
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 74(1) (2019), Pages 17–32

Some properties of the Knödel graph
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Abstract

Knödel graphs have, of late, come to be used as strong competitors for
hypercubes in the realms of broadcasting and gossiping in interconnec-
tion networks. For an even positive integer n and 1 ≤ Δ ≤ �log2 n�, the
general Knödel graph WΔ,n is the Δ-regular bipartite graph with bipar-
tition sets X = {x0, x1, . . . , xn

2
−1} and Y = {y0, y1, . . . , yn

2
−1} such that

xj is adjacent to yj, yj+21−1, yj+22−1, . . ., yj+2Δ−1−1, with suffixes being
taken modulo n

2
. The edge xjyj+2i−1 at xj and the edge yjxj−(2i−1) at yj

are called edges of dimension i at the stars centered at xj and yj respec-
tively. In this paper, we concentrate on the Knödel graph Wk = Wk,2k

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License



R. BALAKRISHNAN ET AL. /AUSTRALAS. J. COMBIN. 74 (1) (2019), 17–32 18

with k ≥ 4. We show that for k ≥ 4, any automorphism of Wk fixes
the set of 0-dimensional edges of Wk. We determine the automorphism
group Aut(Wk) of Wk and show that it is isomorphic to the dihedral
group D2k−1 . In addition, we determine the spectrum of Wk and prove
that it is never integral. As a by-product of our results, we obtain three
new proofs showing that, for k ≥ 4, Wk is not isomorphic to the hyper-
cube Hk of dimension k, and a new proof for the result that Wk is not
edge-transitive.

1 Introduction

For an even positive integer n, and 1 ≤ Δ ≤ �log2 n�, the Knödel graph WΔ,n is
defined to be the bipartite graph with the bipartition (X, Y ), where X = {x0, x1, . . . ,
xn

2
−1} and Y = {y0, y1, . . . , yn

2
−1}, and xj is adjacent to yj, yj+21−1, yj+22−1, . . .,

yj+2Δ−1−1, the suffixes being taken modulo n
2
. Thus, WΔ,n is a Δ-regular bipartite

graph on n vertices with |X| = |Y | = n
2
. Figure 1.1 displays the Knödel graph W3,14.

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

Normal lines denote 0-dimensional edges, broken lines represent 1-
dimensional edges and bold lines represent 2-dimensional edges.

Figure 1.1: Knödel graph W3,14

The edge xjyj+2i−1 at xj and the edge yjxj−(2i−1) at yj (suffixes being taken modulo
n
2
) are called the edges of dimension i at the stars at xj and yj, respectively; see

Figure 1.1.

The Knödel graphs have many interesting properties. The Knödel graphs have, of
late, come to be used as competitors for hypercubes in the domains of broadcasting
and gossiping. This is explained below in detail. The diameter of Wk is known but
the diameter of the general Knödel graph WΔ,n is not yet known; a tight lower and
upper bounds on the diameter of Knödel graph WΔ,n is obtained by Grigoryan and
Harutyuanyan, see [8, 9]. However, the exact diameter of the graph Wk is

⌈
k+2
2

⌉
(see [4]). The spectrum of Wk is studied by Harutyuanyan and Morosan, see [16];
using the spectrum of Wk, they have also obtained an upper bound on the number of
spanning trees of Wk. The graph Wk is vertex transitive but not edge transitive, see
[3]. In [27], Paulraja and Sampath Kumar have shown that Wk is almost Hamilton
cycle decomposable, that is, Wk \ E(H) is Hamilton cycle decomposable, where H
is a 2-factor or a 3-factor according to whether k is even or odd.
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The graphs Wk are the most popular in the family of interconnection networks
along with the hypercubes Hk (see [22]) and the recursive bicirculant graphs G(2k, 4)
introduced by Park and Chwa (see [26]), all of order 2k. Both Hk and Wk, besides
having the same order, are regular of degree k, and consequently have the same
number of edges. However, they are not isomorphic since Hk has diameter k and Wk

has diameter
⌈
k+2
2

⌉
(see [4]).

The gossiping problem, as described by Knödel in [20] is as follows: “Given n
persons, each with a bit of information, wishing to distribute their information to one
another in binary calls, each call taking a fixed time, how long must it take before
each knows everything?”. Broadcasting is a similar problem where only one person
(the originator) has all the information that needs to be distributed to all the others
in binary calls. In essence, they deal with problems in dissemination of information
in interconnection networks.

Every interconnection network can be represented by means of a graph. If this
graph has n vertices, the minimum time required for broadcasting is �log2 n�. Such
graphs are known as minimal broadcasting graphs. Both Hk and Wk are minimal
broadcast networks of time k. A broadcast graph with minimum number of edges
is called minimum broadcast graph. The number of edges in a minimum broadcast
graph on n vertices is denoted by B(n).

