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Abstract

In this paper, we develop a technique for controlling the spectra of Had-
amard matrices with sufficiently rich automorphism groups. For each
integer t ≥ 2, we construct a Hadamard matrix Ht equivalent to the
Sylvester matrix of order nt = 22

t−1−1 such that the minimal polynomial
of 1√

nt
Ht is the cyclotomic polynomial Φ2t+1(x). As an application we

construct real Hadamard matrices from Butson Hadamard matrices.
More concretely, a Butson Hadamard matrix H has entries in the k

th

roots of unity and satisfies the matrix equation HH∗ = nIn. We write
BH(n, k) for the set of such matrices. A complete morphism of Butson
matrices is a map BH(n, k) → BH(m, �). The matrices Ht yield new
examples of complete morphisms

BH(n, 2t) → BH(22
t−1−1n, 2) ,

for each t ≥ 2, generalising a well-known result of Turyn.
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1 Introduction

Let M be an n×n matrix with entries in the complex numbers C. If every entry mij

of M has modulus bounded by 1, then Hadamard’s theorem states that | det(M)| ≤
nn/2. Hadamard himself observed that a matrix M meets this bound with equality if
and only if every entry in M has modulus 1, and every pair of distinct rows of M are
orthogonal (with respect to the usual Hermitian inner product) [10]. Such a matrix
is said to be Hadamard, though the term has become synonymous with the special
case where entries are in {±1}. If M is Hadamard with entries in the kth roots of
unity for some k, then M is Butson Hadamard BH(n, k) or just Butson, named for
their appearance in a paper of Butson [1].

In [6], the authors define a (complete) morphism of Butson matrices to be a
function from BH(n, k) to BH(r, �). A partial morphism is a morphism such that the
domain is a proper subset of BH(n, k). We will restrict our attention to morphisms
which come from embeddings of matrix algebras (as the tensor product does); such
morphisms can be considered generalized plug-in constructions. We recall some key
definitions.

For each positive integer k, we define ζk = e2πi/k and set Gk = 〈ζk〉. We define
Hφ to be the entrywise application of φ to H whenever φ is a function defined on
the entries of H , and for each integer r we write H(r) for the function which replaces
each entry of H by its rth power. This should be distinguished from the notation Hr

meaning the rth power of H under the usual matrix product.

Definition 1.1. Let X, Y ⊆ Gk be fixed. Suppose that H ∈ BH(n, k) is such that
every entry of H is contained in X, and that M ∈ BH(m, �) is such that every

eigenvalue of
√
m

−1
M is contained in Y .

Then the pair (H,M) is (X, Y )-sound if

1. For each ζjk ∈ X, we have
√
m

1−j
M j ∈ BH(m, �).

2. For each ζjk ∈ Y , we have H(j) ∈ BH(n, k).

We will often say that (H,M) is a sound pair if there exist sets X and Y for which
(H,M) is (X, Y )-sound.

Theorem 1.2 (Theorem 4 [6]). Let H ∈ BH(n, k) and M ∈ BH(m, �) be Hadamard

matrices. Define a map φ : ζjk 
→ √
m

1−j
M j, and write Hφ for the entrywise appli-

cation of φ to H. If (H,M) is a sound pair then Hφ ∈ BH(mn, �).

Example 1.3. Let H be any BH(n, 4) and let

M =

[
1 1

−1 1

]
.

Then (ζ8H,M) is (X, Y )-sound where X = {ζ8, ζ38 , ζ58 , ζ78} and Y = {ζ8, ζ78}. By
Theorem 1.2, from any H ∈ BH(n, 4) we can construct a real Hadamard matrix of
order 2n. This example is due to Turyn [14], though see also [3].
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Adhering to the notation of Definition 1.1, if the set Y of eigenvalues of
√
m

−1
M

contains only primitive kth roots of unity, the second condition is vacuous. If in
addition, pα+1 divides ϕ(k), where ϕ denotes the Euler phi function and p is a prime,
the primitive kth roots contain a translate of the roots of unity of order pα, from
which we can construct a complete morphism. The problem of constructing complete
morphisms is the motivation of this paper. We expect that such complete morphisms
could be used both to give new proofs of known constructions of Hadamard matrices
and to construct Hadamard matrices at previously unknown orders.

