On the density of sumsets and product sets

Norbert Hegyvári*
ELTE TTK, Eötvös University, Institute of Mathematics, H-1117
Pázmány st. 1/c, Budapest
Hungary
hegyvari@elte.hu

François Hennecart
Univ. Jean-Monnet, Institut Camille Jordan CNRS 5208
23 rue Michelon, 42023 Saint-Étienne cedex 2
France
francois.hennecart@univ-st-etienne.fr
Péter Pál Pach ${ }^{\dagger}$
Budapest University of Technology and Economics
1117 Budapest, Magyar tudósok körútja 2
Hungary
ppp@cs.bme.hu

Abstract

In this paper some links between the density of a set of integers and the density of its sumset, product set and set of subset sums are presented.

1 Introduction and notation

In the field of additive combinatorics a popular topic is to compare the densities of different sets (of, say, positive integers). The well-known theorem of Kneser gives a description of the sets A having lower density α such that the density of $A+A:=$ $\{a+b: a, b \in A\}$ is less than 2α (see for instance [9]). The analogous question with the product set $A^{2}:=\{a b: a, b \in A\}$ is apparently more complicated.

[^0]For any set $A \subset \mathbb{N}$ of natural numbers, we define the lower asymptotic density $\underline{\mathbf{d}} A$ and the upper asymptotic density $\overline{\mathbf{d}} A$ in the natural way:

$$
\underline{\mathbf{d}} A=\liminf _{n \rightarrow \infty} \frac{|A \cap[1, n]|}{n}, \quad \overline{\mathbf{d}} A=\underset{n \rightarrow \infty}{\limsup } \frac{|A \cap[1, n]|}{n} .
$$

If the two values coincide, then we denote by $\mathbf{d} A$ the common value and call it the asymptotic density of A.

Throughout the paper \mathbb{N} denotes the set of positive integers and $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. We will use the notion $A(x)=\{n \in A: n \leq x\}$ for $A \subseteq \mathbb{N}$ and $x \in \mathbb{R}$. For functions $f, g: \mathbb{N} \rightarrow \mathbb{R}_{+}$we write $f=O(g)$ (or $f \ll g$), if there exists some $c>0$ such that $f(n) \leq c g(n)$ for large enough n.

In Section 2 we investigate the connection between the (upper-, lower-, and asymptotic) density of a set of integers and the density of its sumset. In Section 3 we give a partial answer to a question of Erdős by giving a necessary condition for the existence of the asymptotic density of the set of subset sums of a given set of integers. Finally, in Section 4 we consider analogous problems for product sets.

2 Density of sumsets

For subsets A, B of integers the sumset $A+B$ is defined to be the set of all sums $a+b$ with $a \in A, b \in B$. For $A \subseteq \mathbb{N}_{0}$ the following clearly hold:

$$
\begin{aligned}
& \underline{\mathbf{d}} A \leq \overline{\mathbf{d}} A, \\
& \underline{\mathbf{d}} A \leq \underline{\mathbf{d}}(A+A), \\
& \overline{\mathbf{d}} A \leq \overline{\mathbf{d}}(A+A) .
\end{aligned}
$$

We shall assume that our sets A are normalized in the sense that A contains 0 and $\operatorname{gcd}(A)=1$.

First observe that there exists a set of integers A not having an asymptotic density such that its sumset $A+A$ has a density: for instance $A=\{0\} \cup \bigcup_{n>0}\left[2^{2 n}, 2^{2 n+1}\right]$ has lower density $1 / 3$, upper density $2 / 3$ and its sumset $A+A$ has density 1 , since it contains every nonnegative integer. For this kind of sets A, we denote respectively

$$
\begin{aligned}
\underline{\mathbf{d}} A & =: \alpha_{A}, \\
\overline{\mathbf{d}} A & =: \beta_{A}, \\
\mathbf{d}(A+A) & =: \gamma_{A}, \\
\left(\alpha_{A}, \beta_{A}, \gamma_{A}\right) & =: p_{A},
\end{aligned}
$$

and we have

$$
\alpha_{A} \leq \beta_{A} \leq \gamma_{A} .
$$

The first question arising from this is to decide whether or not for any $p=(\alpha, \beta, \gamma)$ such that $0 \leq \alpha \leq \beta \leq \gamma \leq 1$ there exists a set A of integers such that $p=p_{A}$. This question has no positive answer in general, though the following weaker statement holds.

Proposition 2.1 Let $0 \leq \alpha \leq 1$. There exists a normalized set $A \subset \mathbb{N}$ such that $\mathbf{d} A=\alpha$ and $\mathbf{d}(A+A)=1$.

Proof: Let $0 \in B$ be a thin additive basis (of order 2), that is, a basis containing 0 and satisfying $|B(x)|=o(x)$ as $x \rightarrow \infty$. For $\alpha=0$ the choice $A=B$ is fine. For $\alpha>0$ let $A=B \cup\{\lfloor n / \alpha\rfloor, n \geq 1\}$. Then A is a normalized set satisfying $A+A=\mathbb{N}_{0}$ and $\mathbf{d} A=\alpha$.
(Note that $B=\{0,1,2, \ldots,\lfloor 1 / \alpha\rfloor\}$ is also an appropriate choice for B in the case $\alpha>0$.)

Remark 1 We shall mention that Faisant et al. [1] proved the following related result: for any $0 \leq \alpha \leq 1$ and any positive integer k, there exists a sequence A such that $\mathbf{d}(j A)=j \alpha / k, j=1, \ldots, k$, where $j A$ denotes the j-fold sumset $A+A+\cdots+A(j$ times). Well before that in [11, Theorem 2] the author established that for any positive real numbers $\alpha_{1}, \ldots, \alpha_{k}, \beta$ satisfying $\sum_{i=1}^{k} \alpha_{i} \leq \beta \leq 1$ there exist sets A_{1}, \ldots, A_{k} such that $\mathbf{d} A_{i}=\alpha_{i}(1 \leq i \leq k)$ and $\mathbf{d}\left(A_{1}+\cdots+A_{k}\right)=\beta$.

After a conjecture stated by Pichorides, the related question about the characterisation of the two-dimensional domains $\{(\underline{\mathbf{d}} B, \overline{\mathbf{d}} B): B \subset A\}$ has been solved (see [3] and [6]).

