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Abstract

For a graph G, let γr(G), γR(G) and γr2(G) denote the weak Roman
domination number, the Roman domination number and the 2-rainbow
domination number, respectively. It is well-known that for every graph G,
γr(G) ≤ γr2(G) ≤ γR(G). In this paper, we characterize all trees T with
γr(T ) = γr2(T ) or γr(T ) = γR(T ) answering two open problems posed
by Chellali, Haynes and Hedetniemi [Discrete Appl. Math. 178 (2014),
27–32].
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1 Introduction

In this paper, G is a simple graph without isolated vertices, with vertex set V = V (G)
and edge set E = E(G). The order |V | of G is denoted by n = n(G). For a vertex
v ∈ V , the open neighborhood of v is the set N(v) = {u ∈ V (G) : uv ∈ E(G)} and
the closed neighborhood of v is the set N [v] = N(v) ∪ {v}. The degree of a vertex
v ∈ V is degG(v) = |N(v)|. A vertex of degree one is called a pendant vertex or a
leaf and its neighbour is called a support vertex. A strong support vertex is a support
vertex adjacent to at least two leaves and an end support vertex is a support vertex
having at most one non-leaf neighbor. A pendant path P of a graph G is an induced
path such that one of the endpoints has degree one in G, and its other endpoint is
the only vertex of P adjacent to some vertex in G − P . The distance between two
vertices u and v in a connected graph G is the length of a shortest uv-path in G.
The diameter of G, denoted by diam(G), is the maximum value among minimum
distances between all pairs of vertices of G. For a vertex v in a rooted tree T , let
C(v) and D(v) denote the set of children and descendants of v, respectively and let
D[v] = D(v)∪{v}. Also, the depth of v, depth(v), is the largest distance from v to a
vertex in D(v). The maximal subtree at v is the subtree of T induced by D[v], and
is denoted by Tv. We write Pn for the path of order n. A double star DSp,q is a tree
containing exactly two non-pendant vertices which one is adjacent to p leaves and
the other is adjacent to q leaves. If A ⊆ V (G) and f is a mapping from V (G) into
some set of numbers, then f(A) =

∑
x∈A f(x), and the sum f(V (G)) is called the

weight ω(f) of f .

A function f : V (G) → {0, 1, 2} is a Roman dominating function (RDF) on G
if every vertex u ∈ V (G) for which f(u) = 0 is adjacent to at least one vertex v
for which f(v) = 2. The weight of an RDF is the value f(V (G)) =

∑
u∈V (G) f(u),

and the Roman domination number γR(G) is the minimum weight of an RDF on G.
Roman domination was introduced by Cockayne et al. in [9] and was inspired by the
work of ReVelle and Rosing [13], Stewart [14]. It is worth mentioning that since its
introduction in 2004, several new variations of Roman domination were introduced:
weak Roman domination [11], 2-rainbow domination [6], Roman {2}-domination
[8], maximal Roman domination [1], mixed Roman domination [2], double Roman
domination [5] and recently total Roman domination [12]. Two of the previous
variations will be the focus of this paper.

A 2-rainbow dominating function (2rDF) on a graph G is a function f : V (G) →
P({1, 2}) if for each vertex v ∈ V (G) such that f(v) = ∅, we have ∪u∈N(v)f(u) =
{1, 2}. The weight of a 2rDF f is defined as ω(f) =

∑
v∈V (G) |f(v)|, and the 2-

rainbow domination number γr2(G) is the minimum weight of a 2rDF of G.

For a graph G, let f : V (G) → {0, 1, 2} be a function. If Vi = {v ∈ V |f(v) = i}
for i ∈ {0, 1, 2}, then f can be denoted by f =(V0, V1, V2). A vertex v with f(v) = 0
is said to be undefended with respect to f if it is not adjacent to a vertex w with
f(w) > 0. A function f is called a weak Roman dominating function (WRDF) if each
vertex v with f(v) = 0 is adjacent to a vertex w with f(w) > 0, such that the function
f ′ defined by f ′(v) = 1, f ′(w) = f(w)−1, and f ′(u) = f(u) for all u ∈ V \{v, w}, has
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no undefended vertex. The weight of a WRDF is the value f(V ) =
∑

u∈V (G) f(u),

and the weak Roman domination number γr(G) is the minimum weight of a WRDF
of G.

We note that a relation relating the three parameters defined above is given by
the following chain of inequalities which can be found in [7]. For every graph G,

γr(G) ≤ γr2(G) ≤ γR(G). (1)

Moreover, the authors [7] posed the following two problems.

Problem 1. Characterize the trees T satisfying γr(T ) = γr2(T ).

Problem 2. Characterize the trees T satisfying γr(T ) = γR(T ).

