The Gale-Ryser theorem modulo k

Richard A. Brualdi
Department of Mathematics
University of Wisconsin, Madison, WI 53706
U.S.A.
brualdi@math.wisc.edu

Seth A. Meyer
Department of Mathematics
St. Norbert College, De Pere, WI 54115
U.S.A.
seth.meyer@snc.edu

Abstract

The Gale-Ryser theorem determines when there exists a $(0,1)$-matrix with prescribed row and column sum vectors R and S, respectively. We consider a mod k analogue of this theorem and give an algorithm for existence and construction of a matrix with prescribed R and $S \bmod k$. A necessary condition for existence is that the sum of the entries of R and the sum of the entries of S are congruent $\bmod k$. We show that if the size of the matrix is large enough, this condition is also sufficient.

1 Introduction

In this paper we continue our investigations begun in [3] concerning combinatorial properties of matrices over the integers modulo k.

The following theorem is well-known and is easy to prove by a simple recursive algorithm (see e.g. [1]).

Theorem 1.1 Let $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be nonnegative integral vectors. There exists a nonnegative integral matrix A with row sum vector R and column sum vector S if and only if

$$
\begin{equation*}
r_{1}+r_{2}+\cdots+r_{m}=s_{1}+s_{2}+\cdots+s_{n} . \tag{1}
\end{equation*}
$$

Moreover, if (1) holds then there exists such a matrix with at most $m+n-1$ nonzero entries.

Theorem 1.1 characterizes when the set $\mathbb{Z}^{+}(R, S)$ of nonnegative integral matrices with row sum vector R and column sum vector S is nonempty. The classical GaleRyser theorem is a specialization of Theorem 1.1 whereby the entries of the matrix A are restricted to be zeros and ones.

Let $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ be a nonnegative integral vector with $\max \left\{r_{i}: 1 \leq\right.$ $i \leq m\} \leq n$ for some integer n, and let $R^{*}=\left(r_{1}^{*}, r_{2}^{*}, \ldots, r_{n}^{*}\right)$ be the conjugate of R considered as a partition of the integer τ defined to be $r_{1}+r_{2}+\cdots+r_{m}$. This conjugate is obtained by considering the Ferrers diagram of R, defined to be an $m \times n$ $(0,1)$-matrix in which row i has r_{i} ''s that have been left-justified $(1 \leq i \leq m)$. For each j with $1 \leq j \leq n, r_{j}^{*}$ is the number of 1's in column j of the Ferrers diagram. We have $r_{1}^{*} \geq r_{2}^{*} \geq \cdots \geq r_{n}^{*} \geq 0, r_{1}^{*}+r_{2}^{*}+\cdots+r_{n}^{*}=\tau$, and $r_{j}^{*}=\left|\left\{i: r_{i} \geq j\right\}\right|$ for $1 \leq j \leq n$.

Now let $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be another nonnegative integral vector, and let $\mathcal{A}(R, S)$ be the set of $(0,1)$-matrices in $\mathbb{Z}^{+}(R, S)$. The Gale [4] and Ryser [5] theorem (see also [1]) characterizes when $\mathcal{A}(R, S)$ is nonempty, that is, when $\mathbb{Z}^{+}(R, S)$ contains a (0,1)-matrix. This characterization is in terms of the notion of majorization which we now define.

Let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be two nonnegative integral vectors, and let $X^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$ and $Y=\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{n}^{\prime}\right)$ be, respectively, a reordering of the components of X and Y to get nonincreasing vectors, that is, $x_{1}^{\prime} \geq x_{2}^{\prime} \geq \cdots \geq x_{n}^{\prime}$ and $y_{1}^{\prime} \geq y_{2}^{\prime} \geq \cdots \geq y_{n}^{\prime}$. Then X is majorized by Y, written $X \preceq Y$ provided

$$
\sum_{i=1}^{k} x_{i}^{\prime} \leq \sum_{i=1}^{k} y_{i}^{\prime} \text { for all } k \text { with equality when } k=n
$$

Theorem 1.2 The set $\mathcal{A}(R, S)$ is nonempty if and only if S is majorized by R^{*}. When S is nonincreasing this is
(Gale-Ryser conditions) $\quad \sum_{i=1}^{j} s_{i} \leq \sum_{i=1}^{j} r_{i}^{*}$ for all j with equality when $j=n$.
In the results that follow, Theorem 1.2 is often used with nonincreasing vectors R and S in order to use conditions (2) as written here, but this is not required with the given definition of majorization. Note also that the conditions (2) imply that $r_{i} \leq n$ for all i so that R^{*} can be regarded as a vector with n components by including additional 0's. When (2) holds, the Gale-Ryser algorithm to construct a matrix in $\mathcal{A}(R, S)$ inserts s_{n} 1's in column n in those rows with the largest prescribed row sums (giving preference to the bottommost rows in case of ties) and then proceeds recursively.

