Some properties of the Knödel graph $W\left(k, 2^{k}\right), k \geq 4$

R. Balakrishnan
Department of Mathematics, Bharathidasan University
Tiruchirappalli 620024, Tamil Nadu
India
mathrb13@gmail.com

P. Paulraja

Department of Mathematics, Kalasalingam Academy of Research and Education Krishnankoil 626126, Tamil Nadu

India
ppraja56@gmail.com

Wasin So
Department of Mathematics, San Jose State University
San Jose, CA 95192-0103
U.S.A.
wasin.so@sjsu.edu

M. Vinay
Department of Mathematics, Manipal Institute of Technology Manipal 576104, Karnataka
India
vinay.m2000@gmail.com

Abstract

Knödel graphs have, of late, come to be used as strong competitors for hypercubes in the realms of broadcasting and gossiping in interconnection networks. For an even positive integer n and $1 \leq \Delta \leq\left\lfloor\log _{2} n\right\rfloor$, the general Knödel graph $W_{\Delta, n}$ is the Δ-regular bipartite graph with bipartition sets $X=\left\{x_{0}, x_{1}, \ldots, x_{\frac{n}{2}-1}\right\}$ and $Y=\left\{y_{0}, y_{1}, \ldots, y_{\frac{n}{2}-1}\right\}$ such that x_{j} is adjacent to $y_{j}, y_{j+2^{1}-1}, y_{j+2^{2}-1}, \ldots, y_{j+2^{\Delta-1}-1}$, with suffixes being taken modulo $\frac{n}{2}$. The edge $x_{j} y_{j+2^{i-1}}$ at x_{j} and the edge $y_{j} x_{j-\left(2^{i}-1\right)}$ at y_{j} are called edges of dimension i at the stars centered at x_{j} and y_{j} respectively. In this paper, we concentrate on the Knödel graph $W_{k}=W_{k, 2^{k}}$

with $k \geq 4$. We show that for $k \geq 4$, any automorphism of W_{k} fixes the set of 0-dimensional edges of W_{k}. We determine the automorphism group $\operatorname{Aut}\left(W_{k}\right)$ of W_{k} and show that it is isomorphic to the dihedral group $D_{2^{k-1}}$. In addition, we determine the spectrum of W_{k} and prove that it is never integral. As a by-product of our results, we obtain three new proofs showing that, for $k \geq 4, W_{k}$ is not isomorphic to the hypercube H_{k} of dimension k, and a new proof for the result that W_{k} is not edge-transitive.

1 Introduction

For an even positive integer n, and $1 \leq \Delta \leq\left\lfloor\log _{2} n\right\rfloor$, the Knödel graph $W_{\Delta, n}$ is defined to be the bipartite graph with the bipartition (X, Y), where $X=\left\{x_{0}, x_{1}, \ldots\right.$, $\left.x_{\frac{n}{2}-1}\right\}$ and $Y=\left\{y_{0}, y_{1}, \ldots, y_{\frac{n}{2}-1}\right\}$, and x_{j} is adjacent to $y_{j}, y_{j+2^{1}-1}, y_{j+2^{2}-1}, \ldots$, $y_{j+2^{\Delta-1}-1}$, the suffixes being taken modulo $\frac{n}{2}$. Thus, $W_{\Delta, n}$ is a Δ-regular bipartite graph on n vertices with $|X|=|Y|=\frac{n}{2}$. Figure 1.1 displays the Knödel graph $W_{3,14}$.

Normal lines denote 0 -dimensional edges, broken lines represent 1dimensional edges and bold lines represent 2-dimensional edges.

Figure 1.1: Knödel graph $W_{3,14}$

The edge $x_{j} y_{j+2^{i-1}}$ at x_{j} and the edge $y_{j} x_{j-\left(2^{i}-1\right)}$ at y_{j} (suffixes being taken modulo $\frac{n}{2}$) are called the edges of dimension i at the stars at x_{j} and y_{j}, respectively; see Figure 1.1.

The Knödel graphs have many interesting properties. The Knödel graphs have, of late, come to be used as competitors for hypercubes in the domains of broadcasting and gossiping. This is explained below in detail. The diameter of W_{k} is known but the diameter of the general Knödel graph $W_{\Delta, n}$ is not yet known; a tight lower and upper bounds on the diameter of Knödel graph $W_{\Delta, n}$ is obtained by Grigoryan and Harutyuanyan, see $[8,9]$. However, the exact diameter of the graph W_{k} is $\left\lceil\frac{k+2}{2}\right\rceil$ (see [4]). The spectrum of W_{k} is studied by Harutyuanyan and Morosan, see [16]; using the spectrum of W_{k}, they have also obtained an upper bound on the number of spanning trees of W_{k}. The graph W_{k} is vertex transitive but not edge transitive, see [3]. In [27], Paulraja and Sampath Kumar have shown that W_{k} is almost Hamilton cycle decomposable, that is, $W_{k} \backslash E(H)$ is Hamilton cycle decomposable, where H is a 2 -factor or a 3 -factor according to whether k is even or odd.

The graphs W_{k} are the most popular in the family of interconnection networks along with the hypercubes H_{k} (see [22]) and the recursive bicirculant graphs $G\left(2^{k}, 4\right)$ introduced by Park and Chwa (see [26]), all of order 2^{k}. Both H_{k} and W_{k}, besides having the same order, are regular of degree k, and consequently have the same number of edges. However, they are not isomorphic since H_{k} has diameter k and W_{k} has diameter $\left\lceil\frac{k+2}{2}\right\rceil$ (see [4]).

The gossiping problem, as described by Knödel in [20] is as follows: "Given n persons, each with a bit of information, wishing to distribute their information to one another in binary calls, each call taking a fixed time, how long must it take before each knows everything?". Broadcasting is a similar problem where only one person (the originator) has all the information that needs to be distributed to all the others in binary calls. In essence, they deal with problems in dissemination of information in interconnection networks.

Every interconnection network can be represented by means of a graph. If this graph has n vertices, the minimum time required for broadcasting is $\left\lceil\log _{2} n\right\rceil$. Such graphs are known as minimal broadcasting graphs. Both H_{k} and W_{k} are minimal broadcast networks of time k. A broadcast graph with minimum number of edges is called minimum broadcast graph. The number of edges in a minimum broadcast graph on n vertices is denoted by $B(n)$.

Broadcasting and gossiping have been extensively studied in literature. There are several papers dealing with Knödel graphs as some subfamilies of Knödel graphs have good properties in terms of broadcasting, gossiping and fault-tolerance, see [11, 13, 14, 17, 21]. In particular, W_{k} has been proved to be a minimum broadcast graph. For more details on minimum broadcast and gossip graphs, see [6, 17, 19]. In [12], new dimensional broadcast schemes for Knödel graphs are given. In the same paper, a general upper bound for $B(n)$ for almost all odd n is obtained. In [25], exact lower and upper bounds for the number of broadcast schemes in arbitrary networks is dealt with.

Fraigniaud and Lazard, see [5], deal with various methods and problems in communication networks such as the complete network, the torus, the grid, the ring, the underlying de Bruijn graph. In [14], two broad category of problems, namely, finding the best network for a given high level goal and finding the best protocol for a given goal are discussed. Also construction of sparse broadcast graphs is explained. For an elaborate discussions on Knödel graphs, see [3, 5, 14, 17]. Some more properties of Knödel graphs and modified Knödel graphs are given in [2, 10].