Note that if the density γ_{A} exists, then α_{A}, β_{A} and γ_{A} have to satisfy some strong conditions. For instance, by Kneser's theorem, we know that if for some set A we have $\gamma_{A}<2 \alpha_{A}$, then $A+A$ is, except possibly a finite number of elements, a union of arithmetic progressions in \mathbb{N} with the same difference. This implies that γ_{A} must be a rational number. From the same theorem of Kneser, we also deduce that if $\gamma_{A}<3 \alpha_{A} / 2$, then $A+A$ is an arithmetic progression from some point onward. It means that γ_{A} is a unit fraction, hence A contains any sufficiently large integer, if we assume that A is normalized.

Another strong connection between α_{A} and γ_{A} can be deduced from Freiman's theorem on the addition of sets (cf. [2]). Namely, every normalized set A satisfies

$$
\gamma_{A} \geq \frac{\alpha_{A}}{2}+\min \left(\alpha_{A}, \frac{1}{2}\right) .
$$

A related but more surprising statement is the following:
Proposition 2.2 There is a set of positive integers for which $\mathbf{d}(A)$ does exist and $\mathbf{d}(A+A)$ does not exist.

Proof: Let us take $U=\{0,2,3\}$ and $V=\{0,1,2\}$, then observe that

$$
U+(U \cup V)=\{0,1,2,3,4,5,6\} \quad V+(U \cup V)=\{0,1,2,3,4,5\} .
$$

Let $\left(N_{k}\right)_{k \geq 0}$ be a sufficiently quickly increasing sequence of integers with $N_{0}=0$, $N_{1}=1$, and define A by

$$
A=(U \cup V) \cup \bigcup_{k \geq 1}\left((U+7 \mathbb{Z}) \cap\left[7 N_{2 k}, 7 N_{2 k+1}\right] \cup(V+7 \mathbb{Z}) \cap\left[7 N_{2 k+1}, 7 N_{2 k+2}\right]\right) .
$$

Then A has density $3 / 7$. Moreover, for any $k \geq 0$

$$
\left[7 N_{2 k}, 7 N_{2 k+1}\right] \subset A+A,
$$

thus $\overline{\mathbf{d}}(A+A)=1$, if we assume $\lim _{k \rightarrow \infty} N_{k+1} / N_{k}=\infty$.
We also have

$$
(A+A) \cap\left[14 N_{2 k-1}, 7 N_{2 k}\right]=(\{0,1,2,3,4,5\}+7 \mathbb{N}) \cap\left[14 N_{2 k-1}, 7 N_{2 k}\right],
$$

hence $\underline{\mathbf{d}}(A+A)=6 / 7$ using again the assumption that $\lim _{k \rightarrow \infty} N_{k+1} / N_{k}=\infty$.
For any set A having a density, let

$$
\begin{aligned}
\mathrm{d} A & =: \alpha_{A}, \\
\underline{\mathbf{d}}(A+A) & =: \underline{\gamma}_{A}, \\
\overline{\mathbf{d}}(A+A) & =: \bar{\gamma}_{A}, \\
\left(\alpha_{A}, \underline{\gamma}_{A}, \bar{\gamma}_{A}\right) & =: q_{A} ;
\end{aligned}
$$

then we have

$$
\alpha_{A} \leq \underline{\gamma}_{A} \leq \bar{\gamma}_{A} .
$$

A question similar to the one asked for p_{A} can be stated as follows: given $q=(\alpha, \underline{\gamma}, \bar{\gamma})$ such that $0 \leq \alpha \leq \underline{\gamma} \leq \bar{\gamma} \leq 1$, does there exist a set A such that $q=q_{A}$?

We further mention an interesting question of Ruzsa: does there exist $0<\nu<1$ and a constant $c=c(\nu)>0$ such that for any set A having a density,

$$
\underline{\mathbf{d}}(A+A) \geq c \cdot(\overline{\mathbf{d}}(A+A))^{1-\nu}(\mathbf{d} A)^{\nu} ?
$$

Ruzsa proved (unpublished) that in case of an affirmative answer, we necessarily have $\nu \geq 1 / 2$.

3 Density of subset sums

Let $A=\left\{a_{1}<a_{2}<\cdots\right\}$ be a sequence of positive integers. Denote the set of all subset sums of A by

$$
P(A):=\left\{\sum_{i=1}^{k} \varepsilon_{i} a_{i}: k \geq 0, \varepsilon_{i} \in\{0,1\}(1 \leq i \leq k)\right\} .
$$

Zannier conjectured and Ruzsa proved that the condition $a_{n} \leq 2 a_{n-1}$ implies that the density $\mathbf{d}(P(A))$ exists (see [8]). Ruzsa also asked the following questions:
i) Is it true that for every pair of real numbers $0 \leq \alpha \leq \beta \leq 1$, there exists a sequence of integers for which $\underline{\mathbf{d}}(P(A))=\alpha ; \overline{\mathbf{d}}(P(A))=\beta$? This question was answered positively in [5].
ii) Is it true that the condition $a_{n} \leq a_{1}+a_{2}+\cdots+a_{n-1}+c$ also implies that $\mathbf{d}(P(A))$ exists?

We shall prove the following statement.
Proposition 3.1 Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of positive integers. Assume that for some function θ satisfying $\theta(k) \ll \frac{k}{(\log k)^{2}}$ we have

$$
\left|a_{n}-s_{n-1}\right|=\theta\left(s_{n-1}\right) \text { for every } n,
$$

where $s_{n-1}:=a_{1}+a_{2}+\cdots+a_{n-1}$.
Then $\mathbf{d}(P(A))$ exists.
Proof: We first prove that there exists a real number δ such that

$$
\left|P(A)\left(s_{n}\right)\right|=(\delta+o(1)) s_{n} \quad \text { as } n \rightarrow \infty
$$

Let $n \geq 2$ be large enough. Then

$$
P(A) \cap\left[1, s_{n}\right]=\left(P(A) \cap\left[1, s_{n-1}\right]\right) \cup\left(P(A) \cap\left(s_{n-1}, s_{n}-\theta\left(s_{n-1}\right)\right)\right) .
$$