Let k be an integer with $k \geq 2$, and let $\left(\mathbb{Z}_{k},+_{k}\right)$ be the additive group of integers modulo k. The set of elements of \mathbb{Z}_{k} is taken to be $\{0,1, \ldots, k-1\}$. The following $\bmod k$ analogue of Theorem 1.1 was established in [2].

Theorem 1.3 Let $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be vectors with entries in \mathbb{Z}_{k}. Then there exists an $m \times n$ matrix with entries in \mathbb{Z}_{k} with mod k row sum vector R and mod k column sum vector S if and only if we have the following congruence modulo k :

$$
\begin{equation*}
r_{1}+r_{2}+\cdots+r_{m} \equiv s_{1}+s_{2}+\cdots+s_{n} \bmod k . \tag{3}
\end{equation*}
$$

Moreover, if (3) holds then there exists such a matrix with at most $m+n-1$ nonzero entries.

Our goal here is to develop a mod k theorem having the same relationship to Theorem 1.3 as Theorem 1.2 has to Theorem 1.1, that is, a mod k Gale-Ryser theorem. Accordingly, let $\mathbb{Z}_{k}(R, S)$ denote the set of all matrices with entries in \mathbb{Z}_{k} whose $\bmod k$ row sum vector is R and whose $\bmod k$ column sum vector is S, where R and S satisfy (3). Let $\mathcal{A}_{k}(R, S)$ denote the set of all (0,1)-matrices in $\mathbb{Z}_{k}(R, S)$.

If $k=2$, that is, if we consider $\mathbb{Z}_{2}=\{0,1\}$, then there is nothing new to investigate since \mathbb{Z}_{2} has only the two elements 0 and 1 , and so $\mathcal{A}_{2}(R, S)$ always equals $\mathbb{Z}_{2}(R, S)$. Thus we now assume that $k \geq 3$. The following examples indicate some of the subtleties that arise in our investigations. If U and V are integral vectors with the same number of components, then we write $U \equiv V \bmod k$ provided corresponding components of U and V are congruent modulo k.

Example 1.4 Let $k=3$ and $R=S=(2,0)$. Then there is a matrix in $\mathbb{Z}_{3}(R, S)$, namely

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]
$$

but, as is easily checked, the Gale-Ryser conditions fail and there does not exist a matrix in $\mathcal{A}(R, S)$, nor a matrix in $\mathcal{A}_{3}(R, S)$.

Now let $R=S=(2,0,0)$. Then again the Gale-Ryser conditions fail and $\mathcal{A}(R, S)$ is empty. Define $R^{\prime}=S^{\prime}=(2,3,3)$ where $R^{\prime} \equiv R \bmod 3$ and $S^{\prime} \equiv S \bmod 3$. Then the Gale-Ryser conditions now hold and thus $\mathcal{A}_{3}(R, S) \neq \emptyset$; indeed the matrix

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

is in $\mathcal{A}_{3}(R, S)$. This example generalizes to vectors $R=S=(2,0, \ldots, 0)$ and $R^{\prime}=S^{\prime}=(2,3, \ldots, 3)$ of arbitrary size at least 3 .

Example 1.5 Let $n=3$, and let $R=(2,2,2)$ and $S=(1,1,1)$. Then there is a matrix in $\mathbb{Z}_{3}(R, S)$, namely

$$
\left[\begin{array}{lll}
2 & 2 & 1 \\
2 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

but there does not exist a $(0,1)$-matrix in $\mathbb{Z}_{3}(R, S)$; in fact, such a matrix would have to have exactly two 1's in each row and only one 1 in each column, an impossibility. Also, since the real sum of the proposed row sums does not equal the real sum of the proposed column sums, there does not exist a matrix in $\mathbb{Z}^{+}(R, S)$.

More generally, let m and n be positive integers. Let $R=(2,2, \ldots, 2)$ be an m-tuple of 2 's, and let $S=(1,1, \ldots, 1)$ be an n-tuple of 1 's. In order that there exists a matrix A in $\mathcal{A}_{3}(R, S)$ we must have

$$
2 m \equiv n \bmod 3
$$

As Example 1.5 shows with $m=n=3$, this does not suffice in general for there to be a matrix in $\mathcal{A}_{3}(R, S)$. But if $m=n=6$, so that now each row of A can contain two or five 1's and each column can contain one or four 1's, there is a matrix in $\mathcal{A}_{3}(R, S)$, for instance, the matrix

In Section 2 we obtain a mod k analogue of the Gale-Ryser algorithm which either uses the Gale-Ryser algorithm to construct a matrix in $\mathcal{A}_{k}(R, S)$ or concludes that no such matrix exists. In Section 3, we show that if m and n are large enough, the necessary condition (3) for the nonemptiness of $\mathcal{A}_{k}(R, S)$ is also sufficient. In Section 4 , we make some final comments.

2 An Algorithm

Examples 1.4 and 1.5 motivate the following discussion.
Let $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be vectors with entries in $\mathbb{Z}_{k}=$ $\{0,1, \ldots, k-1\}$. By Theorem 1.3 a necessary condition for $\mathcal{A}_{k}(R, S)$ to be nonempty is that (3) holds. The following lemma concerning the nonemptiness of $\mathcal{A}_{k}(R, S)$ is now obvious.

