent to two leaves. Let $T^{\prime}=T-T_{v_{2}}$. Obviously, $\gamma_{r 2}(T) \geq$ $\gamma_{r 2}\left(T^{\prime}\right)+2$ and $\gamma_{r}(T) \leq \gamma_{r}\left(T^{\prime}\right)+2$. Using the fact that $\gamma_{r}(T)=\gamma_{r 2}(T)$, the previous inequalities imply that

$$
\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+2 \geq \gamma_{r}\left(T^{\prime}\right)+2 \geq \gamma_{r}(T)
$$

and thus $\gamma_{r 2}(T)=\gamma_{r 2}\left(T^{\prime}\right)+2, \gamma_{r}(T)=\gamma_{r}\left(T^{\prime}\right)+2$ and $\gamma_{r}\left(T^{\prime}\right)=\gamma_{r 2}\left(T^{\prime}\right)$. By induction on T^{\prime}, we obtain that $T^{\prime} \in \mathcal{T}$. Now using a similar argument to that used in Subcase 1.1 we can see that $v_{3} \in W_{T^{\prime}}^{1} \cap W_{T^{\prime}}^{2}$. Therefore $T \in \mathcal{T}$ since it is obtained from T^{\prime} by using Operation \mathcal{O}_{3}.

Finally, suppose that v_{3} is adjacent to exactly one leaf, say w. Note in that case $\operatorname{deg}_{T}\left(v_{3}\right)=3$. Let $T^{\prime}=T-\{w\}$ and let g be a $\gamma_{r 2}(T)$-function. Without loss of generality, we may assume that $\left|g\left(v_{3}\right)\right| \neq 1$. We also note that $g\left(v_{2}\right)=\{1,2\}$, since v_{2} has two leaves. Now if $g\left(v_{3}\right)=\emptyset$, then clearly $|g(w)|=1$, and thus the restriction of g to T^{\prime} is a $2 r \mathrm{DF}$ of T^{\prime} implying that $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+1$. If $g\left(v_{3}\right)=\{1,2\}$, then clearly $g(w)=g\left(v_{4}\right)=\emptyset$, and so the function $g^{\prime}: V\left(T^{\prime}\right) \rightarrow \mathcal{P}(\{1,2\})$ defined by $g^{\prime}\left(v_{3}\right)=\emptyset, g^{\prime}\left(v_{4}\right)=\{1\}$ and $g^{\prime}(x)=g(x)$ otherwise, is a $2 r \mathrm{DF}$ of T^{\prime} yielding also $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+1$. On the other hand, the inequality $\gamma_{r}(T) \leq \gamma_{r}\left(T^{\prime}\right)+1$ follows from the fact that any $\gamma_{r}\left(T^{\prime}\right)$-function can be extended to a WRDF of T by assigning a 1 to w. Now by Observation 2.2, we deduce that $\gamma_{r}\left(T^{\prime}\right)=\gamma_{r 2}\left(T^{\prime}\right)$. Using the induction on T^{\prime}, it follows that $T^{\prime} \in \mathcal{T}$ which implies that $T \in \mathcal{T}$ since T can be obtained from T^{\prime} by applying Operation \mathcal{O}_{4}.
Subcase 1.3. $\operatorname{deg}_{T}\left(v_{3}\right)=2$. Let $T^{\prime}=T-T_{v_{3}}$. Note that T^{\prime} has order $n^{\prime} \geq 2$, since $\operatorname{diam}(T) \geq 4$. Moreover, $n^{\prime} \neq 2$ for otherwise T is a tree of order 6 with $\gamma_{r}(T)=3<\gamma_{r 2}(T)=4$. Hence we assume that $n^{\prime} \geq 3$. On the other hand, it is a simple matter to see that $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+2$. Also, $\gamma_{r}(T) \leq \gamma_{r}\left(T^{\prime}\right)+2$ since any $\gamma_{r}\left(T^{\prime}\right)$-function can be extended to a WRDF of T by assigning a 2 to v_{2} and a 0 to every $u \in N\left(v_{2}\right)$. According to Observation 2.2, we obtain that $\gamma_{r}\left(T^{\prime}\right)=\gamma_{r 2}\left(T^{\prime}\right)$. By induction on T^{\prime}, we have $T \in \mathcal{T}$. Therefore $T \in \mathcal{T}$ because it is obtained from T^{\prime} by
applying Operation \mathcal{O}_{5}.
Case 2. $\operatorname{deg}\left(v_{2}\right)=2$. Let $T^{\prime}=T-T_{v_{2}}$ and let g be a $\gamma_{r 2}(T)$-function. Without loss of generality, we may assume that $g\left(v_{2}\right)=\emptyset$ and $g\left(v_{1}\right)=\{1\}$ and $2 \in g\left(v_{3}\right)$. Thus the restriction of g to T^{\prime} is a $2 r \mathrm{DF}$ yielding $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+1$. On the other hand, we also have $\gamma_{r}(T) \leq \gamma_{r}\left(T^{\prime}\right)+1$. From the assumption $\gamma_{r 2}(T)=\gamma_{r}(T)$ and Observation 2.2, we conclude that $\gamma_{r}\left(T^{\prime}\right)=\gamma_{r 2}\left(T^{\prime}\right)$ and thus $\gamma_{r 2}(T)=\gamma_{r 2}\left(T^{\prime}\right)+1$. By induction on T^{\prime}, we have $T^{\prime} \in \mathcal{T}$. Using the fact that $\gamma_{r 2}(T)=\gamma_{r 2}\left(T^{\prime}\right)+1$, we deduce that $v_{3} \in W_{T^{\prime}}^{3}$. Therefore $T \in \mathcal{T}$ because it is obtained from T^{\prime} by applying Operation \mathcal{O}_{2}.

