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Abstract

We consider the following problem. Given a graph G = (V,E), a partition
of E into k color classes, E = ∪k

i=1Ei, and a cost function for each class
fi : 2Ei �→ R+, find a spanning tree T = (V, F ) whose total cost is
minimal, where the cost of T is defined as the sum of the costs of the color
classes in T , namely

∑
i fi(F ∩ Ei). We show that the general problem

is NP-hard, even when the cost functions depend only on the number of
edges and are discrete and concave. We also provide a characterization
of when a tree, with a prescribed number of edges from each color class,
exists, as well as an efficient algorithm for finding such a tree. Finally, we
prove that the polytope of feasible solutions for cardinality cost functions
values is integral.

1 Introduction

The minimum spanning tree problem is a very well known problem. Given a weighted
graph G = (V,E) with weight function l : E → R, find a spanning tree of G of
minimum weight. This problem has an efficient algorithm; see Boru̇vka [2], Jarńık
[6], Prim [11], and Kruskal [8]. Prasanna [10] proposed a variant of this problem
which is very likely to occur in real life situations: suppose the graph is a map of a
city, and each road (edge of the graph) belongs to some contractor. The mayor of the
city has to pick a set of roads to be paved which span the graph and is of minimum
cost; however, the cost of the roads is not directly proportional to the length of the
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roads. Each contractor has a cost function which might allow discounts depending
on the total lengths / number of the roads that she paves. In typical situations, the
discount function will be non-decreasing and concave, but we need not make this
assumption at this point.

More formally, the problem is as follows:

Problem 1 (General Contractors’ MST) Let G = (V,E) be a connected (not
necessarily simple) graph, possibly with parallel edges. Let color : E �→ {1, . . . , k}
be a partition of the edge set into k color classes. For each color class Ei there is a
cost function defined by a function fi : 2

Ei �→ R+, i = 1, . . . , k. The cost of a forest is
the sum of costs of all the color classes in the forest, i.e.

∑
i fi(F ∩Ei). The problem

is to find a spanning tree T in G of minimum total cost.

In the problem above, the set of edges of color i, denoted by Ei, represents the
edges which belong to contractor i.

Clearly, the algorithmic complexity of the general contractor’s MST may depend
on the cost functions, and the way they are represented as an input to the problem.
We denote |V (G)| = n, and assume that |E(G)| = poly(n) (which may not be true
in general, since the graph is not simple). Obviously, in the case that each fi is linear
in the weights of the individual edges, this problem is just the well-know minimum
spanning tree problem.

For non-linear functions, describing each fi requires, in general, a description of
exponential size in n (that is, its value on each forest). In that case, the problem is
much less interesting, and we will not consider such functions. However, we will show
that for general collection fi, i = 1, . . . , k of polynomial description, even the problem
of one contractor is in general non-tractable. Hence, we mostly restrict ourselves to
cost functions fi that depend only on the cardinality of the input set (for each i this
could be quite different). In this case, the range of fi is bounded to a set of cardinality
at most n, and hence the total description of the cost function is polynomial in n
and the length of the input. In such cases we assume that fi, i = 1, . . . , k is explicitly
given. We will call such function f : 2E �→ R, of which f is constant on all sets
of the same cardinality, a cardinality function. A cardinality function f is naturally
associated with a function f̃ : {0, 1, . . . , n−1} �→ R, namely for which f(E) = f̃(|E|).
Abusing notation, we identify f with f̃ and refer to both as f when there is no risk
of confusion.

One type of cardinality functions that will be of interest is what we call a discrete
concave, or discount function, defined below. Other functions of interest may be
sub-additive, sub-modular (semi) convex / concave, etc.

Definition 1 A function f : {0, 1, . . . , n− 1} �→ R is discount (or discrete concave),
if g(i) = f(i)− f(i− 1) is non-increasing with i.

A function f : 2E �→ R is submodular if for every two subsets A,B ⊆ E,

f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B).
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Discount functions are interesting as they represent the natural situation when a
contractor with a discount function, gives a reduced cost per additional edge, as one
buys more edges. Submodular functions are similar in the above sense, but without
the restriction of being constant on all subsets of the same cardinality.