Lemma 2.1 The set $\mathcal{A}_{k}(R, S)$ is nonempty if and only if there exist nonnegative integral vectors $R^{\prime}=\left(r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{m}^{\prime}\right)$ and $S^{\prime}=\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{n}^{\prime}\right)$ where $r_{i}^{\prime} \equiv r_{i} \bmod k$ $(1 \leq i \leq m)$ and $s_{j}^{\prime} \equiv s_{j} \bmod k(1 \leq j \leq n)$, such that $\mathcal{A}\left(R^{\prime}, S^{\prime}\right)$ is nonempty, that is, if and only if there exist vectors R^{\prime} and S^{\prime}, obtained from R and S by adding multiples of k to their components, which satisfy the Gale-Ryser conditions.

So the question of nonemptiness of $\mathcal{A}_{k}(R, S)$ reduces to:
(*) Given R and S such that (3) holds, when does there exist R^{\prime} and S^{\prime} with $R^{\prime} \equiv$ $R \bmod k$ and $S^{\prime} \equiv S \bmod k$ such that R^{\prime} and S^{\prime} satisfy the Gale-Ryser conditions (2)?

The following algorithm either constructs a matrix in $\mathcal{A}_{k}(R, S)$ or gives the conclusion that no such matrix exists.

$G R_{k}(R, S)$: Algorithm for the Existence of a Matrix in $\mathcal{A}_{k}(R, S)$

The algorithm takes as input a positive integer $k \geq 3$, and integral vectors $R=$ $\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, with $n \geq r_{1} \geq r_{2} \geq \cdots \geq r_{m}$ and $m \geq s_{1} \geq$ $s_{2} \geq \cdots \geq s_{n}$, and with entries in $\{0,1, \ldots, k-1\}$ such that

$$
\begin{equation*}
r_{1}+r_{2}+\cdots+r_{m} \equiv s_{1}+s_{2}+\cdots+s_{n} \bmod k \tag{4}
\end{equation*}
$$

The algorithm either ends in FAILURE or it outputs integral vectors R^{\prime} and S^{\prime} with $R^{\prime} \equiv R \bmod k$ and $S^{\prime} \equiv S \bmod k$ along with a matrix in $\mathcal{A}\left(R^{\prime}, S^{\prime}\right)$, which is also in $\mathcal{A}_{k}(R, S)$. Assume without loss of generality that the real sums of the components of R and S satisfy $s_{1}+s_{2}+\cdots+s_{n} \leq r_{1}+r_{2}+\cdots+r_{m}$.

To start, copy R and S into new integral vectors $R^{\prime}=\left(r_{1}^{\prime}, \ldots, r_{m}^{\prime}\right)$ and $S^{\prime}=$ $\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right)$. We will update these as the algorithm progresses.
(i) If $r_{1}^{\prime}+r_{2}^{\prime}+\cdots+r_{m}^{\prime}=s_{1}^{\prime}+s_{2}^{\prime}+\cdots+s_{n}^{\prime}$, then go to step (ii). Otherwise, $r_{1}^{\prime}+r_{2}^{\prime}+\cdots+r_{m}^{\prime}>s_{1}^{\prime}+s_{2}^{\prime}+\cdots+s_{n}^{\prime}$ and, by assumption (4), the difference is a multiple of k. If $s_{n}^{\prime}+k>m$, we stop and declare FAILURE. Otherwise we increase the smallest entry of S^{\prime} (that is, s_{n}^{\prime}) by k and sort the new entries giving $S^{\prime \prime}=\left(s_{1}^{\prime \prime}=s_{n}^{\prime}+k, s_{2}^{\prime \prime}=s_{1}^{\prime}, \ldots, s_{n}^{\prime \prime}=s_{n-1}^{\prime}\right)$. Repeat this step, treating $S^{\prime \prime}$ as the new S^{\prime} until FAILURE or directed to step (ii).
(ii) If $S^{\prime} \preceq R^{\prime *}$, then we reorder the entries of R^{\prime} and S^{\prime} so that $R^{\prime} \equiv R \bmod k$ and $S^{\prime} \equiv S \bmod k$ and use the Gale-Ryser algorithm to construct a matrix A in $\mathcal{A}\left(R^{\prime}, S^{\prime}\right)$. We then output R^{\prime}, S^{\prime}, and the matrix A and stop. If $s_{n}^{\prime}+k>m$ or $r_{m}^{\prime}+k>n$, then we stop and declare FAILURE. Otherwise, we increase the smallest entries in R^{\prime} and S^{\prime} (that is, r_{m}^{\prime} and s_{n}^{\prime}) by k and sort the new entries, giving nonincreasing vectors $R^{\prime \prime}=\left(r_{1}^{\prime \prime}=r_{m}^{\prime}+k, r_{2}^{\prime \prime}=r_{1}^{\prime}, \ldots, r_{m}^{\prime \prime}=r_{m-1}^{\prime}\right)$ and $S^{\prime \prime}=\left(s_{1}^{\prime \prime}=s_{n}^{\prime}+k, s_{2}^{\prime \prime}=s_{1}^{\prime}, \ldots, s_{n}^{\prime \prime}=s_{n-1}^{\prime}\right)$ which preserves $r_{1}^{\prime \prime}+r_{2}^{\prime \prime}+\cdots+r_{m}^{\prime \prime}=$ $s_{1}^{\prime \prime}+s_{2}^{\prime \prime}+\cdots+s_{n}^{\prime \prime}$. Repeat this step, treating $R^{\prime \prime}$ and $S^{\prime \prime}$ as the new R^{\prime} and S^{\prime} until failure or the algorithm outputs a valid matrix.