Broadcasting and gossiping have been extensively studied in literature. There
are several papers dealing with Knödel graphs as some subfamilies of Knödel graphs
have good properties in terms of broadcasting, gossiping and fault-tolerance, see
[11, 13, 14, 17, 21]. In particular, Wk has been proved to be a minimum broadcast
graph. For more details on minimum broadcast and gossip graphs, see [6, 17, 19]. In
[12], new dimensional broadcast schemes for Knödel graphs are given. In the same
paper, a general upper bound for B(n) for almost all odd n is obtained. In [25], exact
lower and upper bounds for the number of broadcast schemes in arbitrary networks
is dealt with.

Fraigniaud and Lazard, see [5], deal with various methods and problems in com-
munication networks such as the complete network, the torus, the grid, the ring, the
underlying de Bruijn graph. In [14], two broad category of problems, namely, finding
the best network for a given high level goal and finding the best protocol for a given
goal are discussed. Also construction of sparse broadcast graphs is explained. For
an elaborate discussions on Knödel graphs, see [3, 5, 14, 17]. Some more properties
of Knödel graphs and modified Knödel graphs are given in [2, 10].

In this paper, we deal with the subfamily Wk = W (k, 2k), k ≥ 4, of Knödel
graphs. In our main result (Theorem 2.13), we determine the automorphism group
of Wk and show that it is isomorphic to the dihedral group D2k−1 . We prove this by
showing that any automorphism of Wk takes a star (that is, a K1,k subgraph) to a
star, preserving the dimensions of the corresponding edges.

We follow [1] for standard graph-theoretic notation and terminology.

This paper is organized as follows: In Section 2, we establish the fact that the only
perfect matching of Wk, k ≥ 4, whose removal disconnects Wk is the one obtained
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by joining the corresponding vertices of X and Y . This provides a new proof of
the fact that Wk and Hk are not isomorphic. Next, we use this fact to determine
the automorphism group of Wk and this yields a second new proof for the non-
isomorphic nature of Wk and Hk. Our results show that the only automorphism that
fixes a vertex of Wk, k ≥ 4, is the identity automorphism. Finally, in Section 3, we
determine the spectrum of Wk and show that it is never integral. This incidentally
yields a third new proof of the fact that Wk and Hk, k ≥ 4, are not isomorphic.
We also determine lower and upper bounds for the number of spanning trees of Wk.
These bounds are better than what are known as on date.

Before we close this section, we mention that the Knödel graphs Wk are vertex-
transitive, but for k ≥ 4, they are not edge-transitive [4]. Indeed, our results provide
a new proof of the fact that the Knödel graphs Wk, k ≥ 4, are not edge-transitive
but they are vertex transitive.

In the rest of the paper, we denote 2k−1 by n, p pairwise disjoint copies of a graph
G by pG, and the set of edges of dimension i in Wk by Ei.

Observation 1.1 ([3]). Yet another important structural property of Wk is that the
set of edges of dimension zero in Wk, namely, E0 = {x0y0, x1y1, . . . , xn−1yn−1}, is a
perfect matching of Wk with the property that Wk \E0 consists of two disjoint copies

of Wk−1, which we denote by W
(1)
k−1 and W

(2)
k−1. See Figures 1.2 and 1.3. Denote

the bipartitions of W
(1)
k−1 and W

(2)
k−1 by

(
X

(1)
k−1, Y

(1)
k−1

)
and

(
X

(2)
k−1, Y

(2)
k−1

)
respectively.

Then

X
(1)
k−1 = {x0, x2, . . . , x2k−1−2},

Y
(1)
k−1 = {y1, y3, . . . , y2k−1−1},

X
(2)
k−1 = {x1, x3, . . . , x2k−1−1}

Y
(2)
k−1 = {y2, y4, y6, . . . , y2k−1−2, y0}.

(Observe that y0 is given at the end in Y
(2)
k−1).

If we relabel the vertex subsets X
(1)
k−1 and Y

(1)
k−1 of Wk by {u0, u1, . . . , u2k−2−1} and

{v0, v1, . . . , v2k−2−1} respectively, preserving the orders of the vertices, and join the
edges ujvj+2i−1, 0 ≤ j ≤ 2k−2−1, 0 ≤ i ≤ k−2, the resulting graph is isomorphic to

W
(1)
k−1. A similar statement applies for the next two vertex subsets X

(2)
k−1 and Y

(2)
k−1,

and in this case the resulting graph is isomorphic to W
(2)
k−1. (See Figure 1.2). Notice

further that x0y1 and y7x6 are 0-dimensional edges at x0 and y7 of W
(1)
3 respectively.

A redrawing of W4 is given in Figure 1.3, from which it is clear that W4 \E0 consists
of two “identical” copies of W3. A similar statement applies to Wk (k ≥ 4) as well.