Assume now that a given partition p̄ = (n1, . . . , nk) of n−1 gives the minimum of∑k
i fi(xi). Does there exist a spanning tree F satisfying this partition, i.e does there

exist a spanning tree in which the ith contractor is allocated ni edges, i = 1, . . . , k?
Is there an efficient algorithm for constructing such a tree? This is formalised in the
next definitions.

Definition 2 (Profile of a Forest) Given a graph G = (V,E), a partition color :
E �→ {1, . . . , k} of the edge set into k color classes Ei = {e | color(e) = i}, i =
1, . . . , k, and some spanning forest F of G. The profile of F , denoted by p(F ), is
a sequence of k non-negative integers p̄ = (n1, . . . , nk) such that |F ∩ Ei| = ni, i =
1, . . . , k.

A sequence p̄ = (n1, . . . , nk) is called a feasible profile, or profile for short, if there
exists a forest F such that p(F ) = p̄. Note that if p̄ is feasible for a tree (rather than
just a forest) then p̄ is a partition of n− 1 (i.e.

∑
i ni = n− 1).

The following is a statement of the existence problem.

Problem 2 (Contractors’ Forest Feasibility Problem) Let G = (V,E) be a
connected (not necessarily simple) graph, possibly with parallel edges. Let color :
E �→ {1, . . . , k} be a partition of the edge set into k color classes ( corresponding
to k contractors), and let Ei denote the set of edges of color i. Let p̄ = (n1, . . . , nk)
be a sequence of natural numbers. Does there exist a spanning forest F of G with
profile p(F ) = p̄?

Our results: We show that the most general contractors’ MST problem, Problem 1,
is NP-hard even for one contractor, when the cost function is given by a polynomial
(in n) oracle. This is simply because the minimum spanning tree problem is NP-hard
for general non-linear functions. We also show that the version with parallel edges
is polynomially reducible to that on simple graphs. We then show that even in the
case that each fi is a discount function, Problem 1 remains NP-hard (but this is true
when k is relatively large).

For the positive results, we show that the feasibility problem, Problem 2, can be
solved in polynomial time for any k. In particular, this implies that for any constant
k (that is independent of n), the minimum cost contractors’ MST can be solved in
polynomial time, by a simple search over all possible feasible trees. We further give
an efficient characterization of all feasible solutions, and show that their convex hull
is an integral polytope. We observe that this polytope admits a polytime separation
oracle when k = O(logn).

The outline of this paper is as follows: We prove in Section 2 that Problem 1 is
NP-hard both for simple graphs and for graphs with parallel edges. In Section 3,
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we discuss the case of cardinality functions. In this case, the cost of a tree depends
only on the number of edges in each color class. We solve Problem 2, characterizing
whether there exists a tree with a prescribed profile.In Section 3.3 we relate Problem
2 to the matroid intersection theorem, implying an efficient algorithm for any k. In
Section 4 we characterize the set of all possible feasible profiles by their correspond-
ing polytope. We prove that the polytope of feasible solutions for cardinality cost
functions values is integral.

Related work: The most relevant related work is in [5]. This work considers the
min-cost contractor MST, and other problems in which the solution is ‘split’ between
several ‘agents’ (called there ‘multi agent’ problems). They consider the case where
the cost functions are submodular and show a hardness result for approximating the
min-cost-contractor spanning tree, in this general case.

2 Hardness for general enough functions

We begin by noting that even for one contractor, and f : 2E �→ {0, 1} given by a
polytime oracle, the contractor MST is NP-hard. To see this we reduce the decision
whether G contains a Hamilton path to this problem. Indeed, let G be a graph
on which one wishes to decide whether there is a Hamilton path. Let f : 2E(G) �→
{0, 1} be defined by: f(E ′) = 0 if E ′ spans a connected subgraph of G with degree
bounded by 2, and f(E ′) = 1 otherwise. Obviously f(E ′) can be computed in time
O(|V (G)| + |E(G)|) for every subset E ′. Further f(E ′) = 0 if an only if E ′ is a
Hamilton path or cycle in G. In particular, G has a Hamilton path if and only if the
contractor’s MST value is 0, with respect to the function f .

