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Abstract

Let G = (V,E) be a graph. A subset S ⊆ V is a dominating set of G if
every vertex not in S is adjacent to a vertex in S. A set D̃ ⊆ V of a graph
G = (V,E) is called an outer-connected dominating set for G if (1) D̃ is
a dominating set for G, and (2) G[V \ D̃], the induced subgraph of G by
V \D̃, is connected. The minimum cardinality among all outer-connected
dominating sets of G is called the outer-connected domination number of
G and is denoted by γ̃c(G). We define the outer-connected bondage num-
ber of a graph G as the minimum number of edges whose removal from
G results in a graph with an outer-connected domination number larger
than the one for G. Also, the outer-connected reinforcement number of a
graph G is defined as the minimum number of edges whose addition to G
results in a graph with an outer-connected domination number which is
smaller than the one for G. This paper shows that the decision problems
for the outer-connected bondage and the outer-connected reinforcement
numbers are NP-hard. Also, the exact values of the outer-connected
bondage number and the outer-connected reinforcement number are de-
termined for several classes of graphs.
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1 Introduction

The terminology and notation on graph theory in this paper in general follows the
reference [11]. Let G = (V,E) be a graph with vertex set V and edge set E. The
graph G is said to be of order |V | and size |E|. Also, we use V (G) and E(G) to
denote the vertex set and the edge set of the graph G, respectively. The complement
of a graph G, denoted by Ḡ, is a graph whose vertex set is V (G) and such that two
vertices are adjacent if and only if they are not adjacent in G.

Let v be a vertex in V . The open neighborhood of v is denoted by NG(v) and
is defined as {u ∈ V : {u, v} ∈ E(G)}. Similarly, the closed neighborhood of v is
denoted by NG[v] and is defined as {v}∪NG(v). Whenever the graph G is clear from
the context, we simply write N(v) and N [v] to denote NG(v) and NG[v], respectively.
A leaf in G is a vertex of degree one. We denote the path of order n by Pn, the cycle
of order n by Cn and the star of order n by Sn. A forest where each component is
a star is called a galaxy. For a subset S of vertices of G, we refer to G[S] as the
subgraph of G induced by S. A subset S ⊆ V is a dominating set of G if every
vertex not in S is adjacent to a vertex in S. The domination number of G, denoted
by γ(G), is the minimum cardinality among all dominating sets of G. A dominating
set S is called a γ − set of G if |S| = γ(G).

Domination is one of the most widely studied topics in graph theory; see e.g.
[10, 11] and references therein. This paper studies some issues in a particular varia-
tion of domination, namely, outer-connected domination. The concept of the outer-
connected domination number is introduced by Cyman [3] and is further studied
by others [1, 17]. The outer-connected domination problem is shown to be an NP-
complete problem for arbitrary graphs in [3]. A set D̃ ⊆ V of a graph G = (V,E) is
called an outer-connected dominating set for G if (1) D̃ is a dominating set for G, and
(2) G[V \D̃], the induced subgraph of G by V \D̃, is connected. The minimum cardi-
nality among all outer-connected dominating sets of G is called the outer-connected
domination number ofG and is denoted by γ̃c(G) [3]. An outer-connected dominating
set D̃ is called a γ̃ − set of G if |D̃| = γ̃c(G).

In this paper, we focus on two graph alterations and their effects on the outer-
connected domination number: (1) the removal of edges from a graph, and (2) the
addition of edges to a graph. The bondage and the reinforcement numbers are two
important parameters for measuring the vulnerability and the stability of the network
domination under link failure and link addition. The bondage number of G, denoted
by b(G), is the minimum number of edges whose removal from G results in a graph
with a domination number larger than the one for G. The reinforcement number of
G, denoted by r(G), is the smallest number of edges whose addition to G results
in a graph with a domination number smaller than the one for G. The bondage
and the reinforcement numbers in graphs are very interesting research problems and
were introduced by Fink et al. [4] and Kok, Mynhardt [18], respectively. Hattingh et
al. [9] showed that the problem of the restrained bondage is NP-complete, even for
bipartite graphs. Also they have determined the exact value of the bondage numbers
for several classes of graphs. Moreover, the reinforcement number for digraphs has
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been studied by Huang, Wang and Xu [14]. Hu and Xu [13] showed that the problems
of the bondage, the total bondage, the reinforcement and the total reinforcement
numbers for an arbitrary graph are all NP-hard, in general. Recently, Xu [20] gave
a review article on the bondage numbers. Moreover, Hu and Sohn [12] showed that
these problems remain NP-hard, even for bipartite graphs. Xu, Hu and Lu [19]
studied the complexity of p-reinforcement and paired bondage problems in general
graphs. Jafari Rad [15] showed that the problems of the p-reinforcement, the p-total
reinforcement, the total restrained reinforcement and the k-rainbow reinforcement
are all NP-hard for bipartite graphs. In addition, he also (in [16]) showed that
the problems of the paired bondage, the total restrained bondage, the independent
bondage and the k-rainbow bondage numbers are all NP-hard, even if they are
restricted to bipartite graphs. From the algorithmic point of view, Hartnell et al. [7]
designed a linear time algorithm to compute the bondage number of a tree.

