On two open problems concerning weak Roman domination in trees

J. Amjadi

Department of Mathematics Azarbaijan Shahid Madani University Tabriz I.R. Iran j.amjadi@azaruniv.ac.ir

M. CHELLALI

LAMDA-RO Laboratory, Department of Mathematics University of Blida B.P. 270, Blida Algeria m_chellali@yahoo.com

S.M. Sheikholeslami M. Soroudi

Department of Mathematics Azarbaijan Shahid Madani University Tabriz I.R. Iran s.m.sheikholeslami@azaruniv.ac.ir m.soroudi@azaruniv.ac.ir

Abstract

For a graph G, let $\gamma_r(G)$, $\gamma_R(G)$ and $\gamma_{r2}(G)$ denote the weak Roman domination number, the Roman domination number and the 2-rainbow domination number, respectively. It is well-known that for every graph G, $\gamma_r(G) \leq \gamma_{r2}(G) \leq \gamma_R(G)$. In this paper, we characterize all trees T with $\gamma_r(T) = \gamma_{r2}(T)$ or $\gamma_r(T) = \gamma_R(T)$ answering two open problems posed by Chellali, Haynes and Hedetniemi [Discrete Appl. Math. 178 (2014), 27–32].

1 Introduction

In this paper, G is a simple graph without isolated vertices, with vertex set V = V(G)and edge set E = E(G). The order |V| of G is denoted by n = n(G). For a vertex $v \in V$, the open neighborhood of v is the set $N(v) = \{u \in V(G) : uv \in E(G)\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is deg_G(v) = |N(v)|. A vertex of degree one is called a *pendant vertex* or a *leaf* and its neighbour is called a *support vertex*. A strong support vertex is a support vertex adjacent to at least two leaves and an *end support vertex* is a support vertex having at most one non-leaf neighbor. A pendant path P of a graph G is an induced path such that one of the endpoints has degree one in G, and its other endpoint is the only vertex of P adjacent to some vertex in G - P. The distance between two vertices u and v in a connected graph G is the length of a shortest uv-path in G. The diameter of G, denoted by $\operatorname{diam}(G)$, is the maximum value among minimum distances between all pairs of vertices of G. For a vertex v in a rooted tree T, let C(v) and D(v) denote the set of children and descendants of v, respectively and let $D[v] = D(v) \cup \{v\}$. Also, the depth of v, depth(v), is the largest distance from v to a vertex in D(v). The maximal subtree at v is the subtree of T induced by D[v], and is denoted by T_v . We write P_n for the path of order n. A double star $DS_{p,q}$ is a tree containing exactly two non-pendant vertices which one is adjacent to p leaves and the other is adjacent to q leaves. If $A \subseteq V(G)$ and f is a mapping from V(G) into some set of numbers, then $f(A) = \sum_{x \in A} f(x)$, and the sum f(V(G)) is called the weight $\omega(f)$ of f.

A function $f: V(G) \to \{0, 1, 2\}$ is a Roman dominating function (RDF) on Gif every vertex $u \in V(G)$ for which f(u) = 0 is adjacent to at least one vertex vfor which f(v) = 2. The weight of an RDF is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$, and the Roman domination number $\gamma_R(G)$ is the minimum weight of an RDF on G. Roman domination was introduced by Cockayne et al. in [9] and was inspired by the work of ReVelle and Rosing [13], Stewart [14]. It is worth mentioning that since its introduction in 2004, several new variations of Roman domination were introduced: weak Roman domination [11], 2-rainbow domination [6], Roman $\{2\}$ -domination [8], maximal Roman domination [1], mixed Roman domination [2], double Roman domination [5] and recently total Roman domination [12]. Two of the previous variations will be the focus of this paper.

A 2-rainbow dominating function (2rDF) on a graph G is a function $f: V(G) \to \mathcal{P}(\{1,2\})$ if for each vertex $v \in V(G)$ such that $f(v) = \emptyset$, we have $\bigcup_{u \in N(v)} f(u) = \{1,2\}$. The weight of a 2rDF f is defined as $\omega(f) = \sum_{v \in V(G)} |f(v)|$, and the 2-rainbow domination number $\gamma_{r2}(G)$ is the minimum weight of a 2rDF of G.

For a graph G, let $f: V(G) \to \{0, 1, 2\}$ be a function. If $V_i = \{v \in V | f(v) = i\}$ for $i \in \{0, 1, 2\}$, then f can be denoted by $f = (V_0, V_1, V_2)$. A vertex v with f(v) = 0is said to be undefended with respect to f if it is not adjacent to a vertex w with f(w) > 0. A function f is called a weak Roman dominating function (WRDF) if each vertex v with f(v) = 0 is adjacent to a vertex w with f(w) > 0, such that the function f' defined by f'(v) = 1, f'(w) = f(w) - 1, and f'(u) = f(u) for all $u \in V \setminus \{v, w\}$, has no undefended vertex. The weight of a WRDF is the value $f(V) = \sum_{u \in V(G)} f(u)$, and the *weak Roman domination number* $\gamma_r(G)$ is the minimum weight of a WRDF of G.

We note that a relation relating the three parameters defined above is given by the following chain of inequalities which can be found in [7]. For every graph G,

$$\gamma_r(G) \le \gamma_{r2}(G) \le \gamma_R(G). \tag{1}$$

Moreover, the authors [7] posed the following two problems.

Problem 1. Characterize the trees T satisfying $\gamma_r(T) = \gamma_{r2}(T)$. **Problem 2.** Characterize the trees T satisfying $\gamma_r(T) = \gamma_R(T)$.

In this paper, we address these two problems by giving a constructive characterization of trees T with $\gamma_r(T) = \gamma_{r2}(T)$ or $\gamma_r(T) = \gamma_R(T)$. Before presenting our results, we mention that Alvarado, Dantas and Rautenbach [3] showed that the problem of deciding whether $\gamma_r(G) = \gamma_R(G)$ for a given graph G is NP-hard. In addition, they gave a characterization of trees T with strong equality between $\gamma_r(T)$ and $\gamma_R(T)$, that is, those trees for which every minimum WRDF is an RDF. In another paper, the same authors [4] show that it is NP-hard to decide whether $\gamma_{r2}(G) = \gamma_R(G)$ for a given connected K_4 -free graph G. Clearly, because of the above, a solution of Problems 1 and 2 will be quite interesting even for the class of trees.