4 Settlement of Problem 2

In this section we provide a constructive characterization of all trees T with $\gamma_{r}(T)=$ $\gamma_{R}(T)$. For this purpose, we define the family \mathcal{F} of unlabeled trees T that can be obtained from a sequence $T_{1}, T_{2}, \ldots, T_{m}(m \geq 1)$ of trees such that T_{1} is a path P_{3}, and, if $m \geq 2, T_{i+1}$ can be obtained recursively from T_{i} by one of the following operations.
Operation \mathcal{T}_{1}. If $x \in V\left(T_{i}\right)$ and x is a strong support vertex, then T_{i+1} is obtained by adding a new vertex y attached by an edge $x y$.
Operation \mathcal{T}_{2}. If $x \in W_{T_{i}}^{5}$, then T_{i+1} is obtained by adding a path P_{2} attached by an edge joining x and a leaf of P_{2}.
Operation \mathcal{T}_{3}. If $x \in W_{T_{i}}^{2} \cap W_{T_{i}}^{4}$, then T_{i+1} is obtained by adding a path P_{3} attached by an edge joining x and the central vertex of P_{3}.

Operation \mathcal{T}_{4}. If $x \in V\left(T_{i}\right)$ is not a support vertex and is adjacent to a strong support vertex of T_{i}, then T_{i+1} is obtained by adding a new vertex y attached by an edge $x y$.
Operation \mathcal{T}_{5}. If $x \in V\left(T_{i}\right)$, then T_{i+1} is obtained by adding a star $K_{1,3}$ attached by an edge joining x and a leaf of $K_{1,3}$.

In the rest of the paper, we shall prove that for any tree T of order $n \geq 3$, $\gamma_{r}(T)=\gamma_{R}(T)$ if and only if $T \in \mathcal{F}$.

It worth mentioning that if T is a tree with $\gamma_{r}(T)=\gamma_{R}(T)$, then (1) implies that $\gamma_{r}(T)=\gamma_{r 2}(T)$, and thus by Theorem 3.7, $T \in \mathcal{T}$. However, not every tree $T \in \mathcal{T}$ satisfies $\gamma_{r}(T)=\gamma_{R}(T)$. This can be seen by the path P_{5}, where $P_{5} \in \mathcal{T}$ but $3=\gamma_{r}\left(P_{5}\right)<\gamma_{R}\left(P_{5}\right)=4$.

We will use the following lemmas.
Lemma 4.1. If T_{i} is a tree with $\gamma_{r}\left(T_{i}\right)=\gamma_{R}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{T}_{1}, then $\gamma_{r}\left(T_{i+1}\right)=\gamma_{R}\left(T_{i+1}\right)$.

