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Abstract

Let G be a simple k-regular graph and let � ≤ k be a positive integer.
Then, (a) for every subset E1 of E(G) having at most � �

2
� elements,

there exists a fractional �-factor of G with indicator function h such that
h(e) = 1 for every e ∈ E1 and (b) for every subset E1 of E(G) having at
most �k−�

2
� elements there exists a fractional �-factor of G with indicator

function h such that h(e) = 0 for every e ∈ E1.

1 Introduction and Terminology

All graphs considered are assumed to be simple and finite. We refer the reader to [3]
for standard graph theoretic terms not defined in this paper.

Let G be a graph. The degree dG(u) of a vertex u in G is the number of edges of
G incident with u. If X and Y are subsets of V (G), the set of the edges of G joining
X to Y is denoted by EG(X, Y ). For any set X of vertices in G, the neighbour set
of X in G is denoted by NG(X). If e is an edge of G having u and v as end-vertices,
then the edge e is also denoted by uv. We say that we insert a vertex of degree 2 to
an edge e of G when we delete e and replace it by a path of length 2 connecting its
ends, the internal vertex of this path being a new vertex. A graph G is k-regular if
dG(x) = k for all x ∈ V (G).

A bipartite graph is one whose vertex set can be partitioned into two subsets X
and Y , so that each edge has one end in X and one end in Y ; such a partition (X, Y )
is called a bipartition of the graph.

For any set S of vertices in a graph G, we denote by G−S the subgraph obtained
from G by deleting all the vertices belonging to S together with their incident edges.
For any set X of edges in G, the subgraph of G induced by X will be denoted by
G[X].

Let g and f be two nonnegative integer-valued functions defined on V (G) such
that g(x) ≤ f(x) for each x ∈ V (G) and let h : E(G) �→ [0, 1] be a function such
that g(x) ≤ dhG(x) ≤ f(x) for every x ∈ V (G), where dhG(x) =

∑
e∈E(x) h(e) and

E(x) denotes the set of edges incident with vertex x. If we define Fh = {e ∈ E(G) :
h(e) > 0}, then we call G[Fh] a fractional (g, f)-factor of G with indicator function

ISSN: 2202-3518 c©The author(s). Released under the CC BY-ND 4.0 International License



P. KATERINIS /AUSTRALAS. J. COMBIN. 73 (3) (2019), 432–439 433

h. If g(x) = f(x) for all x ∈ V (G), then we will call such a fractional (g, f)-factor
a fractional f -factor. If f(x) = � for every x ∈ V (G), then a fractional f -factor is
called a fractional �-factor. Furthermore, if function h takes only integral values (0
and 1), then a fractional f -factor and fractional �-factor are called f -factor and �-
factor respectively. Thus, an �-factor of a graph G is an �-regular spanning subgraph
of that graph. The following necessary and sufficient conditions for a graph to have a
fractional (g, f)-factor were obtained by Anstee [2]. Liu and Zhang[5] later presented
a simple proof.

Theorem 1.1 Let G be a graph and let g, f be two nonnegative integer-valued func-
tions defined on V (G) such that g(x) ≤ f(x) for all x ∈ V (G). Then, G has a
fractional (g, f)-factor if and only if for any S ⊆ V (G),

∑
x∈T

(g(x)− dG−S(x)) ≤
∑
x∈S

f(x)

where T = {x ∈ V (G)− S : dG−S(x) ≤ g(x)}.

There exists a rich literature on the existence of an �-factor in a regular graph.
More specifically, many results can be found in [1, 4, 6, 7, 8] related to the existence
of an �-factor in a regular graph containing or excluding specified edges. The main
purpose of this paper is to present a similar study on the existence of a fractional
�-factor in a k-regular graph containing a number of prescribed edges to which its
indicator function assigns the integral value 1 for each included edge or the integral
value 0 for each excluded edge. The result of this effort is the proof of the following
two theorems.

Theorem 1.2 Let G be a k-regular graph and let � ≤ k be a positive integer. Then
for every subset E1 of E(G) having at most � �

2
� elements, there exists a fractional

�-factor of G with indicator function h such that h(e) = 1 for every e ∈ E1.

Theorem 1.3 Let G be a k-regular graph and let � ≤ k be a positive integer. Then
for every subset E1 of E(G) having at most �k−�

2
� elements there exists a fractional

�-factor of G with indicator function h such that h(e) = 0 for every e ∈ E1.

2 Proofs of the Main Results

For the proof of Theorem 1.2, we will use the following lemma.