In this paper, we address these two problems by giving a constructive charac-
terization of trees T with γr(T ) = γr2(T ) or γr(T ) = γR(T ). Before presenting our
results, we mention that Alvarado, Dantas and Rautenbach [3] showed that the prob-
lem of deciding whether γr(G) = γR(G) for a given graph G is NP-hard. In addition,
they gave a characterization of trees T with strong equality between γr(T ) and γR(T ),
that is, those trees for which every minimum WRDF is an RDF. In another paper,
the same authors [4] show that it is NP-hard to decide whether γr2(G) = γR(G)
for a given connected K4-free graph G. Clearly, because of the above, a solution of
Problems 1 and 2 will be quite interesting even for the class of trees.

2 Preliminaries

In this section we provide some observations and definitions that will be useful
throughout the paper.

Observation 2.1. Let H be a subgraph of a graph G. If γr(H) = γr2(H), γr2(G) ≤
γr2(H) + s and γr(G) ≥ γr(H) + s for some non-negative integer s, then γr(G) =
γr2(G).

Proof. It follows from the assumptions and (1) that

γr(G) ≥ γr(H) + s = γr2(H) + s ≥ γr2(G) ≥ γr(G),

and thus γr(G) = γr2(G).

Observation 2.2. Let H be a subgraph of a graph G. If γr(G) = γr2(G), γr(G) ≤
γr(H) + s and γr2(G) ≥ γr2(H) + s for some non-negative integer s, then γr(H) =
γr2(H).

Proof. By (1) and the assumptions, we have

γr2(G) = γr(G) ≤ γr(H) + s ≤ γr2(H) + s ≤ γr2(G)

and the desired result follows.
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Observation 2.3. Let H be a subgraph of a graph G. If γr(H) = γR(H), γR(G) ≤
γR(H) + s and γr(G) ≥ γr(H) + s for some non-negative integer s, then γr(G) =
γR(G).

Proof. It follows from the assumptions and (1) that

γr(G) ≥ γr(H) + s = γR(H) + s ≥ γR(G) ≥ γr(G),

and thus γr(G) = γR(G).

Observation 2.4. Let H be a subgraph of a graph G. If γr(G) = γR(G), γr(G) ≤
γr(H) + s and γR(G) ≥ γR(H) + s for some non-negative integer s, then γr(H) =
γR(H).

Proof. By (1) and the assumptions, we have

γR(G) = γr(G) ≤ γr(H) + s ≤ γR(H) + s ≤ γR(G)

and the desired result follows.

We close this section with some definitions.

Definition 2.5. Let v be a vertex of a graph G. A function f : V (G) → P({1, 2}) is
said to be an almost 2-rainbow dominating function (almost 2rDF) with respect to v,
if for every vertex x ∈ V (G)−{v} for which f(x) = ∅ we have ∪u∈N(x)f(u) = {1, 2}.
Let

γr2(G; v) = min{ω(f) | f is an almost 2rDF with respect to v}.

Observe that any 2rDF on G is an almost 2rDF with respect to any vertex of G.
Therefore γr2(G; v) is well-defined and γr2(G; v) ≤ γr2(G) for each v ∈ V (G). Define
W 1

G = {v ∈ V (G)|γr2(G; v) = γr2(G)}.

Definition 2.6. Let v be a vertex of a graph G. A function f : V (G) → {0, 1, 2} is
said to be an almost weak Roman dominating function (almost WRDF) with respect
to v, if every vertex x ∈ V (G) − {v} for which f(x) = 0 is adjacent to at least one
vertex y ∈ V (G) for which f(y) ≥ 1 such that the function g : V (G) → {0, 1, 2}
defined by g(x) = 1, g(y) = f(y)− 1 and g(z) = f(z) otherwise has no undefended
vertex. Let

γr(G; v) = min{ω(f) | f is an almost WRDF with respect to v}.

Observe that any WRDF on G is an almost WRDF with respect to any vertex
of G. Therefore γr(G; v) is well-defined and γr(G; v) ≤ γr(G) for each v ∈ V (G).
Define W 2

G = {v ∈ V (G) | γr(G; v) = γr(G)}.

Definition 2.7. For a graph G and v ∈ V (G), we say that v has property P
in G if there exists a γr2(G)-function f such that f(v) 	= ∅. Let W 3

G = {v |
v has property P in G}.
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Definition 2.8. Let v be a vertex of a graph G. A function f : V (G) → {0, 1, 2} is
said to be an almost Roman dominating function (almost RDF) with respect to v,
if every vertex x ∈ V (G)− {v} for which f(x) = 0 is adjacent to at least one vertex
y ∈ V (G) for which f(y) = 2. Let

γR(G; v) = min{ω(f) | f is an almost RDF with respect to v}.

Observe that any RDF on G is an almost RDF with respect to any vertex of G.
Therefore γR(G; v) is well-defined and γR(G; v) ≤ γR(G) for each v ∈ V (G). Define
W 4

G = {v ∈ V (G) | γR(G; v) = γR(G)}.

Definition 2.9. For a graph G and v ∈ V (G), we say that v has property Q
in G if there exists a γR(G)-function f such that f(v) 	= 0. Let W 5

G = {v |
v has property Q in G}.