Since $a_{n} \geq s_{n-1}-\theta\left(s_{n-1}\right)$, we have $P(A) \cap\left(s_{n-1}, s_{n}\right] \supseteq a_{n}+P(A) \cap\left(\theta\left(s_{n-1}\right), s_{n-1}\right]$, and thus

$$
\begin{equation*}
\left|P(A) \cap\left[1, s_{n}\right]\right| \geq 2\left|P(A) \cap\left[1, s_{n-1}\right]\right|-2 \theta\left(s_{n-1}\right)-1 \tag{1}
\end{equation*}
$$

On the other hand,

$$
P(A) \cap\left[1, s_{n}\right] \subseteq\left(P(A) \cap\left[1, s_{n-1}\right]\right) \cup\left(a_{n}+P(A) \cap\left[1, s_{n-1}\right]\right) \cup\left[s_{n}-\theta\left(s_{n}\right), s_{n}\right],
$$

since $a_{n+1} \geq s_{n}-\theta\left(s_{n}\right)$. Therefore,

$$
\begin{equation*}
\left|P(A) \cap\left[1, s_{n}\right]\right| \leq 2\left|P(A) \cap\left[1, s_{n-1}\right]\right|+\theta\left(s_{n}\right)+1 \tag{2}
\end{equation*}
$$

Observe that $s_{n}=a_{n}+s_{n-1} \leq 2 s_{n-1}+\theta\left(s_{n-1}\right)$; hence letting

$$
\delta_{n}=\frac{\left|P(A) \cap\left[1, s_{n}\right]\right|}{s_{n}},
$$

we obtain from (1) and (2) that

$$
\begin{equation*}
\delta_{n}-\delta_{n-1}=O\left(\frac{\theta\left(s_{n}\right)}{s_{n}}\right) \tag{3}
\end{equation*}
$$

Now, we show that $s_{n} \gg 2^{n}$. Since

$$
\begin{equation*}
s_{n}=s_{n-1}+a_{n} \geq 2 s_{n-1}-\theta\left(s_{n-1}\right)=s_{n-1}\left(2-\frac{\theta\left(s_{n-1}\right)}{s_{n-1}}\right) \tag{4}
\end{equation*}
$$

the condition $\theta(k) \ll \frac{k}{(\log k)^{2}}$ implies that from (4) we obtain that $s_{n} \gg 1.5^{n}$. Therefore, in fact, for large enough n we have $s_{n} \geq s_{n-1}\left(2-\frac{c}{n^{2}}\right)$ with some $c>0$. Now, let $10 c<K$ be a fixed integer. For $K<n$ we have

$$
s_{n} \geq s_{K} \prod_{i=K+1}^{n}\left(2-\frac{c}{i^{2}}\right) \geq s_{K}\left[2^{n-k}-2^{n-k-1} \sum_{i=K+1}^{n} \frac{c}{i^{2}}\right] \gg 2^{n}
$$

since $\sum_{i=K+1}^{n} \frac{c}{i^{2}}<1 / 10$. Hence, $s_{n} \gg 2^{n}$ indeed holds.
Therefore, using the assumption on θ we obtain that $\frac{\theta\left(s_{n}\right)}{s_{n}} \ll \frac{1}{n^{2}}$. So (3) yields that

$$
\delta_{n}-\delta_{n-1}=O\left(n^{-2}\right)
$$

Therefore, the sequence δ_{n} has a limit which we denote by δ. Furthermore, observe that

$$
\begin{equation*}
\delta_{n}=\delta+O(1 / n) \tag{5}
\end{equation*}
$$

The next step is to consider an arbitrary sufficiently large positive integer x and decompose it as

$$
x=a_{n_{1}+1}+a_{n_{2}+1}+\cdots+a_{n_{j}+1}+z,
$$

where $n_{1}>n_{2}>\cdots>n_{j}>k$ and $0 \leq z$ are defined in the following way. (Here k is a fixed, sufficiently large positive integer.) The index n_{1} is chosen in such a way that $a_{n_{1}+1} \leq x<a_{n_{1}+2}$. If $x-a_{n_{1}+1} \geq a_{n_{1}}$, then $n_{2}=n_{1}-1$, otherwise n_{2} is the largest index for which $x-a_{n_{1}+1} \geq a_{n_{2}+1}$. The indices n_{3}, n_{4}, \ldots are defined similarly. We stop at the point when the next index would be at most k and set $z:=x-a_{n_{1}+1}-a_{n_{2}+1}-\cdots-a_{n_{j}+1}$. As $z \leq \theta\left(s_{n_{1}+1}\right)+s_{k}$, we have

$$
\begin{equation*}
z=o(x) . \tag{6}
\end{equation*}
$$

Furthermore, let

$$
b_{i}=a_{n_{1}+1}+a_{n_{2}+1}+\cdots+a_{n_{i}+1}, \quad i=0,1, \ldots, j .
$$

(The empty sum is $b_{0}:=0$, as usual.)
Let $X_{0}:=\left(0, s_{n_{1}}-\theta\left(s_{n_{1}}\right)\right)$ and for $1 \leq i \leq j-1$ let $X_{i}:=\left(b_{i}+\theta\left(s_{n_{i}}\right), b_{i}+s_{n_{i+1}}-\right.$ $\theta\left(s_{n_{i+1}}\right)$) and consider

$$
\begin{aligned}
& X:=X_{0} \cup X_{1} \cup \cdots \cup X_{j-1}= \\
& \left(0, s_{n_{1}}-\theta\left(s_{n_{1}}\right)\right) \cup\left(b_{1}+\theta\left(s_{n_{1}}\right), b_{1}+s_{n_{2}}-\theta\left(s_{n_{2}}\right)\right) \cup \cdots \cup\left(b_{j-1}+\theta\left(s_{n_{j-1}}\right), b_{j-1}+s_{n_{j}}-\theta\left(s_{n_{j}}\right)\right) .
\end{aligned}
$$