Lemma 2.1 Let G be a k-regular graph and let � be a positive integer, where � ≤ k.
Let also S be a subset of V (G) and define T0 = {x ∈ V (G)−S : dG−S(x) ≤ �}. Then
for every subset E1 of E(G) satisfying |E1| ≤ � �

2
� and every subset T of T0,

�|T | −
∑
x∈T

dG−S(x) ≤ �|S| − 2|E1 ∩ EG(S, S)| − |E1 ∩ EG(S, V (G)− (S ∪ T ))|.
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Proof: We first define Ri = {x ∈ T : dG−S(x) = i} and |Ri| = ri for i = 0, 1, . . . , �. If
we use the fact that G is k-regular, then we obtain

�∑
i=0

(k − i)ri = |EG(S, T )| = k|S| − 2|EG(S, S)| − |EG(S, V (G)− (S ∪ T ))|. (2.1)

Thus,

�∑
i=0

�

k
(k − i)ri = �|S| − �

k
(2|EG(S, S)|+ |EG(S, V (G)− (S ∪ T ))|)

and so

�∑
i=0

(�−i)ri+

�∑
i=0

i(k − �)

k
ri = �|S|− �

k
(2|EG(S, S)|+ |EG(S, V (G)−(S∪T ))|), (2.2)

since �
k
(k − i) = (�− i) + i(k−�)

k
.

At this point, we consider the following cases:

Case 1:
∑�

i=0 iri ≥ 2|EG(S, S)|+ |EG(S, V (G)− (S ∪ T ))|.
Then, (2.2) implies

�∑
i=0

(l − i)ri ≤ l|S| − (2|EG(S, S)|+ |EG(S, V (G)− (S ∪ T ))|)

and so Lemma 2.1 holds in this case.

Case 2:
∑�

i=0 iri < 2|EG(S, S)|+ |EG(S, V (G)− (S ∪ T ))|.
If we use the hypothesis of Case 2 and since

∑�
i=0 ri = |T |, then (2.1) yields

|S| ≥ |T |+ 1.

Thus

�|T | −
�∑

i=0

iri ≤ �(|S| − 1)−
�∑

i=0

iri

≤ �|S| − �

≤ �|S| − 2

⌊
�

2

⌋
. (2.3)

But |EG(S, S) ∩E1|+ |EG(S, V (G)− (S ∪ T )) ∩E1| ≤ |E1| ≤
⌊
�
2

⌋
, so we can obtain

from (2.3),

�∑
i=0

(�− i)ri ≤ �|S| − 2|EG(S, S) ∩ E1| − |EG(S, V (G)− (S ∪ T )) ∩ E1|.

Hence Lemma 2.1 also holds in this case. �
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Proof of Theorem 1.2

Suppose that Theorem 1.2 does not hold. Then there exists a k-regular graph G
and a set E1 ⊆ E(G) satisfying the conditions of the hypothesis of Theorem 1.2,
without G possessing a fractional �-factor having the properties implied by Theorem
1.2. Define G1 to be the graph obtained from G by inserting a vertex of degree 2
to every edge belonging to E1. Clearly, G has a fractional �-factor with indicator
function h such that h(e) = 1 for every e ∈ E1 if and only if G1 has a fractional
f -factor satisfying f(x) = 2 for every x ∈ V (G1) − V (G) and f(x) = � for every
x ∈ V (G). So, graph G1 does not possess a fractional f -factor having the properties
mentioned above. Thus by using Theorem 1.1, there exists a subset S1 of V (G1)
such that ∑

x∈T1

(f(x)− dG1−S1(x)) >
∑
x∈S1

f(x) (2.4)

where T1 = {x ∈ V (G1)− S1 : dG1−S1(x) ≤ f(x)}.
We assume that S1 is minimal with respect to (2.4). If this is the case, we can prove
the following claim.

Claim 1 For every x ∈ V (G1)− V (G), x /∈ S1.

Proof: Suppose that there exists u ∈ V (G1) − V (G) such that u ∈ S1. Define
S∗
1 = S1 − {u}. Clearly dG1−S∗

1
(u) ≤ 2 since dG1−S∗

1
(u) ≤ dG1(u) and dG1(u) =

2. So u is an element of the set T ∗
1 = {x ∈ V (G1) − S∗

1 : dG1−S∗
1
(x) ≤ f(x)}.

Furthermore T ∗
1 ⊆ T1 ∪ {u} since dG1−S∗

1
(x) ≥ dG1−S1(x) for every x ∈ V (G1) − S1;

(f(x)− dG1−S1(x)) = 0 for every x ∈ T1 − T ∗
1 , (f(u)− dG1−S1∗(u)) ≥ 0 and

∑
x∈T ∗

1 −{u}
(f(x)− dG1−S∗

1
(x)) =

∑
x∈T ∗

1 −{u}
(f(x)− dG1−S1(x))− |NG1(u) ∩ T ∗

1 |

≥
∑

x∈T ∗
1 −{u}

(f(x)− dG1−S1(x))− 2.