The outer-connected bondage number of a graph G, where G does not have any
isolated vertices, is denoted by bOCD(G), and is equal to the minimum number of
edges whose removal from G results in a graph with an outer-connected domination
number larger than the one for G. The outer-connected reinforcement number of a
graph G which does not have any isolated vertices is denoted by rOCD(G) and is
equal to the smallest number of edges whose addition from G results in a graph with
an outer-connected domination number smaller than the one for G.

The rest of the paper is organized as follows: In Sections 2 and 3 we describe
some necessary preliminaries and determine the exact value of the bondage number
for several classes of graphs. In Section 4 we show that the decision problem for
the outer-connected reinforcement number in general graphs is NP-hard. Finally,
in Section 5 we show that the outer-connected bondage number is also NP-hard
in general graphs. In the other words, we show that there are no polynomial time
algorithms to compute these values for graphs, unless P = NP .

2 Preliminaries

In this section we establish several theorems on the exact values of bOCD(G) and
rOCD(G).

Definition 2.1. [6] The edge-connectivity, or the line connectivity, of a graph G is
the minimum number of edges whose deletion from a graph G disconnects G.

Proposition 2.2. [6] Let Kn be a complete graph of order n. The edge-connectivity
of a graph Kn is n− 1.

Theorem 2.3. Let Kn be a complete graph of order n with n ≥ 3. Then, we have

bOCD(Kn) =

{
1, if n = 3,

�n
2
�, otherwise.

(1)

Proof. If n = 3, then γ̃c(K3) = 1. By removing any edges from G, it turns into a P3.
So, we have bOCD(K3) = 1, since γ̃c(P3) = 2.
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Next, suppose that n > 3. Let the graph G′ be obtained by removing fewer than
�n
2
� edges from G. Then, G′ contains at least a vertex of degree n − 1 . Let the

vertex v be such a vertex. On the other hand, according to the Proposition 2.2, the
induced graph G′[V \ v] is connected. So, we have γ̃c(G

′) = 1, which implies

bOCD(G) ≥ �n
2
�. (2)

Now we need to consider the following two cases:

1. n is even: Let H be the graph obtained by removing �n
2
� independent edges

from G. Then the degree of every vertex v ∈ V (H) is n − 2. So we have
γ̃c(H) ≥ 2.

2. n is odd: Let H be the graph obtained by removing n−1
2

independent edges
from G. Then there is exactly one vertex v ∈ V (H) such that the degree of v
is n− 1. If we remove one edge incident with v, then we have γ̃c(H) ≥ 2.

In either case, by removing �n
2
� edges, we have γ̃c(G) < γ̃c(H). So we obtain

bOCD(G) ≤ �n
2
�. (3)

Therefore, by Equations 2 and 3, we have bOCD(G) = �n
2
�.

Theorem 2.4. Let Cn be a cycle graph with n ≥ 3 vertices. Then, we have

bOCD(Cn) =

{
1, if n = 3,

�n
3
�, otherwise.

(4)

Proof. If n = 3, then γ̃c(C3) = 1. By removing any edges from C3, it turns into a
P3. So, we have bOCD(C3) = 1, since γ̃c(P3) = 2.