In this paper, we deal with the subfamily $W_{k}=W\left(k, 2^{k}\right), k \geq 4$, of Knödel graphs. In our main result (Theorem 2.13), we determine the automorphism group of W_{k} and show that it is isomorphic to the dihedral group $D_{2^{k-1}}$. We prove this by showing that any automorphism of W_{k} takes a star (that is, a $K_{1, k}$ subgraph) to a star, preserving the dimensions of the corresponding edges.

We follow [1] for standard graph-theoretic notation and terminology.
This paper is organized as follows: In Section 2, we establish the fact that the only perfect matching of $W_{k}, k \geq 4$, whose removal disconnects W_{k} is the one obtained
by joining the corresponding vertices of X and Y. This provides a new proof of the fact that W_{k} and H_{k} are not isomorphic. Next, we use this fact to determine the automorphism group of W_{k} and this yields a second new proof for the nonisomorphic nature of W_{k} and H_{k}. Our results show that the only automorphism that fixes a vertex of $W_{k}, k \geq 4$, is the identity automorphism. Finally, in Section 3, we determine the spectrum of W_{k} and show that it is never integral. This incidentally yields a third new proof of the fact that W_{k} and $H_{k}, k \geq 4$, are not isomorphic. We also determine lower and upper bounds for the number of spanning trees of W_{k}. These bounds are better than what are known as on date.

Before we close this section, we mention that the Knödel graphs W_{k} are vertextransitive, but for $k \geq 4$, they are not edge-transitive [4]. Indeed, our results provide a new proof of the fact that the Knödel graphs $W_{k}, k \geq 4$, are not edge-transitive but they are vertex transitive.

In the rest of the paper, we denote 2^{k-1} by n, p pairwise disjoint copies of a graph G by $p G$, and the set of edges of dimension i in W_{k} by E_{i}.
Observation 1.1 ([3]). Yet another important structural property of W_{k} is that the set of edges of dimension zero in W_{k}, namely, $E_{0}=\left\{x_{0} y_{0}, x_{1} y_{1}, \ldots, x_{n-1} y_{n-1}\right\}$, is a perfect matching of W_{k} with the property that $W_{k} \backslash E_{0}$ consists of two disjoint copies of W_{k-1}, which we denote by $W_{k-1}^{(1)}$ and $W_{k-1}^{(2)}$. See Figures 1.2 and 1.3. Denote the bipartitions of $W_{k-1}^{(1)}$ and $W_{k-1}^{(2)}$ by $\left(X_{k-1}^{(1)}, Y_{k-1}^{(1)}\right)$ and $\left(X_{k-1}^{(2)}, Y_{k-1}^{(2)}\right)$ respectively. Then

$$
\begin{aligned}
X_{k-1}^{(1)} & =\left\{x_{0}, x_{2}, \ldots, x_{2^{k-1}-2}\right\} \\
Y_{k-1}^{(1)} & =\left\{y_{1}, y_{3}, \ldots, y_{2^{k-1}-1}\right\} \\
X_{k-1}^{(2)} & =\left\{x_{1}, x_{3}, \ldots, x_{2^{k-1}-1}\right\} \\
Y_{k-1}^{(2)} & =\left\{y_{2}, y_{4}, y_{6}, \ldots, y_{2^{k-1}-2}, y_{0}\right\} .
\end{aligned}
$$

(Observe that y_{0} is given at the end in $Y_{k-1}^{(2)}$).
If we relabel the vertex subsets $X_{k-1}^{(1)}$ and $Y_{k-1}^{(1)}$ of W_{k} by $\left\{u_{0}, u_{1}, \ldots, u_{2^{k-2}-1}\right\}$ and $\left\{v_{0}, v_{1}, \ldots, v_{2^{k-2}-1}\right\}$ respectively, preserving the orders of the vertices, and join the edges $u_{j} v_{j+2^{i}-1}, 0 \leq j \leq 2^{k-2}-1,0 \leq i \leq k-2$, the resulting graph is isomorphic to $W_{k-1}^{(1)}$. A similar statement applies for the next two vertex subsets $X_{k-1}^{(2)}$ and $Y_{k-1}^{(2)}$, and in this case the resulting graph is isomorphic to $W_{k-1}^{(2)}$. (See Figure 1.2). Notice further that $x_{0} y_{1}$ and $y_{7} x_{6}$ are 0 -dimensional edges at x_{0} and y_{7} of $W_{3}^{(1)}$ respectively. A redrawing of W_{4} is given in Figure 1.3, from which it is clear that $W_{4} \backslash E_{0}$ consists of two "identical" copies of W_{3}. A similar statement applies to $W_{k}(k \geq 4)$ as well.

2 The automorphism group of the Knödel graph $W_{k}, k \geq 4$

We begin by establishing a structure theorem on Knödel graphs.

Figure 1.2: W_{4} and the perfect matching E_{0} (in bold lines)

Figure 1.3: Another drawing of W_{4} (bold lines represent the perfect matching E_{0} whose removal results in two "identical" copies of W_{3}).

Theorem 2.1. Let E_{0} be the perfect matching of the Knödel graph $W_{k}, k \geq 4$, consisting of the 0-dimensional edges of W_{k}. Then E_{0} is the only perfect matching such that $W_{k} \backslash E_{0}$ consists of two isomorphic copies of W_{k-1}.

Proof. Let $X=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$ and $Y=\left\{y_{0}, y_{1}, \ldots, y_{n-1}\right\}$ (recall: $n-1=2^{k-1}-$ 1) be the bipartition of W_{k}. For each $i, 0 \leq i \leq n-1, x_{i}$ and y_{i} are the corresponding vertices of W_{k}. By choice, E_{0} is the set of edges $\left\{x_{0} y_{0}, x_{1} y_{1}, \ldots, x_{n-1} y_{n-1}\right\}$. By Observation 1.1, E_{0} is a perfect matching with the property that $W_{k} \backslash E_{0}$ is a disjoint union of two copies of W_{k-1}. We claim that E_{0} is the only perfect matching of W_{k} with this property.

In our proof, the suffix i in x_{i} and y_{i} is always taken modulo $2^{k-1}=n$. We note that x_{i} (respectively y_{i}) is adjacent to y_{i-1}, y_{i}, y_{i+1} (respectively to x_{i-1}, x_{i}, x_{i+1}).