2 The automorphism group of the Knödel graph Wk, k ≥ 4

We begin by establishing a structure theorem on Knödel graphs.
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x0

x1

x2

x3

x4

x5

x6

x7

y0
y1

y2
y3

y4
y5

y6
y7

Figure 1.2: W4 and the perfect matching E0 (in bold lines)

x0 x2 x4 x6

y2 y4 y6 y0

x1 x3 x5 x7

y1 y3 y5 y7
E0

W
(1)
3

W
(2)
3

Figure 1.3: Another drawing of W4 (bold lines represent the perfect matching E0

whose removal results in two “identical” copies of W3).

Theorem 2.1. Let E0 be the perfect matching of the Knödel graph Wk, k ≥ 4,
consisting of the 0-dimensional edges of Wk. Then E0 is the only perfect matching
such that Wk \ E0 consists of two isomorphic copies of Wk−1.

Proof. Let X = {x0, x1, . . . , xn−1} and Y = {y0, y1, . . . , yn−1} (recall: n−1 = 2k−1−
1) be the bipartition of Wk. For each i, 0 ≤ i ≤ n−1, xi and yi are the corresponding
vertices of Wk. By choice, E0 is the set of edges {x0y0, x1y1, . . . , xn−1yn−1}. By
Observation 1.1, E0 is a perfect matching with the property that Wk \E0 is a disjoint
union of two copies of Wk−1. We claim that E0 is the only perfect matching of Wk

with this property.

In our proof, the suffix i in xi and yi is always taken modulo 2k−1 = n. We note
that xi (respectively yi) is adjacent to yi−1, yi, yi+1 (respectively to xi−1, xi, xi+1).

If possible, assume that there is a perfect matching E ′
0 �= E0 of Wk such that

Wk\E ′
0 has two components, each isomorphic toWk−1. We call these two components

as W ′
k−1 and W ′′

k−1 with (X ′
1, Y

′
1) and (X ′′

2 , Y
′′
2 ) as their respective bipartitions, where

X ′
1 ⊂ X, X ′′

2 ⊂ X and Y ′
1 ⊂ Y , Y ′′

2 ⊂ Y . The vertices x0 and y0 may be in the same
or different components of Wk \E ′

0.

Case 1. x0 and y0 are in different components of Wk \ E ′
0 (so that x0y0 ∈ E ′

0).

Assume that x0 ∈ X ′
1 ⊂ W ′

k−1, so that y0 ∈ Y ′′
2 ⊂ W ′′

k−1. As x0 ∈ X ′
1, the other

neighbors of x0, namely, y1, y3, y7, . . . , yn−1 must all belong to Y ′
1 (See Figure 2.1).

As the edges between W ′
k−1 and W ′′

k−1 are the edges of E ′
0, and since x0y0 ∈ E ′

0
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. . .

. . .

. . .

. . .

x0 x2 x4 xn−2

y0 y2 y4 yn−2

y1 y3 y5 yn−1

x1 x3 x5 xn−1

X ′
1 Y ′

1

Y ′′
2 X ′′

2

W ′
k−1

W ′′
k−1

E ′
0 E ′

0

Figure 2.1: Case when x0y0 ∈ E ′
0

and x1y0 ∈ E(Wk), x1 must belong to X ′′
2 . Again, as x1 ∈ W ′′

k−1, y1 ∈ W ′
k−1 and

x1y1 ∈ E(Wk), x1y1 must belong to E ′
0 (see Figure 2.1). As x1y1 and x2y1 are edges

of Wk, and as x1y1 ∈ E ′
0, x2y1 /∈ E ′

0, and so x2 must be in X ′
1. Again, x1y1 ∈ E ′

0

and x1y2 ∈ E(Wk) imply that y2 ∈ Y ′′
2 , and therefore x2y2 ∈ E ′

0. By induction, it is
clear that xi ∈ X ′

1 or X ′′
2 according to whether i is even or odd, and yj ∈ Y ′

1 or Y ′′
2

according to whether j is odd or even. Thus xiyi ∈ E ′
0 for each i, 0 ≤ i ≤ n− 1. In

other words, E ′
0 = E0.

Case 2. x0 and y0 are in the same component of Wk \ E ′
0, say, W

′
k−1.

...
...

...

x1

x2

xp−1

xp

y1
y2

yp−1

yp

x0 y0

yj

X ′
1 Y ′

1

Y ′′
2 X ′′

2

W ′
k−1

W ′′
k−1

Figure 2.2: Case when x0y0 /∈ E ′
0

As E ′
0 is a perfect matching, only one edge of E ′

0, say, x0yj, j �= 0, is incident
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to x0. Hence yj ∈ Y ′′
2 (see Figure 2.2). Assume, for the moment, that j �= 1, n− 1.