Proof. Clearly $\gamma_{r}\left(T_{i+1}\right)=\gamma_{r}\left(T_{i}\right)$ and $\gamma_{R}\left(T_{i+1}\right)=\gamma_{R}\left(T_{i}\right)$, and thus $\gamma_{r}\left(T_{i+1}\right)=$ $\gamma_{R}\left(T_{i+1}\right)$.

Lemma 4.2. If T_{i} is a tree with $\gamma_{r}\left(T_{i}\right)=\gamma_{R}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{T}_{2}, then $\gamma_{r}\left(T_{i+1}\right)=\gamma_{R}\left(T_{i+1}\right)$.

Proof. Let \mathcal{T}_{2} add a path $P_{2}=y z$ and join x to y. Since $x \in W_{T_{i}}^{5}$, let f be a $\gamma_{R}\left(T_{i}\right)$-function such that $f(x) \neq 0$. Clearly, if $f(x)=2$, then $\gamma_{R}\left(T_{i+1}\right) \leq \gamma_{R}\left(T_{i}\right)+1$. Hence assume that $f(x)=1$. Then the function f^{\prime} defined by $f^{\prime}(z)=f^{\prime}(x)=0$, $f^{\prime}(y)=2$ and $f^{\prime}(u)=f(u)$ for every $u \in V\left(T_{i}\right)-\{x\}$ is an RDF of T_{i+1} and thus $\gamma_{R}\left(T_{i+1}\right) \leq \gamma_{R}\left(T_{i}\right)+1$. In any case, $\gamma_{R}\left(T_{i+1}\right) \leq \gamma_{R}\left(T_{i}\right)+1$. Now let g be a $\gamma_{r}\left(T_{i+1}\right)-$ function. If $g(y)=2$, then clearly $g(x)=0$ and so the function $h: V\left(T_{i}\right) \rightarrow\{0,1,2\}$ defined by $h(x)=1$ and $h(u)=g(u)$ otherwise, is a WRDF of T_{i} implying that $\gamma_{r}\left(T_{i}\right) \leq \omega(h)=\gamma_{r}\left(T_{i+1}\right)-1$. If $g(y)=0$ or 1 , then x is defended by some vertex of $N[x]-y$, and so the restriction of g to T_{i} yields a WRDF of T_{i} and so $\gamma_{r}\left(T_{i+1}\right) \geq$ $\gamma_{r}\left(T_{i}\right)+1$. By Observation 2.3, we obtain $\gamma_{r}\left(T_{i+1}\right)=\gamma_{R}\left(T_{i+1}\right)$.

Lemma 4.3. If T_{i} is a tree with $\gamma_{r}\left(T_{i}\right)=\gamma_{R}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{T}_{3}, then $\gamma_{r}\left(T_{i+1}\right)=\gamma_{R}\left(T_{i+1}\right)$.

Proof. Let \mathcal{T}_{3} add a path $y z w$ and the edge $x z$. Then $\gamma_{R}\left(T_{i+1}\right) \leq \gamma_{R}\left(T_{i}\right)+2$ since any $\gamma_{R}\left(T_{i}\right)$-function can be extended to an RDF of T_{i+1} by assigning a 2 to z and a 0 to y and w. Now let g be a $\gamma_{r}\left(T_{i+1}\right)$-function. If $g(z)=2$, then the restriction of g to T_{i} is an almost WRDF of T_{i} with respect to x and since $x \in W_{T_{i}}^{2}$, we deduce that $\gamma_{r}\left(T_{i+1}\right) \geq \gamma_{r}\left(T_{i} ; x\right)+2=\gamma_{r}\left(T_{i}\right)+2$. If $g(z)=0$ then $g(y)=g(w)=1$ and clearly the restriction of g to T_{i} is a WRDF of T_{i}, implying that $\gamma_{r}\left(T_{i+1}\right) \geq \gamma_{r}\left(T_{i}\right)+2$. The case $g(z)=1$ is ignored since we can construct a $\gamma_{r}\left(T_{i+1}\right)$-function that assigns a 2 to z by using the positive weight assigned to y or z. Now the desired result follows by Observation 2.3.

Lemma 4.4. If T_{i} is a tree with $\gamma_{r}\left(T_{i}\right)=\gamma_{R}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{T}_{4}, then $\gamma_{r}\left(T_{i+1}\right)=\gamma_{R}\left(T_{i+1}\right)$.