Note that in this union each element appears at most once, since according to the definition of θ the sets $X_{0}, X_{1}, \ldots, X_{j-1}$ are pairwise disjoint as

$$
b_{i}+s_{n_{i+1}}-\theta\left(s_{n_{i+1}}\right) \leq b_{i+1}=b_{i}+a_{n_{i+1}+1}
$$

holds for every $0 \leq i \leq j-2$.
The set of those elements of $[1, x]$ that are not covered by X is:

$$
\begin{aligned}
{[1, x] \backslash X=[} & \left.s_{n_{1}}-\theta\left(s_{n_{1}}\right), b_{1}+\theta\left(s_{n_{1}}\right)\right] \cup\left[b_{1}+s_{n_{2}}-\theta\left(s_{n_{2}}\right), b_{2}+\theta\left(s_{n_{2}}\right)\right] \cup \ldots \\
& \cup\left[b_{j-2}+s_{n_{j-1}}-\theta\left(s_{n_{j-1}}\right), b_{j-1}+\theta\left(s_{n_{j-1}}\right)\right] \cup\left[b_{j-1}+s_{n_{j}}-\theta\left(s_{n_{j}}\right), x\right] .
\end{aligned}
$$

Therefore,

$$
|[1, x] \backslash X| \leq 3 \sum_{i=1}^{j} \theta\left(s_{n_{i}}\right)+z .
$$

Using $\sum_{i=1}^{j} \theta\left(s_{n_{i}}\right) \ll \sum_{i=1}^{j} \frac{s_{n_{i}}}{n_{i}^{2}} \ll \frac{x}{k^{2}}$ and (6), we obtain that $|[1, x] \backslash X| \leq\left(\varepsilon_{k}+o(1)\right) x$, where $\varepsilon_{k} \rightarrow 0$ (as $k \rightarrow \infty$). (Note that $\varepsilon_{k} \ll 1 / k^{2}$.)
That is, the set X covers $[1, x]$ with the exception of a "small" portion of size $O\left(x / k^{2}\right)$. Therefore, by letting $k \rightarrow \infty$ the density of the uncovered part tends to 0 .
Let us consider $P(A) \cap X_{i}$. If a sum is contained in $P(A) \cap X_{i}$, then the sum of the elements with indices larger than n_{i+1} is b_{i}. Otherwise, the sum is either at most $b_{i}+\theta\left(s_{n_{i}}\right)$ or at least $b_{i}+s_{n_{i+1}}-\theta\left(s_{n_{i+1}}\right)$.
Therefore $P(A) \cap X_{i}=\left(b_{i}+P\left(\left\{a_{1}, a_{2}, \ldots, a_{n_{i+1}}\right\}\right)\right) \cap X_{i}$.
Hence

$$
\delta_{n_{i+1}} s_{n_{i+1}}-2 \theta\left(s_{n_{i+1}}\right)-1 \leq\left|P(A) \cap X_{i}\right| \leq \delta_{n_{i+1}} s_{n_{i+1}} .
$$

Therefore

$$
\begin{align*}
& |P(A) \cap[x]| \geq \sum_{i=0}^{j-1}\left(\delta_{n_{i+1}} s_{n_{i+1}}-2 \theta\left(s_{n_{i+1}}\right)-1\right) \\
& \geq \delta x-\delta z+\delta \sum_{i=0}^{j-1}\left(s_{n_{i+1}}-a_{n_{i+1}+1}\right)+\sum_{i=0}^{j-1}\left(\delta_{n_{i+1}}-\delta\right) s_{n_{i+1}}-2 \sum_{i=0}^{j-1}\left(\theta\left(s_{n_{i+1}}\right)+1\right) \tag{7}
\end{align*}
$$

and

$$
\begin{aligned}
|P(A) \cap[x]| & \leq \sum_{i=0}^{j-1} \delta_{n_{i+1}} s_{n_{i+1}} \\
& \leq \delta x-\delta z+\delta \sum_{i=0}^{j-1}\left(s_{n_{i+1}}-a_{n_{i+1}+1}\right)+\sum_{i=0}^{j-1}\left(\delta_{n_{i+1}}-\delta\right) s_{n_{i+1}} .
\end{aligned}
$$

Now, observe that

- $|z|=o(x)$ by (6),
- $\sum_{i=0}^{j-1}\left|s_{n_{i+1}}-a_{n_{i+1}+1}\right|=o(x)$, using $\left|s_{n_{i+1}}-a_{n_{i+1}+1}\right|=\theta\left(s_{n_{i+1}}\right)$ and $\sum_{i=0}^{j-1} a_{n_{i+1}+1} \leq x$,
- $\sum_{i=0}^{j-1}\left(\delta_{n_{i+1}}-\delta\right) s_{n_{i+1}} \ll x / k$ by using (5). Letting $k \rightarrow \infty$ this term is also of size $o(x)$.

Hence we obtain from (7) and (8) that $|P(A) \cap[x]|=\delta x+o(x)$.

4 Density of product sets

For any subsets $A, B \subseteq \mathbb{N}_{0}$, we denote by $A \cdot B$ the product set

$$
A B=A \cdot B=\{a b: a \in A, b \in B\}
$$

For brevity, for $A=B$ we also write $A \cdot A=A^{2}$.
In this section we focus on the case $G=(\mathbb{N}, \cdot)$, the semigroup (for multiplication) of all positive integers. The restricted case $G=\mathbb{N} \backslash\{1\}$ is even more interesting, since $1 \in A$ implies $A \subset A^{2}$.

The sets of integers satisfying the small doubling hypothesis $\mathbf{d}(A+A)=\mathbf{d} A$ are well described through Kneser's theorem. The similar question for the product set does not plainly lead to a strong description. We can restrict our attention to sets A such that $\operatorname{gcd}(A)=1$, since by setting $B:=\frac{1}{\operatorname{gcd} A} A$ we have $\mathbf{d} A=\frac{1}{\operatorname{gcd}(A)} \mathbf{d} B$ and $\mathbf{d} A^{2}=\frac{1}{(\operatorname{gcd}(A))^{2}} \mathbf{d}\left(B^{2}\right)$.