The neighbors of x0 in Wk, other than yj, must all be in Y ′
1 , and the neighbors of

yj , other than x0, must all be in X ′′
2 . In particular, y0, y1 and yn−1 are all in Y ′

1 .
This situation is possible as k ≥ 4. Consequently, x1 ∈ X ′

1 (else, x1 ∈ X ′′
2 and x1y0

and x1y1 would be in E ′
0, which is impossible) and x1y1 ∈ W ′

k−1. Thus both x0y0
and x1y1 are in W ′

k−1. Recall that xn−1yn−1, xn−1y0 are both edges of Wk, and so
xn−1 ∈ X ′

1. As y2 is adjacent to both x1 and xn−1 (note that xn−1y2 is an edge of
dimension 3 of Wk), y2 /∈ Y ′′

2 (otherwise, there will be two edges of E ′
0 incident at

y2), and so y2 ∈ Y ′
1 . This forces that x2 ∈ X ′

1 (otherwise, x2y2 and x2y1 must be in
E ′

0), and hence x2y2 ∈ W ′
k−1.

We claim that x0y0, x1y1, . . . xn/2−1yn/2−1 are in W ′
k−1. Since x0y0, x1y1 and x2y2

are in W ′
k−1, assume, by induction, that x0y0, x1y1, x2y2, . . . , xp−1yp−1 where p ≤

n/2−1, are all edges of W ′
k−1. (See Figure 2.2). Now, as ypxp−1 and ypxp−3 are edges

of Wk, and as xp−1 and xp−3 are in X ′
1, yp ∈ Y ′

1 . Again, as xpyp−1 and xpyp−3 are
edges of Wk, and since yp−1 and yp−3 are in Y ′

1 , xp ∈ X ′
1. As xpyp ∈ E(Wk), xpyp ∈

W ′
k−1. This completes the proof of the induction step. By induction xn/2−1yn/2−1

is an edge of W ′
k−1. Consequently, W ′

k−1 contains the vertices {x0, x1, . . . xn/2−1} ∪
{y0, y1, . . . yn/2−1}. SinceW ′

k−1 has only n vertices, the veritces xj , yj, n/2 ≤ j ≤ n−1,
must be in W ′′

k−1. Since the vertex xn/2−1 of W
′
k−1 is adjacent to the vertices yn/2 and

yn/2+2 of W
′′
k−1, E

′
0 cannot be an edge cut of Wk, a contradiction to the choice of E ′

0.

Finally, we consider the cases when j = 1 and j = n− 1. If j = 1, as x0y1 ∈ E ′
0,

y1 ∈ Y ′′
2 , and since both x1y1 and x2y1 are edges of Wk, both x1, x2 ∈ X ′′

2 . The
neighbors y0 and y3 of x0 must belong to Y ′

1 . Hence, x1y0, x2y3 ∈ E ′
0, and therefore,

y4, y5 (which are neighbors of x1 and x2 respectively) ∈ Y ′′
2 . Now, x3 /∈ X ′′

2 , since
otherwise, there will be two edges of E ′

0, namely y3x2 and y3x3 at y3. Hence, x3 ∈ X ′
1.

For a similar reason, y2 ∈ Y ′′
2 . But then, x3y2 and x3y4 become matching edges of

E ′
0, a contradiction.

A similar argument holds when j = n− 1. This proves that E ′
0 = E0 and hence

E0 is the only perfect matching of Wk having the stated property.

Note 2.2. Notice that we have used the fact that k ≥ 4 crucially in the proof of
Theorem 2.1.

Corollary 2.3. If k ≥ 4, the Knödel graph Wk is not isomorphic to the hypercube
Hk.

Proof. If k ≥ 4, Hk has more than one edge disjoint perfect matchings, the removal
of any one of which results in a disjoint union of two Hk−1’s. However, this is not
the case with Wk, by virtue of Theorem 2.1.

We observe that for k = 3, W3
∼= H3, and H3 has three edge disjoint perfect

matchings, E ′
i, 1 ≤ i ≤ 3, such that H3 \ E ′

i is isomorphic to 2C4
∼= 2H2.

Let α be any automorphism of a graph G with vertex set V(G). For M ⊂ E(G),
the edge set of G, let α(M) denote the set of edges {α(u)α(v) : u, v ∈ V(G), uv ∈
M }.
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Corollary 2.4. Every automorphism α of the Knödel graph Wk, k ≥ 4, maps an
edge of dimension zero to an edge of dimension zero. Equivalently, α(E0) = E0,
where E0 is the set of edges of Wk of dimension zero.

Proof. We know that Wk \E0 = 2Wk−1, a disjoint union of two copies of Wk−1. Let
β be any automorphism of Wk. Then β(E0) = (say)F is also a perfect matching
of Wk, and Wk \ F is a disjoint union of two copies of Wk−1. By Theorem 2.1, this
means that F = E0. Thus β(E0) = E0 and hence every automorphism of Wk fixes
E0; equivalently, every automorphism of Wk maps an edge of dimension zero of Wk

to an edge of dimension zero.

An immediate consequence of Corollary 2.4 is the following result of Fertin and
Raspaud [3] which had been proved by considering sums of powers of 2.

Corollary 2.5 ([3]). The Knödel graphs Wk, k ≥ 4, are not edge-transitive.