Cyman [3] has shown that if n ≥ 4 then γ̃c(Cn) = γ̃c(Pn) = n− 2. So, for n ≥ 4,
we have bOCD(C3) > 1. We remove one edge from Cn to transform it to Pn. By
removing some edges from Pn, a set of components {H1, H2, · · · , Hm} is obtained
such that every component is a path. let H =

⋃m
i=1Hi and D̃(H) be an outer-

connected dominating set for H . Then D̃(H) =
⋃m−1

i=1 Hi ∪ D̃(Hm) (see Lemma 3.1
in [8]). Note that the ordering of Hi is arbitrary and does not matter. If there exists
at least one component with four vertices, then γ̃c(Cn) = γ̃c(Pn) = γ̃c(H) = n − 2.
i.e., the γ̃c remains the same. Otherwise, we have γ̃c(Cn) = γ̃c(Pn) < γ̃c(H) = n− 1.
So we need to break the path Pn in such a way that no components with more than
three vertices exist. Therefore we have to remove �n

3
�− 1 edges from Pn, which with

the deleted edge from Cn number �n
3
�.

Theorem 2.5. Let Pn be a path with n ≥ 3 vertices. Then we have

bOCD(Pn) =

⎧⎪⎪⎨
⎪⎪⎩
1, if n = 2,

2, if n = 3,

�n
3
� − 1, otherwise.

(5)
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Proof. The cases for n = 2 and n = 3 are quite clear. The proof of the case n ≥ 4 is
the same as in Theorem 2.4.

Theorem 2.6. A graph G is a galaxy of order n ≥ 4 if and only if bOCD(G) = |E(G)|.

Proof. According to Observation 2 in [3] and Lemma 3.1 in [8], it is clear that if
G is a galaxy then γ̃c(G) = n − 1. Moreover, the only graph with outer-connected
domination number equal to n is K̄n. So bOCD(G) = |E(G)|. Conversely, suppose
that bOCD(G) = |E(G)|. If a component H of G is not a star, then H either contains
a cycle or a P4, which means that γ̃c(G) ≤ n − 2. Let e = {v1, v2} be an edge in
the cycle or the P4. If H is a graph obtained by removing all edges from G except
e, then we have γ̃c(H) = n − 1 > γ̃c(G). This implies that bOCD(G) ≤ |E(G)| − 1,
which is a contradiction.

Proposition 2.7. Let G = (V,E) be a cycle, a path or a galaxy graph of order n ≥ 4.
Then, rOCD(G) = 1.

Proof. The proof is immediate from the definition of the outer-connected reinforce-
ment number.

3 3-Satisfiability problem

In order to show the NP-hardness of the outer-connected reinforcement and outer-
connected bondage problems, we do a polynomial time reduction from 3-satisfiability
problem, 3-SAT, which is known to be an NP-complete problem [5]. For concrete-
ness, Let U be a set of Boolean variables. A truth assignment for U is a mapping
f : U → {T, F}. If f(u) = T , then u is said to be “true” with respect to f . In the
case that f(u) = F , then u is said to be “false” with respect to f . If u is a variable
in U , then u and ū are literals over U . The literal u is true if and only if the variable
u is true with respect to f and the literal ū is true if and only if the variable u is
false with respect to f .

A clause over U is a set of literals over U which represents the disjunction of
these literals. It is said to be satisfied by a truth assignment if and only if at least
one of its members is true with respect to that assignment. Similarly, a collection
C = {C1, C2, . . . , Cm} of clauses over U is satisfiable if and only if there exists some
truth assignment for U , which simultaneously satisfies all the clauses Ci in C for
i = 1, 2, . . . , m. Such a truth assignment is called a satisfying truth assignment for
C. Given this notation, the 3-SAT problem is specified as follows:

3-SAT problem:

Instance: A collection C = {C1, C2, . . . , Cm} of clauses over a finite set of variables
U such that |Cj| = 3 for j = 1, 2, . . . , m.

Question: Is there a truth assignment for U which satisfies all the clauses in C?
Theorem 3.1. (See Theorem 3.1 in [2].) The 3-SAT problem is NP-complete.
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4 NP-hardness for the outer-connected reinforcement
problem

In this section, we show that the outer-connected reinforcement problem for general
graphs is an NP-hard problem. The outer-connected reinforcement problem is defined
as follows:

Outer-connected reinforcement problem:

Instance: A graph G with no isolated vertices and a positive integer k.

Question: Is rOCD(G) ≤ k?

Theorem 4.1. The outer-connected reinforcement problem is NP-hard.