Examples 1 i) Let $A_{\text {nsf }}$ be the set of all non-squarefree integers. Letting $A=\{1\} \cup$ $A_{\text {nsf }}$ we have $A^{2}=A$ and

$$
\mathbf{d} A=1-\zeta(2)^{-1}
$$

ii) However, while $\operatorname{gcd}\left(A_{\text {nsf }}\right)=1$, we have

$$
\mathbf{d} A_{\mathrm{nsf}}^{2}<\mathbf{d} A_{\mathrm{nsf}}=1-\zeta(2)^{-1}
$$

iii) Furthermore, the set $A_{\text {sf }}$ of all squarefree integers satisfies

$$
\mathbf{d} A_{\mathrm{sf}}=\zeta(2)^{-1} \text { and } \mathbf{d} A_{\mathrm{sf}}^{2}=\zeta(3)^{-1}
$$

since A_{sf}^{2} consists of all cubefree integers.
iv) Given a positive integer k, the set $A_{k}=\{n \in \mathbb{N}: \operatorname{gcd}(n, k)=1\}$ satisfies

$$
A_{k}^{2}=A_{k} \quad \text { and } \quad \mathbf{d} A_{k}=\frac{\phi(k)}{k}
$$

where ϕ is Euler's totient function.
We have the following result:
Proposition 4.1 For any positive $\alpha<1$ there exists a set $A \subset \mathbb{N}$ such that $\mathbf{d} A>\alpha$ and $\mathbf{d} A^{2}<\alpha$.

Proof: Assume first that $\alpha<1 / 2$.
For $k \geq 1$ let $A_{k}=k \mathbb{N}=\{k n, n \geq 1\}$, then $A_{k}^{2}=k^{2} \mathbb{N}$. Therefore, $\mathbf{d} A_{k}=1 / k$ and $\mathbf{d}\left(A_{k}^{2}\right)=1 / k^{2}$. If $1 /(k+1) \leq \alpha<1 / k$, then A_{k} satisfies the requested condition. Since $\bigcup_{k \geq 2}\left[\frac{1}{k+1}, \frac{1}{k}\right)=(0,1 / 2)$, an appropriate k can be chosen for every $\alpha \in(0,1 / 2)$.
Assume now that $1>\alpha \geq 1 / 2$.
Let $p_{1}<p_{2}<\cdots$ be the increasing sequence of prime numbers and

$$
B_{r}:=\bigcup_{i=1}^{r} p_{i} \mathbb{N} .
$$

The complement of the set B_{r} contains exactly those positive integers that are not divisible by any of $p_{1}, p_{2}, \ldots, p_{r}$, thus we have

$$
\mathbf{d}\left(B_{r}\right)=1-\prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)=: \gamma_{r} .
$$

Similarly, the complement of the set B_{r}^{2} contains exactly those positive integers that are not divisible by any of p_{1}, \ldots, p_{r} or can be obtained by multiplying such a number by one of p_{1}, \ldots, p_{r}. Hence, we obtain that

$$
\mathbf{d}\left(B_{r}^{2}\right)=1-\left(1+\sum_{i=1}^{r} \frac{1}{p_{i}}\right) \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)=: \beta_{r} .
$$

Note that
$\beta_{r+1}=1-\left(1+\sum_{i=1}^{r+1} \frac{1}{p_{i}}\right)\left(1-\frac{1}{p_{r+1}}\right) \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)<1-\frac{3}{2} \cdot \frac{2}{3} \cdot \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)=\gamma_{r}$.
As $\left(\beta_{1}, \gamma_{1}\right)=(1 / 4,1 / 2)$, moreover $\left(\beta_{r}\right)_{r=1}^{\infty}$ and $\left(\gamma_{r}\right)_{r=1}^{\infty}$ are increasing sequences satisfying (8) and $\lim \gamma_{r}=1$, we obtain that $[1 / 2,1)$ is covered by $\bigcup_{r=1}^{\infty}\left(\beta_{r}, \gamma_{r}\right)$. That is, for every $\alpha \in[1 / 2,1)$ we have $\alpha \in\left(\beta_{r}, \gamma_{r}\right)$ for some r, and then $A=B_{r}$ is an appropriate choice.

We pose two questions about the densities of A and A^{2}.
Question 1 If $1 \in A$ and $\mathbf{d} A=1$, then $\mathbf{d}\left(A^{2}\right)=1$, too. Given two integers k, ℓ, the set

$$
\{n \in \mathbb{N}: \operatorname{gcd}(n, k)=1\} \cup k \ell \mathbb{N}
$$

is multiplicatively stable. What are the sets A of positive integers such that $A^{2}=A$ or less restrictively

$$
1 \in A \text { and } 1>\mathbf{d} A^{2}=\mathbf{d} A>0 ?
$$

Question 2 It is clear that $\mathbf{d} A>0$ implies $\mathbf{d} A^{2}>0$, since $A^{2} \supset(\min A) A$.
For any $\alpha \in(0,1)$ we denote

$$
f(\alpha):=\inf _{A \subset \mathbb{N} ; \mathbf{d} A=\alpha} \mathbf{d} A^{2} .
$$

Is it true that $f(\alpha)=0$ for any α or at least for $\alpha<\alpha_{0}$?
The next result shows that the product set of a set having density 1 and satisfying a technical condition must also have density 1 .

Proposition 4.2 Let A, with $1 \notin A$, be a set of positive integers with asymptotic density $\mathbf{d} A=1$. Furthermore, assume that A contains an infinite subset of mutually coprime integers $a_{1}<a_{2}<\cdots$ such that

$$
\sum_{i \geq 1} \frac{1}{a_{i}}=\infty
$$

Then the product set A^{2} also has density $\mathbf{d}\left(A^{2}\right)=1$.
Proof: Let $\varepsilon>0$ be arbitrary and choose a large enough k such that

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{a}_{i}>-\log \varepsilon \tag{9}
\end{equation*}
$$

Let x be a large integer. For any $i=1, \ldots, k$, the set $A^{2}(x)$ contains all the products $a_{i} a$ with $a \leq x / a_{i}$. We shall use a sieve argument. Let A^{\prime} be a finite subset of A and $X=[1, x] \cap \mathbb{N}$ for some $x>\max \left(A^{\prime}\right)$. For any $a \in A^{\prime}$, let

$$
X_{a}=\left\{n \leq x: a \nmid n \text { or } \frac{n}{a} \notin A\right\} .
$$

Observe that

$$
X \backslash X_{a}=(a A)(x)
$$

Then

$$
\left(A^{\prime} \cdot A\right)(x)=\bigcup_{a \in A^{\prime}}\left(X \backslash X_{a}\right)
$$