Hence,

∑
x∈T ∗

1

(f(x)− dG1−S∗
1
(x)) =

∑
x∈T ∗

1 −{u}
(f(x)− dG1−S∗

1
(x)) + (f(u)− dG1−S∗

1
(u))

≥
∑

x∈T ∗
1 −{u}

(f(x)− dG1−S1(x))− 2

=
∑
x∈T1

(f(x)− dG1−S1(x))− 2.

Thus by (2.4),

∑
x∈T ∗

1

(f(x)− dG1−S∗
1
(x)) >

∑
x∈S1

f(x)− 2 =
∑
x∈S∗

1

f(x),

contradicting the minimality of S with respect to (2.4). Hence, Claim 1 holds. �
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So, by proving Claim 1, we have actually obtained that V (G1) − V (G) ⊆ T1,
since dG1−S1(x) ≤ 2 = f(x) for x ∈ V (G1)− V (G). Define

X1 = {x ∈ V (G1)− V (G) : NG1(x) ⊆ S1},
X2 = {x ∈ V (G1)− V (G) : NG1(x) ⊆ V (G1)− S1},
X3 = {x ∈ V (G1)− V (G) : |NG1(x) ∩ S1| = 1},
X4 = {x ∈ V (G1)− V (G) : |NG1(x) ∩ T1| = 1},
X3,1 = X3 ∩X4,

X3,2 = X3 −X3,1.

Note that V (G1)− V (G) = X1 ∪X2 ∪X3, X3 = X3,1 ∪X3,2 and

dG1−S1(x) =

⎧⎨
⎩

0, x ∈ X1,
2, x ∈ X2,
1, x ∈ X3.

In addition, we define S = S1, T = T1 − (V (G1)− V (G)) and T0 = {x ∈ V (G)− S :
dG−S(x) ≤ f(x)} for use with Lemma 2.1. Clearly T ⊆ T0, since dG−S(x) ≤ dG1−S(x)
for every x ∈ T . More precisely, for every x ∈ T we have dG1−S1(x) = dG−S(x) +
|NG1(x) ∩X3,1|, so that

∑
x∈T1

f(x)−
∑
x∈T1

dG1−S1(x) = 2|X1|+ |X3|+
∑
x∈T

f(x)−
∑
x∈T

dG1−S1(x)

= 2|X1|+ |X3,1|+ |X3,2|+
∑
x∈T

f(x)

−
∑
x∈T

dG−S(x)−
∑
x∈T

|NG1(x) ∩X3,1|

= 2|X1|+ |X3,2|+
∑
x∈T

f(x)−
∑
x∈T

dG−S(x)

by using the fact that
∑

x∈T |NG1(x) ∩X3,1| = |X3,1|. Thus by (2.4),

∑
x∈T

f(x)−
∑
x∈T

dG−S(x) >
∑
x∈S

f(x)− 2|X1| − |X3,2|. (2.5)

But |X3,2| = |E1 ∩ EG(S, V (G)− (S ∪ T ))|, |X1| = |E1 ∩ EG(S, S)| and f(x) = � for
x ∈ S ∪ T . Thus (2.5) yields

�|T | −
∑
x∈T

dG−S(x) > �|S| − 2|E1 ∩ EG(S, S)| − |E1 ∩ EG(S, V (G)− (S ∪ T ))|

contradicting Lemma 2.1. Therefore Theorem 1.2 holds. �

Proof of Theorem 1.3

If we define G1 = G − E1, then it suffices to show that G1 possesses a fractional
�-factor. Suppose that this does not hold. Then by Theorem 1.1, there exists a
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subset S of V (G1) such that

�|T | −
∑
x∈T

dG1−S(x) > �|S|, (2.6)

where T = {x : x ∈ V (G1)− S, dG1−S(x) ≤ �}. We also have

k|T | −
∑
x∈T

dG−S(x) = |EG(S, T )| ≤ k|S| (2.7)

by using the fact that G is k-regular. But

∑
x∈T

dG1−S(x) ≥
∑
x∈T

dG−S(x)− 2|E1|

≥
∑
x∈T

dG−S(x)− 2

⌊
k − �

2

⌋
,

so 2.6 implies

�|T | −
∑
x∈T

dG−S(x) + 2

⌊
k − �

2

⌋
> �|S|. (2.8)

Furthermore, (2.6) yields |T | ≥ |S|+ 1. Hence we can obtain from (2.7)

�|T | −
∑
x∈T

dG−S(x) + (k − �) ≤ �|S|

contradicting (2.8). Therefore G1 has a fractional �-factor and thus Theorem 1.3
holds. �

3 Remarks on the Sharpness of the Results

We will show in this section that Theorems 1.2 and 1.3 are in some sense best possible.
More precisely, we will show that the number of edges of a k-regular graph to which
the indicator function assigns integral values, either 1 or 0, cannot be increased.
We will first describe a family of graphs G which constitutes a counterexample to
an opposite claim for Theorem 1.2. Let �, k be positive integers such that k is
even and � ≤ k − 1. We start from a k-regular bipartite graph H with bipartition
(X, Y ) where |X| = |Y | = r. Let u ∈ Y , NH(u) = {u1, u2, . . . , uk} and define G
to be the graph obtained from H after the deletion of vertex u and the addition of
the independent edges u1u2, u3u4, . . . , uk−1uk. Clearly, G is also a k-regular graph.
Define M = E(G) − E(H) and let Q ⊆ M such that |Q| = � �

2
� + 1. We will show

that the family of graphs G does not contain a fractional �-factor with indicator
function h such that h(e) = 1 for every e ∈ Q. For the proof of the above claim,
we work as follows. Let G1 be the graph obtained from G after the insertion of a
vertex of degree 2 to every edge belonging to Q. Clearly, G possesses a fractional
�-factor with indicator function h such that h(e) = 1 for every e ∈ Q if and only if
G1 has a fractional f -factor satisfying f(x) = � for every x ∈ V (G) and f(x) = 2
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for every x ∈ V (G1)− V (G). But the latter does not hold, because if we let S = X,
T = {x ∈ V (G1)− S : dG1−S ≤ f(x)} = (Y − {u}) ∪ (V (G1)− V (G)), then

∑
x∈T

f(x)−
∑
x∈T

dG1−S(x) >
∑
x∈S

f(x)

since
∑

x∈T f(x) = 2(� �
2
� + 1) + �(r − 1),

∑
x∈T dG1−S(x) = 0 and

∑
x∈S f(x) = �r.

Hence the family of graphs G, we have just described, shows that Theorem 1.2
will not hold if the number of edges to which the indicator function assigns the value
1 is slightly higher.

We will next show that the number of edges to which the indicator function assigns
the value 0 in Theorem 1.3 also cannot be increased. The family of graphs G which
constitutes a counterexample to an opposite claim are constructed as follows. Let �, k
be positive integers such that k is even and � ≤ k. We start from a k-regular graph
H with bipartition (X, Y ) where |X| = |Y | = r. Let u ∈ Y,NH(u) = {u1, u2, . . . , uk}
and define G to be the graph obtained from H after the deletion of vertex u and the
addition of the independent edges u1u2, u3u4, . . . , uk−1uk. It is obvious that G is also
a k-regular graph. Define M = E(G)−E(H), let Q ⊆ M such that |Q| = �k−�

2
�+ 1

and let G1 = G − Q. We will show that G1 does not possess a fractional �-factor.
Let S = Y − {u} and T = {x ∈ V (G1)− S : dG1−S(x) ≤ �} = X . Then

�|T | −
∑
x∈T

dG1−S(x) > �|S|

since |T | = r, |S| = r− 1 and
∑

x∈T dG1−S(x) = k − 2(�k−�
2
�+ 1). Thus G1 does not

contain a fractional �-factor. But G1 possesses a fractional �-factor if and only if G
contains a fractional �-factor with indicator function which assigns the value 0 to all
the elements of Q. Hence the family of graphs G, we have just described, shows that
Theorem 1.3 is also best possible.

Finally, a natural question that may arise is whether we can obtain a sufficient
condition for the existence of a fractional factor in a regular graph having indicator
function assigning to some prescribed edges the value 1 and to some others the value
0. We will describe a family of graphs G in order to show that this is not the case.
Let H be a k-regular bipartite graph with bipartition (X, Y ) where |X| = |Y | = r,
X = {u1, u2, . . . , ur}, Y = {v1, v2, . . . , vr} and let e1, e2 be two independent edges
of H having {ud, vm},{ut, vz} as sets of end-vertices respectively. Let also G be the
graph obtained from H by deleting the edges e1, e2 and by adding the edges udut

and vmvz. Clearly, G is also a k-regular graph. Furthermore, G does not contain a
fractional �-factor with indicator function h such that h(udut) = 1 and h(vmvz) = 0.
For the proof of the above claim, we work as previously. Let G1 be the graph obtained
from G by deleting the edge vmvz and by inserting a vertex of degree 2 to the edge
udut and let u be this new vertex. We have that graph G contains a fractional
�-factor with indicator function h such that h(udut) = 1 and h(vmvz) = 0 if and
only if G1 possesses a fractional f -factor such that f(u) = 2 and f(x) = � for every
x ∈ V (G). But, G1 does not contain such a fractional f -factor because if X = S and
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T = {x ∈ V (G1)− S : dG1−S(x) ≤ f(x)} = Y ∪ {u}, then
∑
x∈T

f(x)−
∑
x∈T

dG1−S(x) >
∑
x∈S

f(x)

since
∑

x∈T f(x) = r�+ 2,
∑

x∈T dG1−S(x) = 0 and
∑

x∈S f(x) = r�.
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