Proof. We show the NP-hardness of the outer-connected reinforcement problem by
a polynomial time reduction from the 3-SAT.

Let I = (U = {u1, u2, . . . , un} , C = {C1, C2, . . . , Cm}) be an arbitrary instance
of the 3-SAT problem. Without loss of generality, consider that k = 1. We construct
a graph G such that this instance of 3-SAT will be satisfiable if and only if G has an
outer-connected reinforcement of cardinality equal to 1, i.e. rOCD(G) = 1. Next, we
describe the construction of G.

To each ui ∈ U , we associate a triangle Si = {ui, vi, ūi}. Note that vi /∈ U . For
each clause Cj ∈ C, we associate a single vertex cj and add edges {cj, ui}({cj, ūi}) if
the literal ui(ūi) appears in clause Cj, for j = 1, 2, · · · , m, respectively. Finally, we
add vertices x and y and join them to every vertex cj for j = 1, 2, · · · , m and add
edges {y, ui} and {y, ūi} for i = 1, 2, · · · , n.

For example, consider a 3-SAT instance (U = {u1, u2, u3, u4, u5}, C = {C1, C2,
C3, C4}), where C1 = {ū1, ū2, u3}, C2 = {u1, u3, u5}, C3 = {ū3, ū4, u5} and C4 =
{ū1, ū3, u4}. Figure 1 illustrates the constructed graph corresponding to this instance.

It can be easily seen that the construction can be accomplished in polynomial
time, since the graph G contains 3n+m+2 vertices and 5n+5m+1 edges. All that
remains to be shown is that the I = (U , C) is satisfiable if and only if rOCD(G) =
1. Claims 4.1.1, 4.1.2 and 4.1.3, which are stated and shown next, conclude the
proof.

Claim 4.1.1. For any graph G constructed as is described above, we have γ̃c(G) =
n + 1.

Proof. Let D̃ be a γ̃-set of G. Then γ̃c(G) = |D̃| ≥ n + 1 since it is necessary that
|D̃ ∩ V (Si)| ≥ 1 for i = 1, 2, . . . , n and also |D̃ ∩ N [x]| ≥ 1. On the other hand,
the set D̃′ = {x, u1, u2, . . . , un} is an outer-connected dominating set for G, which
implies that γ̃c(G) ≤ |D̃′| = n + 1. Thus, we obtain γ̃c(G) = n+ 1.
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v1 v2 v3 v4 v5

u1 u2 u3 u4 u5ū1 ū2 ū3 ū4 ū5

c1 c2 c3 c4

x y

Figure 1: An instance of the outer-connected reinforcement problem. Bold points are the domi-

nator vertices, k = 1 and γ̃c = 6.

Claim 4.1.2. Let D̃e denotes a γ̃-set of G + e for an arbitrary edge e ∈ E(Ḡ). If
there exists an edge e ∈ E(Ḡ) such that γ̃c(G + e) = n, then for i = 1, 2, . . . , n, we
have |D̃e ∩ V (Si)| = 1, while cj /∈ D̃e for j = 1, 2, . . . , m and y /∈ D̃e.

Proof. On the contrary, suppose that |D̃e ∩ V (S�)| = 0 for some � = 1, 2, . . . , n.
Since v� needs to be dominated by vertices in D̃e and v�, u�, ū� /∈ D̃e, then one of
the end-vertices of the edge e should be v�. Moreover, for every i �= �, we have
|D̃e ∩ V (Si)| ≥ 1, since D̃e dominates all the vertices vi.

There are two cases to consider:

Case 1: y /∈ D̃e, It is clear that the vertices u� and ū� do not simultaneously appear
in the same clause in C, so, there is no j such that the vertex cj is adjacent
to both of them. Since u� and ū� should be dominated by D̃e, then there
exists two distinct vertices cj , c� ∈ D̃e such that cj and c� dominate u� and ū�,
respectively.

Hence, |D̃e| ≥ n + 1, which is a contradiction.

Case 2: y ∈ D̃e, In this case, |D̃e ∩N [x]| ≥ 1. So, |D̃e| ≥ n+ 1, which is a contra-
diction.

Therefore, we have |D̃e ∩ V (Si)| = 1 for all i = 1, 2, . . . , n, y /∈ D̃e and cj /∈ D̃e for
every j, since |D̃e| = n.