By the inclusion-exclusion principle we obtain

$$
\left|\left(A^{\prime} \cdot A\right)(x)\right|=\sum_{k=1}^{\left|A^{\prime}\right|}(-1)^{j-1} \sum_{\substack{B \subset A^{\prime} \\|B|=j}}\left|\bigcap_{b \in B}\left(X \backslash X_{b}\right)\right|
$$

whence

$$
\begin{equation*}
\left|\bigcap_{a \in A^{\prime}} X_{a}\right|=\sum_{j=0}^{\left|A^{\prime}\right|}(-1)^{j} \sum_{\substack{B \subseteq A^{\prime} \\|B|=j}}\left|\bigcap_{b \in B}\left(X \backslash X_{b}\right)\right| \tag{10}
\end{equation*}
$$

where the empty intersection $\bigcap_{b \in \emptyset}\left(X \backslash X_{b}\right)$ denotes the full set X.
For any finite set of integers B we denote by $\operatorname{lcm}(B)$ the least common multiple of the elements of B. Now, we consider

$$
\bigcap_{b \in B}\left(X \backslash X_{b}\right)=\left\{n \leq x: \operatorname{lcm}(B) \mid n \text { and } \frac{n}{b} \in A(\forall b \in B)\right\} .
$$

By the assumption $\mathbf{d} A=1$ we immediately get

$$
\left|\bigcap_{b \in B}\left(X \backslash X_{b}\right)\right|=\frac{x}{\operatorname{lcm}(B)}(1+o(1))
$$

Plugging this into (10):

$$
\left|\bigcap_{a \in A^{\prime}(x)} X_{a}\right|=x \sum_{k=0}^{\left|A^{\prime}\right|}(-1)^{j} \sum_{\substack{B \subseteq A^{\prime} \\|B|=j}} \frac{1}{\operatorname{cm}(B)}+o(x)
$$

Since the elements of $A^{\prime}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ are mutually coprime,
$x-\left|A^{\prime} \cdot A(x)\right|=x \sum_{j=0}^{k}(-1)^{j} \sum_{1 \leq a_{i_{1}}<\cdots<a_{j} \leq k} \frac{1}{a_{i_{1}} a_{i_{2}} \ldots a_{i_{j}}}+o(x)=x \prod_{i=1}^{k}\left(1-\frac{1}{a_{i}}\right)+o(x)$.
(Note that for $j=0$ the empty product is defined to be 1 , as usual.) Since $1-u \leq$ $\exp (-u)$ we get

$$
x-\left|A^{\prime} \cdot A(x)\right| \leq x \exp \left(-\sum_{i=1}^{k} \frac{1}{a_{i}}\right)+o(x)<\varepsilon x+o(x)
$$

by our assumption (9). Thus finally

$$
\left|A^{2}(x)\right| \geq\left|A^{\prime} \cdot A(x)\right|>x(1-\varepsilon-o(1))
$$

This ends the proof.
Remark 2 Specially, the preceding result applies when A contains a sequence of prime numbers $p_{1}<p_{2}<\cdots$ such that $\sum_{i \geq 1} 1 / p_{i}=\infty$. For this it is enough to assume that

$$
\liminf _{i \rightarrow \infty} \frac{i \log i}{p_{i}}>0
$$

However, we do not know how to avoid the assumption on the mutually coprime integers having infinite reciprocal sum. We thus pose the following question:

Question 3 Is it true that $\mathbf{d} A=1$ implies $\mathbf{d}\left(A^{2}\right)=1$?

An example for a set A such that $\mathrm{d}(A)=0$ and $\mathrm{d}\left(A^{2}\right)=1$.
According to the fact that the multiplicative properties of the elements play an important role, one can build a set whose elements are characterized by their number of prime factors. Let

$$
A=\{n \in \mathbb{N}: \Omega(n) \leq 0.75 \log \log n+1\},
$$

where $\Omega(n)$ denotes the number of prime factors (with multiplicity) of n. An appropriate generalisation of the Hardy-Ramanujan theorem (cf. [4] and [10]) shows that the normal order of $\Omega(n)$ is $\log \log n$ and the Erdős-Kac theorem asserts that

$$
\mathbf{d}\left\{n \in \mathbb{N}: \alpha<\frac{\Omega(n)-\log \log n}{\sqrt{\log \log n}}<\beta\right\}=\frac{1}{\sqrt{2 \pi}} \int_{\alpha}^{\beta} e^{-t^{2} / 2} d t
$$

which implies $\mathbf{d} A=0$. Now we prove that $\mathbf{d} A^{2}=1$. The principal feature in the definition of A is that A^{2} must contain almost all integers n such that $\omega(n) \leq$ $1.2 \log \log n$.

For $n \in \mathbb{N}$ let

$$
P_{+}(n):=\max \{p: p \text { is a prime divisor of } n\}
$$

Let us consider first the density of the integers n such that

$$
\begin{equation*}
P_{+}(n)>n \exp \left(-(\log n)^{4 / 5}\right) \tag{11}
\end{equation*}
$$

Let x be a large number and write

$$
\begin{aligned}
&\left|\left\{n \leq x: P_{+}(n) \leq n \exp \left(-(\log n)^{4 / 5}\right)\right\}\right| \\
&=\left|\left\{n \leq x: P_{+}(n) \leq x \exp \left(-(\log x)^{4 / 5}\right)\right\}\right|+o(x)
\end{aligned}
$$

By a theorem of Hildebrand (cf. [7]) on the estimation of $\Psi(x, z)$, the number of z-friable integers up to x, we conclude that the above cardinality is $x+o(x)$. Hence, we may avoid the integers n satisfying (11). By the same estimation we may also avoid those integers n for which $P_{+}(n)<\exp \left((\log n)^{4 / 5}\right)$.