If possible, assume that there is a perfect matching $E_{0}^{\prime} \neq E_{0}$ of W_{k} such that $W_{k} \backslash E_{0}^{\prime}$ has two components, each isomorphic to W_{k-1}. We call these two components as W_{k-1}^{\prime} and $W_{k-1}^{\prime \prime}$ with $\left(X_{1}^{\prime}, Y_{1}^{\prime}\right)$ and $\left(X_{2}^{\prime \prime}, Y_{2}^{\prime \prime}\right)$ as their respective bipartitions, where $X_{1}^{\prime} \subset X, X_{2}^{\prime \prime} \subset X$ and $Y_{1}^{\prime} \subset Y, Y_{2}^{\prime \prime} \subset Y$. The vertices x_{0} and y_{0} may be in the same or different components of $W_{k} \backslash E_{0}^{\prime}$.
Case 1. x_{0} and y_{0} are in different components of $W_{k} \backslash E_{0}^{\prime}$ (so that $x_{0} y_{0} \in E_{0}^{\prime}$).
Assume that $x_{0} \in X_{1}^{\prime} \subset W_{k-1}^{\prime}$, so that $y_{0} \in Y_{2}^{\prime \prime} \subset W_{k-1}^{\prime \prime}$. As $x_{0} \in X_{1}^{\prime}$, the other neighbors of x_{0}, namely, $y_{1}, y_{3}, y_{7}, \ldots, y_{n-1}$ must all belong to Y_{1}^{\prime} (See Figure 2.1). As the edges between W_{k-1}^{\prime} and $W_{k-1}^{\prime \prime}$ are the edges of E_{0}^{\prime}, and since $x_{0} y_{0} \in E_{0}^{\prime}$

Figure 2.1: Case when $x_{0} y_{0} \in E_{0}^{\prime}$
and $x_{1} y_{0} \in \mathrm{E}\left(W_{k}\right), x_{1}$ must belong to $X_{2}^{\prime \prime}$. Again, as $x_{1} \in W_{k-1}^{\prime \prime}, y_{1} \in W_{k-1}^{\prime}$ and $x_{1} y_{1} \in \mathrm{E}\left(W_{k}\right), x_{1} y_{1}$ must belong to E_{0}^{\prime} (see Figure 2.1). As $x_{1} y_{1}$ and $x_{2} y_{1}$ are edges of W_{k}, and as $x_{1} y_{1} \in E_{0}^{\prime}, x_{2} y_{1} \notin E_{0}^{\prime}$, and so x_{2} must be in X_{1}^{\prime}. Again, $x_{1} y_{1} \in E_{0}^{\prime}$ and $x_{1} y_{2} \in \mathrm{E}\left(W_{k}\right)$ imply that $y_{2} \in Y_{2}^{\prime \prime}$, and therefore $x_{2} y_{2} \in E_{0}^{\prime}$. By induction, it is clear that $x_{i} \in X_{1}^{\prime}$ or $X_{2}^{\prime \prime}$ according to whether i is even or odd, and $y_{j} \in Y_{1}^{\prime}$ or $Y_{2}^{\prime \prime}$ according to whether j is odd or even. Thus $x_{i} y_{i} \in E_{0}^{\prime}$ for each $i, 0 \leq i \leq n-1$. In other words, $E_{0}^{\prime}=E_{0}$.
Case 2. x_{0} and y_{0} are in the same component of $W_{k} \backslash E_{0}^{\prime}$, say, W_{k-1}^{\prime}.

Figure 2.2: Case when $x_{0} y_{0} \notin E_{0}^{\prime}$
As E_{0}^{\prime} is a perfect matching, only one edge of E_{0}^{\prime}, say, $x_{0} y_{j}, j \neq 0$, is incident
to x_{0}. Hence $y_{j} \in Y_{2}^{\prime \prime}$ (see Figure 2.2). Assume, for the moment, that $j \neq 1, n-1$. The neighbors of x_{0} in W_{k}, other than y_{j}, must all be in Y_{1}^{\prime}, and the neighbors of y_{j}, other than x_{0}, must all be in $X_{2}^{\prime \prime}$. In particular, y_{0}, y_{1} and y_{n-1} are all in Y_{1}^{\prime}. This situation is possible as $k \geq 4$. Consequently, $x_{1} \in X_{1}^{\prime}$ (else, $x_{1} \in X_{2}^{\prime \prime}$ and $x_{1} y_{0}$ and $x_{1} y_{1}$ would be in E_{0}^{\prime}, which is impossible) and $x_{1} y_{1} \in W_{k-1}^{\prime}$. Thus both $x_{0} y_{0}$ and $x_{1} y_{1}$ are in W_{k-1}^{\prime}. Recall that $x_{n-1} y_{n-1}, x_{n-1} y_{0}$ are both edges of W_{k}, and so $x_{n-1} \in X_{1}^{\prime}$. As y_{2} is adjacent to both x_{1} and x_{n-1} (note that $x_{n-1} y_{2}$ is an edge of dimension 3 of W_{k}), $y_{2} \notin Y_{2}^{\prime \prime}$ (otherwise, there will be two edges of E_{0}^{\prime} incident at y_{2}), and so $y_{2} \in Y_{1}^{\prime}$. This forces that $x_{2} \in X_{1}^{\prime}$ (otherwise, $x_{2} y_{2}$ and $x_{2} y_{1}$ must be in $\left.E_{0}^{\prime}\right)$, and hence $x_{2} y_{2} \in W_{k-1}^{\prime}$.

We claim that $x_{0} y_{0}, x_{1} y_{1}, \ldots x_{n / 2-1} y_{n / 2-1}$ are in W_{k-1}^{\prime}. Since $x_{0} y_{0}, x_{1} y_{1}$ and $x_{2} y_{2}$ are in W_{k-1}^{\prime}, assume, by induction, that $x_{0} y_{0}, x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{p-1} y_{p-1}$ where $p \leq$ $n / 2-1$, are all edges of W_{k-1}^{\prime}. (See Figure 2.2). Now, as $y_{p} x_{p-1}$ and $y_{p} x_{p-3}$ are edges of W_{k}, and as x_{p-1} and x_{p-3} are in $X_{1}^{\prime}, y_{p} \in Y_{1}^{\prime}$. Again, as $x_{p} y_{p-1}$ and $x_{p} y_{p-3}$ are edges of W_{k}, and since y_{p-1} and y_{p-3} are in $Y_{1}^{\prime}, x_{p} \in X_{1}^{\prime}$. As $x_{p} y_{p} \in \mathrm{E}\left(W_{k}\right), x_{p} y_{p} \in$ W_{k-1}^{\prime}. This completes the proof of the induction step. By induction $x_{n / 2-1} y_{n / 2-1}$ is an edge of W_{k-1}^{\prime}. Consequently, W_{k-1}^{\prime} contains the vertices $\left\{x_{0}, x_{1}, \ldots x_{n / 2-1}\right\} \cup$ $\left\{y_{0}, y_{1}, \ldots y_{n / 2-1}\right\}$. Since W_{k-1}^{\prime} has only n vertices, the veritces $x_{j}, y_{j}, n / 2 \leq j \leq n-1$, must be in $W_{k-1}^{\prime \prime}$. Since the vertex $x_{n / 2-1}$ of W_{k-1}^{\prime} is adjacent to the vertices $y_{n / 2}$ and $y_{n / 2+2}$ of $W_{k-1}^{\prime \prime}, E_{0}^{\prime}$ cannot be an edge cut of W_{k}, a contradiction to the choice of E_{0}^{\prime}.