We note that the function showing the hardness above, is clearly not a cardinality
function. Neither is it monotone, additive, submodular or discount.

We next show that even if we restrict ourselves to discount functions then the
problem is NP-hard.

Theorem 3 The contractors’ MST problem is NP-hard for monotone discount func-
tions. The same is true for submodular functions.

Proof. We do a reduction from set cover. The set-cover decision problem has an
input S1, . . . , Sm ⊆ [n], a collection of subsets of [n], and in addition an integer r.
The decision to be made is whether there is a sub-collection of at most r subsets that
cover [n]. Namely, whether there is I ⊆ [m] with |I| ≤ r, such that ∪i∈ISi = [n].

The problem is one of Karp’s fundamental NP-Complete problems [7].

Let {S1, . . . , Sm}, r be an instance to the set-cover problem. We reduce it to the
minimum contractors’ MST with k = m + 1 and G = (V,E) as follows: let V =
{v1, . . . , vn} ∪ {u1, . . . , un} ∪ {a}. For each Si, i = 1, . . . , m we set Ei = {(uj, vj)|j ∈
Si}. Ei, i = 1, . . . , m, are the sets of edges corresponding to the contractors 1, . . . , m.
Note that G may have parallel edges (of different contractors). Further we add
Em+1 = {(a, ui)| i = 1, . . . , n} as the set of edges of the m+ 1 contractor.
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The costs are defined as follows: For the m + 1 contractor, fm+1 ≡ 0. Namely,
for every subset it is allocated, it is paid 0. For every other contractor, the discount
function is the same and defined as: f(0) = 0, and f(i) = 1 for i ≥ 1. Namely, it
charges a unit cost no matter how many edges it is allocated, provided it is allocated
at least one edge.

Note that in any tree, the m+1 contractor will be allocated with the edge set of
Em+1 to ensure connectivity. In addition, the cost functions are cardinality discount
functions. Finally note that a cost of a tree is just the number of contractors among
{1, . . . , m} that have an edge in that tree.

It is easy to see that if there is a solution for the set cover with r sets that cover
[n], and a corresponding index set I, |I| = r, then Em+1∪(∪i∈IEi) spans a connected
subgraph of G of cost r and hence any tree in this subgraph has cost at most r. On
the other hand, if there is a contractor MST of cost r, then the corresponding r
subsets cover [n].

Finally, the contractor cost functions are not only discount, but also monotone
non-decreasing (as cardinality functions) and monotone submodular as functions of
subsets of edges.

The reduction above heavily uses the fact that G may have parallel edges, arising
from the fact that the sets in the set-cover problem are not necessarily disjoint.
Indeed the set cover problem is trivial for disjoint sets. We next show that the
contractor’ MST problem on simple graph is no easier then the general one, for any
set of cost functions.

Theorem 4 The contractors’ MST for k contractors on a graph G can be reduced
in polytime to the k + 1 contractors’ MST problem on a simple graph G′.

Proof. Let G = (V,E), E = ∪k
1Ei be an instance for the contractors’ MST with

k contractors and functions fi, i = 1, . . . , k.

The graph G′ is defined by subdividing each edge of G, e = (u, v) ∈ Ei by
inserting a new vertex xe into it. In particular, G′ is simple. The two edges resulting
from e are split arbitrary between two contractors: the ith contractor if e ∈ Ei and
the other goes to the k + 1st contractor.

Note that the set E ′
i of edges belonging to the ith contractor in G′ corresponds

via a 1− 1 mapping to the set Ei of the ith contractor in G. In addition, the k + 1
contractor represents every edge in G. Hence we may identify every set of edges
A ⊆ ∪k

1E
′
i with the corresponding set in G which we also call A.