Proof. Let \mathcal{T}_{4} add a vertex y and the edge $x y$. Obviously, $\gamma_{R}\left(T_{i+1}\right) \leq \gamma_{R}\left(T_{i}\right)+1$. Now let g be a $\gamma_{r}\left(T_{i+1}\right)$-function. Note that we can assume that the strong support vertex adjacent to x in T_{i} is assigned a 2 . Now, if $g(x)=0$, then $g(y)=1$ and the restriction of g to T_{i} is a WRDF of T_{i} implying that $\gamma_{r}\left(T_{i+1}\right) \geq \gamma_{r}\left(T_{i}\right)+1$. If $g(x)>0$, then we can restrict the function g to T_{i} by assigning to x the value $g(x)-1$, yielding $\gamma_{r}\left(T_{i+1}\right) \geq \gamma_{r}\left(T_{i}\right)+1$. Using Observation 2.3, the desired result follows.
Lemma 4.5. If T_{i} is a tree with $\gamma_{r}\left(T_{i}\right)=\gamma_{R}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{T}_{5}, then $\gamma_{r}\left(T_{i+1}\right)=\gamma_{R}\left(T_{i+1}\right)$.

Proof. Let \mathcal{T}_{5} add a star $K_{1,3}$ centered at z and the edge $x y$, where y is a leaf of $K_{1,3}$. Clearly, $\gamma_{R}\left(T_{i+1}\right) \leq \gamma_{R}\left(T_{i}\right)+2$. Let g be a $\gamma_{r}\left(T_{i+1}\right)$-function. Note that $g(z)=2$. If $g(y)=0$, then the restriction of g to T_{i} is a WRDF of T_{i} of weight $\gamma_{r}\left(T_{i+1}\right)-2$. If $g(x)=1$, then we can restrict the function g to T_{i} by assigning 1 to x, yielding a WRDF of T_{i} of weight $\gamma_{r}\left(T_{i+1}\right)-2$. In any case, $\gamma_{r}\left(T_{i+1}\right) \geq \gamma_{r}\left(T_{i}\right)+2$. By Observation 2.3, we obtain $\gamma_{r}\left(T_{i+1}\right)=\gamma_{R}\left(T_{i+1}\right)$.

Now we are ready to prove the main result of this section.
Theorem 4.6. Let T be a tree of order $n \geq 3$. Then $\gamma_{r}(T)=\gamma_{R}(T)$ if and only if $T \in \mathcal{F}$.

Proof. First we prove the sufficiency. Let $T \in \mathcal{F}$. Then there exists a sequence of trees $T_{1}, T_{2}, \ldots, T_{k}(k \geq 1)$ such that T_{1} is P_{3}, and if $k \geq 2$, then T_{i+1} can be obtained recursively from T_{i} by one of the aforementioned Operations.

We proceed by induction on the number of operations applied to construct T. If $k=1$, then $T=P_{3}$ and $\gamma_{r}\left(P_{3}\right)=\gamma_{R}\left(P_{3}\right)=2$. Suppose that the result is true for each tree of \mathcal{F} which can be obtained from a sequence of operations of length $k-1$ and let $T^{\prime}=T_{k-1}$. By induction on T^{\prime}, we have $\gamma_{r}\left(T^{\prime}\right)=\gamma_{r 2}\left(T^{\prime}\right)$. Since $T=T_{k}$ is obtained from T^{\prime} by one of the Operations $\mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}, \mathcal{T}_{4}$ and \mathcal{T}_{5}, we conclude from Lemmas 4.1, 4.2, 4.3, 4.4 and 4.5 that $\gamma_{r}(T)=\gamma_{R}(T)$.