Finally, we consider the cases when $j=1$ and $j=n-1$. If $j=1$, as $x_{0} y_{1} \in E_{0}^{\prime}$, $y_{1} \in Y_{2}^{\prime \prime}$, and since both $x_{1} y_{1}$ and $x_{2} y_{1}$ are edges of W_{k}, both $x_{1}, x_{2} \in X_{2}^{\prime \prime}$. The neighbors y_{0} and y_{3} of x_{0} must belong to Y_{1}^{\prime}. Hence, $x_{1} y_{0}, x_{2} y_{3} \in E_{0}^{\prime}$, and therefore, y_{4}, y_{5} (which are neighbors of x_{1} and x_{2} respectively) $\in Y_{2}^{\prime \prime}$. Now, $x_{3} \notin X_{2}^{\prime \prime}$, since otherwise, there will be two edges of E_{0}^{\prime}, namely $y_{3} x_{2}$ and $y_{3} x_{3}$ at y_{3}. Hence, $x_{3} \in X_{1}^{\prime}$. For a similar reason, $y_{2} \in Y_{2}^{\prime \prime}$. But then, $x_{3} y_{2}$ and $x_{3} y_{4}$ become matching edges of E_{0}^{\prime}, a contradiction.

A similar argument holds when $j=n-1$. This proves that $E_{0}^{\prime}=E_{0}$ and hence E_{0} is the only perfect matching of W_{k} having the stated property.

Note 2.2. Notice that we have used the fact that $k \geq 4$ crucially in the proof of Theorem 2.1.

Corollary 2.3. If $k \geq 4$, the Knödel graph W_{k} is not isomorphic to the hypercube H_{k}.

Proof. If $k \geq 4, H_{k}$ has more than one edge disjoint perfect matchings, the removal of any one of which results in a disjoint union of two H_{k-1} 's. However, this is not the case with W_{k}, by virtue of Theorem 2.1.

We observe that for $k=3, W_{3} \cong H_{3}$, and H_{3} has three edge disjoint perfect matchings, $E_{i}^{\prime}, 1 \leq i \leq 3$, such that $H_{3} \backslash E_{i}^{\prime}$ is isomorphic to $2 C_{4} \cong 2 H_{2}$.

Let α be any automorphism of a graph G with vertex set $\mathrm{V}(G)$. For $M \subset \mathrm{E}(G)$, the edge set of G, let $\alpha(M)$ denote the set of edges $\{\alpha(u) \alpha(v): u, v \in \mathrm{~V}(G), u v \in$ $M\}$.

Corollary 2.4. Every automorphism α of the Knödel graph $W_{k}, k \geq 4$, maps an edge of dimension zero to an edge of dimension zero. Equivalently, $\alpha\left(E_{0}\right)=E_{0}$, where E_{0} is the set of edges of W_{k} of dimension zero.

Proof. We know that $W_{k} \backslash E_{0}=2 W_{k-1}$, a disjoint union of two copies of W_{k-1}. Let β be any automorphism of W_{k}. Then $\beta\left(E_{0}\right)=($ say $) F$ is also a perfect matching of W_{k}, and $W_{k} \backslash F$ is a disjoint union of two copies of W_{k-1}. By Theorem 2.1, this means that $F=E_{0}$. Thus $\beta\left(E_{0}\right)=E_{0}$ and hence every automorphism of W_{k} fixes E_{0}; equivalently, every automorphism of W_{k} maps an edge of dimension zero of W_{k} to an edge of dimension zero.

An immediate consequence of Corollary 2.4 is the following result of Fertin and Raspaud [3] which had been proved by considering sums of powers of 2 .

Corollary 2.5 ([3]). The Knödel graphs $W_{k}, k \geq 4$, are not edge-transitive.
Proof. By Corollary 2.4, no automorphism can take an edge of dimension zero to an edge of dimension not equal to zero.

Theorem 2.6. Let W_{k}^{\prime} and $W_{k}^{\prime \prime}$ be two disjoint copies of $W_{k}, k \geq 4$. Let ϕ be any isomorphism of W_{k}^{\prime} onto $W_{k}^{\prime \prime}$. Then ϕ maps an edge of dimension zero of W_{k}^{\prime} to an edge of dimension zero of $W_{k}^{\prime \prime}$.

Proof. Let E_{0}^{\prime} and $E_{0}^{\prime \prime}$ be the sets of 0-dimensional edges of W_{k}^{\prime} and $W_{k}^{\prime \prime}$ respectively. As E_{0}^{\prime} is a perfect matching of W_{k}^{\prime}, and since ϕ is an isomorphism, $\phi\left(E_{0}^{\prime}\right)$ is a perfect matching of $W_{k}^{\prime \prime}$. As $W_{k}^{\prime} \backslash E_{0}^{\prime}$ is a disjoint union of two copies of W_{k-1}, the same must be true of $W_{k}^{\prime \prime} \backslash \phi\left(E_{0}^{\prime}\right)$. By Theorem 2.1, this implies that $\phi\left(E_{0}^{\prime}\right)=E_{0}^{\prime \prime}$.

Proposition 2.7. Let α be an automorphism of $W_{k}, k \geq 4$. Then either α fixes $W_{k-1}^{(1)}$ and $W_{k-1}^{(2)}$ or else interchanges them.

Proof. Let v be any vertex of $W_{k-1}^{(1)}$. Suppose $\alpha(v) \in W_{k-1}^{(1)}$. We claim that α fixes $W_{k-1}^{(1)}$. Let $w \neq v$ be any vertex of $W_{k-1}^{(1)}$. As $W_{k-1}^{(1)}$ is connected, there is a $w-v$ path P in W_{k} which is completely contained in $W_{k-1}^{(1)}$. As $\alpha(v)$ is in $W_{k-1}^{(1)}, \alpha(P)$ should be completely contained in $W_{k-1}^{(1)}$; otherwise, it should contain an edge of E_{0} but $\alpha\left(E_{0}\right)=E_{0}$ by Corollary 2.4 and P does not contain an edge of E_{0}.

Proposition 2.8. If α is an automorphism of $W_{k}, k \geq 4$, that induces the identity automorphism on $W_{k-1}^{(1)}$, then α is the identity automorphism of W_{k}.

Proof. Let v be any vertex of $W_{k-1}^{(1)}$. Since α fixes all the vertices of $W_{k-1}^{(1)}, \alpha$ fixes all the neighbors of v in $W_{k-1}^{(1)}$. α has exactly one neighbor v^{\prime} in $W_{k-1}^{(2)}$ which also belongs to E_{0}. As $k \geq 4$, α fixes E_{0} by Theorem 2.1, and hence α fixes v^{\prime}. This means that α is the identity automorphism of W_{k}.

Corollary 2.9. If the automorphisms α_{1} and α_{2} of $W_{k}, k \geq 4$, induce the same automorphism on $W_{k-1}^{(1)}$, then $\alpha_{1}=\alpha_{2}$.

Proof. This is because $\alpha_{1} \alpha_{2}^{-1}$ induces the identity automorphism on $W_{k-1}^{(1)}$. Now apply Proposition 2.8.
Theorem 2.10. The maps $\phi=\left(x_{0} x_{1} \ldots x_{n-1}\right)\left(y_{0} y_{1} \ldots y_{n-1}\right)$ and $\psi=\left(x_{0} y_{n-1}\right)$ $\left(x_{1} y_{n-2}\right) \ldots\left(x_{n-1} y_{0}\right)$ on $V\left(W_{k}\right), k \geq 4$, define two automorphisms of W_{k} which generate a group \mathcal{A} of order $2 n$.

Proof. Obvious.
Note that \mathcal{A} acts transitively on W_{k} and, consequently, W_{k} is a vertex-transitive graph, a result originally proved by Heydemann et al. [18].