Let n be an integer such that $\Omega(n) \leq 1.2 \log \log n$ and

$$
\exp \left((\log n)^{4 / 5}\right) \leq P_{+}(n) \leq n \exp \left(-(\log n)^{4 / 5}\right)
$$

Our goal is to find a decomposition $n=n_{1} n_{2}$ with $\Omega\left(n_{i}\right) \leq 0.75 \log \log n_{i}+1, i=1,2$.
Let

$$
n=p_{1} p_{2} \ldots p_{t-1} P_{+}(n)
$$

where $t=\Omega(n)$. We also assume that $p_{1} \leq p_{2} \leq \cdots \leq p_{t-1} \leq P_{+}(n)$. Let $m=\frac{n}{P_{+}(n)}$. Then

$$
\exp \left((\log n)^{4 / 5}\right) \leq m \leq n \exp \left(-(\log n)^{4 / 5}\right)
$$

Let

$$
n_{1}=p_{1} p_{2} \ldots p_{u-1} P_{+}(n) \text { and } n_{2}=p_{u} \ldots p_{t-1}
$$

where $u=\lfloor(t-1) / 2\rfloor$. Then $n_{2} \geq \sqrt{m}$, which yields

$$
\log \log n_{2} \geq \log \log m-\log 2 \geq 0.8 \log \log n-\log 2
$$

On the other hand,

$$
\Omega\left(n_{2}\right)=t-u \leq \frac{t}{2}+1 \leq 0.6 \log \log n+1 \leq 0.75 \log \log n_{2}+\frac{3 \log 2}{4}
$$

Now $n_{1} \geq P_{+}(n) \geq \exp \left((\log n)^{4 / 5}\right)$, hence

$$
\log \log n_{1} \geq 0.8 \log \log n
$$

and

$$
\Omega\left(n_{1}\right) \leq \frac{t-1}{2} \leq 0.6 \log \log n \leq 0.75 \log \log n_{1}
$$

Therefore, the following statement is obtained:
Proposition 4.3 The set

$$
A=\{n \in \mathbb{N}: \Omega(n) \leq 0.75 \log \log n+1\}
$$

has density 0 and its product set A^{2} has density 1.
By a different approach we may extend the above result as follows.
Theorem 4.4 For every α and β with $0 \leq \alpha \leq \beta \leq 1$, there exists a set $A \subseteq \mathbb{N}$ such that $\mathbf{d} A=0, \underline{\mathbf{d}}(A \cdot A)=\alpha$ and $\overline{\mathbf{d}}(A \cdot A)=\beta$.

Proof: We start with defining a set Q such that $\mathbf{d}(Q)=0$ and $\mathbf{d}(Q \cdot Q)=\beta$. Let us choose a subset P_{0} of the primes such that $\prod_{p \in P_{0}}(1-1 / p)=\beta$. Such a subset can be chosen, since $\sum 1 / p=\infty$. Now, let p_{k} denote the k-th prime and let

$$
\begin{aligned}
& P_{1}=\left\{p_{i}: i \text { is odd }\right\} \backslash P_{0}, \\
& P_{2}=\left\{p_{i}: i \text { is even }\right\} \backslash P_{0} .
\end{aligned}
$$

Furthermore, let

$$
Q_{1}=\left\{n: \text { all prime divisors of } n \text { belong to } P_{1}\right\}
$$

and

$$
Q_{2}=\left\{n: \text { all prime divisors of } n \text { belong to } P_{2}\right\} .
$$

Let $Q=Q_{1} \cup Q_{2}$. Clearly, $Q \cdot Q=Q_{1} \cdot Q_{2}$ contains exactly those numbers that do not have any prime factor in P_{0}, so $\mathbf{d}(Q \cdot Q)=\beta$. For $i \in\{1,2\}$ and $x \in \mathbb{R}$ the probability that an integer does not have any prime factor being less than x from P_{i}
is $\prod_{p<x, p \in P_{i}}(1-1 / p) \leq \frac{1}{\beta} \prod_{p<x, p \in P_{i} \cup P_{0}}(1-1 / p) \leq \frac{1}{\beta} \exp \left\{-\sum_{\substack{j: p_{j}<x, j \equiv i(\bmod 2)}} \frac{1}{p_{j}}\right\}=O\left(\frac{1}{\beta \sqrt{\log x}}\right)$.
Therefore, $\mathbf{d}\left(Q_{1}\right)=\mathbf{d}\left(Q_{2}\right)=0$, and consequently $\mathbf{d}(Q)=0$ also holds. If $\alpha=\beta$, then $A=Q$ satisfies the conditions. From now on let us assume that $\alpha<\beta$.
Our aim is to define a subset $A \subseteq Q$ in such a way that $\underline{\mathbf{d}}(A \cdot A)=\alpha$ and $\overline{\mathbf{d}}(A \cdot A)=\beta$. As $A \subseteq Q$ we will have $\mathbf{d}(A)=0$ and $\overline{\mathbf{d}}(A \cdot A) \leq \beta$. The set A is defined recursively. We will define an increasing sequence of integers $\left(n_{j}\right)_{j=1}^{\infty}$ and sets $A_{j}(j \in \mathbb{N})$ satisfying the following conditions (and further conditions to be specified later):
(i) $A_{j} \subseteq A_{j-1}$,
(ii) $A_{j} \cap\left[1, n_{j-1}\right]=A_{j-1} \cap\left[1, n_{j-1}\right]$,
(iii) $A_{j} \cap\left[n_{j}+1, \infty\right]=Q \cap\left[n_{j}+1, \infty\right]$.

That is, A_{j} is obtained from A_{j-1} by dropping out some elements of A_{j-1} in the range $\left[n_{j-1}+1, n_{j}\right]$. Finally, we set $A=\bigcap_{j=1}^{\infty} A_{j}$.
Let $n_{1}=1$ and $A_{1}=Q$. We define the sets A_{j} in such a way that the following condition holds for every j with some n_{0} depending only on Q :

$$
\begin{equation*}
\left|\left(A_{j} \cdot A_{j}\right)(n)\right| \geq \alpha n \text { for every } n \geq n_{0} \tag{*}
\end{equation*}
$$

Since $d(Q \cdot Q)=\beta>\alpha$, a threshold n_{0} can be chosen in such a way that $(*)$ holds for $A_{1}=Q$ with this choice of n_{0}. Now, assume that n_{j} and A_{j} are already defined for some j. We continue in the following way depending on the parity of j :
Case I: j is odd.
Let $n_{j}<s$ be the smallest integer such that

$$
\left|\left(A_{j} \backslash\left[n_{j}+1, s\right]\right) \cdot\left(A_{j} \backslash\left[n_{j}+1, s\right]\right)(n)\right|<\alpha n
$$

for some $n \geq n_{0}$. We claim that such an s exists, indeed it is at most $\left\lfloor n_{j}^{2} / \alpha\right\rfloor+1$. For $s^{\prime}=\left\lfloor n_{j}^{2} / \alpha\right\rfloor+1$ we have

$$
\left|\left(A_{j} \backslash\left[n_{j}+1, s^{\prime}\right]\right) \cdot\left(A_{j} \backslash\left[n_{j}+1, s^{\prime}\right]\right)\left(s^{\prime}\right)\right| \leq n_{j}^{2}<\alpha s^{\prime}
$$

Hence, s is well-defined (and $s \leq s^{\prime}$). Let $n_{j+1}:=s-1$ and $A_{j+1}:=A_{j} \backslash\left[n_{j}+\right.$ $1, s-1]$. (Specially, it can happen that $n_{j+1}=n_{j}$ and $A_{j+1}=A_{j}$.) Note that A_{j+1} satisfies ($*$).