3 Settlement of Problem 1

In this section we provide a constructive characterization of all trees T with γr(T ) =
γr2(T ). For this purpose, we define the family T of unlabeled trees T that can be
obtained from a sequence T1, T2, . . . , Tm (m ≥ 1) of trees such that T1 is a path
P3, and, if m ≥ 2, Ti+1 can be obtained recursively from Ti by one of the following
operations.

Operation O1. If x ∈ V (Ti) and x is a strong support vertex, then Ti+1 is obtained
by adding a new vertex y attached by an edge xy.

Operation O2. If x ∈ W 3
Ti
, then Ti+1 is obtained by adding a path P2 attached by

an edge joining x and a leaf of P2.

Operation O3. If x ∈ W 1
Ti
∩W 2

Ti
, then Ti+1 is obtained by adding a path P3 attached

by an edge joining x and the central vertex of P3.

Operation O4. If x ∈ V (Ti) is not a support vertex and is adjacent to a strong
support vertex of Ti, then Ti+1 is obtained by adding a new vertex y attached by an
edge xy.

Operation O5. If x ∈ V (Ti), then Ti+1 is obtained by adding a star K1,3 attached
by an edge joining x and a leaf of K1,3.

Lemma 3.1. If Ti is a tree with γr(Ti) = γr2(Ti) and Ti+1 is a tree obtained from Ti

by Operation O1, then γr(Ti+1) = γr2(Ti+1).

Proof. Clearly γr(Ti+1) = γr(Ti) and γr2(Ti+1) = γr2(Ti)i, and thus γr(Ti+1) =
γr2(Ti+1).

Lemma 3.2. If Ti is a tree with γr(Ti) = γr2(Ti) and Ti+1 is a tree obtained from Ti

by Operation O2, then γr(Ti+1) = γr2(Ti+1).
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Proof. Let Operation O2 add a path P2 = yz and join x to y. Since x ∈ W 3
Ti
, let f

be a γr2(Ti)-function such that f(x) 	= ∅. Then f can be extended to a 2rDF of Ti+1

by assigning ∅ to y and {1} (or {2}) to z, implying that γr2(Ti+1) ≤ γr2(Ti)+1. Now
let g be a γr(Ti+1)-function. If g(y) = 2, then clearly g(x) = 0 and thus the function
h : V (Ti) → {0, 1, 2} defined by h(x) = 1 and h(u) = g(u) otherwise, is a WRDF
of Ti. Hence γr(Ti) ≤ ω(h) ≤ γr(Ti+1) − 1. If g(y) ∈ {0, 1}, then either g(x) > 0
or can be defended by one of its neighbors in Ti, and thus the restriction of g to Ti

yields a WRDF of Ti. Hence γr(Ti+1) ≥ γr(Ti) + 1. By Observation 2.1, we obtain
γr(Ti+1) = γr2(Ti+1).

Lemma 3.3. If Ti is a tree with γr(Ti) = γr2(Ti) and Ti+1 is a tree obtained from Ti

by Operation O3, then γr(Ti+1) = γr2(Ti+1).

Proof. Let OperationO3 add a path yzw and the edge xz. Then γr2(Ti+1) ≤ γr2(Ti)+
2 since any γr2(Ti)-function f can be extended to a 2rDF of Ti+1 by assigning {1, 2}
to z and ∅ to y and w. Now let g be a γr(Ti+1)-function. Clearly we may assume
that g(z) ∈ {0, 2}. If g(z) = 0, then g(y) = g(w) = 1 and so the restriction of g to
Ti is a WRDF of Ti, yielding γr(Ti+1) ≥ γr(Ti) + 2. Hence we assume that g(z) = 2.
Then the restriction of g to Ti is an almost WRDF of Ti with respect to x and since
x ∈ W 2

Ti
, we conclude that γr(Ti+1) ≥ γr(Ti; x) + 2 = γr(Ti) + 2. Now the result

follows by Observation 2.1.

Lemma 3.4. If Ti is a tree with γr(Ti) = γr2(Ti) and Ti+1 is a tree obtained from Ti

by Operation O4, then γr(Ti+1) = γr2(Ti+1).

Proof. Let Operation O4 add a vertex y and the edge xy, and let z be the strong
support vertex of Ti adjacent to x. Clearly, γr2(Ti+1) ≤ γr2(Ti) + 1 since any γr2(Ti)-
function f can be extended to a 2rDF of Ti+1 by assigning {1} to y. Now let g be a
γr(Ti+1)-function. Then g(z) = 2 an so g(x) ∈ {0, 1}. If g(x) = 0, then the restriction
of g to Ti is a WRDF of Ti implying that γr(Ti+1) ≥ γr(Ti) + 1. If g(x) = 1, then
g(y) = 0 and thus reassigning the values 0 and 1 to x and y instead of 1 and 0,
respectively, brings us back to the previous situation, and so γr(Ti+1) ≥ γr(Ti) + 1.
Now by Observation 2.1, we obtain γr(Ti+1) = γr2(Ti+1).