Proof. By Corollary 2.4, no automorphism can take an edge of dimension zero to an
edge of dimension not equal to zero.

Theorem 2.6. Let W ′
k and W ′′

k be two disjoint copies of Wk, k ≥ 4. Let φ be any
isomorphism of W ′

k onto W ′′
k . Then φ maps an edge of dimension zero of W ′

k to an
edge of dimension zero of W ′′

k .

Proof. Let E ′
0 and E ′′

0 be the sets of 0-dimensional edges of W ′
k and W ′′

k respectively.
As E ′

0 is a perfect matching of W ′
k, and since φ is an isomorphism, φ(E ′

0) is a perfect
matching of W ′′

k . As W ′
k \ E ′

0 is a disjoint union of two copies of Wk−1, the same
must be true of W ′′

k \ φ(E ′
0). By Theorem 2.1, this implies that φ(E ′

0) = E ′′
0 .

Proposition 2.7. Let α be an automorphism of Wk, k ≥ 4. Then either α fixes
W

(1)
k−1 and W

(2)
k−1 or else interchanges them.

Proof. Let v be any vertex of W
(1)
k−1. Suppose α(v) ∈ W

(1)
k−1. We claim that α fixes

W
(1)
k−1. Let w �= v be any vertex of W

(1)
k−1. As W

(1)
k−1 is connected, there is a w−v path

P in Wk which is completely contained in W
(1)
k−1. As α(v) is in W

(1)
k−1, α(P ) should

be completely contained in W
(1)
k−1; otherwise, it should contain an edge of E0 but

α(E0) = E0 by Corollary 2.4 and P does not contain an edge of E0.

Proposition 2.8. If α is an automorphism of Wk, k ≥ 4, that induces the identity
automorphism on W

(1)
k−1, then α is the identity automorphism of Wk.

Proof. Let v be any vertex of W
(1)
k−1. Since α fixes all the vertices of W

(1)
k−1, α fixes

all the neighbors of v in W
(1)
k−1. α has exactly one neighbor v′ in W

(2)
k−1 which also

belongs to E0. As k ≥ 4, α fixes E0 by Theorem 2.1, and hence α fixes v′. This
means that α is the identity automorphism of Wk.

Corollary 2.9. If the automorphisms α1 and α2 of Wk, k ≥ 4, induce the same
automorphism on W

(1)
k−1, then α1 = α2.
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Proof. This is because α1α
−1
2 induces the identity automorphism on W

(1)
k−1. Now

apply Proposition 2.8.

Theorem 2.10. The maps φ = (x0x1 . . . xn−1)(y0y1 . . . yn−1) and ψ = (x0yn−1)
(x1yn−2) . . . (xn−1y0) on V (Wk), k ≥ 4, define two automorphisms of Wk which
generate a group A of order 2n.

Proof. Obvious.

Note that A acts transitively on Wk and, consequently, Wk is a vertex-transitive
graph, a result originally proved by Heydemann et al. [18].

We now proceed to show that A is indeed the automorphism group of Wk, k ≥ 4.

Lemma 2.11. Let α be any automorphism of W4. Suppose that α fixes some vertex
of W4. Then α is the identity automorphism of W4.

Proof. Without loss of generality (as W4 is vertex-transitive), assume that α fixes x0.
By Theorem 2.1, α(E0) = E0. Hence α(y0) = y0, where x0y0 ∈ E0. By Proposition

2.7, α(W
(i)
3 ) = W

(i)
3 , i = 1, 2. Now α(N(x0)) = N(x0), where N stands for the

neighbor set in Wk. Hence α(N(x0)) = α({y1, y3, y7}) = {y1, y3, y7}, which implies
that y5 and hence x5 are both fixed by α. Now N(x5) = {y0, y4, y6} is fixed by
α. Therefore, y2 and hence x2 are both fixed by α. Again, N(x2) = {y1, y3, y5} is
fixed by α and hence {y1, y3} is fixed by α (as y5 is fixed by α). This means that
α(y7) = y7 and hence α(x7) = x7. Again, N(y0) = {x1, x3, x7}, and as x5 and x7 are
fixed by α, α fixes x1 and therefore y1. Further, α({x4, x6}) = {x4, x6}, d(x6, y1) = 1
and d(x4, y1) �= 1. Hence α must fix x4, x6 and hence y4, y6. Finally, α must fix the
left out pair of vertices of W4, namely, x3 and y3. Hence α is the identity map of
W4.

Theorem 2.12. Let α be an automorphism of Wk, k ≥ 4. If α fixes some vertex of
Wk, then α is the identity automorphism of Wk.

Proof. As Wk is vertex-transitive, we can assume that α(x0) = x0. Now α induces an

automorphism on W
(1)
k−1 which again fixes x0. This induced automorphism of W

(1)
k−1

induces an automorphism of W
(1)
k−2 which again fixes x0. By repeating the argument,

we reach the stage when the restriction α′ of α is an automorphism of W4 which fixes
x0. As α

′ is an automorphism of W4 which fixes x0, apply Proposition 2.8 repeatedly
to conclude that α is the identity automorphism of Wk.