2 Preliminaries

In this section we provide some observations and definitions that will be useful throughout the paper.

Observation 2.1. Let *H* be a subgraph of a graph *G*. If $\gamma_r(H) = \gamma_{r2}(H)$, $\gamma_{r2}(G) \leq \gamma_{r2}(H) + s$ and $\gamma_r(G) \geq \gamma_r(H) + s$ for some non-negative integer *s*, then $\gamma_r(G) = \gamma_{r2}(G)$.

Proof. It follows from the assumptions and (1) that

$$\gamma_r(G) \ge \gamma_r(H) + s = \gamma_{r2}(H) + s \ge \gamma_{r2}(G) \ge \gamma_r(G),$$

and thus $\gamma_r(G) = \gamma_{r2}(G)$.

Observation 2.2. Let *H* be a subgraph of a graph *G*. If $\gamma_r(G) = \gamma_{r2}(G)$, $\gamma_r(G) \leq \gamma_r(H) + s$ and $\gamma_{r2}(G) \geq \gamma_{r2}(H) + s$ for some non-negative integer *s*, then $\gamma_r(H) = \gamma_{r2}(H)$.

Proof. By (1) and the assumptions, we have

$$\gamma_{r2}(G) = \gamma_r(G) \le \gamma_r(H) + s \le \gamma_{r2}(H) + s \le \gamma_{r2}(G)$$

and the desired result follows.

Observation 2.3. Let *H* be a subgraph of a graph *G*. If $\gamma_r(H) = \gamma_R(H)$, $\gamma_R(G) \leq \gamma_R(H) + s$ and $\gamma_r(G) \geq \gamma_r(H) + s$ for some non-negative integer *s*, then $\gamma_r(G) = \gamma_R(G)$.

Proof. It follows from the assumptions and (1) that

$$\gamma_r(G) \ge \gamma_r(H) + s = \gamma_R(H) + s \ge \gamma_R(G) \ge \gamma_r(G),$$

and thus $\gamma_r(G) = \gamma_R(G)$.

Observation 2.4. Let H be a subgraph of a graph G. If $\gamma_r(G) = \gamma_R(G)$, $\gamma_r(G) \le \gamma_r(H) + s$ and $\gamma_R(G) \ge \gamma_R(H) + s$ for some non-negative integer s, then $\gamma_r(H) = \gamma_R(H)$.

Proof. By (1) and the assumptions, we have

$$\gamma_R(G) = \gamma_r(G) \le \gamma_r(H) + s \le \gamma_R(H) + s \le \gamma_R(G)$$

and the desired result follows.

We close this section with some definitions.

Definition 2.5. Let v be a vertex of a graph G. A function $f: V(G) \to \mathcal{P}(\{1, 2\})$ is said to be an *almost 2-rainbow dominating function* (almost 2*r*DF) with respect to v, if for every vertex $x \in V(G) - \{v\}$ for which $f(x) = \emptyset$ we have $\bigcup_{u \in N(x)} f(u) = \{1, 2\}$. Let

 $\gamma_{r2}(G; v) = \min\{\omega(f) \mid f \text{ is an almost } 2r\text{DF with respect to } v\}.$

Observe that any 2*r*DF on *G* is an almost 2*r*DF with respect to any vertex of *G*. Therefore $\gamma_{r2}(G; v)$ is well-defined and $\gamma_{r2}(G; v) \leq \gamma_{r2}(G)$ for each $v \in V(G)$. Define $W_G^1 = \{v \in V(G) | \gamma_{r2}(G; v) = \gamma_{r2}(G) \}.$

Definition 2.6. Let v be a vertex of a graph G. A function $f: V(G) \to \{0, 1, 2\}$ is said to be an *almost weak Roman dominating function* (almost WRDF) with respect to v, if every vertex $x \in V(G) - \{v\}$ for which f(x) = 0 is adjacent to at least one vertex $y \in V(G)$ for which $f(y) \ge 1$ such that the function $g: V(G) \to \{0, 1, 2\}$ defined by g(x) = 1, g(y) = f(y) - 1 and g(z) = f(z) otherwise has no undefended vertex. Let

 $\gamma_r(G; v) = \min\{\omega(f) \mid f \text{ is an almost WRDF with respect to } v\}.$

Observe that any WRDF on G is an almost WRDF with respect to any vertex of G. Therefore $\gamma_r(G; v)$ is well-defined and $\gamma_r(G; v) \leq \gamma_r(G)$ for each $v \in V(G)$. Define $W_G^2 = \{v \in V(G) \mid \gamma_r(G; v) = \gamma_r(G)\}.$

Definition 2.7. For a graph G and $v \in V(G)$, we say that v has property \mathcal{P} in G if there exists a $\gamma_{r2}(G)$ -function f such that $f(v) \neq \emptyset$. Let $W_G^3 = \{v \mid v \text{ has property } \mathcal{P} \text{ in } G\}$.

Definition 2.8. Let v be a vertex of a graph G. A function $f: V(G) \to \{0, 1, 2\}$ is said to be an *almost Roman dominating function* (almost RDF) with respect to v, if every vertex $x \in V(G) - \{v\}$ for which f(x) = 0 is adjacent to at least one vertex $y \in V(G)$ for which f(y) = 2. Let

 $\gamma_R(G; v) = \min\{\omega(f) \mid f \text{ is an almost RDF with respect to } v\}.$

Observe that any RDF on G is an almost RDF with respect to any vertex of G. Therefore $\gamma_R(G; v)$ is well-defined and $\gamma_R(G; v) \leq \gamma_R(G)$ for each $v \in V(G)$. Define $W_G^4 = \{v \in V(G) \mid \gamma_R(G; v) = \gamma_R(G)\}.$

Definition 2.9. For a graph G and $v \in V(G)$, we say that v has property \mathcal{Q} in G if there exists a $\gamma_R(G)$ -function f such that $f(v) \neq 0$. Let $W_G^5 = \{v \mid v \text{ has property } \mathcal{Q} \text{ in } G\}$.

3 Settlement of Problem 1

In this section we provide a constructive characterization of all trees T with $\gamma_r(T) = \gamma_{r2}(T)$. For this purpose, we define the family \mathcal{T} of unlabeled trees T that can be obtained from a sequence T_1, T_2, \ldots, T_m $(m \ge 1)$ of trees such that T_1 is a path P_3 , and, if $m \ge 2$, T_{i+1} can be obtained recursively from T_i by one of the following operations.