We focus on real Hadamard matrices hereafter. Let χ(M) and m(M) denote the
characteristic and minimal polynomials of a matrix M . We recall that two (real)
Hadamard matrices, H and H ′ are Hadamard equivalent if there exist monomial
{±1}-matrices P and Q such that PHQ� = H ′. Unless P = Q, the Hadamard
matrices need not have the same spectra, but it is well known that every eigenvalue
of a Hadamard matrix H of order n is of absolute value

√
n. In the case when

H ′ = H , the collection of all such ordered pairs (P,Q) forms the automorphism
group of H , which is denoted Aut(H). For convenience, we will generally work with
the rescaled characteristic polynomial χ(n−1/2H), for which every root must be a
complex number of norm 1. In this paper we will establish the following theorem.

Theorem 1.4. For each integer t ≥ 2 there exists a real Hadamard matrix M of order
nt = 22

t−1−1 such that m(n
−1/2
t M) is the cyclotomic polynomial Φ2t+1(x) = x2t + 1.

We obtain the following result directly from Theorems 1.2 and 1.4.

Corollary 1.5. For each t ∈ N, there exists a complete morphism

BH(n, 2t) → BH(22
t−1−1n, 2) .

Equivalently, whenever there exists an order n Hadamard matrix with entries in
〈ζ2t〉, there exists a real Hadamard matrix of order 22

t−1−1n. This result generalizes a
classical result of Turyn, who (in our terminology) constructed a complete morphism
BH(n, 4) → BH(2n, 2), which is to our knowledge the first example of a nontrivial
morphism of Hadamard matrices appearing in the literature [14]. This is the case
t = 2 of Corollary 1.5; the case t = 3 is computed in Example 4.6.

The complete morphisms of Theorem 1.4 can be considered representations of the
cyclic groups of order 2t+1 in which all 2t generators are represented by Hadamard
matrices. This result is complementary to Gow’s construction of a representation for
the cyclic group of order 2t + 1 in dimension 2t where all non-identity elements are
represented by normalized (complex) Hadamard matrices [8]. He has constructed
similar representations for the cyclic groups of even order in which every element
but the unique involution is represented by a Hadamard matrix. While we do not
obtain Hadamard matrices for all nontrivial elements in Theorem 1.4, we do retain
complete control of the irreducible constituents of the representation: the irreducible
representations which exhibit a primitive root of unity of order 2t+1 all occur with
equal multiplicity, and no other representations occur.
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While this paper was being finalized, the authors became aware of a recent result
of Österg̊ard and Paavola [12] which gives a direct construction of morphisms

BH(n, 2t+1) → BH(2n, 2t) ,

for each t ≥ 2. While their method produces morphisms which exhibit a smaller blow-
up in dimension, our method generalizes easily to control the characteristic polyno-
mial of Hadamard matrices which have sufficiently large automorphism groups.

This paper is organized as follows. Section 2 provides information about a certain
family of group actions on Sylvester matrices, and Section 3 describes a method for
computing the characteristic polynomial of the Hadamard matrix PH when H is
symmetric Hadamard and (P,Q) is a pair of monomial matrices acting suitably on
H . Finally, Section 4 provides an explicit construction which proves Theorem 1.4.

2 A group action on Sylvester matrices

Recall that a pair (P,Q) of {±1}-monomial matrices is an automorphism of the
Hadamard matrix H if and only if PHQ� = H . In this section, we will describe a
family of groups closely related to the automorphism groups of the Sylvester matrices.
Let V be an n-dimensional vector space over F2 with a fixed basis. With respect to
this basis, we write elements of a, b ∈ V as column of vectors, and define an inner
product on V by 〈a, b〉 = a�b. By abuse of notation, we identify 0, 1 ∈ F2 with their
pre-images in Z in our definition of the Sylvester matrix Sn of order 2n:

Sn :=
[
(−1)〈a,b〉

]
a,b∈V . (1)

We assume that the row and column labels occur in the same order; in this case
Sn is a symmetric matrix. If an explicit ordering of labels is required, we will use a
lexicographic order. It is well known that Sn is the character table of an elementary
abelian 2-group and has a rich automorphism group, which has been studied in detail
in [5].

Definition 2.1. Recall that GLn(F2) is the group of invertible matrices over F2.
Let V be an n-dimensional vector space over F2 with specified basis (so that the
action of GLn(F2) is well defined). Define the group Gn = (V ×V )�GLn(F2) by the
multiplication

(u1, v1, L1) · (u2, v2, L2) = (u1 + (L−1
1 )�u2, v1 + L1v2, L1L2) .