Theorem 2.13. For k ≥ 4, the automorphism group A of Wk is isomorphic to the
dihedral group D2k−1 of order 2k.

Proof. Let α ∈ A, and let α(a) = b for some vertices a and b of Wk. Now there exists
an automorphism β ∈ 〈φ, ψ〉, where φ and ψ are as in Theorem 2.10, with β(a) = b so
that a = β−1(b) ⇒ αβ−1(b) = b. Hence by Theorem 2.12, α = β. Thus A ⊆ 〈φ, ψ〉,
and therefore A = 〈φ, ψ〉. But then φ and ψ generate the dihedral group D2k−1

of order 2k. (We observe that we have essentially used Burnside’s Orbit-Stabilizer
Lemma [7].)
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We observe that Theorem 2.10 provides a second new proof of the fact that when
k ≥ 4, Wk � Hk, as |Aut(Wk)| = 2k while |Aut(Hk)| = 2kk!.

We conclude this section with a result on the dimensions of edges of Wk.

Theorem 2.14. Let α be any automorphism of the Knödel graph Wk, k ≥ 4. Then
for i = 0, 1, . . . , k − 4, α preserves the edges of dimension i in Wk.

Proof. We have seen that α(E0) = E0, so that α takes a 0-dimensional edge to a 0-

dimensional edge. Now, Wk\E0
∼= 2Wk−1 = (say)W

(1)
k−1∪W (2)

k−1. Therefore, α �(Wk\E0)

maps a 0-dimensional edge of W
(1)
k−1 to a 0-dimensional edge of W

(1)
k−1 or W

(2)
k−1. Now,

the 0-dimensional edges of Wk \ E0 are the 1-dimensional edges of Wk, see [3]. This
proves that α fixes the 1-dimensional edges of Wk. As Wk \ (E0 ∪E1) ∼= 4Wk−2, and
the 0-dimensional edges of Wk−2 are the 2-dimensional edges of Wk and vice versa,
α fixes all the 2-dimensional edges of Wk. We now repeat this procedure until we
reach copies of W4 for which the result has already been established in Theorem 2.6.
Consequently, we conclude that α preserves the dimensions of edges.

3 Spectrum of Knödel graphs

In this section, we determine the spectrum of the general Knödel graph WΔ,n using
a method different from the one of Harutyunyan and Morosan [15]. Then we deduce
the spectrum of the special Knödel graph Wk and use it to obtain (i) yet another
proof of the fact that Wk is not isomorphic to Hk for k ≥ 4, and (ii) a better upper
bound and a new lower bound for the number of spanning trees of Wk for k ≥ 2. We
begin by reviewing some basic properties of circulant matrices over complex numbers.

Definition 3.1. A matrix is a circulant if each successive row is obtained by shifting
the current row to the right with wrap around.

Hence a circulant matrix is determined by its first row. Denote by Z the special
n× n circulant matrix with first row [0, 1, 0, . . . , 0].

Lemma 3.2. Let C be an n × n circulant matrix with first row [c0, c1, . . . , cn−1].
Then C = c0I + c1Z + · · ·+ cn−1Z

n−1.

Proof. Straight-forward verification.

Let Cn be the collection of all n× n circulant matrices. Then, by Lemma 3.2,

Cn = { p(Z) : p is a polynomial of degree at most n− 1 in the matrix Z } .
Corollary 3.3. Cn is closed under matrix multiplication, transpose, and conjugate
transpose.

Proof. Note that Zn = I and ZT = Zn−1. Hence, if C = c0I + c1Z + · · ·+ cn−1Z
n−1,

then CT = c0I + c1Z
T + · · ·+ cn−1(Z

T )n−1 = c0I + c1Z
n−1 + · · ·+ cn−1Z

(n−1)(n−1),
which can be simplified to a polynomial in Z of degree at most n− 1.
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Corollary 3.4. Any two circulant matrices commute.

Lemma 3.5. If C is circulant and invertible, then C−1 is also circulant.

Proof. By the Cayley-Hamilton Theorem, C−1 is a polynomial in C, and so it is also
circulant.

Lemma 3.6. Let C ∈ Cn with first row [c0, c1, . . . , cn−1]. Then the spectrum of C is

Sp(C) =
{
c0(ω

t)0 + c1(ω
t)1 + · · ·+ cn−1(ω

t)n−1 : 0 ≤ t ≤ n− 1
}

where ω = e2πi/n.

Proof. Note that Z has eigenvalues {ωt : 0 ≤ t ≤ n − 1 } where ω = e2πi/n. By
Lemma 3.2,

C = c0I + c1Z + · · ·+ cn−1Z
n−1,

and so

Sp(C) =
{
c0(ω

t)0 + c1(ω
t)1 + · · ·+ cn−1(ω

t)n−1 : 0 ≤ t ≤ n− 1
}
.