Before verifying this algorithm, we give an example.
Example 2.2 We take $k=4$. Let $m=n=5$, and let $R=(3,3,3,0,0)$ and $S=(1,1,1,1,1)$, where $5=s_{1}+s_{2}+s_{3}+s_{4}+s_{5} \equiv r_{1}+r_{2}+r_{3}+r_{4}+r_{5}=9 \bmod 4$. Since $5<9$, in step (i) we increase s_{5} by 4 which, after sorting, gives $R^{\prime}=(3,3,3,0,0)$ and $S^{\prime}=(5,1,1,1,1)$ with $3+3+3+0+0=5+1+1+1+1$. We now go to step (ii). Since $S^{\prime} \npreceq R^{\prime *}$, we increase both r_{5}^{\prime} and s_{5}^{\prime} by 4 and sort to give the new $R^{\prime}=(4,3,3,3,0)$ and new $S^{\prime}=(5,5,1,1,1)$. Since we still have $S^{\prime} \npreceq R^{\prime *}$, we
increase both the new r_{5}^{\prime} and new s_{5}^{\prime} by 4 and sort to now give $R^{\prime}=(4,4,3,3,3)$ and $S^{\prime}=(5,5,5,1,1)$. Now we have $S^{\prime} \preceq R^{* *}$ and so $\mathcal{A}\left(R^{\prime}, S^{\prime}\right) \neq \emptyset$. In fact, we have

$$
A^{\prime}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right] \in \mathcal{A}\left(R^{\prime}, S^{\prime}\right)
$$

Reversing our sorting, this gives

$$
A=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 1
\end{array}\right] \in \mathcal{A}_{4}(R, S)
$$

We now verify the correctness of the algorithm.
Theorem 2.3 The class $\mathcal{A}_{k}(R, S)$ is nonempty if and only if the $G R_{k}(R, S)$ algorithm terminates with vectors R^{\prime} and $S^{\prime \prime}$ satisfying $S^{\prime} \preceq R^{* *}$ and a matrix in $\mathcal{A}_{k}(R, S)$.

Proof. If the algorithm outputs $A \in \mathcal{A}_{k}(R, S)$, then the class is clearly nonempty.
Conversely, we need to show that if there is a matrix $A \in \mathcal{A}_{k}(R, S)$, then the $G R_{k}(R, S)$ algorithm does not end in FAILURE. For the sake of contradiction, we assume $\mathcal{A}_{k}(R, S) \neq \emptyset$ and the $G R_{k}(R, S)$ algorithm ends in FAILURE.

Suppose the algorithm stops in step (i) with FAILURE. Since the algorithm always adds k to the smallest component of the current column sum vector, it follows that if $S^{\prime \prime}=\left(s_{1}^{\prime \prime}, s_{2}^{\prime \prime}, \ldots, s_{n}^{\prime \prime}\right)$ is any vector obtained from S by successively increasing components by k to get $s_{1}^{\prime \prime}+s_{2}^{\prime \prime}+\cdots+s_{n}^{\prime \prime}=r_{1}+r_{2}+\cdots+r_{m}$, then for at least one i we have $s_{i}^{\prime \prime}>m$. Thus there cannot exist vectors R^{\prime} and S^{\prime}, obtained from R and S, respectively, by adding positive multiples of k to components, such that $\mathcal{A}\left(R^{\prime}, S^{\prime}\right) \neq \emptyset$. This implies that $\mathcal{A}_{k}(R, S)=\emptyset$, a contradiction.

Now suppose the algorithm outputs FAILURE in step (ii), but there exists $A \in$ $\mathcal{A}(\hat{R}, \hat{S})$ for some $\hat{R}=\left(\hat{r}_{1}, \hat{r}_{2}, \ldots, \hat{r}_{m}\right) \equiv R \bmod k$ and $\hat{S}=\left(\hat{s}_{1}, \hat{s}_{2}, \ldots, \hat{s}_{n}\right) \equiv S \bmod k$ where $\hat{S} \preceq \hat{R}^{*}$ by Theorem 1.2. At some point in step (ii) we considered R^{\prime} and S^{\prime} with $r_{1}^{\prime}+r_{2}^{\prime}+\cdots+r_{m}^{\prime}=\hat{r}_{1}+\hat{r}_{2}+\cdots+\hat{r}_{m}$. Both R^{\prime} and \hat{R} are obtained from R by adding multiples of k to the entries of R. Since we obtain R^{\prime} by recursively adding k to the smallest components of R, we have $\hat{R}^{*} \preceq R^{* *}$. Similarly, $S^{\prime} \preceq \widehat{S}$. Thus we have $S^{\prime} \preceq \widehat{S} \preceq \hat{R}^{*} \preceq R^{\prime *}$, and the algorithm would have returned R^{\prime} and S^{\prime}, a contradiction.