Operation \mathcal{O}_1 . If $x \in V(T_i)$ and x is a strong support vertex, then T_{i+1} is obtained by adding a new vertex y attached by an edge xy.

Operation \mathcal{O}_2 . If $x \in W^3_{T_i}$, then T_{i+1} is obtained by adding a path P_2 attached by an edge joining x and a leaf of P_2 .

Operation \mathcal{O}_3 . If $x \in W^1_{T_i} \cap W^2_{T_i}$, then T_{i+1} is obtained by adding a path P_3 attached by an edge joining x and the central vertex of P_3 .

Operation \mathcal{O}_4 . If $x \in V(T_i)$ is not a support vertex and is adjacent to a strong support vertex of T_i , then T_{i+1} is obtained by adding a new vertex y attached by an edge xy.

Operation \mathcal{O}_5 . If $x \in V(T_i)$, then T_{i+1} is obtained by adding a star $K_{1,3}$ attached by an edge joining x and a leaf of $K_{1,3}$.

Lemma 3.1. If T_i is a tree with $\gamma_r(T_i) = \gamma_{r2}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_1 , then $\gamma_r(T_{i+1}) = \gamma_{r2}(T_{i+1})$.

Proof. Clearly $\gamma_r(T_{i+1}) = \gamma_r(T_i)$ and $\gamma_{r2}(T_{i+1}) = \gamma_{r2}(T_i)$, and thus $\gamma_r(T_{i+1}) = \gamma_{r2}(T_{i+1})$.

Lemma 3.2. If T_i is a tree with $\gamma_r(T_i) = \gamma_{r2}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_2 , then $\gamma_r(T_{i+1}) = \gamma_{r2}(T_{i+1})$.

Proof. Let Operation \mathcal{O}_2 add a path $P_2 = yz$ and join x to y. Since $x \in W_{T_i}^3$, let f be a $\gamma_{r2}(T_i)$ -function such that $f(x) \neq \emptyset$. Then f can be extended to a 2rDF of T_{i+1} by assigning \emptyset to y and $\{1\}$ (or $\{2\}$) to z, implying that $\gamma_{r2}(T_{i+1}) \leq \gamma_{r2}(T_i) + 1$. Now let g be a $\gamma_r(T_{i+1})$ -function. If g(y) = 2, then clearly g(x) = 0 and thus the function $h: V(T_i) \to \{0, 1, 2\}$ defined by h(x) = 1 and h(u) = g(u) otherwise, is a WRDF of T_i . Hence $\gamma_r(T_i) \leq \omega(h) \leq \gamma_r(T_{i+1}) - 1$. If $g(y) \in \{0, 1\}$, then either g(x) > 0 or can be defended by one of its neighbors in T_i , and thus the restriction of g to T_i yields a WRDF of T_i . Hence $\gamma_r(T_{i+1}) \geq \gamma_r(T_i) + 1$. By Observation 2.1, we obtain $\gamma_r(T_{i+1}) = \gamma_{r2}(T_{i+1})$.

Lemma 3.3. If T_i is a tree with $\gamma_r(T_i) = \gamma_{r2}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_3 , then $\gamma_r(T_{i+1}) = \gamma_{r2}(T_{i+1})$.

Proof. Let Operation \mathcal{O}_3 add a path yzw and the edge xz. Then $\gamma_{r2}(T_{i+1}) \leq \gamma_{r2}(T_i) + 2$ since any $\gamma_{r2}(T_i)$ -function f can be extended to a 2rDF of T_{i+1} by assigning $\{1, 2\}$ to z and \emptyset to y and w. Now let g be a $\gamma_r(T_{i+1})$ -function. Clearly we may assume that $g(z) \in \{0, 2\}$. If g(z) = 0, then g(y) = g(w) = 1 and so the restriction of g to T_i is a WRDF of T_i , yielding $\gamma_r(T_{i+1}) \geq \gamma_r(T_i) + 2$. Hence we assume that g(z) = 2. Then the restriction of g to T_i is an almost WRDF of T_i with respect to x and since $x \in W_{T_i}^2$, we conclude that $\gamma_r(T_{i+1}) \geq \gamma_r(T_i; x) + 2 = \gamma_r(T_i) + 2$. Now the result follows by Observation 2.1.

Lemma 3.4. If T_i is a tree with $\gamma_r(T_i) = \gamma_{r2}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_4 , then $\gamma_r(T_{i+1}) = \gamma_{r2}(T_{i+1})$.

Proof. Let Operation \mathcal{O}_4 add a vertex y and the edge xy, and let z be the strong support vertex of T_i adjacent to x. Clearly, $\gamma_{r2}(T_{i+1}) \leq \gamma_{r2}(T_i) + 1$ since any $\gamma_{r2}(T_i)$ function f can be extended to a 2rDF of T_{i+1} by assigning $\{1\}$ to y. Now let g be a $\gamma_r(T_{i+1})$ -function. Then g(z) = 2 an so $g(x) \in \{0, 1\}$. If g(x) = 0, then the restriction of g to T_i is a WRDF of T_i implying that $\gamma_r(T_{i+1}) \geq \gamma_r(T_i) + 1$. If g(x) = 1, then g(y) = 0 and thus reassigning the values 0 and 1 to x and y instead of 1 and 0, respectively, brings us back to the previous situation, and so $\gamma_r(T_{i+1}) \geq \gamma_r(T_i) + 1$. Now by Observation 2.1, we obtain $\gamma_r(T_{i+1}) = \gamma_{r2}(T_{i+1})$.

Lemma 3.5. If T_i is a tree with $\gamma_r(T_i) = \gamma_{r2}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_5 , then $\gamma_r(T_{i+1}) = \gamma_{r2}(T_{i+1})$.

Proof. Let Operation \mathcal{O}_5 add a star $K_{1,3}$ centered at z and the edge xy, where y is a leaf of $K_{1,3}$. Clearly, $\gamma_{r2}(T_{i+1}) \leq \gamma_{r2}(T_i) + 2$. Let g be a $\gamma_r(T_{i+1})$ -function. Without loss of generality, we may assume that g(z) = 2. It follows that g(u) = 0 for every $u \in N(z)$ and thus the restriction of g to T_i is a WRDF of T_i . Hence $\gamma_r(T_{i+1}) \geq \gamma_r(T_i) + 2$, and the desired result follows from Observation 2.1.