As for the costs, we define f ′
i(A∩Ei) = f(A∩Ei) for any set of edges A ⊆ ∪k

1E
′
i

via the mapping above. The cost for the k + 1 contractor is identically 0.

It is obvious that if T ⊆ ∪k
1Ei is a spanning tree for G of cost α, then T ∪ Ek+1

defines a connected spanning subgraph of G′ of the same cost. Hence every MST in
it has cost at most α. On the other hand, if A ∪ B is a contractor MST in G′ with
cost α, and A ⊆ ∪k

1E
′
i, while B ⊆ E ′

k+1, then A defines a connected subgraph of G
of cost α.
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3 Solution to Problem 2

Recall that in this problem we are given a partition of the edge set into k contractors,
as well as a sequence p̄ = (n1, . . . , nk). Does there exist a contractor spanning
forest / tree F of G with p(F ) = p̄?

We give below a necessary and sufficient condition for the existence of a spanning
forest / tree satisfying this partition, and an efficient algorithm for constructing such
a forest, if it exists. We note that an implicit, and different characterization is due to
the fact that this decision problem is in polytime, as it is an instance of the matroid
intersection problem. This will be detailed in what follows.

3.1 Notation

Let G = (V,E) be an undirected not necessarily simple graph and let color : E �→ [k]
be a partition of E into k classes called colors. ( Here [k] := {1, 2, . . . , k} ). We denote
by Ei the set of all edges of color i. We also refer to members of Ei as i-edges (these
that belong to the ith contractor in the contractors’ MST problem).

For any subset of edges F ⊆ E, we denote by (F ) =rankG(F ) the size of the
largest forest spanned by the subgraph (V, F ), and rank(G) =rank(E(G)). A set of
edges is independent if it contains no cycle. We denote by G \ F = (V,E \ F ) the
subgraph obtained by deleting F , and by G/F the graph obtained by contracting F .

3.2 Characterization of possible profiles

Given graph G, a coloring color : E �→ [k] of its edges. The decision if a sequence
p̄ = (n1, . . . , nk) is feasible, (namely, there is a forest F of G such that F ∩ Ei =
ni, i = 1, . . . , k) is decidable by the Matroid-Intersection algorithm, as every feasible
profile is an independent set in the intersection of two matroids. This is described
in what follows. In particular, this gives an algorithm to decide if there is an MST
of a given profile.

For the next subsection where we describe this, we assume basic knowledge with
matroids and matroid intersection. However, we deduce a stand alone characteriza-
tion of all possible profiles, and present a stand alone proof of it, as well as a proof by
the matroid intersection theorem. The stand alone proof is somewhat more instruc-
tive. In particular, we deduce from it a theorem about the convex hull of all feasible
profiles. This in turn, will imply polytime algorithm for the contractors’ MST when
the functions are discount but k is relatively small.

Our main result is the following theorem.

Theorem 5 Let G be a colored graph as above, and p̄ = (n1, . . . , nk). Then p̄ is a
feasible profile if and only if for every S ⊆ [k],

∑
i∈S ni ≤ rank(∪i∈SEi). (1)

In addition p̄ is a feasible profile of a tree if and only if it is feasible and
∑

i ni = n−1.
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Note that the “only if” direction is clear. Namely, if there is a forest F with profile
p̄, then |F ∩ (∪i∈SEi)| cannot possibly have cardinality greater than rank(∪i∈SEi).
Moreover, the condition for trees immediately follows from that of a forest.

3.3 Feasible profiles and matroid intersection

We will use here some basic matroid theory. We refer to [12] for a general reference
on the relevant parts of this theory. Let M1 = (E, I1), M2 = (E, I2) be two matroids
on the same ground sets where I1, I2 are the corresponding families of independent
sets. Let r1, r2 be the rank functions of M1,M2 respectively.