Lemma 3.5. If Ti is a tree with γr(Ti) = γr2(Ti) and Ti+1 is a tree obtained from Ti

by Operation O5, then γr(Ti+1) = γr2(Ti+1).

Proof. Let Operation O5 add a star K1,3 centered at z and the edge xy, where y
is a leaf of K1,3. Clearly, γr2(Ti+1) ≤ γr2(Ti) + 2. Let g be a γr(Ti+1)-function.
Without loss of generality, we may assume that g(z) = 2. It follows that g(u) = 0
for every u ∈ N(z) and thus the restriction of g to Ti is a WRDF of Ti. Hence
γr(Ti+1) ≥ γr(Ti) + 2, and the desired result follows from Observation 2.1.

We recall the following proposition from [10].
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Proposition 3.6. Let G be a connected graph. If there is a path v3v2v1 in G with
deg(v2) = 2 and deg(v1) = 1, then G has a γr2(G)-function f such that |f(v1)| = 1,
|f(v3)| ≥ 1 and f(v1) 	= f(v3).

Now we are ready to prove the main result of this section.

Theorem 3.7. Let T be a tree of order n ≥ 3. Then γr(T ) = γr2(T ) if and only if
T ∈ T .

Proof. First we prove the sufficiency. Let T ∈ T . Then there exists a sequence of
trees T1, T2, . . . , Tk (k ≥ 1) such that T1 is P3, and if k ≥ 2, then Ti+1 can be obtained
recursively from Ti by one of the aforementioned Operations.

We proceed by induction on the number of operations applied to construct T .
If k = 1, then T = P3 and γr(P3) = γr2(P3) = 2. Suppose that the result is true
for each tree T ′ ∈ T which can be obtained from a sequence of operations of length
k − 1 and let T ′ = Tk−1. By the induction hypothesis, we have γr(T

′) = γr2(T
′).

Since T = Tk is obtained from T ′ by one of the Operations O1,O2,O3,O4 or O5, we
conclude from Lemmas 3.1, 3.2, 3.3, 3.4 and 3.5 that γr(T ) = γr2(T ).

Now we prove the necessity. Let T be a tree with γr(T ) = γr2(T ). We use
an induction on the order n of T . If n = 3, then the only tree T of order 3 with
γr(T ) = γr2(T ) is P3 that belongs to T . Let n ≥ 4 and let the statement hold for
all trees T ′ of order less than n and γr(T

′) = γr2(T
′). Let T be a tree of order n

with γr(T ) = γr2(T ) and let f be a γr(T )-function. If diam(T ) = 2, then T is a
star belongs to T since it can be obtained from P3 by applying Operation O1. If
diam(T ) = 3, then T is a double star DSp,q (q ≥ p ≥ 1) different from a path P4

(since 2 = γr(P4) < γr2(P4) = 3). Hence q ≥ 2. If p = 1, then T ∈ T because it
is obtained from P3 by applying first Operation O2, and then Operation O1 so that
the support vertex can have any number of leaves. If p ≥ 2, then T ∈ T because it
is obtained from P3 by applying first Operation O3, and then Operation O1 so that
the support vertices can have any number of leaves. Henceforth we may assume that
diam(T ) ≥ 4.

Let v1v2 . . . vk, with k ≥ 5, be a diametral path in T such that deg(v2) is as large
as possible and root T at vk. If degT (v2) ≥ 4, then clearly γr(T ) = γr(T − v1) and
γr2(T ) = γr2(T − v1), implying that γr(T − v1) = γr2(T − v1). By the induction
hypothesis on T − v1, we have T − v1 ∈ T . Therefore T ∈ T because it is obtained
from T − v1 by using Operation O1. Hence we can assume that degT (v2) ≤ 3. We
consider two cases.

Case 1. degT (v2) = 3. Consider the following subcases.
Subcase 1.1. v3 has at least one child, say y, with depth 1. Clearly degT (y) ∈ {2, 3}.
Let T ′ = T−Tv2 . If degT (y) = 2, then clearly, the restriction of any γr2(T )-function g
satisfying the condition of Proposition 3.6, to T ′ is a 2rDF of T ′ of weight γr2(T )−2.
If degT (y) = 3, then there is a γr2(T )-function that assigns the set {1, 2} to v2 and
y, and so the restriction of such a γr2(T )-function to T ′ is a 2rDF of T ′ of weight
γr2(T )− 2. In each case, we obtain γr2(T ) ≥ γr2(T

′) + 2. Moreover, if h is a γr(T
′)-

function, then it can be extended to a WRDF of T by assigning a 2 to v2 and a 0
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to its leaves yielding that γr(T ) ≤ γr(T
′) + 2. By Observation 2.2, we deduce that

γr(T
′) = γr2(T

′), and thus γr2(T ) = γr2(T
′)+2 and γr(T ) = γr(T

′)+2. By induction
on T ′, we have T ′ ∈ T . Next we shall show that v3 ∈ W 1

T ′ ∩W 2
T ′ . Clearly, if v3 /∈ W 1

T ′,
then γr2(T

′; v3) < γr2(T
′), and so any minimum almost 2rDF of T ′ with respect to v3

can be extended to a 2rDF of T by assigning the sets {1, 2} and ∅ to v2 and its leaves,
respectively. Hence γr2(T ) ≤ γr2(T