Claim 4.1.3. The 3-SAT instance I = (U , C) is satisfiable if and only if rOCD(G)
= 1.

Proof. Suppose that rOCD = 1, which means that there exists an edge e in Ḡ such
that γ̃c(G + e) = n. Let D̃e be a γ̃-set of G + e. Then, by Claim 4.1.2, for all i =
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1, 2, . . . , n, we have |D̃e∩V (Si)| = 1. To be precise, we have either D̃e∩V (Si) = {vi},
D̃e ∩ V (Si) = {ui} or D̃e ∩ V (Si) = {ūi} for all i = 1, 2, . . . , n.

Assume that the mapping f : U → {T, F} is defined as

f(ui) =

{
T, if ui ∈ D̃e or v ∈ D̃e,

F, if ūi ∈ D̃e.
(6)

We want to show that the mapping f is a satisfying truth assignment for I =
(U , C). So, it is sufficient to show that f satisfies every clause in C. We choose
an arbitrary clause Cj ∈ C. Since the corresponding vertex cj to clause Cj is not
adjacent to any vertices in correspondence with the set {vi : 1 ≤ i ≤ n}, there exists
an index i such that cj is dominated by ui ∈ D̃e or ūi ∈ D̃e. Assume that cj is
dominated by ui ∈ D̃e, then ui is adjacent to vertex cj in G, namely, the literal ui

is in the clause Cj. Since ui ∈ D̃e, we have f(ui) = T by Equation 6. So, f satisfies
the clause Cj .
Now, suppose that the vertex cj is dominated by vertex ūi ∈ D̃e. So, ūi is adjacent to
cj in G, namely, the literal ūi is in the clause Cj. Since ūi ∈ D̃e, we have f(ui) = F
by Equation 6, which implies that ūi is assigned the truth value T by f . So, the
clause Cj is satisfied by f . Since clause Cj is chosen arbitrarily, all the clauses in C
are satisfied by f , which implies that I = (U , C) is satisfiable.

Conversely, suppose that f : U → {T, F} is a satisfying truth assignment for C
and D̃′ is a subset of V (G) that is constructed as follows.

If f(ui) = T , then we put the vertex ui in D̃′ and if f(ui) = F , we put the
vertex ūi in D̃′. Therefore, we have |D̃′| = n. For j = 1, 2, . . . , m, at least one of the
literals in clause Cj is true under the assignment of f , given that f is a satisfying
truth assignment for I = (U , C). So, by the construction of G, the corresponding
vertex cj in G is adjacent to at least one vertex in D̃′. Without loss of generality, let
f(u1) = T . Then, D̃′ is a dominating set for G + {x, u1}. On the other hand, the
induced graph G[V \ D̃′] is connected. Hence, D̃′ is an outer-connected dominating
set for G + {x, u1} and γ̃c(G + {x, u1}) ≤ |D̃′| = n. By Claim 4.1.1, we have
γ̃c(G) = n + 1. Therefore, we obtain γ̃c(G + {x, u1}) ≤ n < n + 1 = γ̃c(G), which
means that rOCD = 1.

5 The NP-hardness of the outer-connected bondage

In this section, we show that the outer-connected bondage problem for general graphs
is an NP-hard problem. Consider the following decision problem.

Outer-connected bondage problem:

Instance: A graph G with no isolated vertices and a positive integer k.

Question: Is bOCD(G) ≤ k?

Theorem 5.1. The outer-connected bondage problem is NP-hard.
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Proof. Let I = (U = {u1, u2, . . . , un} , C = {C1, C2, . . . , Cm}) be an arbitrary in-
stance of the 3-SAT problem. For an arbitrary positive integer k, we will construct
a graph G such that this instance of 3-SAT will be satisfiable if and only if G has an
outer-connected bondage of cardinality of at most k, i.e. bOCD(G) ≤ k . The graph
G is constructed as follows.