Now we prove the necessity. Let T be a tree with $\gamma_{r}(T)=\gamma_{R}(T)$. We proceed by induction on n. If $n=3$, then $T=P_{3}$ and clearly $P_{3} \in \mathcal{F}$. Let $n \geq 4$ and assume that for every tree T^{\prime} of order n^{\prime}, with $3 \leq n^{\prime}<n$ such that $\gamma_{r}\left(T^{\prime}\right)=\gamma_{R}\left(T^{\prime}\right)$, we have $T^{\prime} \in \mathcal{F}$. Let T be a tree of order n with $\gamma_{r}(T)=\gamma_{R}(T)$. If $\operatorname{diam}(T)=2$, then T is a star that belongs to \mathcal{F} since it can be obtained from P_{3} by applying Operation \mathcal{T}_{1}. If $\operatorname{diam}(T)=3$, then T is a double star $D S_{p, q}(q \geq p \geq 1)$ different from a path P_{4} (since $\gamma_{r}\left(P_{4}\right)<\gamma_{R}\left(P_{4}\right)$). Hence $q \geq 2$. If $p=1$, then $T \in \mathcal{F}$ because it is obtained from P_{3} by applying first Operation \mathcal{T}_{2}, and then Operations \mathcal{T}_{1}. If $p \geq 2$, then $T \in \mathcal{F}$ because it is obtained from P_{3} by applying first Operation \mathcal{T}_{3}, and then Operation \mathcal{T}_{1} so that the support vertices can have any number of leaves. Henceforth we assume that $\operatorname{diam}(T) \geq 4$.

Let $v_{1} v_{2} \ldots v_{k}(k \geq 5)$ be a diametral path in T such that $\operatorname{deg}\left(v_{2}\right)$ is as large as possible and root T at v_{k}. If $\operatorname{deg}_{T}\left(v_{2}\right) \geq 4$, then $\gamma_{r}(T)=\gamma_{r}\left(T-v_{1}\right)$ and $\gamma_{R}(T)=$ $\gamma_{R}\left(T-v_{1}\right)$ and thus $\gamma_{r}\left(T-v_{1}\right)=\gamma_{R}\left(T-v_{1}\right)$. By induction on $T-v_{1}$, we have $T-v_{1} \in \mathcal{F}$. Therefore, $T \in \mathcal{F}$ because it is obtained from $T-v_{1}$ by using Operation \mathcal{T}_{1}. Hence we assume that $\operatorname{deg}_{T}\left(v_{2}\right) \in\{2,3\}$. We consider two cases.
Case 1. $\operatorname{deg}_{T}\left(v_{2}\right)=3$. We consider the following subcases.
Subcase 1.1. v_{3} has at least one child besides v_{2}, say u_{2}, which is a support vertex.
Let $T^{\prime}=T-T_{v_{2}}$. First Suppose that g is a $\gamma_{R}(T)$-function with a maximum number of vertices assigned a 2 . Then either $g\left(u_{2}\right)=2$ or $g\left(v_{3}\right)>0$ and the leaf neighbor of u_{2} is assigned a positive value. In any case, the restriction of g to T^{\prime} is an RDF of T^{\prime}, and thus $\gamma_{R}(T) \geq \gamma_{R}\left(T^{\prime}\right)+2$. On the other hand, we have $\gamma_{r}(T) \leq \gamma_{r}\left(T^{\prime}\right)+2$. By Observation 2.4, we obtain $\gamma_{r}\left(T^{\prime}\right)=\gamma_{R}\left(T^{\prime}\right)$. It follows that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+2$ and $\gamma_{r}(T)=\gamma_{r}\left(T^{\prime}\right)+2$. Moreover, since $\gamma_{r}\left(T^{\prime}\right)=\gamma_{R}\left(T^{\prime}\right)$, by induction on T^{\prime}, we have $T^{\prime} \in \mathcal{F}$. In the next we shall show that $v_{3} \in W_{T^{\prime}}^{2} \cap W_{T^{\prime}}^{4}$. It is a simple matter to see that $v_{3} \in W_{T^{\prime}}^{4}$, and hence we only show that $v_{3} \in W_{T^{\prime}}^{2}$. Suppose, to the contrary, that $v_{3} \notin W_{T^{\prime}}^{2}$, and let h be a minimum almost WRDF of T^{\prime} with respect to v_{3}. Then h can be extended to WRDF of T by assigning a 2 to v_{2} and a 0 to its leaves, which implies that $\gamma_{r}(T) \leq \gamma_{r}\left(T^{\prime} ; v_{3}\right)+2<\gamma_{r}\left(T^{\prime}\right)+2$, a contradiction. Hence $v_{3} \in W_{T^{\prime}}^{2}$ and therefore $v_{3} \in W_{T^{\prime}}^{2} \cap W_{T^{\prime}}^{4}$. Consequently, $T \in \mathcal{F}$ because it can be obtained from
T^{\prime} by applying Operation \mathcal{T}_{3}.
Subcase 1.2. v_{3} is a support vertex. We first assume that v_{3} has at least three leaves. Let T^{\prime} be the tree obtained from T by deleting a leaf neighbor of v_{3}. Hence v_{3} remains a strong support vertex in T^{\prime}, and thus $\gamma_{r}(T)=\gamma_{r}\left(T^{\prime}\right)$, and $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)$. It follows that $\gamma_{r}\left(T^{\prime}\right)=\gamma_{R}\left(T^{\prime}\right)$, and so $T^{\prime} \in \mathcal{F}$. Therefore $T \in \mathcal{F}$ because it is obtained from T^{\prime} by using Operation \mathcal{T}_{1}. Hence we can assume that v_{3} is a support vertex with at most two leaves.