We now proceed to show that \mathcal{A} is indeed the automorphism group of $W_{k}, k \geq 4$.
Lemma 2.11. Let α be any automorphism of W_{4}. Suppose that α fixes some vertex of W_{4}. Then α is the identity automorphism of W_{4}.

Proof. Without loss of generality (as W_{4} is vertex-transitive), assume that α fixes x_{0}. By Theorem 2.1, $\alpha\left(E_{0}\right)=E_{0}$. Hence $\alpha\left(y_{0}\right)=y_{0}$, where $x_{0} y_{0} \in E_{0}$. By Proposition 2.7, $\alpha\left(W_{3}^{(i)}\right)=W_{3}^{(i)}, i=1,2$. Now $\alpha\left(N\left(x_{0}\right)\right)=N\left(x_{0}\right)$, where N stands for the neighbor set in W_{k}. Hence $\alpha\left(N\left(x_{0}\right)\right)=\alpha\left(\left\{y_{1}, y_{3}, y_{7}\right\}\right)=\left\{y_{1}, y_{3}, y_{7}\right\}$, which implies that y_{5} and hence x_{5} are both fixed by α. Now $N\left(x_{5}\right)=\left\{y_{0}, y_{4}, y_{6}\right\}$ is fixed by α. Therefore, y_{2} and hence x_{2} are both fixed by α. Again, $N\left(x_{2}\right)=\left\{y_{1}, y_{3}, y_{5}\right\}$ is fixed by α and hence $\left\{y_{1}, y_{3}\right\}$ is fixed by α (as y_{5} is fixed by α). This means that $\alpha\left(y_{7}\right)=y_{7}$ and hence $\alpha\left(x_{7}\right)=x_{7}$. Again, $N\left(y_{0}\right)=\left\{x_{1}, x_{3}, x_{7}\right\}$, and as x_{5} and x_{7} are fixed by α, α fixes x_{1} and therefore y_{1}. Further, $\alpha\left(\left\{x_{4}, x_{6}\right\}\right)=\left\{x_{4}, x_{6}\right\}, d\left(x_{6}, y_{1}\right)=1$ and $d\left(x_{4}, y_{1}\right) \neq 1$. Hence α must fix x_{4}, x_{6} and hence y_{4}, y_{6}. Finally, α must fix the left out pair of vertices of W_{4}, namely, x_{3} and y_{3}. Hence α is the identity map of W_{4}.
Theorem 2.12. Let α be an automorphism of $W_{k}, k \geq 4$. If α fixes some vertex of W_{k}, then α is the identity automorphism of W_{k}.

Proof. As W_{k} is vertex-transitive, we can assume that $\alpha\left(x_{0}\right)=x_{0}$. Now α induces an automorphism on $W_{k-1}^{(1)}$ which again fixes x_{0}. This induced automorphism of $W_{k-1}^{(1)}$ induces an automorphism of $W_{k-2}^{(1)}$ which again fixes x_{0}. By repeating the argument, we reach the stage when the restriction α^{\prime} of α is an automorphism of W_{4} which fixes x_{0}. As α^{\prime} is an automorphism of W_{4} which fixes x_{0}, apply Proposition 2.8 repeatedly to conclude that α is the identity automorphism of W_{k}.
Theorem 2.13. For $k \geq 4$, the automorphism group \mathcal{A} of W_{k} is isomorphic to the dihedral group $D_{2^{k-1}}$ of order 2^{k}.

Proof. Let $\alpha \in \mathcal{A}$, and let $\alpha(a)=b$ for some vertices a and b of W_{k}. Now there exists an automorphism $\beta \in\langle\phi, \psi\rangle$, where ϕ and ψ are as in Theorem 2.10, with $\beta(a)=b$ so that $a=\beta^{-1}(b) \Rightarrow \alpha \beta^{-1}(b)=b$. Hence by Theorem 2.12, $\alpha=\beta$. Thus $\mathcal{A} \subseteq\langle\phi, \psi\rangle$, and therefore $\mathcal{A}=\langle\phi, \psi\rangle$. But then ϕ and ψ generate the dihedral group $D_{2^{k-1}}$ of order 2^{k}. (We observe that we have essentially used Burnside's Orbit-Stabilizer Lemma [7].)

We observe that Theorem 2.10 provides a second new proof of the fact that when $k \geq 4, W_{k} \not \equiv H_{k}$, as $\left|\operatorname{Aut}\left(W_{k}\right)\right|=2^{k}$ while $\left|\operatorname{Aut}\left(H_{k}\right)\right|=2^{k} k!$.

We conclude this section with a result on the dimensions of edges of W_{k}.
Theorem 2.14. Let α be any automorphism of the Knödel graph $W_{k}, k \geq 4$. Then for $i=0,1, \ldots, k-4, \alpha$ preserves the edges of dimension i in W_{k}.

Proof. We have seen that $\alpha\left(E_{0}\right)=E_{0}$, so that α takes a 0 -dimensional edge to a 0 dimensional edge. Now, $W_{k} \backslash E_{0} \cong 2 W_{k-1}=($ say $) W_{k-1}^{(1)} \cup W_{k-1}^{(2)}$. Therefore, $\alpha \Gamma_{\left(W_{k} \backslash E_{0}\right)}$ maps a 0 -dimensional edge of $W_{k-1}^{(1)}$ to a 0-dimensional edge of $W_{k-1}^{(1)}$ or $W_{k-1}^{(2)}$. Now, the 0-dimensional edges of $W_{k} \backslash E_{0}$ are the 1-dimensional edges of W_{k}, see [3]. This proves that α fixes the 1-dimensional edges of W_{k}. As $W_{k} \backslash\left(E_{0} \cup E_{1}\right) \cong 4 W_{k-2}$, and the 0-dimensional edges of W_{k-2} are the 2-dimensional edges of W_{k} and vice versa, α fixes all the 2-dimensional edges of W_{k}. We now repeat this procedure until we reach copies of W_{4} for which the result has already been established in Theorem 2.6. Consequently, we conclude that α preserves the dimensions of edges.

3 Spectrum of Knödel graphs

In this section, we determine the spectrum of the general Knödel graph $W_{\Delta, n}$ using a method different from the one of Harutyunyan and Morosan [15]. Then we deduce the spectrum of the special Knödel graph W_{k} and use it to obtain (i) yet another proof of the fact that W_{k} is not isomorphic to H_{k} for $k \geq 4$, and (ii) a better upper bound and a new lower bound for the number of spanning trees of W_{k} for $k \geq 2$. We begin by reviewing some basic properties of circulant matrices over complex numbers.

Definition 3.1. A matrix is a circulant if each successive row is obtained by shifting the current row to the right with wrap around.

Hence a circulant matrix is determined by its first row. Denote by Z the special $n \times n$ circulant matrix with first row $[0,1,0, \ldots, 0]$.

Lemma 3.2. Let C be an $n \times n$ circulant matrix with first row $\left[c_{0}, c_{1}, \ldots, c_{n-1}\right]$. Then $C=c_{0} I+c_{1} Z+\cdots+c_{n-1} Z^{n-1}$.

Proof. Straight-forward verification.
Let \mathcal{C}_{n} be the collection of all $n \times n$ circulant matrices. Then, by Lemma 3.2, $\mathcal{C}_{n}=\{p(Z): p$ is a polynomial of degree at most $n-1$ in the matrix $Z\}$.