The matroid intersection theorem [3] states that for two such matroids the max-
imum size set in I1 ∩ I2 is of size

min
U⊆E

{r1(U) + r2(E \ U)}. (2)

To see how the profile feasibility problem is cast in this framework, let G = (V,E)
be a graph, and color : E �→ [k] be a coloring of the edges by k colors. Let p̄ =
(n1, . . . , nk) be a sequence of natural numbers. Let M1 = (E,F) be the graphic
matroid, namely, F is the set of forests of G, each viewed as an edge-set. Thus
r1(E) =rank(E) as defined in Section 3.1. Let M2 = (E, I) be the matroid in which
A ∈ I if and only if |A ∩ Ei| ≤ ni for all 1 ≤ i ≤ k. It is known, and easy to verify,
that M2 is a matroid, also known as the partition matroid. Now, a set F is in F ∩I,
namely in both matroids if and only if F is a forest, and |F ∩ Ei| ≤ ni, i = 1, . . . , k.
Hence, p̄ is feasible if and only if there is a maximal set in F ∩ I which corresponds
to an edge set of a forest whose profile is p̄.

Since there is a polytime algorithm to find a maximum cardinality set in F ∩ I
(for any two matroids), [9], this gives an efficient algorithm for the profile feasibility
problem. Moreover, Equation (2) provides a CO-NP condition for a profile to be
feasible. Note, however, that Equation (2) by itself is not an efficient characterisation
as it is exponential in |E|. Theorem 5 provides a better characterization, since when
k = O(logn) it is polynomially verifiable.

We now give the first proof of Theorem 5 based on the matroid intersection
theorem.

Proof. [of Theorem 5] As necessity of the condition in the theorem has al-
ready been discussed, we assume that the condition in Equation (2) is met for
p̄ = (n1, . . . , nk), and show that the matroid intersection theorem implies that the
maximum set in F ∩ I is of size

∑k
i=1 ni.

In other words, we need to verify that for every U ⊆ E, r1(U) + r2(E − U) ≥∑k
i=1 ni. Here r1(U) =rank(U) is n−c if U induces c connected components, namely,

it is the rank of the forest matroid. Then by Equation (2) the matroid-intersection
theorem will imply the existence of a forest of size

∑k
1 ni, but such a forest must

have profile p̄ by the constrains of M2.

A set U ⊆ E is called closed with respect to a matroid M if for any x ∈
E \ U, rM(U ∪ {x}) = rM(U) + 1, where rM is the rank function of M .
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Claim 3.1 The minimum over all U ⊆ E of r1(U) + r2(E \U) is obtained for some
closed set U , with respect to M1, such that E \ U meets each color class Ei in either
zero or ni edges.

Proof. Among all subsets U ⊆ E that minimize r1(U) + r2(E \U), let U be such
that r1(U) is maximized. If U is not closed, then there is some edge e whose removal
from E \ U and addition to U , means r1(U) is not changed while r2(E \ U) may
decrease. Hence either U is closed or we get a larger U . Therefore, by induction we
end with U being closed.

If E \ U meets some color class Ei in 0 < ai < ni edges, then by removing any
edge e in (E \U)∩Ei and adding it to U we increase r1(U) by 1 (since U is closed!)
and decrease r2(E \ U) by 1, contradicting our choice of U .

From the claim above we conclude that r2(E \ U) =
∑

i/∈S ni, where S is the set
of colors which meet E \ U in zero edges. We also have r1(U) ≥ r1(∪i∈SEi), since
∪i∈SEi ⊆ U , and finally

r1(U) + r2(E \ U) ≥ r1(∪i∈SEi) +
∑

i/∈S
ni ≥

∑

i∈S
ni +

∑

i/∈S
ni =

k∑

i=1

ni.

The last inequality follows from the assumptions in Equation (1). We conclude
that for every U ⊆ E, r1(U) + r2(E \ U) ≥ ∑k

1 ni, which implies, by the matroid
intersection theorem, the existence of a forest with |Ei| = ni for i = 1, . . . , k, namely,
a forest whose profile is p̄.

3.4 An alternative proof of Theorem 5, and the polytope of feasible
profiles

We need the following definition and claims.

Definition 3 For a k-edge-colored graph as above, a set S ⊂ [k], |S| �= [k] of colors
is called critical if Equation (1) is met for S with equality.