To each ui ∈ U , we associate a vertex set Hi = {ui, vi, ūi, xi, yi} and add edges
{xi, ui}, {yi, ūi}, {ui, vi}, and {ūi, vi} for i = 1, 2, . . . , n. For each clause Cj ∈ C,
we associate a single vertex cj and add edge {cj , ui}({cj, ūi}) if the literal ui(ūi)
is present in the clause Cj, where j = 1, 2, . . . , m. Then, we add a set of vertices
S = {s1, s2, s3, s4} and join s1, s3 and s4 to vertices cj and s2. Finally, we add a vertex
t to the graph G, edges {t, s1}, {t, s3}, {t, s4}, {t, ui} and {t, ūi} for i = 1, 2, . . . , n
and set k = 1.

xi ui vi ūi yi

(a) Hi

s1

s2

s3

s4

(b) S

Figure 2: The graphs Hi and S

It can be easily seen that the construction can be accomplished in polynomial
time, since the graph G contains 5n + m + 5 vertices and 6m + 6n + 6 edges. All
that remains to be shown is that I = (U , C) is satisfiable if and only if bOCD(G) ≤ k.
Without loss of generality, let k = 1. By Claims 5.1.1 to 5.1.5, which are shown next,
we have bOCD(G) = 1 if and only if I = (U , C) is satisfiable.
Claim 5.1.1. For any graph G constructed as above, we have γ̃c(G) ≥ 3n+ 1.

Proof. Let D̃ be a γ̃-set of G. Then, γ̃c(G) = |D̃| ≥ 3n + 1, since |D̃ ∩ V (Hi)| ≥ 3
for i = 1, 2, . . . , n. Note that to dominate a vertex vi, we need at least one vertex
and the leaf vertices xi and yi to be in D̃. Moreover, |D̃ ∩N [s2]| ≥ 1.

Claim 5.1.2. If γ̃c(G) = 3n+1, then cj , t /∈ D̃ for j = 1, 2, . . . , m, D̃∩V (S) = {s2}
and |D̃ ∩ V (Hi)| = 3 for i = 1, 2, . . . , n.

Proof. Since the connection between Hi and S is due to the vertex t, then t /∈ D̃.
Suppose that γ̃c(G) = 3n + 1. Then, |D̃ ∩ V (Hi)| = 3 for i = 1, 2, . . . , n, while
|D̃ ∩ V (S)| = 1. Consequently, cj /∈ D̃ for j = 1, 2, . . . , m. Simultaneously, if
D̃ ∩ V (S) = {s1}, then, s3 and s4 are not dominated. Hence, s1 /∈ D̃ and similarly,
s3, s4 /∈ D̃. So, D̃ ∩ V (S) = {s2}.
Claim 5.1.3. The 3-SAT instance I = (U , C) is satisfiable if and only if γ̃c(G) =
3n + 1.
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Proof. Suppose that γ̃c(G) = 3n+1 and cj is an arbitrary vertex. By Claim 5.1.2, this
vertex is adjacent to either ui ∈ D̃ or ūi ∈ D̃, since s1, s3, s4 /∈ D̃. As |D̃∩V (Hi)| = 3
for i = 1, 2, . . . , n, it follows that either D̃ ∩ V (Hi) = {xi, yi, ui}, D̃ ∩ V (Hi) =
{xi, yi, ūi} or D̃ ∩ V (Hi) = {xi, yi, vi}.

Let the mapping f : U → {T, F} be defined as

f(ui) =

{
T, if ui ∈ D̃ or vi ∈ D̃,

F, if ūi ∈ D̃.
(7)

To prove that the values assigned by the mapping f is a satisfying truth assign-
ment for I = (U , C), it is sufficient to show that f satisfies every clause in C. Let
Cj ∈ C be an arbitrarily clause. Since the corresponding vertex to the clause Cj is
not adjacent to any vertex in correspondence with the set {vi, xi, yi : 1 ≤ i ≤ n},
there exists an i such that cj is dominated by either ui ∈ D̃ or ūi ∈ D̃. Without
loss of generality, assume that cj is dominated by ui ∈ D̃. So, ui is adjacent to cj
in G, namely the literal ui is in the clause Cj. Since ui ∈ D̃, we have f(ui) = T by
Equation 7. So, the values assigned by the mapping f satisfies the clause Cj.
Now, suppose that the vertex cj is dominated by vertex ūi ∈ D̃. So, the vertex ūi is
adjacent to the vertex cj in G, namely the literal ūi is in the clause Cj. Since ūi ∈ D̃,
we have f(ui) = F by the Equation 7, which implies that ūi is assigned the truth
value T by f and the clause Cj is satisfied by f . Since Cj was chosen arbitrarily, all
the clauses in C are satisfied by f , which implies that I = (U , C) is satisfiable.