We recall the following proposition from [10].

Proposition 3.6. Let G be a connected graph. If there is a path $v_3v_2v_1$ in G with $\deg(v_2) = 2$ and $\deg(v_1) = 1$, then G has a $\gamma_{r2}(G)$ -function f such that $|f(v_1)| = 1$, $|f(v_3)| \ge 1$ and $f(v_1) \ne f(v_3)$.

Now we are ready to prove the main result of this section.

Theorem 3.7. Let T be a tree of order $n \ge 3$. Then $\gamma_r(T) = \gamma_{r2}(T)$ if and only if $T \in \mathcal{T}$.

Proof. First we prove the sufficiency. Let $T \in \mathcal{T}$. Then there exists a sequence of trees T_1, T_2, \ldots, T_k $(k \ge 1)$ such that T_1 is P_3 , and if $k \ge 2$, then T_{i+1} can be obtained recursively from T_i by one of the aforementioned Operations.

We proceed by induction on the number of operations applied to construct T. If k = 1, then $T = P_3$ and $\gamma_r(P_3) = \gamma_{r2}(P_3) = 2$. Suppose that the result is true for each tree $T' \in \mathcal{T}$ which can be obtained from a sequence of operations of length k - 1 and let $T' = T_{k-1}$. By the induction hypothesis, we have $\gamma_r(T') = \gamma_{r2}(T')$. Since $T = T_k$ is obtained from T' by one of the Operations $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3, \mathcal{O}_4$ or \mathcal{O}_5 , we conclude from Lemmas 3.1, 3.2, 3.3, 3.4 and 3.5 that $\gamma_r(T) = \gamma_{r2}(T)$.

Now we prove the necessity. Let T be a tree with $\gamma_r(T) = \gamma_{r2}(T)$. We use an induction on the order n of T. If n = 3, then the only tree T of order 3 with $\gamma_r(T) = \gamma_{r2}(T)$ is P_3 that belongs to \mathcal{T} . Let $n \ge 4$ and let the statement hold for all trees T' of order less than n and $\gamma_r(T') = \gamma_{r2}(T')$. Let T be a tree of order nwith $\gamma_r(T) = \gamma_{r2}(T)$ and let f be a $\gamma_r(T)$ -function. If diam(T) = 2, then T is a star belongs to \mathcal{T} since it can be obtained from P_3 by applying Operation \mathcal{O}_1 . If diam(T) = 3, then T is a double star $DS_{p,q}$ $(q \ge p \ge 1)$ different from a path P_4 (since $2 = \gamma_r(P_4) < \gamma_{r2}(P_4) = 3$). Hence $q \ge 2$. If p = 1, then $T \in \mathcal{T}$ because it is obtained from P_3 by applying first Operation \mathcal{O}_2 , and then Operation \mathcal{O}_1 so that the support vertex can have any number of leaves. If $p \ge 2$, then $T \in \mathcal{T}$ because it is obtained from P_3 by applying first Operation \mathcal{O}_3 , and then Operation \mathcal{O}_1 so that the support vertices can have any number of leaves. Henceforth we may assume that diam $(T) \ge 4$.

Let $v_1v_2...v_k$, with $k \ge 5$, be a diametral path in T such that $\deg(v_2)$ is as large as possible and root T at v_k . If $\deg_T(v_2) \ge 4$, then clearly $\gamma_r(T) = \gamma_r(T - v_1)$ and $\gamma_{r2}(T) = \gamma_{r2}(T - v_1)$, implying that $\gamma_r(T - v_1) = \gamma_{r2}(T - v_1)$. By the induction hypothesis on $T - v_1$, we have $T - v_1 \in \mathcal{T}$. Therefore $T \in \mathcal{T}$ because it is obtained from $T - v_1$ by using Operation \mathcal{O}_1 . Hence we can assume that $\deg_T(v_2) \le 3$. We consider two cases.

Case 1. $\deg_T(v_2) = 3$. Consider the following subcases.

Subcase 1.1. v_3 has at least one child, say y, with depth 1. Clearly deg_T $(y) \in \{2, 3\}$. Let $T' = T - T_{v_2}$. If deg_T(y) = 2, then clearly, the restriction of any $\gamma_{r_2}(T)$ -function g satisfying the condition of Proposition 3.6, to T' is a 2rDF of T' of weight $\gamma_{r_2}(T) - 2$. If deg_T(y) = 3, then there is a $\gamma_{r_2}(T)$ -function that assigns the set $\{1, 2\}$ to v_2 and y, and so the restriction of such a $\gamma_{r_2}(T)$ -function to T' is a 2rDF of T' of weight $\gamma_{r_2}(T) - 2$. In each case, we obtain $\gamma_{r_2}(T) \ge \gamma_{r_2}(T') + 2$. Moreover, if h is a $\gamma_r(T')$ -function, then it can be extended to a WRDF of T by assigning a 2 to v_2 and a 0 to its leaves yielding that $\gamma_r(T) \leq \gamma_r(T') + 2$. By Observation 2.2, we deduce that $\gamma_r(T') = \gamma_{r2}(T')$, and thus $\gamma_{r2}(T) = \gamma_{r2}(T') + 2$ and $\gamma_r(T) = \gamma_r(T') + 2$. By induction on T', we have $T' \in \mathcal{T}$. Next we shall show that $v_3 \in W_{T'}^1 \cap W_{T'}^2$. Clearly, if $v_3 \notin W_{T'}^1$, then $\gamma_{r2}(T'; v_3) < \gamma_{r2}(T')$, and so any minimum almost 2rDF of T' with respect to v_3 can be extended to a 2rDF of T by assigning the sets $\{1, 2\}$ and \emptyset to v_2 and its leaves, respectively. Hence $\gamma_{r2}(T) \leq \gamma_{r2}(T'; v_3) + 2 < \gamma_{r2}(T') + 2$, a contradiction. Hence $v_3 \in W_{T'}^1$. Likewise, if $v_3 \notin W_{T'}^2$, then $\gamma_r(T) \leq \gamma_r(T'; v_3) + 2 < \gamma_r(T') + 2$, which leads to a contradiction. Hence $v_3 \in W_{T'}^2$ and therefore $v_3 \in W_{T'}^1 \cap W_{T'}^2$. Consequently, $T \in \mathcal{T}$ since it is obtained from T' by using Operation \mathcal{O}_3 .