Claim 3.2 Suppose that G meets Equation (1) with respect to p̄ = (n1, . . . , nk) for
every S ⊆ [k]. Assume further that rank(E1) = n1 (namely {1} is critical). Then
for any independent edge e ∈ E1, Equation (1) is met for G′ = G/e, with respect to
p̄′ = (n1 − 1, n2, . . . , nk) and every set S ⊆ [k].

Proof. Contracting an edge may cause the rank of any set to decrease by at
most 1. Thus Equation (1) may cease to hold on S, with respect to G′ only if S is
critical with respect to G.

Let S ⊆ [k]. If 1 ∈ S, then rankG′(∪i∈SEi) ≥ rankG(∪i∈SEi)− 1, as we have
contracted a unique edge. On the other hand, the corresponding sum of n′

i with
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respect to p̄′ is (
∑

i∈S ni)− 1 (as n1 is decreased by 1). Hence Equation (1) for S in
G implies the condition for S in G′.

If 1 /∈ S, Equation (1) may fail to hold only if S is critical in G, and rank(∪i∈SEi)
has dropped by 1. But this may occur only if e is spanned by ∪i∈SEi. This implies,
however, that rankG(∪i∈SEi ∪ E1) ≤ rank(∪i∈SEi)+ rank(E1)− 1 =

∑
i∈S∪{1}ni−1

contradicting the fact that Equation (1) holds for S ∪ {1}.

An immediate conclusion from the above is the following.

Claim 3.3 Suppose that G meets Equation (1) with respect to p̄ = (n1, . . . , nk) and
that rank(E1) = n1 (namely {1} is critical). Then Equation (1) is met for G′ =
G/E1, with respect to p̄′ = (n2, . . . , nk), and every set S ⊆ {2, . . . , k}.
Proof. We apply Claim 3.2 repeatedly for the sequence e1, . . . , en1 of independent
1-edges.

Proof. [of Theorem 5] Again, we only prove sufficiency of the condition,
namely, we assume that Equation (1) holds for all S ⊆ [k] in G with respect to
p̄ = (n1, . . . , nk). We will then show how to find a forest with profile p̄.

The proof is by induction on |E|. We may assume, without loss of generality,
that ni ≥ 1 for every i, as otherwise one may delete those Ei for which ni = 0. We
may also assume that k ≥ 2, as for k = 1 the statement is trivial.

Suppose, first, that there is no critical set S � [k]. Pick any non-self loop
edge e ∈ E1. Clearly, Equation (1) is met for G′ = G/e, with respect to p̄′ =
(n1 − 1, n2, . . . , nk), for all S � [k]. By the induction hypothesis, G′ contains a
spanning forest F ′ which corresponds to a forest F in G with the required conditions.

Assume now, that S ⊂ [k], S �= [k] is critical. Let G′ be the subgraph of G that
contains only the edges ∪i∈SEi and let G′′ = G/G′. We will show that there exists
a forest F ′ ⊆ G′ consistent with the sequence p̄′ = (ni)i∈S, and that there is a forest
F ′′ ⊆ G′′ consistent with the sequence p̄′′ = (ni)i/∈S. Clearly F ′ ∪ F ′′ is a forest of G
for the original sequence p̄.

Indeed, Equation (1) for G directly implies that the condition is met for G′ with
respect to p̄′. Hence by induction (as S ⊂ [k], S �= [k]), the existence of F ′ follows.

We now show that Equation (1) holds for G′′. Again, by induction, this will imply
the existence of F ′′. Indeed, G′′ is constructed from G by contracting F ′, a maximal
independent set in E ′ = ∪i∈SEi. But this is just the premise of Claim 3.3, when
all the edges in E ′ are viewed as having the same color (recalling that S is critical).
Hence by Claim 3.3, Equation (1) holds for G′′.