Conversely, suppose that f : U → {T, F} is a satisfying truth assignment for C
and D̃′ is a subset of V (G) which is constructed as follows. If f(ui) = T , then we put
the vertex ui in D̃′ and if f(ui) = F , then we put the vertex ūi in D̃′. Therefore, we
have |D̃′| = n. For j = 1, 2, . . . , m, at least one of the literals in Cj is true under the
assignment f , because the mapping f is a satisfying truth assignment for I = (U , C).
So, by the construction of G, the vertex in correspondence to Cj in G is adjacent to
at least one vertex in D̃′. Then, D = D̃′ ∪ (

⋃n
i=1 {xi, yi}) ∪ {s2} is a dominating set

for G. On the other hand, the induced graph G[V \ D] is connected. Hence, D is
an outer-connected dominating set for G and γ̃c(G) ≤ |D| = 3n+1. By Claim 5.1.1,
we have γ̃c(G) ≥ 3n+ 1. Therefore, we obtain γ̃c(G) = 3n+ 1.

Claim 5.1.4. For every e ∈ E(G), we have γ̃c(G− e) ≤ 3n+ 2.

Proof. Suppose that E ′ = {{s2, s3}, {s2, s4}, {s1, cj}, {ui, vi}, {yi, ūi}, {t, s1}, {vi, ūi},
{t, ūi}} and E ′′ = E \ E ′. Let e ∈ E ′′ be an edge. It is clear that the set D′ =
(
⋃n

i=1 {xi, yi, ui}) ∪ {s1, s2} is an outer-connected dominating set for G − e, since
every vertex in V \ D′ is adjacent to a vertex in D′ due to an edge in E ′, and the
induced graph (G−e)[V \D′] is connected. This connection is established by vertices
t and si for i �= 1, 2. Given that |D′| = 3n + 2, then γ̃c(G − e) ≤ 3n + 2. We have
four cases to consider:

Case 1: If either e = {s2, s3}, e = {s1, cj} or e = {t, s1}, then

D′ = (
n⋃

i=1

{xi, yi, ui}) ∪ {s3, s2}
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is an outer-connected dominating set for G − e and γ̃c(G − e) ≤ |D′| =
3n + 2.

Case 2: If e = {s2, s4}, then D′ = (
⋃n

i=1 {xi, yi, ui})∪{s4, s2} is an outer-connected
dominating set for G− e and γ̃c(G− e) ≤ |D′| = 3n+ 2.

Case 3: If either e = {yi, ūi}, e = {ūi, vi} or e = {ui, vi}, then

D′ = (

n⋃
i=1

{xi, yi, vi}) ∪ {s1, s2}

is an outer-connected dominating set for G − e and γ̃c(G − e) ≤ |D′| =
3n + 2.

Case 4: If e = {t, ūi}, then D′ = (
⋃n

i=1 {xi, yi, ūi})∪{s1, s2} is an outer-connected
dominating set for G− e and γ̃c(G− e) ≤ |D′| = 3n+ 2.

Claim 5.1.5. γ̃c(G) = 3n+ 1 if and only if bOCD(G) = 1.

Proof. First, suppose that γ̃c(G) = 3n + 1. Let e = {s1, s2} and γ̃c(G) = γ̃c(G− e).
If D̃ is a γ̃-set of G − e, then D̃ is a γ̃-set for G of cardinality 3n + 1. By Claim
5.1.2, we have cj , t /∈ D̃ for j = 1, 2, . . . , m and D̃ ∩ V (S) = {s2}. So, the vertex
s1 is not dominated by D̃, which is a contradiction. Hence, γ̃c(G) < γ̃c(G − e). So,
bOCD(G) = 1.

Next, assume that bOCD(G) = 1. By Claim 5.1.1, it follows that γ̃c(G) ≥ 3n+ 1.
Suppose that e is an edge such that γ̃c(G) < γ̃c(G − e). By Claim 5.1.4, we have
3n + 1 ≤ γ̃c(G) < γ̃c(G− e) ≤ 3n+ 2 which implies that γ̃c(G) = 3n+ 1.

6 Conclusion

In this paper, we have shown the NP-hardness of the outer-connected bondage and
the outer-connected reinforcement decision problems for general graphs. Also we
have obtained the exact values of the outer-connected bondage number and the
outer-connected reinforcement number for several classes of graphs.
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