Subcase 1.2. v_3 is a support vertex. Assume first that v_3 has at least three leaves. Let T' be the tree obtained from T by removing a leaf neighbor of v_3 . Note that v_3 remains a strong support vertex in T', and so one can check that $\gamma_r(T) = \gamma_r(T')$ and $\gamma_{r2}(T) = \gamma_{r2}(T')$. It follows that $\gamma_r(T') = \gamma_{r2}(T')$, and the induction on T' implies that $T' \in \mathcal{T}$. Therefore $T \in \mathcal{T}$ because it is obtained from T' by using Operation \mathcal{O}_1 . Hence we can assume that v_3 has either one or two leaves.

Suppose that v_3 is adjacent to two leaves. Let $T' = T - T_{v_2}$. Obviously, $\gamma_{r_2}(T) \ge \gamma_{r_2}(T') + 2$ and $\gamma_r(T) \le \gamma_r(T') + 2$. Using the fact that $\gamma_r(T) = \gamma_{r_2}(T)$, the previous inequalities imply that

$$\gamma_{r2}(T) \ge \gamma_{r2}(T') + 2 \ge \gamma_r(T') + 2 \ge \gamma_r(T),$$

and thus $\gamma_{r2}(T) = \gamma_{r2}(T') + 2$, $\gamma_r(T) = \gamma_r(T') + 2$ and $\gamma_r(T') = \gamma_{r2}(T')$. By induction on T', we obtain that $T' \in \mathcal{T}$. Now using a similar argument to that used in Subcase 1.1 we can see that $v_3 \in W^1_{T'} \cap W^2_{T'}$. Therefore $T \in \mathcal{T}$ since it is obtained from T' by using Operation \mathcal{O}_3 .

Finally, suppose that v_3 is adjacent to exactly one leaf, say w. Note in that case $\deg_T(v_3) = 3$. Let $T' = T - \{w\}$ and let g be a $\gamma_{r2}(T)$ -function. Without loss of generality, we may assume that $|g(v_3)| \neq 1$. We also note that $g(v_2) = \{1, 2\}$, since v_2 has two leaves. Now if $g(v_3) = \emptyset$, then clearly |g(w)| = 1, and thus the restriction of g to T' is a 2rDF of T' implying that $\gamma_{r2}(T) \geq \gamma_{r2}(T') + 1$. If $g(v_3) = \{1, 2\}$, then clearly $g(w) = g(v_4) = \emptyset$, and so the function $g' : V(T') \to \mathcal{P}(\{1, 2\})$ defined by $g'(v_3) = \emptyset$, $g'(v_4) = \{1\}$ and g'(x) = g(x) otherwise, is a 2rDF of T' yielding also $\gamma_{r2}(T) \geq \gamma_{r2}(T') + 1$. On the other hand, the inequality $\gamma_r(T) \leq \gamma_r(T') + 1$ follows from the fact that any $\gamma_r(T')$ -function can be extended to a WRDF of T by assigning a 1 to w. Now by Observation 2.2, we deduce that $\gamma_r(T') = \gamma_{r2}(T')$. Using the induction on T', it follows that $T' \in \mathcal{T}$ which implies that $T \in \mathcal{T}$ since T can be obtained from T' by applying Operation \mathcal{O}_4 .

Subcase 1.3. deg_T(v_3) = 2. Let $T' = T - T_{v_3}$. Note that T' has order $n' \ge 2$, since diam(T) ≥ 4 . Moreover, $n' \ne 2$ for otherwise T is a tree of order 6 with $\gamma_r(T) = 3 < \gamma_{r2}(T) = 4$. Hence we assume that $n' \ge 3$. On the other hand, it is a simple matter to see that $\gamma_{r2}(T) \ge \gamma_{r2}(T') + 2$. Also, $\gamma_r(T) \le \gamma_r(T') + 2$ since any $\gamma_r(T')$ -function can be extended to a WRDF of T by assigning a 2 to v_2 and a 0 to every $u \in N(v_2)$. According to Observation 2.2, we obtain that $\gamma_r(T') = \gamma_{r2}(T')$. By induction on T', we have $T \in \mathcal{T}$. Therefore $T \in \mathcal{T}$ because it is obtained from T' by applying Operation \mathcal{O}_5 .

Case 2. deg $(v_2) = 2$. Let $T' = T - T_{v_2}$ and let g be a $\gamma_{r2}(T)$ -function. Without loss of generality, we may assume that $g(v_2) = \emptyset$ and $g(v_1) = \{1\}$ and $2 \in g(v_3)$. Thus the restriction of g to T' is a 2rDF yielding $\gamma_{r2}(T) \ge \gamma_{r2}(T') + 1$. On the other hand, we also have $\gamma_r(T) \le \gamma_r(T') + 1$. From the assumption $\gamma_{r2}(T) = \gamma_r(T)$ and Observation 2.2, we conclude that $\gamma_r(T') = \gamma_{r2}(T')$ and thus $\gamma_{r2}(T) = \gamma_{r2}(T') + 1$. By induction on T', we have $T' \in \mathcal{T}$. Using the fact that $\gamma_{r2}(T) = \gamma_{r2}(T') + 1$, we deduce that $v_3 \in W^3_{T'}$. Therefore $T \in \mathcal{T}$ because it is obtained from T' by applying Operation \mathcal{O}_2 .

4 Settlement of Problem 2

In this section we provide a constructive characterization of all trees T with $\gamma_r(T) = \gamma_R(T)$. For this purpose, we define the family \mathcal{F} of unlabeled trees T that can be obtained from a sequence T_1, T_2, \ldots, T_m $(m \ge 1)$ of trees such that T_1 is a path P_3 , and, if $m \ge 2$, T_{i+1} can be obtained recursively from T_i by one of the following operations.

Operation \mathcal{T}_1 . If $x \in V(T_i)$ and x is a strong support vertex, then T_{i+1} is obtained by adding a new vertex y attached by an edge xy.

Operation \mathcal{T}_2 . If $x \in W^5_{T_i}$, then T_{i+1} is obtained by adding a path P_2 attached by an edge joining x and a leaf of P_2 .