In the next section we show that if m and n are large enough in terms of k, then $\mathcal{A}_{k}(R, S) \neq \emptyset$ provided only that the obvious congruence equation (3) holds.

3 An Existence Theorem

Let $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$. Theorem 2.3 provides an algorithm to determine when a class $\mathcal{A}_{k}(R, S)$ is nonempty. If $k \geq \max \{m, n\}$, then $\mathcal{A}_{k}(R, S) \neq$ \emptyset if and only if $\mathcal{A}(R, S) \neq \emptyset$, and thus the Gale-Ryser conditions (2) give a necessary and sufficient condition for $\mathcal{A}_{k}(R, S)$ to be nonempty. If $k=2$, then, for any m and $n, \mathcal{A}_{k}(R, S) \neq \emptyset$ if $\sum_{i=1}^{m} r_{i} \equiv \sum_{j=1}^{n} s_{j} \bmod 2$ by Theorem 1.3. When $k \geq 3$, we now show that if m and n are large enough as a function of k (a linear bound), then the obvious necessary condition (3) guarantees that $\mathcal{A}_{k}(R, S) \neq \emptyset$.

Theorem 3.1 Let k be an integer with $k \geq 2$, and let m and n be integers with $m, n \geq 3 k-1$. Assume that $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ are vectors with $r_{i}, s_{j} \in \mathbb{Z}_{k}=\{0,1, \ldots, k-1\}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$. Then the following are equivalent:
(i) $\mathbb{Z}_{k}(R, S) \neq \emptyset$.
(ii) $\mathcal{A}_{k}(R, S) \neq \emptyset$.
(iii) $\sum_{i=1}^{m} r_{i} \equiv \sum_{j=1}^{n} s_{j} \bmod k$.

Proof. We know that in general (ii) implies (i), and (i) and (iii) are equivalent. Thus we need only show that if $m, n \geq 3 k-1$, then (iii) implies (ii). So we assume that (iii) holds. We refer to the $G R_{k}(R, S)$ algorithm.
Claim 1: Step (i) of $G R_{k}(R, S)$ does not end in failure.
Now let $|R|=\sum_{i=1}^{m} r_{i}$ and $|S|=\sum_{j=1}^{n} s_{j}$, a real sum in both instances, so that $|R| \equiv|S| \bmod k$. Without loss of generality we assume that $|R| \geq|S|$ so that $|R|=|S|+t k$ for some nonnegative integer t. We may recursively add k to the smallest integer in S arriving at a vector, continued to be labelled $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, such that $|R|=|S|$. This new vector S depends on $|R|$ and not on the individual components of R. We now assume that the components of R and S have been rearranged so that as real numbers they are nonincreasing. Since the entries of R have not changed, we continue to have that $r_{i} \in\{0,1, \ldots, k-1\}$ for all i and $|R| \leq m(k-1)$. If the algorithm fails in Step (i), then at some point we obtain a nonincreasing vector $S^{\prime}=\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{n}^{\prime}\right)$ such that $s_{n}^{\prime}>m-k$ and thus $\left|S^{\prime}\right|>$ $n(m-k)=m n-n k$. If $m \geq n$, then using the assumption that $n \geq 3 k-1$, we get

$$
m(k-1) \geq|R|>\left|S^{\prime}\right|>m n-n k \geq m n-m k=m(n-k) \geq m(2 k-1)
$$

a contradiction. If $n>m$, then using that $m \geq 3 k-1$, we have

$$
m(k-1) \geq|R|>\left|S^{\prime}\right|>m n-n k=n(m-k) \geq m(2 k-1)
$$

which is also a contradiction. Thus in either case, in the $G R_{k}(R, S)$ algorithm we succeed to advance to Step (ii). This completes the verification of Claim 1.

We now relabel the new vector obtained from Step (i) using $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ as before, and assume that $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ and S are arranged to be nonincreasing. Thus now $|R|=|S|$. If $S \preceq R^{*}$, then the Gale-Ryser theorem produces a matrix in $\mathcal{A}(R, S)$ and thus a matrix in $\mathcal{A}_{k}(R, S)$. Thus we now assume that $S \npreceq R^{*}$.
Claim 2: $|R|$ satisfies

$$
\begin{equation*}
|R|<(k-1) s_{1} . \tag{5}
\end{equation*}
$$

Let t be the smallest integer such that the t th majorization inequality fails:

$$
\sum_{i=1}^{t-1} s_{i} \leq \sum_{i=1}^{t-1} r_{i}^{*} \text { and } \sum_{i=1}^{t} r_{i}^{*}<\sum_{i=1}^{t} s_{i}, \text { so that } r_{t}^{*}<s_{t}
$$