Denote by ra the row of Sn labeled by a ∈ V and by cb the column labeled by b.
We define an action of Gn on the set {ra,−ra | a ∈ V } by

(u, v, L) · ra = (−1)〈La,u〉rLa+v , (2)

and an action on the set {cb,−cb | b ∈ V } by

(u, v, L) · cb = (−1)〈v,(L
−1)�b〉c(L−1)�b+u . (3)
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We note that the subgroup {(0, v, L) | v ∈ V, L ∈ GLn(F2)} acts as a doubly
transitive permutation group on the set {ra | a ∈ V }, usually referred to as the
affine general linear group AGLn(F2).

Proposition 2.2. In the action of Gn on Sn induced by the actions on rows and
columns of Equations (2) and (3), we have (u, v, L) · Sn = (−1)〈u,v〉Sn.

Proof. Under the action of the element (u, v, L), up to a ±1 sign change, row ra
is mapped to row rLa+v and column cb is mapped to column c(L−1)�b+u. Moreover,

these mappings induce additional factors of (−1)〈La,u〉 and (−1)〈v,(L
−1)�b〉, respec-

tively. Hence,

(u, v, L) · (−1)〈a,b〉 = (−1)〈La,u〉+〈v,(L−1)�b〉+〈La+v,(L−1)�b+u〉 = (−1)〈u,v〉(−1)〈a,b〉,

as desired.

The action of Gn described in Proposition 2.2 can be realized in a natural way as
a group of pairs of monomial matrices acting on the rows and columns of Sn; write
Ψ(Gn) for this representation. Following the usual convention in the literature on
Hadamard matrices, the transpose of the righthand component of Ψ(u, v, L) acts on
the right of Sn.

Definition 2.3. Label the rows and columns of a 2n × 2n matrix M ∈ GL2n(C) by
the vectors of V = Fn

2 . Let ρ(L) ∈ GL2n(C) be the permutation matrix given by
the action of L ∈ GLn(F2) on the elements of V . Explicitly, the entry in row u and
column v of ρ(L) is 1 if and only if Lv = u. Similarly for each v ∈ V we define the
translation operator Tv ∈ GL2n(C) to be the permutation matrix with 1 in row u and
column u+ v for every u ∈ V . Finally, we define the diagonal matrix Dv ∈ GL2n(C)
by (−1)〈u,v〉 in the row and column labeled by u for every u ∈ V .

It will be convenient in the sequel to have some notation relating the constituents
(u, v, L) of an element of Gn with matrices in characteristic 0.

• Ψ(0, 0, L) = (ρ(L), ρ((L−1)�)).

• Ψ(0, v, I) = (Tv, Dv).

• Ψ(u, 0, I) = (Du, Tu).

In the current work we are interested only in constructing Hadamard matrices
where the characteristic polynomial is an even function; in this case we have that
χ(H) = χ(−H). As such, we do not require that PSnQ

� = Sn, rather we require
only that PSnQ

� = ±Sn.

Remark 2.4. The group 〈(−I, I), (I,−I),Ψ(Gn)〉 is of order 4|Gn| and acts tran-
sitively on the set {Sn,−Sn}. The stabilizer of Sn under this action is a central
extension of shape 2 · Gn, and this group is in fact the full automorphism group of
Sn [5].
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3 Characteristic polynomials of Hadamard matrices

The following proposition reduces the computation of characteristic polynomials of
certain Hadamard matrices to computing characteristic polynomials of monomial
matrices, for which there exist satisfactory techniques. This method was inspired by
the elementary evaluation of the spectrum of the Discrete Fourier Transform matrix
of Diaz-Vargas, Glebsky, and Rubio-Barrios [4].

Proposition 3.1. Suppose that H is a symmetric Hadamard matrix, and that P,Q
are monomial matrices such that PHQ� = (−1)�H, where � ∈ {0, 1}.

1. The identity (PH)2 = (−1)�nPQ holds; in particular the spectra of (PH)2 and
of (−1)�nPQ are identical.

2. The matrix
√
n
1−j

(PH)j is Hadamard for all odd j.

3. If m(PQ) = Φ2t(x), then m(n−1/2PH) = Φ2t+1(x).

Proof. 1. Since by definition PHQ� = (−1)�H , and Q is orthogonal, we have
PH = (−1)�HQ. So then

(PH)2 = PH(−1)�HQ = (−1)�nPQ .

2. By the above, we have that (PH)2m+1 = (−1)�mnm(PQ)m(PH), which up to
normalisation is the product of a monomial matrix with a Hadamard matrix.