Spectrum of the Knödel graph WΔ,n

Let WΔ,n be the general Knödel graph of order n (even) and regularity Δ with
Δ ≤ �log2 n�, i.e., 2Δ ≤ n. Then its adjacency matrix can be taken in the form

A =

[
0 C
CT 0

]

where C is an n
2
× n

2
circulant matrix with the first row [1, 1, 0, 1, . . . , 1, 0, . . . , 0],

where the 1’s in the first row of C appear at the columns: 1, 2, 22, . . . , 2Δ−1 of C.

Lemma 3.7. Let A =

[
0 C
CT 0

]
. Then Sp(A) = ± Sv(C), where Sv(C) is the

collection of singular values of C.

Proof. By Singular Value Decomposition [23] C = UDV T where U and V are orthog-
onal matrices, and D is a diagonal matrix with singular values of C on its diagonal.
Hence

A =

[
U 0
0 V

] [
0 D
D 0

] [
U 0
0 V

]T
.

Consequently, Sp(A) = Sp

([
0 D
D 0

])
= ± Sp(D) = ± Sv(C).

Theorem 3.8. The spectrum of the Knödel graph WΔ,n is

Sp(WΔ,n) = ±
{ ∣∣∣(ωt)2

0

+ (ωt)2
1

+ · · ·+ (ωt)2
Δ−1

∣∣∣ : 0 ≤ t ≤ n

2
− 1

}
,

where ω = e4πi/n.
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Proof. From the structure of the adjacency matrix of WΔ,n and Lemma 3.7, we have

Sp(WΔ,n) = ± Sv(C)

where Sv(C) denotes the set of singular values of C. By Corollaries 3.3 and 3.4, C is
a normal matrix, and so its singular values are the absolute values of its eigenvalues,
that is,

Sp(WΔ,n) = ±
{ ∣∣∣(ωt)2

0−1 + (ωt)2
1−1 + · · ·+ (ωt)2

Δ−1−1
∣∣∣ : 0 ≤ t ≤ n

2
− 1

}

= ±
{ ∣∣∣(ωt)2

0

+ (ωt)2
1

+ · · ·+ (ωt)2
Δ−1

∣∣∣ : 0 ≤ t ≤ n

2
− 1

}
.

The last equality is due to the fact that |ωt| = 1.

Example 3.9. (i) Sp(W1,2) = ±{1}, Sp(W1,4) = ±{1, 1}.
(ii) Sp(W2,4) = ±{2, 0}, Sp(W2,6) = ±{2, 1, 1}.

(iii) Sp(W3,8) = ±{3, 1, 1, 1}, Sp(W3,10) = ±
{
3,

√
5+1
2

,
√
5+1
2

,
√
5−1
2

,
√
5−1
2

}
.

(iv) Sp(W4,16) = ±
{
4, 2,

√
2 +

√
2,
√
2 +

√
2,
√
2,
√
2,
√
2−√

2,
√

2−√
2
}
.

Corollary 3.10. For k ≥ 2,

Sp(Wk) = Sp(Wk,2k)

= ±{k, (k − 2)}∪
±
{ ∣∣∣(ωt)2

0

+ (ωt)2
1

+ · · ·+ (ωt)2
k−1

∣∣∣ : 1 ≤ t ≤ 2k−2 − 1
}(2)

where ω = e2πi/2
k−1

, and the superscript (2) means multiplicity 2.

Proof. By Theorem 3.2, with Δ = k and n = 2k, we have

Sp(Wk,2k) = ±
{ ∣∣∣(ωt)2

0

+ (ωt)2
1

+ · · ·+ (ωt)2
k−1

∣∣∣ : 0 ≤ t ≤ 2k−1 − 1
}

= ±k ∪ ±
{∣∣∣ (ωt)2

0

+ (ωt)2
1

+ · · ·+ (ωt)2
k−1

∣∣∣ : 1 ≤ t ≤ 2k−2 − 1
}

∪ ±(k − 2)∪{ ∣∣∣(ωt)2
0

+ (ωt)2
1

+ · · ·+ (ωt)2
k−1

∣∣∣ : 2k−2 + 1 ≤ t ≤ 2k−1 − 1
}

= ±k ∪ ±(k − 2) ∪ ±{ ∣∣∣(ωt)2
0

+ (ωt)2
1

+ · · ·+ (ωt)2
k−1

∣∣∣ : 1 ≤ t ≤ 2k−2 − 1
}

∪ ±
{ ∣∣∣(ωt)2

0

+ (ωt)2
1

+ · · ·+ (ωt)2
k−1

∣∣∣ : 1 ≤ t ≤ 2k−2 − 1
}
.