(If $t=1$, then we are only asserting that $r_{1}^{*}<s_{1}$, that is, that the number of nonzero r_{i} is strictly less than s_{1}.) Since the components of R are from $\{0,1, \ldots, k-1\}$ and those of both R and S are nonincreasing (R^{*} is always nonincreasing by definition), we then have

$$
\begin{aligned}
|R|=\sum_{i=1}^{k-1} r_{i}^{*}=\sum_{i=1}^{t} r_{i}^{*}+\sum_{i=t+1}^{k-1} r_{i}^{*} & <\sum_{i=1}^{t} s_{i}+(k-1-t) r_{t+1}^{*} \\
& \leq \sum_{i=1}^{t} s_{i}+(k-1-t) r_{t}^{*} \\
& <\sum_{i=1}^{t} s_{i}+(k-1-t) s_{t} \\
& \leq t s_{1}+(k-1-t) s_{1}=(k-1) s_{1}
\end{aligned}
$$

This completes the verification of Claim 2.
Claim 3: The largest component s_{1} of S satisfies $s_{1}<2 k-1$.
If $s_{1} \leq k$, then the claim certainly holds, so we assume that $s_{1}>k$. Since $s_{1}>k$ and $s_{n}+k \geq s_{1}$, we also have

$$
|S|=\sum_{i=1}^{n} s_{i} \geq s_{1}+(n-1) s_{n} \geq s_{1}+(n-1)\left(s_{1}-k\right)=n s_{1}-k n+k
$$

Combining this with (5), we get

$$
\begin{equation*}
n s_{1}-k n+k \leq|S|=|R|<s_{1}(k-1) . \tag{6}
\end{equation*}
$$

Using (6) and the assumption that $n \geq 3 k-1$, we get

$$
s_{1}<\frac{k n-k}{n-k+1}=k+\frac{k(k-2)}{n-k+1} \leq k+\frac{k(k-2)}{2 k}<\frac{3 k}{2} \leq 2 k-1 .
$$

This completes the verification of Claim 3.

The remainder of the proof depends on which of m and n is larger. We only consider in detail the case when n is as least as large as m.

First assume that $m \leq n$. Since $n \geq 3 k-1 \geq 2 k-1 \geq r_{1}+k$ and $m \geq$ $3 k-1=(2 k-1)+k>s_{1}+k$, we can now add k to each component of R and to the m smallest components of S to obtain, after reordering, nonincreasing vectors $R^{\prime}=\left(r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{m}^{\prime}\right)$ and $S^{\prime}=\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{n}^{\prime}\right)$ with $\left|R^{\prime}\right|=\left|S^{\prime}\right|$.
Claim 4: $S^{\prime} \preceq R^{\prime *}$, and hence, after reordering the rows and columns to match the original R and S, there exists a matrix $A \in \mathcal{A}\left(R^{\prime}, S^{\prime}\right)$ where $A \in \mathcal{A}_{k}(R, S)$.

Since the components of S originally were also in $\{0,1, \ldots, k-1\}$, the recursive process of adding k to the smallest component implies that the components of S^{\prime} lie in an interval $l, l+1, \ldots, l+k$ (for some $l \geq 0$) of $k+1$ consecutive integers (thus $s_{n}^{\prime}+k \geq s_{1}^{\prime}$). The sums in the majorization assertion satisfy:

$$
\sum_{i=1}^{t} r_{i}^{\prime *}=\left\{\begin{array}{cl}
m t, & \text { if } t \leq k \tag{7}\\
m k+\sum_{i=1}^{t-k} r_{i}^{*}, & \text { if } k<t<2 k-1 \\
\left|R^{\prime}\right|, & \text { if } 2 k-1 \leq t
\end{array}\right.
$$

and

$$
\begin{equation*}
\sum_{i=1}^{t} s_{i}^{\prime} \leq t k+\sum_{i=1}^{t} s_{i} \tag{8}
\end{equation*}
$$

The majorization assertion in the claim is verified in three parts.
(a) First, if $t \geq 2 k-1$, then

$$
\sum_{i=1}^{t} s_{i}^{\prime} \leq\left|S^{\prime}\right|=\left|R^{\prime}\right|=\sum_{i=1}^{t} r_{i}^{\prime *}
$$

(b) Next, suppose that $t \leq k$. Then, combining (7) and the fact that every entry in S^{\prime} is less than m,

$$
\sum_{i=1}^{t} s_{i}^{\prime} \leq t s_{1} \leq t m=\sum_{i=1}^{t} r_{i}^{*}
$$

(c) Finally suppose that $k<t<2 k-1$. Then we do some calculation. We have

$$
\begin{aligned}
m & \geq 3 k-2 \\
m-2 t & \geq 3 k-2-2 t \\
m-k-t & >m-2 t \geq 3 k-2-2 t \\
m-t & >4 k-2-2 t=2(2 k-1-t), \text { and so, } \\
\frac{m-t}{2 k-1-t} & >2
\end{aligned}
$$