Case II: j is even.
Now, let $n_{j}<s$ be the smallest index for which $\left|\left(A_{j} \cdot A_{j}\right)(s)\right|>(\beta-1 / j) s$.

We have $\mathbf{d}(Q \cdot Q)=\beta$ and A_{j} is obtained from Q by deleting finitely many elements of it: $A_{j}=Q \backslash R$, where $R \subseteq\left[n_{j}\right]$. As $\mathbf{d}(Q)=0$, we have that

$$
|((Q \cdot Q) \backslash(Q \backslash R) \cdot(Q \backslash R))(n)| \leq|R|^{2}+\sum_{r \in R}|Q(n / r)|=o(n)
$$

therefore, $\mathbf{d}\left(A_{j} \cdot A_{j}\right)=\beta$. So for some $n>n_{j}$ we have that $\left(A_{j} \cdot A_{j}\right)(n)>$ $(\beta-1 / j) n$, that is, s is well-defined. Let $n_{j+1}:=s$ and $A_{j+1}=A_{j}$. Clearly, A_{j+1} satisfies ($*$).

This way an increasing sequence $\left(n_{j}\right)_{j=1}^{\infty}$ and sets $A_{j}(j \in \mathbb{N})$ are defined; these satisfy conditions (i)-(iii). Finally, let us set $A:=\bigcap_{j=1}^{\infty} A_{j}$. Note that $A\left(n_{j}\right)=A_{j}\left(n_{j}\right)$.
We have already seen that $A \subseteq Q$ implies that $\mathbf{d}(A)=0$ and $\overline{\mathbf{d}}(A \cdot A) \leq \beta$. At first we show that $\underline{\mathbf{d}}(A \cdot A) \geq \alpha$. Let $n \geq n_{0}$ be arbitrary. If j is large enough, then $n_{j}>n$. As A_{j} satisfies $(*)$ and $(A \cdot A)(n)=\left(A_{j} \cdot A_{j}\right)(n)$ we obtain that

$$
|(A \cdot A)(n)|=\left|\left(A_{j} \cdot A_{j}\right)(n)\right| \geq \alpha n
$$

This holds for every $n \geq n_{0}$, therefore, $\underline{\mathbf{d}}(A \cdot A) \geq \alpha$.
As a next step, we show that $\underline{\mathbf{d}}(A \cdot A)=\alpha$. Let j be odd. According to the definition of n_{j+1} and A_{j+1} there exists some $n \geq n_{0}$ such that

$$
\left|\left(\left(A_{j} \backslash\left\{n_{j+1}+1\right\}\right) \cdot\left(A_{j} \backslash\left\{n_{j+1}+1\right\}\right)\right)(n)\right|<\alpha n
$$

For brevity, let $s:=n_{j+1}+1$. As $A \subseteq A_{j}$ we get that $|(A \backslash\{s\}) \cdot(A \backslash\{s\})(n)|<\alpha n$. Also,

$$
|(A \cdot A) \backslash((A \backslash\{s\}) \cdot(A \backslash\{s\})(n))| \leq 1+|A(n / s)| \leq 1+|Q(n / s)|
$$

since $A \subseteq Q$. Thus $|(A \cdot A)(n)| \leq \alpha n+1+|Q(n / s)| \leq n(\alpha+1 / n+1 / s)$. Clearly $s=n_{j+1}+1 \leq n$, and as $j \rightarrow \infty$ we have $n_{j+1} \rightarrow \infty$, therefore $\underline{\mathbf{d}}(A \cdot A)=\alpha$.
Finally, we prove that $\overline{\mathbf{d}}(A \cdot A)=\beta$. Let j be even. According to the definition of A_{j+1} and n_{j+1}, we have $\left|\left(A_{j+1} \cdot A_{j+1}\right)\left(n_{j+1}\right)\right|>(\beta-1 / j) n_{j+1}$. However, $(A \cdot A)\left(n_{j+1}\right)=$ $\left(A_{j+1} \cdot A_{j+1}\right)\left(n_{j+1}\right)$, therefore $\overline{\mathbf{d}}(A \cdot A) \geq \lim (\beta-1 / j)=\beta$, and thus $\overline{\mathbf{d}}(A \cdot A)=\beta$, as was claimed.

References

[1] A. Faisant, G. Grekos, R. K. Pandey and S. T. Somu, Additive Complements for a given Asymptotic Density, arXiv: 1809.07584.
[2] G.A. Freiman, Foundations of a structural theory of set addition (translated from the Russian), Translations of Mathematical Monographs, Vol. 37, Amer. Math. Soc., Providence, R.I., 1973.
[3] G. Grekos and D. Volkmann, On densities and gaps, J. Number Theory 26 (1987), 129-148.
[4] G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number, Quart. J. Math. 48 (1917), 76-92.
[5] N. Hegyvári, Note on a problem of Ruzsa, Acta Arith. 69 (1995), 113-119.
[6] F. Hennecart, On the regularity of density sets, Tatra Mt. Math. Publ. 31 (2005), 113-121.
[7] A. Hildebrand, On the number of positive integers $\leq x$ and free of prime factors $>y$, J. Number Theory 22 (1986), 265-290.
[8] I. Z. Ruzsa, The density of the set of sums, Acta Arith. 58 (1991), 169-172.
[9] H. Halberstam and K.F. Roth, Sequences, Second Ed., Springer-Verlag, New York-Berlin, 1983, xviii+292 pp.
[10] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Univ. Press, 1995.
[11] B. Volkmann, On uniform distribution and the density of sum sets, Proc. Amer. Math. Soc. 8 (1957), 130-136.

[^0]: * Supported by the National Research, Development and Innovation Office of Hungary (Grant No. K129335).
 \dagger Supported by the National Research, Development and Innovation Office of Hungary (Grant Nos. PD115978 and K129335) and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