4 The contractors’ polytope

Our aim in this section is to formulate the contractors’ MST problem for discount
cardinality functions as a concave (or piece-wise linear) optimization problem over
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an explicitly given polytope. For k = O(logn) this polytope is of poly(n) faces, and
hence our hope is that this will facilitate heuristics or possibly deterministic good
algorithms for the contractors problem when k = O(logn) and the functions are
concave. We note that for constant k, as there are only O(nk) possible profiles, one
can exhaustively search them all and choose the one that gives the best cost. Hence,
for constant k, the contractors’ problem with any collection of cardinality functions
(not necessarily discount) is reducible to the feasibility problem, and can be solved
in polytime.

The discussion below holds for any k. Moving to a “geometric” jargon, Theorem 5
can be alternatively stated as follows:

Observation 4.1 (Theorem 5 restated) Let G = (V,E), E = ∪k
1Ei be an in-

stance to the k contractors’ problem. Then the feasible profiles for G are all integral
points of

PF = {(x1, . . . , xk) ∈ Rk
+, such that, ∀S ⊆ [k],

∑

i∈S
xi ≤ rank(∪i∈SEi)}.

Furthermore, the feasible profiles of trees are these integral points in PF for which∑k
1 ni = rank(G).

Our main goal in this section is to show that PF is integral, namely, that the ex-
tremal points of PF are integral, implying that the extremal points of the intersection
of PF with the hyperplane

∑k
1 xk = rank(G) are integral.

We start by observing that Claims 3.2 and 3.3 also hold for non-integral partitions
of n, namely:

Claim 4.1 Let xi ≥ 0, i = 1, . . . , k, and suppose that G satisfies Equation (1) with
respect to x̄ = (x1, . . . , xk) ∈ Rk

+. Assume further that rank(E1) = x1 (namely {1} is
critical), and let e ∈ E1 be a non-loop edge. Then Equation (1) holds for G′ = G/e,
with respect to x̄′ = (x1 − 1, x2, . . . , xk), and every set S ⊆ {2, . . . , k}.

Proof. This claim is the analog version of Claim 3.2 for non-integer vectors x̄,
and its proof is identical to the proof of Claim 3.2.

Lemma 4.1 Let xi ≥ 0, i = 1, . . . , k and suppose that G meets Equation (1) with
respect to x̄ = (x1, . . . , xk) ∈ Rk

+. Assume further that rank(E1) = x1 (namely {1}
is critical). Then Equation (1) is met for G′ = G/E1, with respect to the colors
{2, . . . , k} and x̄′ = (x2, . . . , xk), and every set S ⊆ {2, . . . , k}. Moreover, if in
addition

∑k
1 xi =rank(G) then

∑k
2 xi = rank(G/E1).

Proof. For the first part we just repeat contracting every non-loop edge in
E1 applying repeatedly Claim 4.1. For the second part, if

∑k
1 xi = rank(G), then

rank(G/E1) =
∑k

2 xi since x1 =rank(E1).
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Definition 4 (Contractor Polytope) Let H be the hyperplane defined by

H = {x = (x1, . . . , xk) ∈ Rk
+ ;

k∑

1

xi = rank(G)}.

Define the contractor polytope, Pc ⊆ Rk, to be Pc = PF ∩H .

Note that the contractor polytope Pc is a face of PH and its integral points (if
any) are the profiles of spanning trees in G.

Theorem 6 The extremal points of Pc are all integral.

Proof. To prove the statement it is enough to show that for every linear cost
function c ∈ Rk, min cTx, x ∈ Pc, is achieved on an integer point [4].

We prove the latter fact by induction on k. For k = 1 it is trivial (for any G),
and for k = 2 it is quite immediate for any G.

Assume that the theorem is established for every G and k′ < k.

Fix a cost function c and let x ∈ Pc. We show that there is an integral p̄ ∈ P
for which cT p̄ ≤ cTx, or that x is not optimal with respect to c. We may assume,
without loss of generality, that c is non constant, that is, c1 < ck, as otherwise every
point in Pc has the same cost. In particular so does any maximal spanning forest.