Operation \mathcal{T}_3 . If $x \in W^2_{T_i} \cap W^4_{T_i}$, then T_{i+1} is obtained by adding a path P_3 attached by an edge joining x and the central vertex of P_3 .

Operation \mathcal{T}_4 . If $x \in V(T_i)$ is not a support vertex and is adjacent to a strong support vertex of T_i , then T_{i+1} is obtained by adding a new vertex y attached by an edge xy.

Operation \mathcal{T}_5 . If $x \in V(T_i)$, then T_{i+1} is obtained by adding a star $K_{1,3}$ attached by an edge joining x and a leaf of $K_{1,3}$.

In the rest of the paper, we shall prove that for any tree T of order $n \geq 3$, $\gamma_r(T) = \gamma_R(T)$ if and only if $T \in \mathcal{F}$.

It worth mentioning that if T is a tree with $\gamma_r(T) = \gamma_R(T)$, then (1) implies that $\gamma_r(T) = \gamma_{r2}(T)$, and thus by Theorem 3.7, $T \in \mathcal{T}$. However, not every tree $T \in \mathcal{T}$ satisfies $\gamma_r(T) = \gamma_R(T)$. This can be seen by the path P_5 , where $P_5 \in \mathcal{T}$ but $3 = \gamma_r(P_5) < \gamma_R(P_5) = 4$.

We will use the following lemmas.

Lemma 4.1. If T_i is a tree with $\gamma_r(T_i) = \gamma_R(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_1 , then $\gamma_r(T_{i+1}) = \gamma_R(T_{i+1})$.

Proof. Clearly $\gamma_r(T_{i+1}) = \gamma_r(T_i)$ and $\gamma_R(T_{i+1}) = \gamma_R(T_i)$, and thus $\gamma_r(T_{i+1}) = \gamma_R(T_{i+1})$.

Lemma 4.2. If T_i is a tree with $\gamma_r(T_i) = \gamma_R(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_2 , then $\gamma_r(T_{i+1}) = \gamma_R(T_{i+1})$.

Proof. Let \mathcal{T}_2 add a path $P_2 = yz$ and join x to y. Since $x \in W_{T_i}^5$, let f be a $\gamma_R(T_i)$ -function such that $f(x) \neq 0$. Clearly, if f(x) = 2, then $\gamma_R(T_{i+1}) \leq \gamma_R(T_i) + 1$. Hence assume that f(x) = 1. Then the function f' defined by f'(z) = f'(x) = 0, f'(y) = 2 and f'(u) = f(u) for every $u \in V(T_i) - \{x\}$ is an RDF of T_{i+1} and thus $\gamma_R(T_{i+1}) \leq \gamma_R(T_i) + 1$. In any case, $\gamma_R(T_{i+1}) \leq \gamma_R(T_i) + 1$. Now let g be a $\gamma_r(T_{i+1})$ -function. If g(y) = 2, then clearly g(x) = 0 and so the function $h : V(T_i) \to \{0, 1, 2\}$ defined by h(x) = 1 and h(u) = g(u) otherwise, is a WRDF of T_i implying that $\gamma_r(T_i) \leq \omega(h) = \gamma_r(T_{i+1}) - 1$. If g(y) = 0 or 1, then x is defended by some vertex of N[x] - y, and so the restriction of g to T_i yields a WRDF of T_i and so $\gamma_r(T_{i+1}) \geq \gamma_r(T_i) + 1$. By Observation 2.3, we obtain $\gamma_r(T_{i+1}) = \gamma_R(T_{i+1})$.

Lemma 4.3. If T_i is a tree with $\gamma_r(T_i) = \gamma_R(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_3 , then $\gamma_r(T_{i+1}) = \gamma_R(T_{i+1})$.

Proof. Let \mathcal{T}_3 add a path yzw and the edge xz. Then $\gamma_R(T_{i+1}) \leq \gamma_R(T_i) + 2$ since any $\gamma_R(T_i)$ -function can be extended to an RDF of T_{i+1} by assigning a 2 to z and a 0 to y and w. Now let g be a $\gamma_r(T_{i+1})$ -function. If g(z) = 2, then the restriction of gto T_i is an almost WRDF of T_i with respect to x and since $x \in W_{T_i}^2$, we deduce that $\gamma_r(T_{i+1}) \geq \gamma_r(T_i; x) + 2 = \gamma_r(T_i) + 2$. If g(z) = 0 then g(y) = g(w) = 1 and clearly the restriction of g to T_i is a WRDF of T_i , implying that $\gamma_r(T_{i+1}) \geq \gamma_r(T_i) + 2$. The case g(z) = 1 is ignored since we can construct a $\gamma_r(T_{i+1})$ -function that assigns a 2 to z by using the positive weight assigned to y or z. Now the desired result follows by Observation 2.3.

Lemma 4.4. If T_i is a tree with $\gamma_r(T_i) = \gamma_R(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_4 , then $\gamma_r(T_{i+1}) = \gamma_R(T_{i+1})$.

Proof. Let \mathcal{T}_4 add a vertex y and the edge xy. Obviously, $\gamma_R(T_{i+1}) \leq \gamma_R(T_i) + 1$. Now let g be a $\gamma_r(T_{i+1})$ -function. Note that we can assume that the strong support vertex adjacent to x in T_i is assigned a 2. Now, if g(x) = 0, then g(y) = 1 and the restriction of g to T_i is a WRDF of T_i implying that $\gamma_r(T_{i+1}) \geq \gamma_r(T_i) + 1$. If g(x) > 0, then we can restrict the function g to T_i by assigning to x the value g(x) - 1, yielding $\gamma_r(T_{i+1}) \geq \gamma_r(T_i) + 1$. Using Observation 2.3, the desired result follows.

Lemma 4.5. If T_i is a tree with $\gamma_r(T_i) = \gamma_R(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_5 , then $\gamma_r(T_{i+1}) = \gamma_R(T_{i+1})$.

Proof. Let \mathcal{T}_5 add a star $K_{1,3}$ centered at z and the edge xy, where y is a leaf of $K_{1,3}$. Clearly, $\gamma_R(T_{i+1}) \leq \gamma_R(T_i) + 2$. Let g be a $\gamma_r(T_{i+1})$ -function. Note that g(z) = 2. If g(y) = 0, then the restriction of g to T_i is a WRDF of T_i of weight $\gamma_r(T_{i+1}) - 2$. If g(x) = 1, then we can restrict the function g to T_i by assigning 1 to x, yielding a WRDF of T_i of weight $\gamma_r(T_{i+1}) - 2$. In any case, $\gamma_r(T_{i+1}) \geq \gamma_r(T_i) + 2$. By Observation 2.3, we obtain $\gamma_r(T_{i+1}) = \gamma_R(T_{i+1})$. Now we are ready to prove the main result of this section.