3. Since PH is Hadamard, it is normal and so diagonalisable. Suppose that v is an
eigenvector of n−1(PH)2 with eigenvalue ζj2t , a root of unity of order 2t for some
positive integer t. Then the corresponding eigenvalue of n−1/2PH is a solution
to the quadratic equation x2 − ζj2t , which is necessarily a root of unity of order
2t+1. Since P and H are defined over Q, whenever m(n−1(PH)2) = Φ2t(x), we
must have m(n−1/2PH) = Φ2t+1(x).

We digress briefly to compute the characteristic polynomial of a monomial matrix.
This material is well known, but is included for completeness. We recall that a
monomial matrix M can be written uniquely in the form M = DP , where D is a
diagonal matrix and P is a permutation matrix. We begin with a well-known lemma
which describes the characteristic polynomial of a permutation matrix (i.e., when D
is trivial).

Lemma 3.2. Let P be a permutation matrix with disjoint cycles C1, C2, . . . , Ct of
lengths n1, . . . , nt. Then the characteristic polynomial of P is

∏t
j=1 (x

nj − 1).

Proof. Conjugation in the symmetric group corresponds to similarity by a permuta-
tion matrix in the general linear group. It is well known that these operations preserve
the characteristic polynomial. Up to conjugation in the symmetric group, we may as-
sume that C1 = (1, 2, 3, . . . , n1). The first n1 rows and columns of the corresponding
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permutation matrix is then in Rational Canonical Form with characteristic polyno-
mial xn1 −1. Likewise, C2 can be conjugated to the cycle (n1+1, n1+2, . . . , n1+n2),
which yields a block with characteristic polynomial xn2 − 1, and the result follows
by proceeding inductively.

The extension to monomial matrices is routine, being a slight generalisation of the
theory developed by Carter to describe the conjugacy classes of the Coxeter group
of type Cn (which consists of {±1}-monomial matrices) [2, Proposition 24].

Proposition 3.3. Suppose that M = DP is monomial where D is diagonal and P
is a permutation matrix. For each cycle Cj of P , write cj for the product of the
corresponding nonzero entries of M . Then the characteristic polynomial of M is

t∏
j=1

(xnj − cj) .

Proof. Up to similarity, we may assume that P is in the standard form described in
Lemma 3.2. Consider the cycle C1: suppose that the nonzero entries in this cycle are
a1, a2, . . . , an1 . Let F2 be the diagonal matrix with f22 = a−1

1 , and all other entries 1.
Then F2CF−1

2 is similar to C1 but has 1 as the nonzero entry in the first column, and
a1a2 in the second. In a similar fashion, one sets F3 to be the matrix which differs
from the identity only in that f33 = a−1

1 a−1
2 . Then F3F2C1F

−1
2 F−1

3 has two entries
equal to 1.

Proceeding in this fashion, we can set all entries but the one in the last column
to be 1. The entry in the last column is c1 =

∏n1

j=1 aj ; and since the matrix is in
rational canonical form, the characteristic polynomial of the block corresponding to
C1 is xn1 − c1. This generalizes naturally to a product of cycles.

4 Proof of main theorem

Now, consider (P,Q) = (DuTvρ(A), DvTuρ((A
−1)�)) ∈ Ψ(Gn) acting on Sn as de-

scribed in Section 2. Using the multiplication operation defined on Gn, we may write
the product PQ as follows:

PQ = Du+(A−1)�vTv+Auρ(A(A
−1)�) . (4)

Suppose that a monomial matrix PQ is given, where (P,Q) ∈ Ψ(Gn). To con-
struct a matrix H = PSn such that χ((PH)2) = χ(nPQ), we require three things:

1. A matrix L ∈ GLn(F2) which is of the form L = A(A−1)�.

2. A vector v ∈ V such that (0, v, L) ∈ AGLn(F2) has all cycles of length 2t−1.

3. Another vector u such that in every cycle of the signed permutation Ψ(u, v, L)
the product of the nonzero elements is −1.
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Given an invertible matrix A ∈ GLn(F2), where n ≥ 2, and vectors u+ (A−1)�v
and v +Au, there always exist solutions for u and v. So the main constraint to this
method arises from the action of the inverse-transpose map on GLn(F2). Luckily,
this subject has been extensively studied by Gow [9], and more recently by Fulman
and Guralnick [7]. The following theorem is a special case of a result from the latter
paper.