′; v3) + 2 < γr2(T
′) + 2, a contradiction. Hence

v3 ∈ W 1
T ′. Likewise, if v3 	∈ W 2

T ′ , then γr(T ) ≤ γr(T
′; v3)+2 < γr(T

′)+2, which leads
to a contradiction. Hence v3 ∈ W 2

T ′ and therefore v3 ∈ W 1
T ′ ∩ W 2

T ′. Consequently,
T ∈ T since it is obtained from T ′ by using Operation O3.

Subcase 1.2. v3 is a support vertex. Assume first that v3 has at least three leaves.
Let T ′ be the tree obtained from T by removing a leaf neighbor of v3. Note that v3
remains a strong support vertex in T ′, and so one can check that γr(T ) = γr(T

′) and
γr2(T ) = γr2(T

′). It follows that γr(T
′) = γr2(T

′), and the induction on T ′ implies
that T ′ ∈ T . Therefore T ∈ T because it is obtained from T ′ by using Operation
O1. Hence we can assume that v3 has either one or two leaves.

Suppose that v3 is adjacent to two leaves. Let T ′ = T − Tv2 . Obviously, γr2(T ) ≥
γr2(T

′)+ 2 and γr(T ) ≤ γr(T
′)+ 2. Using the fact that γr(T ) = γr2(T ), the previous

inequalities imply that

γr2(T ) ≥ γr2(T
′) + 2 ≥ γr(T

′) + 2 ≥ γr(T ),

and thus γr2(T ) = γr2(T
′)+2, γr(T ) = γr(T

′)+2 and γr(T
′) = γr2(T

′). By induction
on T ′, we obtain that T ′ ∈ T . Now using a similar argument to that used in Subcase
1.1 we can see that v3 ∈ W 1

T ′ ∩W 2
T ′. Therefore T ∈ T since it is obtained from T ′ by

using Operation O3.

Finally, suppose that v3 is adjacent to exactly one leaf, say w. Note in that case
degT (v3) = 3. Let T ′ = T − {w} and let g be a γr2(T )-function. Without loss of
generality, we may assume that |g(v3)| 	= 1. We also note that g(v2) = {1, 2}, since
v2 has two leaves. Now if g(v3) = ∅, then clearly |g(w)| = 1, and thus the restriction
of g to T ′ is a 2rDF of T ′ implying that γr2(T ) ≥ γr2(T

′) + 1. If g(v3) = {1, 2},
then clearly g(w) = g(v4) = ∅, and so the function g′ : V (T ′) → P({1, 2}) defined
by g′(v3) = ∅, g′(v4) = {1} and g′(x) = g(x) otherwise, is a 2rDF of T ′ yielding
also γr2(T ) ≥ γr2(T

′) + 1. On the other hand, the inequality γr(T ) ≤ γr(T
′) + 1

follows from the fact that any γr(T
′)-function can be extended to a WRDF of T by

assigning a 1 to w. Now by Observation 2.2, we deduce that γr(T
′) = γr2(T

′). Using
the induction on T ′, it follows that T ′ ∈ T which implies that T ∈ T since T can be
obtained from T ′ by applying Operation O4.

Subcase 1.3. degT (v3) = 2. Let T ′ = T − Tv3 . Note that T ′ has order n′ ≥ 2,
since diam(T ) ≥ 4. Moreover, n′ 	= 2 for otherwise T is a tree of order 6 with
γr(T ) = 3 < γr2(T ) = 4. Hence we assume that n′ ≥ 3. On the other hand, it is a
simple matter to see that γr2(T ) ≥ γr2(T

′) + 2. Also, γr(T ) ≤ γr(T
′) + 2 since any

γr(T
′)-function can be extended to a WRDF of T by assigning a 2 to v2 and a 0 to

every u ∈ N(v2). According to Observation 2.2, we obtain that γr(T
′) = γr2(T

′). By
induction on T ′, we have T ∈ T . Therefore T ∈ T because it is obtained from T ′ by
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applying Operation O5.

Case 2. deg(v2) = 2. Let T ′ = T − Tv2 and let g be a γr2(T )-function. Without
loss of generality, we may assume that g(v2) = ∅ and g(v1) = {1} and 2 ∈ g(v3).
Thus the restriction of g to T ′ is a 2rDF yielding γr2(T ) ≥ γr2(T

′)+ 1. On the other
hand, we also have γr(T ) ≤ γr(T

′) + 1. From the assumption γr2(T ) = γr(T ) and
Observation 2.2, we conclude that γr(T

′) = γr2(T
′) and thus γr2(T ) = γr2(T

′) + 1.
By induction on T ′, we have T ′ ∈ T . Using the fact that γr2(T ) = γr2(T

′) + 1, we
deduce that v3 ∈ W 3

T ′ . Therefore T ∈ T because it is obtained from T ′ by applying
Operation O2.