Corollary 3.3. \mathcal{C}_{n} is closed under matrix multiplication, transpose, and conjugate transpose.

Proof. Note that $Z^{n}=I$ and $Z^{T}=Z^{n-1}$. Hence, if $C=c_{0} I+c_{1} Z+\cdots+c_{n-1} Z^{n-1}$, then $C^{T}=c_{0} I+c_{1} Z^{T}+\cdots+c_{n-1}\left(Z^{T}\right)^{n-1}=c_{0} I+c_{1} Z^{n-1}+\cdots+c_{n-1} Z^{(n-1)(n-1)}$, which can be simplified to a polynomial in Z of degree at most $n-1$.

Corollary 3.4. Any two circulant matrices commute.
Lemma 3.5. If C is circulant and invertible, then C^{-1} is also circulant.
Proof. By the Cayley-Hamilton Theorem, C^{-1} is a polynomial in C, and so it is also circulant.

Lemma 3.6. Let $C \in \mathcal{C}_{n}$ with first row $\left[c_{0}, c_{1}, \ldots, c_{n-1}\right]$. Then the spectrum of C is

$$
\operatorname{Sp}(C)=\left\{c_{0}\left(\omega^{t}\right)^{0}+c_{1}\left(\omega^{t}\right)^{1}+\cdots+c_{n-1}\left(\omega^{t}\right)^{n-1}: 0 \leq t \leq n-1\right\}
$$

where $\omega=e^{2 \pi \mathbf{i} / n}$.
Proof. Note that Z has eigenvalues $\left\{\omega^{t}: 0 \leq t \leq n-1\right\}$ where $\omega=e^{2 \pi \mathrm{i} / n}$. By Lemma 3.2,

$$
C=c_{0} I+c_{1} Z+\cdots+c_{n-1} Z^{n-1}
$$

and so

$$
\operatorname{Sp}(C)=\left\{c_{0}\left(\omega^{t}\right)^{0}+c_{1}\left(\omega^{t}\right)^{1}+\cdots+c_{n-1}\left(\omega^{t}\right)^{n-1}: 0 \leq t \leq n-1\right\} .
$$

Spectrum of the Knödel graph $W_{\Delta, n}$
Let $W_{\Delta, n}$ be the general Knödel graph of order n (even) and regularity Δ with $\Delta \leq\left\lfloor\log _{2} n\right\rfloor$, i.e., $2^{\Delta} \leq n$. Then its adjacency matrix can be taken in the form

$$
A=\left[\begin{array}{cc}
0 & C \\
C^{T} & 0
\end{array}\right]
$$

where C is an $\frac{n}{2} \times \frac{n}{2}$ circulant matrix with the first row $[1,1,0,1, \ldots, 1,0, \ldots, 0]$, where the 1 's in the first row of C appear at the columns: $1,2,2^{2}, \ldots, 2^{\Delta-1}$ of C.

Lemma 3.7. Let $A=\left[\begin{array}{cc}0 & C \\ C^{T} & 0\end{array}\right]$. Then $\operatorname{Sp}(A)= \pm \operatorname{Sv}(C)$, where $\operatorname{Sv}(C)$ is the collection of singular values of C.

Proof. By Singular Value Decomposition [23] $C=U D V^{T}$ where U and V are orthogonal matrices, and D is a diagonal matrix with singular values of C on its diagonal. Hence

$$
A=\left[\begin{array}{cc}
U & 0 \\
0 & V
\end{array}\right]\left[\begin{array}{cc}
0 & D \\
D & 0
\end{array}\right]\left[\begin{array}{cc}
U & 0 \\
0 & V
\end{array}\right]^{T}
$$

Consequently, $\operatorname{Sp}(A)=\operatorname{Sp}\left(\left[\begin{array}{cc}0 & D \\ D & 0\end{array}\right]\right)= \pm \operatorname{Sp}(D)= \pm \operatorname{Sv}(C)$.
Theorem 3.8. The spectrum of the Knödel graph $W_{\Delta, n}$ is

$$
\operatorname{Sp}\left(W_{\Delta, n}\right)= \pm\left\{\left|\left(\omega^{t}\right)^{2^{0}}+\left(\omega^{t}\right)^{2^{1}}+\cdots+\left(\omega^{t}\right)^{2^{\Delta-1}}\right|: 0 \leq t \leq \frac{n}{2}-1\right\}
$$

where $\omega=e^{4 \pi \mathbf{i} / n}$.

Proof. From the structure of the adjacency matrix of $W_{\Delta, n}$ and Lemma 3.7, we have

$$
\operatorname{Sp}\left(W_{\Delta, n}\right)= \pm \operatorname{Sv}(C)
$$

where $\operatorname{Sv}(C)$ denotes the set of singular values of C. By Corollaries 3.3 and $3.4, C$ is a normal matrix, and so its singular values are the absolute values of its eigenvalues, that is,

$$
\begin{aligned}
\operatorname{Sp}\left(W_{\Delta, n}\right) & = \pm\left\{\left|\left(\omega^{t}\right)^{2^{0}-1}+\left(\omega^{t}\right)^{2^{1}-1}+\cdots+\left(\omega^{t}\right)^{2^{\Delta-1}-1}\right|: 0 \leq t \leq \frac{n}{2}-1\right\} \\
& = \pm\left\{\left|\left(\omega^{t}\right)^{2^{0}}+\left(\omega^{t}\right)^{2^{1}}+\cdots+\left(\omega^{t}\right)^{2^{\Delta-1}}\right|: 0 \leq t \leq \frac{n}{2}-1\right\}
\end{aligned}
$$

The last equality is due to the fact that $\left|\omega^{t}\right|=1$.
Example 3.9. (i) $\operatorname{Sp}\left(W_{1,2}\right)= \pm\{1\}, \operatorname{Sp}\left(W_{1,4}\right)= \pm\{1,1\}$.
(ii) $\operatorname{Sp}\left(W_{2,4}\right)= \pm\{2,0\}, \operatorname{Sp}\left(W_{2,6}\right)= \pm\{2,1,1\}$.
(iii) $\operatorname{Sp}\left(W_{3,8}\right)= \pm\{3,1,1,1\}, \operatorname{Sp}\left(W_{3,10}\right)= \pm\left\{3, \frac{\sqrt{5}+1}{2}, \frac{\sqrt{5}+1}{2}, \frac{\sqrt{5}-1}{2}, \frac{\sqrt{5}-1}{2}\right\}$.
(iv) $\operatorname{Sp}\left(W_{4,16}\right)= \pm\{4,2, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2}}, \sqrt{2}, \sqrt{2}, \sqrt{2-\sqrt{2}}, \sqrt{2-\sqrt{2}}\}$.