Theorem 4.6. Let T be a tree of order $n \geq 3$. Then $\gamma_r(T) = \gamma_R(T)$ if and only if $T \in \mathcal{F}$.

Proof. First we prove the sufficiency. Let $T \in \mathcal{F}$. Then there exists a sequence of trees T_1, T_2, \ldots, T_k $(k \ge 1)$ such that T_1 is P_3 , and if $k \ge 2$, then T_{i+1} can be obtained recursively from T_i by one of the aforementioned Operations.

We proceed by induction on the number of operations applied to construct T. If k = 1, then $T = P_3$ and $\gamma_r(P_3) = \gamma_R(P_3) = 2$. Suppose that the result is true for each tree of \mathcal{F} which can be obtained from a sequence of operations of length k-1and let $T' = T_{k-1}$. By induction on T', we have $\gamma_r(T') = \gamma_{r2}(T')$. Since $T = T_k$ is obtained from T' by one of the Operations $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_4$ and \mathcal{T}_5 , we conclude from Lemmas 4.1, 4.2, 4.3, 4.4 and 4.5 that $\gamma_r(T) = \gamma_R(T)$.

Now we prove the necessity. Let T be a tree with $\gamma_r(T) = \gamma_R(T)$. We proceed by induction on n. If n = 3, then $T = P_3$ and clearly $P_3 \in \mathcal{F}$. Let $n \ge 4$ and assume that for every tree T' of order n', with $3 \leq n' < n$ such that $\gamma_r(T') = \gamma_R(T')$, we have $T' \in \mathcal{F}$. Let T be a tree of order n with $\gamma_r(T) = \gamma_R(T)$. If diam(T) = 2, then T is a star that belongs to \mathcal{F} since it can be obtained from P_3 by applying Operation \mathcal{T}_1 . If diam(T) = 3, then T is a double star $DS_{p,q}$ $(q \ge p \ge 1)$ different from a path P_4 (since $\gamma_r(P_4) < \gamma_R(P_4)$). Hence $q \ge 2$. If p = 1, then $T \in \mathcal{F}$ because it is obtained from P_3 by applying first Operation \mathcal{T}_2 , and then Operations \mathcal{T}_1 . If $p \geq 2$, then $T \in \mathcal{F}$ because it is obtained from P_3 by applying first Operation \mathcal{T}_3 , and then Operation \mathcal{T}_1 so that the support vertices can have any number of leaves. Henceforth we assume that $\operatorname{diam}(T) > 4$.

Let $v_1v_2\ldots v_k$ $(k \ge 5)$ be a diametral path in T such that $\deg(v_2)$ is as large as possible and root T at v_k . If $\deg_T(v_2) \ge 4$, then $\gamma_r(T) = \gamma_r(T - v_1)$ and $\gamma_R(T) =$ $\gamma_R(T-v_1)$ and thus $\gamma_r(T-v_1) = \gamma_R(T-v_1)$. By induction on $T-v_1$, we have $T - v_1 \in \mathcal{F}$. Therefore, $T \in \mathcal{F}$ because it is obtained from $T - v_1$ by using Operation \mathcal{T}_1 . Hence we assume that $\deg_T(v_2) \in \{2, 3\}$. We consider two cases.

Case 1. $\deg_T(v_2) = 3$. We consider the following subcases.

Subcase 1.1. v_3 has at least one child besides v_2 , say u_2 , which is a support vertex. Let $T' = T - T_{v_2}$. First Suppose that g is a $\gamma_R(T)$ -function with a maximum number of vertices assigned a 2. Then either $g(u_2) = 2$ or $g(v_3) > 0$ and the leaf neighbor of u_2 is assigned a positive value. In any case, the restriction of q to T' is an RDF of T', and thus $\gamma_R(T) \geq \gamma_R(T') + 2$. On the other hand, we have $\gamma_r(T) \leq \gamma_r(T') + 2$. By Observation 2.4, we obtain $\gamma_r(T') = \gamma_R(T')$. It follows that $\gamma_R(T) = \gamma_R(T') + 2$ and $\gamma_r(T) = \gamma_r(T') + 2$. Moreover, since $\gamma_r(T') = \gamma_R(T')$, by induction on T', we have $T' \in \mathcal{F}$. In the next we shall show that $v_3 \in W^2_{T'} \cap W^4_{T'}$. It is a simple matter to see that $v_3 \in W_{T'}^4$, and hence we only show that $v_3 \in W_{T'}^2$. Suppose, to the contrary, that $v_3 \notin W_{T'}^2$, and let h be a minimum almost WRDF of T' with respect to v_3 . Then h can be extended to WRDF of T by assigning a 2 to v_2 and a 0 to its leaves, which implies that $\gamma_r(T) \leq \gamma_r(T'; v_3) + 2 < \gamma_r(T') + 2$, a contradiction. Hence $v_3 \in W^2_{T'}$ and therefore $v_3 \in W^2_{T'} \cap W^4_{T'}$. Consequently, $T \in \mathcal{F}$ because it can be obtained from

71

T' by applying Operation \mathcal{T}_3 .

Subcase 1.2. v_3 is a support vertex. We first assume that v_3 has at least three leaves. Let T' be the tree obtained from T by deleting a leaf neighbor of v_3 . Hence v_3 remains a strong support vertex in T', and thus $\gamma_r(T) = \gamma_r(T')$, and $\gamma_R(T) = \gamma_R(T')$. It follows that $\gamma_r(T') = \gamma_R(T')$, and so $T' \in \mathcal{F}$. Therefore $T \in \mathcal{F}$ because it is obtained from T' by using Operation \mathcal{T}_1 . Hence we can assume that v_3 is a support vertex with at most two leaves.