Suppose that v_{3} is adjacent to two leaves. Let $T^{\prime}=T-T_{v_{2}}$. Then $\gamma_{R}(T) \geq$ $\gamma_{R}\left(T^{\prime}\right)+2$ and $\gamma_{r}(T) \leq \gamma_{r}\left(T^{\prime}\right)+2$. It follows that

$$
\gamma_{r}(T)=\gamma_{R}(T) \geq \gamma_{R}\left(T^{\prime}\right)+2 \geq \gamma_{r}\left(T^{\prime}\right)+2 \geq \gamma_{r}(T)
$$

and thus $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+2, \gamma_{r}(T)=\gamma_{r}\left(T^{\prime}\right)+2$ and $\gamma_{r}\left(T^{\prime}\right)=\gamma_{R}\left(T^{\prime}\right)$. By induction on T^{\prime}, we obtain that $T^{\prime} \in \mathcal{F}$. Using the same argument as in Subcase 1.1, we can show that $v_{3} \in W_{T^{\prime}}^{2} \cap W_{T^{\prime}}^{4}$. Therefore $T \in \mathcal{F}$ since it can be obtained from T^{\prime} by using Operation \mathcal{T}_{3}.

Suppose now that v_{3} is adjacent to exactly one leaf, say w. Seeing the previous cases, we have $\operatorname{deg}_{T}\left(v_{3}\right)=3$. Let $T^{\prime}=T-\{w\}$. Clearly, $\gamma_{r}(T) \leq \gamma_{r}\left(T^{\prime}\right)+1$. Let g be a $\gamma_{R}(T)$-function. We may assume that $g\left(v_{2}\right)=2$ and thus $g\left(v_{3}\right) \neq 1$. If $g\left(v_{3}\right)=0$, then clearly $g(w)=1$ and the restriction of g to T^{\prime} is an RDF of T^{\prime} implying that $\gamma_{R}(T) \geq \gamma_{R}\left(T^{\prime}\right)+1$. If $g\left(v_{3}\right)=2$, then clearly $g(w)=g\left(v_{4}\right)=0$, and so the function $g^{\prime}: V\left(T^{\prime}\right) \rightarrow\{0,1,2\}$ defined by $g^{\prime}\left(v_{3}\right)=0, g^{\prime}\left(v_{4}\right)=1$ and $g^{\prime}(u)=g(u)$ otherwise, is an RDF of T^{\prime} yielding $\gamma_{R}(T) \geq \gamma_{R}\left(T^{\prime}\right)+1$. By Observation 2.4, we have $\gamma_{r}\left(T^{\prime}\right)=\gamma_{R}\left(T^{\prime}\right)$ and so $T^{\prime} \in \mathcal{F}$. Therefore $T \in \mathcal{F}$ since it can be obtained from T^{\prime} by using Operation \mathcal{T}_{4}.
Subcase 1.3. $\operatorname{deg}_{T}\left(v_{3}\right)=2$. Let $T^{\prime}=T-T_{v_{3}}$. Using the facts that $\operatorname{diam}(T) \geq 4$ and $\gamma_{r}(T)=\gamma_{R}(T)$ one can see that T^{\prime} has order at least three. Since there is a $\gamma_{R}(T)$-function g that assigns a 2 to v_{2} and a 0 to every neighbor of v_{2}, the restriction of g to T^{\prime} yields $\gamma_{R}(T) \geq \gamma_{R}\left(T^{\prime}\right)+2$. Also, $\gamma_{r}(T) \leq \gamma_{r}\left(T^{\prime}\right)+2$. By Observation 2.4, $\gamma_{r}\left(T^{\prime}\right)=\gamma_{R}\left(T^{\prime}\right)$ and thus $T^{\prime} \in \mathcal{F}$. Therefore, $T \in \mathcal{F}$ because it can be obtained from T^{\prime} by applying Operation \mathcal{T}_{5}.
Case 2. $\operatorname{deg}_{T}\left(v_{2}\right)=2$. Let $T^{\prime}=T-T_{v_{2}}$. Clearly $\gamma_{r}(T) \leq \gamma_{r}\left(T^{\prime}\right)+1$. Let g be a $\gamma_{R}(T)$-function with maximum number of vertices assigned a 2 . The choice of g implies that $g\left(v_{2}\right) \in\{2,0\}$. If $g\left(v_{2}\right)=2$, then the function $h: V\left(T^{\prime}\right) \rightarrow\{0,1,2\}$ defined by $h\left(v_{3}\right)=\min \left\{2, g\left(v_{3}\right)+1\right\}$ and $h(u)=g(u)$ otherwise, is an RDF of T^{\prime} implying that $\gamma_{R}(T) \geq \gamma_{R}\left(T^{\prime}\right)+1$. If $g\left(v_{2}\right)=0$, then we must have $g\left(v_{1}\right)=1$ (else we can change the assignments of v_{1} and v_{2} to be in the previous situation). Hence $g\left(v_{3}\right)=2$ and the restriction of g to T^{\prime} yields also $\gamma_{R}(T) \geq \gamma_{R}\left(T^{\prime}\right)+1$. It follows that $\gamma_{r}(T)=\gamma_{R}(T) \geq \gamma_{R}\left(T^{\prime}\right)+1 \geq \gamma_{r}\left(T^{\prime}\right)+1 \geq \gamma_{r}(T)$ and thus we have equality throughout this inequality chain. In particular, $\gamma_{r}\left(T^{\prime}\right)=\gamma_{R}\left(T^{\prime}\right)$ and $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+1$. By induction on T^{\prime}, we have $T^{\prime} \in \mathcal{F}$. Also, $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+1$ implies that $v_{3} \in W_{T^{\prime}}^{5}$ (according to the restriction of g to T^{\prime}). It follows that $T \in \mathcal{F}$ because it is obtained from T^{\prime} by applying Operation \mathcal{T}_{2}.