4 Settlement of Problem 2

In this section we provide a constructive characterization of all trees T with γr(T ) =
γR(T ). For this purpose, we define the family F of unlabeled trees T that can be
obtained from a sequence T1, T2, . . . , Tm (m ≥ 1) of trees such that T1 is a path
P3, and, if m ≥ 2, Ti+1 can be obtained recursively from Ti by one of the following
operations.

Operation T1. If x ∈ V (Ti) and x is a strong support vertex, then Ti+1 is obtained
by adding a new vertex y attached by an edge xy.

Operation T2. If x ∈ W 5
Ti
, then Ti+1 is obtained by adding a path P2 attached by

an edge joining x and a leaf of P2.

Operation T3. If x ∈ W 2
Ti
∩W 4

Ti
, then Ti+1 is obtained by adding a path P3 attached

by an edge joining x and the central vertex of P3.

Operation T4. If x ∈ V (Ti) is not a support vertex and is adjacent to a strong
support vertex of Ti, then Ti+1 is obtained by adding a new vertex y attached by an
edge xy.

Operation T5. If x ∈ V (Ti), then Ti+1 is obtained by adding a star K1,3 attached
by an edge joining x and a leaf of K1,3.

In the rest of the paper, we shall prove that for any tree T of order n ≥ 3,
γr(T ) = γR(T ) if and only if T ∈ F .

It worth mentioning that if T is a tree with γr(T ) = γR(T ), then (1) implies
that γr(T ) = γr2(T ), and thus by Theorem 3.7, T ∈ T . However, not every tree
T ∈ T satisfies γr(T ) = γR(T ). This can be seen by the path P5, where P5 ∈ T but
3 = γr(P5) < γR(P5) = 4.

We will use the following lemmas.

Lemma 4.1. If Ti is a tree with γr(Ti) = γR(Ti) and Ti+1 is a tree obtained from Ti

by Operation T1, then γr(Ti+1) = γR(Ti+1).

Proof. Clearly γr(Ti+1) = γr(Ti) and γR(Ti+1) = γR(Ti), and thus γr(Ti+1) =
γR(Ti+1).
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Lemma 4.2. If Ti is a tree with γr(Ti) = γR(Ti) and Ti+1 is a tree obtained from Ti

by Operation T2, then γr(Ti+1) = γR(Ti+1).

Proof. Let T2 add a path P2 = yz and join x to y. Since x ∈ W 5
Ti
, let f be a

γR(Ti)-function such that f(x) 	= 0. Clearly, if f(x) = 2, then γR(Ti+1) ≤ γR(Ti)+1.
Hence assume that f(x) = 1. Then the function f ′ defined by f ′(z) = f ′(x) = 0,
f ′(y) = 2 and f ′(u) = f(u) for every u ∈ V (Ti) − {x} is an RDF of Ti+1 and thus
γR(Ti+1) ≤ γR(Ti) + 1. In any case, γR(Ti+1) ≤ γR(Ti) + 1. Now let g be a γr(Ti+1)-
function. If g(y) = 2, then clearly g(x) = 0 and so the function h : V (Ti) → {0, 1, 2}
defined by h(x) = 1 and h(u) = g(u) otherwise, is a WRDF of Ti implying that
γr(Ti) ≤ ω(h) = γr(Ti+1)− 1. If g(y) = 0 or 1, then x is defended by some vertex of
N [x] − y, and so the restriction of g to Ti yields a WRDF of Ti and so γr(Ti+1) ≥
γr(Ti) + 1. By Observation 2.3, we obtain γr(Ti+1) = γR(Ti+1).

Lemma 4.3. If Ti is a tree with γr(Ti) = γR(Ti) and Ti+1 is a tree obtained from Ti

by Operation T3, then γr(Ti+1) = γR(Ti+1).

Proof. Let T3 add a path yzw and the edge xz. Then γR(Ti+1) ≤ γR(Ti) + 2 since
any γR(Ti)-function can be extended to an RDF of Ti+1 by assigning a 2 to z and a
0 to y and w. Now let g be a γr(Ti+1)-function. If g(z) = 2, then the restriction of g
to Ti is an almost WRDF of Ti with respect to x and since x ∈ W 2

Ti
, we deduce that

γr(Ti+1) ≥ γr(Ti; x) + 2 = γr(Ti) + 2. If g(z) = 0 then g(y) = g(w) = 1 and clearly
the restriction of g to Ti is a WRDF of Ti, implying that γr(Ti+1) ≥ γr(Ti) + 2. The
case g(z) = 1 is ignored since we can construct a γr(Ti+1)-function that assigns a 2
to z by using the positive weight assigned to y or z. Now the desired result follows
by Observation 2.3.

Lemma 4.4. If Ti is a tree with γr(Ti) = γR(Ti) and Ti+1 is a tree obtained from Ti

by Operation T4, then γr(Ti+1) = γR(Ti+1).