Suppose that v_3 is adjacent to two leaves. Let $T' = T - T_{v_2}$. Then $\gamma_R(T) \ge \gamma_R(T') + 2$ and $\gamma_r(T) \le \gamma_r(T') + 2$. It follows that

$$\gamma_r(T) = \gamma_R(T) \ge \gamma_R(T') + 2 \ge \gamma_r(T') + 2 \ge \gamma_r(T),$$

and thus $\gamma_R(T) = \gamma_R(T') + 2$, $\gamma_r(T) = \gamma_r(T') + 2$ and $\gamma_r(T') = \gamma_R(T')$. By induction on T', we obtain that $T' \in \mathcal{F}$. Using the same argument as in Subcase 1.1, we can show that $v_3 \in W^2_{T'} \cap W^4_{T'}$. Therefore $T \in \mathcal{F}$ since it can be obtained from T' by using Operation \mathcal{T}_3 .

Suppose now that v_3 is adjacent to exactly one leaf, say w. Seeing the previous cases, we have $\deg_T(v_3) = 3$. Let $T' = T - \{w\}$. Clearly, $\gamma_r(T) \leq \gamma_r(T') + 1$. Let g be a $\gamma_R(T)$ -function. We may assume that $g(v_2) = 2$ and thus $g(v_3) \neq 1$. If $g(v_3) = 0$, then clearly g(w) = 1 and the restriction of g to T' is an RDF of T' implying that $\gamma_R(T) \geq \gamma_R(T') + 1$. If $g(v_3) = 2$, then clearly $g(w) = g(v_4) = 0$, and so the function $g' : V(T') \rightarrow \{0, 1, 2\}$ defined by $g'(v_3) = 0$, $g'(v_4) = 1$ and g'(u) = g(u)otherwise, is an RDF of T' yielding $\gamma_R(T) \geq \gamma_R(T') + 1$. By Observation 2.4, we have $\gamma_r(T') = \gamma_R(T')$ and so $T' \in \mathcal{F}$. Therefore $T \in \mathcal{F}$ since it can be obtained from T' by using Operation \mathcal{T}_4 .

Subcase 1.3. deg_T(v_3) = 2. Let $T' = T - T_{v_3}$. Using the facts that diam(T) ≥ 4 and $\gamma_r(T) = \gamma_R(T)$ one can see that T' has order at least three. Since there is a $\gamma_R(T)$ -function g that assigns a 2 to v_2 and a 0 to every neighbor of v_2 , the restriction of g to T' yields $\gamma_R(T) \geq \gamma_R(T') + 2$. Also, $\gamma_r(T) \leq \gamma_r(T') + 2$. By Observation 2.4, $\gamma_r(T') = \gamma_R(T')$ and thus $T' \in \mathcal{F}$. Therefore, $T \in \mathcal{F}$ because it can be obtained from T' by applying Operation \mathcal{T}_5 .

Case 2. $\deg_T(v_2) = 2$. Let $T' = T - T_{v_2}$. Clearly $\gamma_r(T) \leq \gamma_r(T') + 1$. Let g be a $\gamma_R(T)$ -function with maximum number of vertices assigned a 2. The choice of gimplies that $g(v_2) \in \{2, 0\}$. If $g(v_2) = 2$, then the function $h : V(T') \to \{0, 1, 2\}$ defined by $h(v_3) = \min\{2, g(v_3) + 1\}$ and h(u) = g(u) otherwise, is an RDF of T'implying that $\gamma_R(T) \geq \gamma_R(T') + 1$. If $g(v_2) = 0$, then we must have $g(v_1) = 1$ (else we can change the assignments of v_1 and v_2 to be in the previous situation). Hence $g(v_3) = 2$ and the restriction of g to T' yields also $\gamma_R(T) \geq \gamma_R(T') + 1$. It follows that $\gamma_r(T) = \gamma_R(T) \geq \gamma_R(T') + 1 \geq \gamma_r(T') + 1 \geq \gamma_r(T)$ and thus we have equality throughout this inequality chain. In particular, $\gamma_r(T') = \gamma_R(T') + 1$ implies that $v_3 \in W_{T'}^5$ (according to the restriction of g to T'). It follows that $T \in \mathcal{F}$ because it is obtained from T' by applying Operation \mathcal{T}_2 .

References

- H. Abdollahzadeh Ahangar, A. Bahremandpour, S. M. Sheikholeslami, N. D. Soner, Z. Tahmasbzadehbaee and L. Volkmann, Maximal Roman domination numbers in graphs, *Util. Math.* **103** (2017), 245–258.
- [2] H. Abdollahzadeh Ahangar, T.W. Haynes and J.C. Valenzuela-Tripodoro, Mixed Roman domination in graphs, Bull. Malays. Math. Sci. Soc. 40 (2017), 1443–1454.
- [3] J. D. Alvarado, S. Dantas and D. Rautenbach, Strong equality of Roman and weak Roman domination in trees, *Discrete Appl. Math.* **208** (2016), 19–26.
- [4] J. D. Alvarado, S. Dantas and D. Rautenbach, Relating 2-rainbow domination to Roman domination. *Discuss. Math. Graph Theory* 37 (2017), 953–961.
- [5] R. A. Beeler, T. W. Haynes and S. T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016), 23–29.
- [6] B. Brešar, M. A. Henning and D. F. Rall, Rainbow domination in graphs, *Taiwanese J. Math.* 12 (2008), 213–225.
- [7] M. Chellali, T. W. Haynes and S. T. Hedetniemi, Bounds on weak Roman and 2-rainbow domination numbers, *Discrete Appl. Math.* **178** (2014), 27–32.
- [8] M. Chellali, T. W. Haynes, S. T. Hedetniemi and A. MacRae, Roman {2}domination, Discrete Appl. Math. 204 (2016), 22–28.
- [9] E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs, *Discrete Math.* 278 (2004), 11–22.
- [10] N. Dehgardi, M. Falahat, S. M. Sheikholeslami and A. Khodkar, On the rainbow domination subdivision numbers in graphs, Asian-Eur. J. Math. 9 (2016), 1650018 (12 pp.)
- [11] M. A. Henning and S. T. Hedetniemi, Defending the Roman Empire—A new strategy, *Discrete Math.* 266 (2003), 239–251.
- [12] C.-H. Liu and G. J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013), 608–619.
- [13] C. S. ReVelle and K. E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (7) (2000), 585–594.
- [14] I. Stewart, Defend the Roman Empire! Sci. Amer. **281** (6) (1999), 136–139.

(Received 23 Jan 2018; revised 25 Jan 2019)