Combining this inequality with claims 2 and 3 , we get

$$
|R|<s_{1}(k-1)<2 k(k-1)<\frac{m-t}{2 k-1-t} k(k-1),
$$

and so

$$
\begin{align*}
|R| \frac{2 k-1-t}{k-1} & <k(m-t) \\
|R|\left(\frac{k-1}{k-1}-\frac{t-k}{k-1}\right) & <k m-t k \\
|R|+t k & <k m+\frac{t-k}{k-1}|R| \tag{9}
\end{align*}
$$

Since each entry of R is at most $k-1$ and thus R^{*} has at most $k-1$ nonzero components, the average of the components of R^{*} is at least $\frac{|R|}{k-1}$ and thus the sum of the first $t-k$ (therefore the largest) components of R^{*} is at least $\frac{t-k}{k-1}|R|$. Hence

$$
\begin{equation*}
\sum_{i=1}^{t} r_{i}^{\prime *} \geq k m+\frac{t-k}{k-1}|R| \tag{10}
\end{equation*}
$$

From (8),

$$
\begin{equation*}
\sum_{i=1}^{t} s_{i}^{\prime} \leq t k+\sum_{i=1}^{t} s_{i} \leq t k+|S|=t k+|R| \tag{11}
\end{equation*}
$$

Combining (9), (10), and (11), we get

$$
\sum_{i=1}^{t} s_{i}^{\prime} \leq t k+|R| \leq m k+\frac{t-k}{k-1}|R| \leq \sum_{i=1}^{t} r_{i}^{*}
$$

Thus the majorization inequality holds if $k<t<2 k-1$ and this completes the verification of Claim 4.

In the case when $m>n$, we add k to all the components of S and to the n smallest components of R. We get an inequality similar to (7) of the form

$$
\sum_{i=1}^{t} r_{i}^{\prime *}=\left\{\begin{array}{cl}
n t+\alpha, & \text { if } t \leq k \\
n k+\sum_{i=1}^{t-k} r_{i}^{*}+\beta, & \text { if } k<t<2 k-1 \\
\left|R^{\prime}\right|, & \text { if } 2 k-1 \leq t
\end{array}\right.
$$

where α and β are nonnegative quantities coming from the largest $m-n$ components of R that do not get changed and so become the smallest components of R^{\prime}, and (8) becomes an equality (which does not change the argument). The remainder of the verification of the majorization inequalities is very similar to the case when $n \geq m$, and we omit the details.

Remark 3.2 As can be seen in Example 1.5, some version of the hypothesis in Theorem 3.1 requiring n and m to be large relative to k is necessary for the conclusion to hold. While our proof uses $3 k-1$ as a lower bound, this bound is not tight in general. It is very likely that the constant 3 in the linear bound in terms of k can be replaced with 2 . If $k=3$, it is not difficult to show that $m, n \geq 4$ suffice. The next example shows that in general a lower bound of $2 k-3$ does not guarantee the existence of a matrix in $\mathcal{A}_{k}(R, S)$.

Example 3.3 Let k be an integer with $k \geq 2$, and let $n=2 k-3$. The vectors $R=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ with $s_{i}=k-1>r_{i}=k-2$ for $1 \leq i \leq k$ and $s_{i}=r_{i}=k-1$ for $k+1 \leq i \leq n$. Then

$$
r_{1}+r_{2}+\cdots+r_{n} \equiv s_{1}+s_{2}+\cdots+s_{n} \bmod k
$$

and so by Theorem 1.3 there is an $n \times n$ matrix with entries in \mathbb{Z}_{k} with $\bmod k$ row sum vector R and mod k column sum vector S. However, the algorithm $G R_{k}(R, S)$ fails in step (i) because the vectors R and S have different real sums, and adding k to the smallest entry in R gives $2 k-2>n$.

4 Coda

A different approach for a $\bmod k$ analogue of the Gale-Ryser theorem is also possible.
Let $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be vectors with $r_{i}, s_{j} \in \mathbb{Z}_{k}=$ $\{0,1, \ldots, k-1\}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$, such that $\sum_{i=1}^{m} r_{i} \equiv \sum_{j=1}^{n} s_{j} \bmod k$ but $\mathcal{A}_{k}(R, S)=\emptyset$. Suppose that we extend R to an m^{\prime}-vector R^{\prime} by including an additional $m^{\prime}-m \geq 0$ components equal to zero and extend S to an n^{\prime}-vector S^{\prime} by including an additional $n^{\prime}-n \geq 0$ components equal to zero. Then it follows that $\mathcal{A}(R, S) \neq \emptyset$ if and only if $\mathcal{A}\left(R^{\prime}, S^{\prime}\right) \neq \emptyset$ but, while $\mathcal{A}_{k}(R, S) \neq \emptyset$ trivially implies that $\mathcal{A}_{k}\left(R^{\prime}, S^{\prime}\right) \neq \emptyset$, we may have $\mathcal{A}_{k}(R, S)=\emptyset$ but $\mathcal{A}_{k}\left(R^{\prime}, S^{\prime}\right) \neq \emptyset$.