Theorem 4.1 (Theorem 4.2, [7]). An element of GLn(F2) can be written in the form
M(M−1)� if and only if

1. For each eigenvalue λ �= 1, the multiplicities of λ and λ−1 are equal.

2. The number of Jordan blocks of each even size is even.

To be entirely explicit, we take n = 2t−1 − 1 from now on and set L to be a
Jordan block of maximal size in GLn(F2). We exhibit a decomposition of L of the
form A(A−1)�, as guaranteed by Theorem 4.1.

Proposition 4.2. Let L ∈ GLn(F2) be a Jordan block of size n. Then L = A(A−1)�

where A = A(t−1) is the submatrix of ⊗t−1

[
1 1
1 0

]
, obtained by deleting the first row

and last column.

Proof. It suffices to prove that A(t−1) = L(A(t−1))
�. We prove the equivalent state-

ment that (
A(t−1)

)
i,j

=
(
A�

(t−1)

)
i,j

+
(
A�

(t−1)

)
i,j+1

for all t ≥ 2, 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n, and that the last row of A(t−1) and
(A(t−1))

� are identical. Since the latter claim is a simple observation, we focus on
the former. It is simple to verify for t = 2. We assume then that the claim is true
when t− 1 = k, and prove the general claim by induction. Observe that

A(k+1) =

⎡
⎣ A(k) 0�m A(k)

1m 1 0m
A(k) 0�m 0m×m

⎤
⎦ and A�

(k+1) =

⎡
⎣ A�

(k) 1�m A�
(k)

0m 1 0m
A�

(k) 0�m 0m×m

⎤
⎦ ,

where m = 2k−1 − 1. The inductive hypothesis implies we need only check that the
claim holds when j = 2k−1 or when i ∈ {2k−1−1, 2k−1}, which is readily verifiable.

Next, we determine the cycle type of a conjugacy class of elements of AGLn(F2),
of the form (0, v, L) where L is as in Proposition 4.2 and v is in the largest generalized
eigenspace of L; in particular we may take v = (0, 0, 0, . . . , 0, 1)�. Our techniques are
similar to those of Guest, Morris, Praeger, and Spiga [11]. We begin by establishing
the multiplicative order of L.

Proposition 4.3. Let L be a Jordan block of size n = 2t−1 − 1. Then L has multi-
plicative order 2t−1 = n+ 1. Furthermore,

∑n
i=0 L

i = 0.
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Proof. Recall that an upper unitriangular matrix belongs to the Sylow 2-subgroup
of GLn(F2). Write L = I + C where I is the identity matrix, and C has 1s on
the superdiagonal but is zero elsewhere. Then for any positive integer x, we have
L2x =

∑2x

i=0

(
2x

i

)
(I2

x−iC i) = I2
x
+ C2x . Since Cm has a diagonal of 1s beginning in

row m+ 1, the smallest value of x for which C vanishes is x = t− 1.
Setting X =

∑n
i=0 L

i, we clearly have that LX = XL = X . Row j of LX
is the sum of row j and row j + 1 of X, and thus row j + 1 of X is zero for all
1 ≤ j ≤ n − 1. Likewise, column j + 1 of XL is the sum of column j and column
j + 1 of X, and so column j is zero for all 1 ≤ j ≤ n − 1. Finally, observe that
Li
1,n = 0 for all 0 ≤ i ≤ 2t−1 − 3, and that Li

1,n = 1 for i ∈ {2t−1 − 2, 2t−1 − 1}, and
thus X1,n = 0.

We recall that the subgroup {(0, v, L) | v ∈ V, L ∈ GLn(F2)} is isomorphic to the
group AGLn(F2) and has a natural permutation action on V given by (0, v, L) · a =
La + v, which extends naturally to an action on the rows and columns of Sn as
described in Section 2.

Proposition 4.4. Let v = (0, . . . , 0, 1)� and u = (1, 0, . . . , 0)�. Then every orbit
of 〈(0, v, L)〉 on the natural module V has length 2t−1 = n + 1. If γ is the sum of
elements in an orbit, then 〈γ, u〉 = 1.

Proof. The group AGLn(F2) is isomorphic to a subgroup of GLn+1(F2) and the ex-
ponent of the Sylow 2-subgroup of GL2t−1(F2) is 2

t−1 (see, e.g., [13, p. 192]), thus we
have by Proposition 4.3 that the order of (0, v, L) ∈ AGLn(F2) is precisely 2t−1.

Let y0 = 0 and consider the orbit of y0 under 〈(0, v, L)〉: so yj =
∑j−1

i=0 L
iv for

1 ≤ j ≤ n. For each j ≥ 1, the vector yj has 1 in entry 2t−1 − j + 1, and all
prior entries are 0; so the yj are distinct. Hence the orbit has length n + 1. Define
γ0 =

∑n
j=0 yj. Only yn has 1 in its first entry, so 〈γ0, u〉 = 1, as required.