Corollary 3.10. For $k \geq 2$,

$$
\begin{aligned}
\operatorname{Sp}\left(W_{k}\right) & =\operatorname{Sp}\left(W_{k, 2^{k}}\right) \\
& = \pm\{k,(k-2)\} \cup \\
& \pm\left\{\left|\left(\omega^{t}\right)^{2^{0}}+\left(\omega^{t}\right)^{2^{1}}+\cdots+\left(\omega^{t}\right)^{2^{k-1}}\right|: 1 \leq t \leq 2^{k-2}-1\right\}^{(2)}
\end{aligned}
$$

where $\omega=e^{2 \pi \mathrm{i} / 2^{k-1}}$, and the superscript ${ }^{(2)}$ means multiplicity 2.
Proof. By Theorem 3.2, with $\Delta=k$ and $n=2^{k}$, we have

$$
\begin{aligned}
\operatorname{Sp}\left(W_{k, 2^{k}}\right) & = \pm\left\{\left|\left(\omega^{t}\right)^{2^{0}}+\left(\omega^{t}\right)^{2^{1}}+\cdots+\left(\omega^{t}\right)^{2^{k-1}}\right|: 0 \leq t \leq 2^{k-1}-1\right\} \\
& = \pm k \cup \pm\left\{\left|\left(\omega^{t}\right)^{2^{0}}+\left(\omega^{t}\right)^{2^{1}}+\cdots+\left(\omega^{t}\right)^{2^{k-1}}\right|: 1 \leq t \leq 2^{k-2}-1\right\} \\
& \cup \pm(k-2) \cup \\
& \left\{\left|\left(\omega^{t}\right)^{2^{0}}+\left(\omega^{t}\right)^{2^{1}}+\cdots+\left(\omega^{t}\right)^{2^{k-1}}\right|: 2^{k-2}+1 \leq t \leq 2^{k-1}-1\right\} \\
& = \pm k \cup \pm(k-2) \cup \pm \\
& \left\{\left|\left(\omega^{t}\right)^{2^{0}}+\left(\omega^{t}\right)^{2^{1}}+\cdots+\left(\omega^{t}\right)^{2^{k-1}}\right|: 1 \leq t \leq 2^{k-2}-1\right\} \\
& \cup \pm\left\{\left|\left(\omega^{t}\right)^{2^{0}}+\left(\omega^{t}\right)^{2^{1}}+\cdots+\left(\omega^{t}\right)^{2^{k-1}}\right|: 1 \leq t \leq 2^{k-2}-1\right\} .
\end{aligned}
$$

The last equality is due to the fact that

$$
\left|\left(\omega^{t}\right)^{2^{0}}+\left(\omega^{t}\right)^{2^{1}}+\cdots+\left(\omega^{t}\right)^{2^{k-1}}\right|=\left|\left(\omega^{2^{k-1}-t}\right)^{2^{0}}+\left(\omega^{2^{k-1}-t}\right)^{2^{1}}+\cdots+\left(\omega^{2^{k-1}-t}\right)^{2^{k-1}}\right|
$$

Lemma 3.11. For $k \geq 2, k-2=\max \left\{|\lambda|: \lambda \in \operatorname{Sp}\left(W_{k}\right) \backslash\{ \pm k\}\right\}$. In other words, the second largest eigenvalue of W_{k} is $k-2$, for $k \geq 2$.

Proof. Let $\lambda \in S p\left(W_{k}\right) \backslash\{ \pm k\}$. By Corollary 3.10, there exists a t with $1 \leq t \leq$ $2^{k-1}-1$ such that

$$
\lambda= \pm\left|\left(\omega^{t}\right)^{2^{0}}+\left(\omega^{t}\right)^{2^{1}}+\cdots+\left(\omega^{t}\right)^{2^{k-1}}\right|
$$

where $\omega=e^{2 \pi \mathbf{i} / 2^{k-1}}$. Write $t=2^{r} q$ for some r with $0 \leq r \leq k-2$ and odd integer q. Hence $\left(\omega^{t}\right)^{2^{k-2-r}}=\left(e^{\pi \mathbf{i}}\right)^{q}=(-1)^{q}=-1$. Consequently,

$$
|\lambda|=\left|\left(\omega^{t}\right)^{2^{0}}+\left(\omega^{t}\right)^{2^{1}}+\cdots(-1)+\cdots+\left(\omega^{t}\right)^{2^{k-2}}+1\right| \leq k-2 .
$$

On the other hand, take $t=2^{k-2}$, we have $\omega^{t}=-1$, and so

$$
\begin{aligned}
\pm\left|\left(\omega^{t}\right)^{2^{0}}+\left(\omega^{t}\right)^{2^{1}}+\cdots+\left(\omega^{t}\right)^{2^{k-1}}\right| & = \pm\left|(-1)+(-1)^{2}+\cdots+(-1)^{2^{k-1}}\right| \\
& = \pm(k-2)
\end{aligned}
$$

are eigenvalues of W_{k}.
Theorem 3.12. For $k \geq 4, \sqrt{k^{2}-6 k+10} \in \operatorname{Sp}\left(W_{k}\right)$.
Proof. Take $t=2^{k-3}$ (here it requires $k \geq 4$), so that $\omega^{t}=e^{2 \pi \mathrm{i} 2^{k-3} / 2^{k-1}}=e^{\pi \mathbf{i} / 2}=\mathbf{i}$. Now, by Theorem 3.8, W_{k} has an eigenvalue

$$
\begin{aligned}
\left|\left(\omega^{t}\right)^{2^{0}}+\left(\omega^{t}\right)^{2^{1}}+\cdots+\left(\omega^{t}\right)^{2^{k-1}}\right| & =\left|\mathbf{i}+\mathbf{i}^{2}+\mathbf{i}^{4}+\cdots+\mathbf{i}^{2^{k-1}}\right| \\
& =|\mathbf{i}+(-1)+1+\cdots+1| \\
& =|\mathbf{i}+(k-3)| \\
& =\sqrt{1^{2}+(k-3)^{2}} \\
& =\sqrt{k^{2}-6 k+10} .
\end{aligned}
$$

Corollary 3.13. For $k \geq 4, W_{k}$ is not an integral graph. That is, not all its eigenvalues are integers.

Proof. For $k \geq 4, \sqrt{k^{2}-6 k+10}$ is never an integer.
Corollary 3.14. If $k \geq 4$, the Knödel graph W_{k} and the hypercube H_{k} are not isomorphic.

Proof. For simple graphs G and H with $\operatorname{Sp}(G)=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ and $\operatorname{Sp}(H)=$ $\left\{b_{1}, b_{2}, \ldots, b_{q}\right\}, \operatorname{Sp}(G \square H)=\left\{a_{i}+b_{j}: 1 \leq i \leq p, 1 \leq j \leq q\right\}$, where \square stands for the Cartesian product [1]. As $\operatorname{Sp}\left(K_{2}\right)=\{-1,1\}, \operatorname{Sp}\left(K_{2} \square K_{2}\right)=\left\{2,0^{(2)},-2\right\}$, and by induction and the fact that \square is associative, we find that $\operatorname{Sp}\left(H_{k}\right)=\{-k,-(k-$ 2), $-(k-4), \ldots,(k-2), k\}$ with respective multiplicities ${ }^{k} C_{0},{ }^{k} C_{1}, \ldots,{ }^{k} C_{k}$, and so $\mathrm{Sp}\left(H_{k}\right)$ is integral for all k. However, by Corollary $3.13, \mathrm{Sp}\left(W_{k}\right)$ is never integral.