The last equality is due to the fact that∣∣∣(ωt)2
0

+ (ωt)2
1

+ · · ·+ (ωt)2
k−1

∣∣∣ = ∣∣∣(ω2k−1−t)2
0

+ (ω2k−1−t)2
1

+ · · ·+ (ω2k−1−t)2
k−1

∣∣∣ .
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Lemma 3.11. For k ≥ 2, k− 2 = max { |λ| : λ ∈ Sp(Wk) \ {±k} }. In other words,
the second largest eigenvalue of Wk is k − 2, for k ≥ 2.

Proof. Let λ ∈ Sp(Wk) \ {±k}. By Corollary 3.10, there exists a t with 1 ≤ t ≤
2k−1 − 1 such that

λ = ±
∣∣∣(ωt)2

0

+ (ωt)2
1

+ · · ·+ (ωt)2
k−1

∣∣∣
where ω = e2πi/2

k−1
. Write t = 2rq for some r with 0 ≤ r ≤ k − 2 and odd integer q.

Hence (ωt)2
k−2−r

= (eπi)q = (−1)q = −1. Consequently,

|λ| =
∣∣∣(ωt)2

0

+ (ωt)2
1

+ · · · (−1) + · · ·+ (ωt)2
k−2

+ 1
∣∣∣ ≤ k − 2.

On the other hand, take t = 2k−2, we have ωt = −1, and so

±
∣∣∣(ωt)2

0

+ (ωt)2
1

+ · · ·+ (ωt)2
k−1

∣∣∣ = ±
∣∣∣(−1) + (−1)2 + · · ·+ (−1)2

k−1
∣∣∣

= ±(k − 2)

are eigenvalues of Wk.

Theorem 3.12. For k ≥ 4,
√
k2 − 6k + 10 ∈ Sp(Wk).

Proof. Take t = 2k−3 (here it requires k ≥ 4), so that ωt = e2πi2
k−3/2k−1

= eπi/2 = i.
Now, by Theorem 3.8, Wk has an eigenvalue

∣∣∣(ωt)2
0

+ (ωt)2
1

+ · · ·+ (ωt)2
k−1

∣∣∣ = ∣∣∣i + i2 + i4 + · · ·+ i2
k−1

∣∣∣
= |i+ (−1) + 1 + · · ·+ 1|
= |i+ (k − 3)|
=

√
12 + (k − 3)2

=
√
k2 − 6k + 10.

Corollary 3.13. For k ≥ 4, Wk is not an integral graph. That is, not all its
eigenvalues are integers.

Proof. For k ≥ 4,
√
k2 − 6k + 10 is never an integer.

Corollary 3.14. If k ≥ 4, the Knödel graph Wk and the hypercube Hk are not
isomorphic.

Proof. For simple graphs G and H with Sp(G) = {a1, a2, . . . , ap} and Sp(H) =
{b1, b2, . . . , bq}, Sp(G�H) = { ai + bj : 1 ≤ i ≤ p, 1 ≤ j ≤ q }, where � stands for
the Cartesian product [1]. As Sp(K2) = {−1, 1}, Sp(K2�K2) = {2, 0(2),−2}, and
by induction and the fact that � is associative, we find that Sp(Hk) = {−k,−(k −
2),−(k − 4), . . . , (k − 2), k} with respective multiplicities kC0,

kC1, . . . ,
kCk, and so

Sp(Hk) is integral for all k. However, by Corollary 3.13, Sp(Wk) is never integral.
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Note that, for k = 1, 2, 3, Wk
∼= Hk, since W1

∼= H1 = K2, W2
∼= H2 = K2�K2 =

C4, W3
∼= H3 = K2�K2�K2. Finally, recall that the number of spanning trees τ(G)

of a k-regular connected graph G of order n can be computed by the formula using
the spectrum [24].

τ(G) =
1

n

∏
λ∈Sp(G)\{k}

(k − λ)

Using this formula, Harutyunyan and Morosan [15] gave an upper bound

τ(Wk) ≤ 1

2k−1
k2k−1.

Using Corollary 3.10, we have

τ(Wk)

=
1

2k
[(k − (−k)]

[
(k2 − (k − 2)2

]
∏

1≤t≤2k−2−1

[
k2 −

∣∣∣(ωt)2
0

+ (ωt)2
1

+ · · ·+ (ωt)2
k−1

∣∣∣2
]2

=
1

2k
[2k][4(k − 1)]

∏
1≤t≤2k−2−1

[
k2 −

∣∣∣(ωt)2
0

+ (ωt)2
1

+ · · ·+ (ωt)2
k−1

∣∣∣2
]2

Hence we obtain a better upper bound than the one in Harutyunyan and Morosan
[15]. Moreover we also give a new lower bound for τ(Wk) by using Lemma 3.11.

Theorem 3.15. For k ≥ 2, k(k − 1)2
k−1−122

k−k−1 ≤ τ(Wk) ≤ 1
2k−3 (k − 1)k2k−3.
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137 (2004), 173–195
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rotations, Technical report, Laboratoire de Recherche en Informatique (Orsay)
(1997) TR–1155.
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