By Proposition 4.3 the sum
∑n

i=0 L
i = 0 where n = 2t−1 − 1. For any u ∈ V , the

sum of the elements in the orbit of u under 〈(0, v, L)〉 is by linearity equal to(
n∑

i=0

Liu

)
+ γ0 = γ0 ,

where γ0 is the sum of the elements of the orbit of the zero vector, and so the result
follows.

Recall the notation of Definition 2.3 and the Sylvester matrix Sn (1), where
n = 2t−1 − 1.

Proposition 4.5. Let a = (0, 1, 1, . . . , 1)� and b = (1, 1, 1, . . . , 1)� be elements of
an n-dimensional vector space V over F2. Let A be the matrix of Proposition 4.2.
Define H = DaTbρ(A)Sn. Then m(2−n/2H) = Φ2t+1(x).

Proof. Setting P = DaTbρ(A) and Q = TaDbρ((A
−1)�) we have that

PQ = DuTvρ(L) ,
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where L is a Jordan block of size n in GLn(F2), v = (0, . . . , 0, 1)�, and u =
(1, 0, . . . , 0)�.

Every orbit of (0, v, L) ∈ AGLn(F2) on V is of length 2t−1 by Proposition 4.4. By
Proposition 3.3, the characteristic polynomial of PQ contains one factor x2t−1 −1 for
each cycle in which the product of the nonzero elements is 1, and x2t−1

+ 1 for each
cycle in which the product of elements is −1.

Observe that an entry in the row labeled by α of PQ is +1 if and only if 〈α, u〉 = 0.
So the product of nonzero entries in a cycle is negative if and only if the row labels
of the entries in the cycle intersect the null space of the linear functional 〈−, u〉 in an
odd number of points. By the second claim of Proposition 4.4, every cycle of PQ has
this property. It follows that the minimal polynomial of m(PQ) is precisely Φ2t(x).

Finally, we apply Proposition 3.1 to obtain that m(PSn) = Φ2t+1(x). This com-
pletes the proof.

Theorem 1.4 follows immediately from Proposition 4.5.

Example 4.6. Let t = 3, so adhering to the procedure above, a = (0, 1, 1)�, b =
(1, 1, 1)�, u = (1, 0, 0)�, and v = (0, 0, 1)�. The matrix S3 is constructed under a
lexicographic labeling of rows and columns; writing − for −1,

PQ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 − 0 0 0 0
0 0 0 0 − 0 0 0
0 0 0 0 0 − 0 0
0 0 − 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

and the matrices Da, Tb, and ρ(A) are, in order,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 − 0 0 0 0 0 0
0 0 − 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 − 0 0
0 0 0 0 0 0 − 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Then

PS3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 − − − −
− 1 1 − − 1 1 −
− − 1 1 1 1 − −
1 − 1 − 1 − 1 −
1 − 1 − − 1 − 1
− − 1 1 − − 1 1
− 1 1 − 1 − − 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the constructed Hadamard matrix such that 8−1/2PS3 has characteristic polyno-
mial Φ16(x) = x8 +1. Hence if H ∈ BH(n, 8), then with reference to Proposition 3.1
we have that (ζ16H,PS3) is a sound pair, and by Theorem 1.2 we have constructed
a complete morphism BH(n, 8) → BH(8n, 2).
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[6] R. Egan and P. Ó. Catháin, Morphisms of Butson classes, arXiv preprint (2017),
https://arxiv.org/abs/1707.08815.

[7] J. Fulman and R. Guralnick, Conjugacy class properties of the extension of
GL(n, q) generated by the inverse transpose involution, J. Algebra 275(1)
(2004), 356–396.

https://arxiv.org/abs/1803.09239
https://arxiv.org/abs/1707.08815


R. EGAN ET AL. /AUSTRALAS. J. COMBIN. 73 (3) (2019), 501–512 512

[8] R. Gow, Generation of mutually unbiased bases as powers of a unitary matrix in
2-power dimensions, arXiv preprint (2007), https://arxiv.org/abs/math/0703333.

[9] R. Gow, The equivalence of an invertible matrix to its transpose, Lin. Multilin.
Algebra 8(4) (1979/80), 329–336.

[10] J. Hadamard, Résolution d’une question relative aux déterminants, Bull. Sci.
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