Note that, for $k=1,2,3, W_{k} \cong H_{k}$, since $W_{1} \cong H_{1}=K_{2}, W_{2} \cong H_{2}=K_{2} \square K_{2}=$ $C_{4}, W_{3} \cong H_{3}=K_{2} \square K_{2} \square K_{2}$. Finally, recall that the number of spanning trees $\tau(G)$ of a k-regular connected graph G of order n can be computed by the formula using the spectrum [24].

$$
\tau(G)=\frac{1}{n} \prod_{\lambda \in \operatorname{Sp}(G) \backslash\{k\}}(k-\lambda)
$$

Using this formula, Harutyunyan and Morosan [15] gave an upper bound

$$
\tau\left(W_{k}\right) \leq \frac{1}{2^{k-1}} k^{2^{k}-1}
$$

Using Corollary 3.10, we have

$$
\begin{aligned}
& \tau\left(W_{k}\right) \\
= & \frac{1}{2^{k}}\left[(k - (- k)] \left[\left(k^{2}-(k-2)^{2}\right]\right.\right. \\
& \prod_{1 \leq t \leq 2^{k-2}-1}\left[k^{2}-\left|\left(\omega^{t}\right)^{2^{0}}+\left(\omega^{t}\right)^{2^{1}}+\cdots+\left(\omega^{t}\right)^{2^{k-1}}\right|^{2}\right]^{2} \\
= & \frac{1}{2^{k}}[2 k][4(k-1)] \prod_{1 \leq t \leq 2^{k-2}-1}\left[k^{2}-\left|\left(\omega^{t}\right)^{2^{0}}+\left(\omega^{t}\right)^{2^{1}}+\cdots+\left(\omega^{t}\right)^{2^{k-1}}\right|^{2}\right]^{2}
\end{aligned}
$$

Hence we obtain a better upper bound than the one in Harutyunyan and Morosan [15]. Moreover we also give a new lower bound for $\tau\left(W_{k}\right)$ by using Lemma 3.11.
Theorem 3.15. For $k \geq 2, k(k-1)^{2^{k-1}-1} 2^{2^{k}-k-1} \leq \tau\left(W_{k}\right) \leq \frac{1}{2^{k-3}}(k-1) k^{2^{k}-3}$.

Acknowledgments

The authors thank the referees for their careful reading and bringing some more references to our notice. A part of this work was done when the first three authors were visiting Reva University, Bengaluru. The authors thank Reva University for its hospitality.

References

[1] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, 2nd ed., Springer, 2012.
[2] J.-C. Bermond, H. A. Harutyunyan, A. L. Liestman and S. Perennes, A note on the dimensionality of modified Knödel graphs, Internat. J. Found. Comput. Sci. 8 (1997), 109-116.
[3] G. Fertin and A. Raspaud, A survey on Knödel graphs, Discrete Appl. Math. 137 (2004), 173-195
[4] G. Fertin, A. Raspaud, H. Schröder, O. Sýkora and I. Vrto, Diameter of the Knödel Graph, in: Proc. 26th Int. Workshop on Graph-Theoretic Concepts in Comp. Sci. (WG 2000), (Eds.: U. Brandes and D. Wagner), vol. 1928 of Lec. Notes in Comp. Sci., Springer, Berlin, 2000, pp. 149-160.
[5] P. Fraigniaud and E. Lazard, Methods and problems of communication in usual networks, Discrete Appl. Math. 53 (1994), 79-133.
[6] G. Gauyacq, Routages Uniformes dans les Graphes Sommet-transitifs, Ph.D. Thesis, Université Bordeaux 1 (1995).
[7] C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag New York, 2001.
[8] H. Grigoryan and H.A. Harutyunyan, Tight bound on the diameter of the Knödel graph, in:Combinatorial Algorithms - 24th Int. Workshop, IWOCA 2013, Rouen, France, 2013; Revised Selected Papers, 2013, pp. 206-215.
[9] H. Grigoryan and H. A. Harutyunyan, The shortest path problem in the Knödel graph, J. Discrete Algorithms 31 (2015), 40-47.
[10] H. A. Harutyunyan, Multiple message broadcasting in modified Knödel graph, in: SIROCCO 7, Proc. 7th Int. Coll. Structural Information and Communication Complexity, Laquila, Italy, 2000, pp. 157-165.
[11] H.A. Harutyunyan, Minimum multiple message Broadcast graphs, Networks 47 (2006), 218-224.
[12] H. A. Harutyunyan and Z. Li, Broadcast graphs using new dimensional broadcast schemes for Knödel graphs, in: Algorithms and Discrete Appl. Math. Third Int. Conf., CALDAM 2017, Sancoale, Goa, India, 2017, Proceedings, 2017, pp. 193-204.
[13] H. A. Harutyunyan and A. L. Liestman, Upper bounds on the broadcast function using minimum dominating sets, Discrete Math. 312 (2012), 2992-2996.
[14] H. A. Harutyunyan, A. L. Liestman, J. G. Peters and D. Richards, Broadcasting and Gossiping, in: Handbook of Graph Theory, 2nd ed., (Eds.: J. L. Gross, J. Yellen and P. Zhang), CRC Press, 2013, pp. 1477-1494.
[15] H. A. Harutyunyan and C.D. Morosan, The spectra of Knödel graphs, Informatica (Slovenia) 30 (2006), 295-299.
[16] H.A. Harutyunyan and C.D. Morosan, On the minimum path problem in Knödel graphs, Networks 50 (2007), 86-91.
[17] S. M. Hedetniemi, S. T. Hedetniemi and A. L. Liestman, A survey of gossiping and broadcasting in communication networks, Networks 18 (1988), 319-349.
[18] M.-C. Heydemann, N. Marlins and S. Pérennes, Cayley graphs with complete rotations, Technical report, Laboratoire de Recherche en Informatique (Orsay) (1997) TR-1155.
[19] J. Hromkovič, R. Klasing, B. Monien and R. Peine, Dissemination of Information in Interconnection Networks (Broadcasting and Gossiping), in: Combinatorial Network Theory, (Eds.: D.-Z. Du and D. Hsu), Kluwer Academic Publishers, 1996, pp.125-212.
[20] W. Knödel, New gossips and telephones, Discrete Math. 13 (1975), 95.
[21] R. Labahn, Some minimum gossiping graphs, Networks 23 (1993), 333-341.
[22] F.T. Leighton, Introduction to parallel algorithms and architectures: arrays, trees, hypercubes, Los Altos, CA, Morgan Kaufmann Publishers, 1992.
[23] D. W. Lewis, Matrix Theory, World Scientific, 1991.
[24] B. Mohar, The Laplacian spectrum of graphs, in: Graph theory, Combinatorics, and Applications, Vol. 2, (Eds.: Y. Alavi, G. Chartrand, O. Ollerman and A. Schwenk), Wiley, 1991, pp. 871-898.
[25] C. D. Morosan, On the number of broadcast schemes in networks, Inform. Process. Lett. 100 (2006), 188-193.
[26] J.-H. Park and K.-Y. Chwa, Recursive circulant: a new topology for multicomputer networks (extended abstract), in: Proc. Int. Symp. Parallel Architectures, Algorithms and Networks ISPAN94, Kanazawa, Japan, 1994, pp. 73-80.
[27] P. Paulraja and S. Sampathkumar, Hamilton cycle decompositions of Knödel graphs, Discrete Math. Theoret. Comput. Sci. 17 (2016), 263-284.