References

[1] H. Abdollahzadeh Ahangar, A. Bahremandpour, S. M. Sheikholeslami, N. D. Soner, Z. Tahmasbzadehbaee and L. Volkmann, Maximal Roman domination numbers in graphs, Util. Math. 103 (2017), 245-258.
[2] H. Abdollahzadeh Ahangar, T. W. Haynes and J. C. Valenzuela-Tripodoro, Mixed Roman domination in graphs, Bull. Malays. Math. Sci. Soc. 40 (2017), 1443-1454.
[3] J. D. Alvarado, S. Dantas and D. Rautenbach, Strong equality of Roman and weak Roman domination in trees, Discrete Appl. Math. 208 (2016), 19-26.
[4] J. D. Alvarado, S. Dantas and D. Rautenbach, Relating 2-rainbow domination to Roman domination. Discuss. Math. Graph Theory 37 (2017), 953-961.
[5] R. A. Beeler, T. W. Haynes and S. T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016), 23-29.
[6] B. Brešar, M. A. Henning and D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008), 213-225.
[7] M. Chellali, T. W. Haynes and S. T. Hedetniemi, Bounds on weak Roman and 2-rainbow domination numbers, Discrete Appl. Math. 178 (2014), 27-32.
[8] M. Chellali, T. W. Haynes, S. T. Hedetniemi and A. MacRae, Roman \{2\}domination, Discrete Appl. Math. 204 (2016), 22-28.
[9] E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), 11-22.
[10] N. Dehgardi, M. Falahat, S. M. Sheikholeslami and A. Khodkar, On the rainbow domination subdivision numbers in graphs, Asian-Eur. J. Math. 9 (2016), 1650018 (12 pp.)
[11] M. A. Henning and S.T. Hedetniemi, Defending the Roman Empire-A new strategy, Discrete Math. 266 (2003), 239-251.
[12] C.-H. Liu and G. J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013), 608-619.
[13] C.S. ReVelle and K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (7) (2000), 585-594.
[14] I. Stewart, Defend the Roman Empire! Sci. Amer. 281 (6) (1999), 136-139.