Assume first that there is no critical set with respect to x. Namely, for every
T ⊂ [k], T �= [k], Equation (1) holds with strict inequality, and xi > 0, i = 1, . . . k.

Let δ be the minimum slack in Equation (1), over all S �= [k]; namely:

δ = min{rank(
⋃

i∈S
Ei)−

∑

i∈S
xi ; S ⊆ [k], S �= [k], S �= ∅}.

Let ε = min{δ, xk}, and x∗ = (x1 + ε, x2, . . . , xk−1, xk − ε). It is easy to see that
x∗ ∈ Pc and with cT · x∗ < cT · x (on account of c1 < ck).

Hence we may assume that there is a non-empty subset S ⊂ [k], S �= [k], that is
critical. We proceed similarly as in the proof of Theorem 5. Let G′ be the subgraph
of G that contains only the edges ∪i∈SEi and let G′′ = G/G′. Let x′ = (xi)i∈S ∈ R|S|.
Obviously x′ is in the corresponding polytope P ′ for G′ and by induction, there is a
corresponding profile p̄′ = (pi)i∈S and a corresponding forest F ′ of G′ attaining the
cost

∑
i∈S cipi ≤

∑
i∈S cixi.

Now, G′′ corresponds to the graph obtained by contracting the forest F ′. In
particular considering ∪i∈SEi as corresponding to one color that is critical, this is
just the premise of Lemma 4.1. Hence the first part of Lemma 4.1 implies that
x′′ = (xi)i/∈S is a feasible point in P ′′

F , the polytope corresponding to G′′. Further the
second part asserts that [k]\S is critical with respect to x′′, namely x′′ is feasible in P ′′

the corresponding polytope forG′′. Therefore, by induction, there is a profile, namely,
an integral point p̄′′ = (pi)i/∈S in P ′′, that achieves the cost

∑
i/∈S cipi ≤

∑
i/∈S cixi.

The forest F ′∪F ′′, which is a maximal spanning forest of G, achieves a cost that
is at most cTx and this completes the proof.
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4.1 Implication for small k

We have already observed that for constant k, the contractors’ MST can be solved for
any set of cardinality functions. Theorem 6 implies that for k = O(logn) finding the
optimal contractor’s MST is a minimization of a concave function over a polytope
that is explicitly given by its poly(n) facets. While concave optimization over a
polytope is NP-hard in general, this setting opens a way for various heuristics, see
e.g., [1] and citations within.

To give on example of usability, recall that the k functions are assumed to be
cardinality discrete functions each. Namely, they can be extended to piece wise
linear. Suppose that each is the combination of at most r linear functions. Then the
MST global cost would be piece-wise linear (in dimension k) that is defined by at
most rk linear functions. If r is a constant independent of n then for k = O(logn),
rk = poly(n). Hence, one could find the optimal point in the polytope for each of
the linear functions, and then check the feasibility of each and choose the optimal.
Finally, once the optimal value is found, finding the actual tree that achieves it is
standard: an edge e ∈ E1 may be deleted, and the optimal value for G − e can
be determined. If this is identical to that of G, it means that e is not essential to
the solution, and the problem is reduced to G − e. Otherwise, e is contracted (and
is forced to be in the solution), and again the problem is reduced to G/e. Hence,
recursively, a solution attaining the optimal value can be constructed.

5 Conclusion

We have defined a new concept, a variant of the minimum spanning tree problem,
where each edge in the graph belongs to some contractor, and each contractor has
his/her own cost function for paving a subset of the edges. We proved that the general
optimization problem for this concept is NP-hard, even when restricted to cardinality
cost functions, i.e. cost functions which depend only on the number of edges, and
the number of contractors is relatively large Ω(log n). We gave a characterisation of
when a tree, with a prescribed number of edges from each color class exists, and a
new efficient algorithm for finding such a tree when k = O(logn). Finally, we proved
that the polytope of feasible solutions for cardinality cost functions values is integral.

An interesting open problem is to find a good approximation for the optimal
tree. It is not without hope that for the case of k = O(logn) contractors there is a
polynomial time algorithm.
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