Proof. Let T4 add a vertex y and the edge xy. Obviously, γR(Ti+1) ≤ γR(Ti) + 1.
Now let g be a γr(Ti+1)-function. Note that we can assume that the strong support
vertex adjacent to x in Ti is assigned a 2. Now, if g(x) = 0, then g(y) = 1 and the
restriction of g to Ti is a WRDF of Ti implying that γr(Ti+1) ≥ γr(Ti)+1. If g(x) > 0,
then we can restrict the function g to Ti by assigning to x the value g(x)−1, yielding
γr(Ti+1) ≥ γr(Ti) + 1. Using Observation 2.3, the desired result follows.

Lemma 4.5. If Ti is a tree with γr(Ti) = γR(Ti) and Ti+1 is a tree obtained from Ti

by Operation T5, then γr(Ti+1) = γR(Ti+1).

Proof. Let T5 add a star K1,3 centered at z and the edge xy, where y is a leaf of K1,3.
Clearly, γR(Ti+1) ≤ γR(Ti) + 2. Let g be a γr(Ti+1)-function. Note that g(z) = 2. If
g(y) = 0, then the restriction of g to Ti is a WRDF of Ti of weight γr(Ti+1) − 2. If
g(x) = 1, then we can restrict the function g to Ti by assigning 1 to x, yielding a
WRDF of Ti of weight γr(Ti+1)−2. In any case, γr(Ti+1) ≥ γr(Ti)+2. By Observation
2.3, we obtain γr(Ti+1) = γR(Ti+1).
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Now we are ready to prove the main result of this section.

Theorem 4.6. Let T be a tree of order n ≥ 3. Then γr(T ) = γR(T ) if and only if
T ∈ F .

Proof. First we prove the sufficiency. Let T ∈ F . Then there exists a sequence of
trees T1, T2, . . . , Tk (k ≥ 1) such that T1 is P3, and if k ≥ 2, then Ti+1 can be obtained
recursively from Ti by one of the aforementioned Operations.

We proceed by induction on the number of operations applied to construct T . If
k = 1, then T = P3 and γr(P3) = γR(P3) = 2. .Suppose that the result is true for
each tree of F which can be obtained from a sequence of operations of length k − 1
and let T ′ = Tk−1. By induction on T ′, we have γr(T

′) = γr2(T
′). Since T = Tk is

obtained from T ′ by one of the Operations T1, T2, T3, T4 and T5, we conclude from
Lemmas 4.1, 4.2, 4.3, 4.4 and 4.5 that γr(T ) = γR(T ).

Now we prove the necessity. Let T be a tree with γr(T ) = γR(T ). We proceed
by induction on n. If n = 3, then T = P3 and clearly P3 ∈ F . Let n ≥ 4 and assume
that for every tree T ′ of order n′, with 3 ≤ n′ < n such that γr(T

′) = γR(T
′), we

have T ′ ∈ F . Let T be a tree of order n with γr(T ) = γR(T ). If diam(T ) = 2, then T
is a star that belongs to F since it can be obtained from P3 by applying Operation
T1. If diam(T ) = 3, then T is a double star DSp,q (q ≥ p ≥ 1) different from a
path P4 (since γr(P4) < γR(P4)). Hence q ≥ 2. If p = 1, then T ∈ F because it is
obtained from P3 by applying first Operation T2, and then Operations T1. If p ≥ 2,
then T ∈ F because it is obtained from P3 by applying first Operation T3, and then
Operation T1 so that the support vertices can have any number of leaves. Henceforth
we assume that diam(T ) ≥ 4.

Let v1v2 . . . vk (k ≥ 5) be a diametral path in T such that deg(v2) is as large as
possible and root T at vk. If degT (v2) ≥ 4, then γr(T ) = γr(T − v1) and γR(T ) =
γR(T − v1) and thus γr(T − v1) = γR(T − v1). By induction on T − v1, we have
T −v1 ∈ F . Therefore, T ∈ F because it is obtained from T −v1 by using Operation
T1. Hence we assume that degT (v2) ∈ {2, 3}. We consider two cases.

Case 1. degT (v2) = 3. We consider the following subcases.
Subcase 1.1. v3 has at least one child besides v2, say u2, which is a support vertex.

Let T ′ = T −Tv2 . First Suppose that g is a γR(T )-function with a maximum number
of vertices assigned a 2. Then either g(u2) = 2 or g(v3) > 0 and the leaf neighbor of
u2 is assigned a positive value. In any case, the restriction of g to T ′ is an RDF of
T ′, and thus γR(T ) ≥ γR(T

′) + 2. On the other hand, we have γr(T ) ≤ γr(T
′) + 2.

By Observation 2.4, we obtain γr(T
′) = γR(T

′). It follows that γR(T ) = γR(T
′) + 2

and γr(T ) = γr(T
′) + 2. Moreover, since γr(T

′) = γR(T
′), by induction on T ′, we

have T ′ ∈ F . In the next we shall show that v3 ∈ W 2
T ′ ∩W 4

T ′ . It is a simple matter to
see that v3 ∈ W 4

T ′, and hence we only show that v3 ∈ W 2
T ′. Suppose, to the contrary,

that v3 	∈ W 2
T ′, and let h be a minimum almost WRDF of T ′ with respect to v3. Then

h can be extended to WRDF of T by assigning a 2 to v2 and a 0 to its leaves, which
implies that γr(T ) ≤ γr(T

′; v3) + 2 < γr(T
′) + 2, a contradiction. Hence v3 ∈ W 2

T ′

and therefore v3 ∈ W 2
T ′ ∩W 4

T ′ . Consequently, T ∈ F because it can be obtained from
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T ′ by applying Operation T3.

Subcase 1.2. v3 is a support vertex. We first assume that v3 has at least three
leaves. Let T ′ be the tree obtained from T by deleting a leaf neighbor of v3. Hence v3
remains a strong support vertex in T ′, and thus γr(T ) = γr(T

′), and γR(T ) = γR(T
′).

It follows that γr(T
′) = γR(T

′), and so T ′ ∈ F . Therefore T ∈ F because it is
obtained from T ′ by using Operation T1. Hence we can assume that v3 is a support
vertex with at most two leaves.

Suppose that v3 is adjacent to two leaves. Let T ′ = T − Tv2 . Then γR(T ) ≥
γR(T

′) + 2 and γr(T ) ≤ γr(T
′) + 2. It follows that

γr(T ) = γR(T ) ≥ γR(T
′) + 2 ≥ γr(T

′) + 2 ≥ γr(T ),

and thus γR(T ) = γR(T
′) + 2, γr(T ) = γr(T

′) + 2 and γr(T
′) = γR(T

′). By induction
on T ′, we obtain that T ′ ∈ F . Using the same argument as in Subcase 1.1, we can
show that v3 ∈ W 2

T ′ ∩ W 4
T ′. Therefore T ∈ F since it can be obtained from T ′ by

using Operation T3.

Suppose now that v3 is adjacent to exactly one leaf, say w. Seeing the previous
cases, we have degT (v3) = 3. Let T ′ = T −{w}. Clearly, γr(T ) ≤ γr(T

′)+1. Let g be
a γR(T )-function. We may assume that g(v2) = 2 and thus g(v3) 	= 1. If g(v3) = 0,
then clearly g(w) = 1 and the restriction of g to T ′ is an RDF of T ′ implying that
γR(T ) ≥ γR(T

′) + 1. If g(v3) = 2, then clearly g(w) = g(v4) = 0, and so the
function g′ : V (T ′) → {0, 1, 2} defined by g′(v3) = 0, g′(v4) = 1 and g′(u) = g(u)
otherwise, is an RDF of T ′ yielding γR(T ) ≥ γR(T

′) + 1. By Observation 2.4, we
have γr(T

′) = γR(T
′) and so T ′ ∈ F . Therefore T ∈ F since it can be obtained from

T ′ by using Operation T4.

Subcase 1.3. degT (v3) = 2. Let T ′ = T − Tv3 . Using the facts that diam(T ) ≥ 4
and γr(T ) = γR(T ) one can see that T ′ has order at least three. Since there is a
γR(T )-function g that assigns a 2 to v2 and a 0 to every neighbor of v2, the restriction
of g to T ′ yields γR(T ) ≥ γR(T

′) + 2. Also, γr(T ) ≤ γr(T
′) + 2. By Observation 2.4,

γr(T
′) = γR(T

′) and thus T ′ ∈ F . Therefore, T ∈ F because it can be obtained from
T ′ by applying Operation T5.

Case 2. degT (v2) = 2. Let T ′ = T − Tv2 . Clearly γr(T ) ≤ γr(T
′) + 1. Let g be

a γR(T )-function with maximum number of vertices assigned a 2. The choice of g
implies that g(v2) ∈ {2, 0}. If g(v2) = 2, then the function h : V (T ′) → {0, 1, 2}
defined by h(v3) = min{2, g(v3) + 1} and h(u) = g(u) otherwise, is an RDF of T ′

implying that γR(T ) ≥ γR(T
′) + 1. If g(v2) = 0, then we must have g(v1) = 1

(else we can change the assignments of v1 and v2 to be in the previous situation).
Hence g(v3) = 2 and the restriction of g to T ′ yields also γR(T ) ≥ γR(T

′) + 1.
It follows that γr(T ) = γR(T ) ≥ γR(T

′) + 1 ≥ γr(T
′) + 1 ≥ γr(T ) and thus we

have equality throughout this inequality chain. In particular, γr(T
′) = γR(T

′) and
γR(T ) = γR(T

′) + 1. By induction on T ′, we have T ′ ∈ F . Also, γR(T ) = γR(T
′) + 1

implies that v3 ∈ W 5
T ′ (according to the restriction of g to T ′). It follows that T ∈ F

because it is obtained from T ′ by applying Operation T2.
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