Example 4.1 With $k=3$, let $m=n=3$, and let $R=(2,2,2)$ and $S=(1,1,1)$. As pointed out in Example 1.5, there does not exist a $(0,1)$-matrix in $\mathcal{A}_{3}(R, S)$. With $R^{\prime}=(2,2,2,0)$ and $S^{\prime}=S=(1,1,1)$, the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

in $\mathcal{A}_{3}\left(R^{\prime}, S^{\prime}\right)$.

A more general possibility is the following. Let $k \geq 2$ and $l \geq 2$ be integers, and let $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be nonnegative integral vectors. What are necessary and sufficient conditions that there exist a nonnegative integral matrix (respectively, a $(0,1)$-matrix) A such that the $\bmod k$ row sums of A equal R and the $\bmod l$ column sums of A equal S ? Let $\mathbb{Z}_{k, l}^{+}(R, S)$ be the set of all nonnegative integral matrices with mod k row sum vector equal to R and $\bmod l$ column sum vector equal to S. Let $\mathcal{A}_{k, l}(R, S) \subseteq \mathbb{Z}_{k, l}^{+}(R, S)$ be the set of all $(0,1)$-matrices with $\bmod k$ row sum vector equal to R and mod l column sum vector equal to S.

Example 4.2 Let $k=3$ and $l=2$, and let $R=(1,1,1,2)$ and $S=(1,1,0,0,1)$. Then

$$
A=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

has mod 3 row sum vector R and mod 2 column sum vector S. Thus $A \in \mathcal{A}_{3,2}(R, S)$.

Perhaps a more approachable but still interesting possibility is to take one of k and l equal to ∞ and interpret \mathbb{Z}_{∞}^{+}as the nonnegative integers using real arithmetic. Then $\mathbb{Z}_{\infty, \infty}^{+}(R, S)$ is what we have previously called $\mathbb{Z}^{+}(R, S)$, and $\mathcal{A}_{\infty, \infty}(R, S)$ is $A(R, S)$. We can also consider $\mathbb{Z}_{k, \infty}^{+}(R, S)$ and $\mathcal{A}_{k, \infty}(R, S)$.

Let $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ be a vector with $r_{i} \in \mathbb{Z}_{k}=\{0,1, \ldots, k-1\}$ for $1 \leq i \leq m$, and let $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be a vector with $s_{j} \in \mathbb{Z}^{+}$. Assume that $s_{1}+s_{2}+\cdots+$ $s_{n} \geq r_{1}+r_{2}+\cdots+r_{m}$. Suppose there exists a matrix $A \in \mathcal{A}_{k, \infty}(R, S)$, and let $\tau=\left(s_{1}+s_{2}+\cdots+s_{n}\right)-\left(r_{1}+r_{2}+\cdots+r_{m}\right)$. Then $\tau \in \mathbb{Z}$ and $\tau \equiv 0 \bmod k$, say $\tau=p k$ where $p \geq 0$. This leads to the following simple algorithm to determine the nonemptiness of $\mathcal{A}_{k, \infty}(R, S)$:

- Start with R and its Ferrers diagram F (including empty rows if some components of R equal 0).
- Iteratively insert k 1's in the row of F with the smallest sum until $p k$ 1's have been inserted. The result is the Ferrers diagram \widetilde{F} of a vector \widetilde{R} whose conjugate is \widetilde{R}^{*}.
- Then $\mathcal{A}_{k, \infty}(R, S) \neq \emptyset$ if and only if $S \preceq \widetilde{R}^{*}$.

The justification is: $\mathcal{A}_{k, \infty}(R, S) \neq \emptyset$ if and only if some way of iteratively inserting k 1's in the rows of F gives a vector \widehat{R} whose conjugate \widehat{R}^{*} satisfies $S \preceq \widehat{R}^{*}$. By always inserting k 1's in the row with the smallest sum guarantees that $\widehat{R}^{*} \preceq \widetilde{R}^{*}$.

Example 4.3 Let $k=3$ and let $R=(2,2,1,0,0)$ and $S=(3,3,3,2,2,1)$, and consider $\mathcal{A}_{3, \infty}(R, S)$. Then $\tau=9=3 \cdot 3$ and $R^{*}=(3,2,0,0,0)$. Using the above algorithm, we get $\widetilde{R}=(2,2,4,3,3)$ and $\widetilde{R}^{*}=(5,5,3,1,0,0)$. We have that $S \preceq \widetilde{R}^{*}$ and so there exists a matrix in $\mathcal{A}(\widetilde{R}, S)$. An example of a matrix in $\mathcal{A}_{3, \infty}(R, S)$ is

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

References

[1] R. A. Brualdi, Combinatorial Matrix Classes, Cambridge University Press, Cambridge, 2006.
[2] R. A. Brualdi and S. A. Meyer, A Gale-Berlekamp permutation switching problem, European J. Combin. 44 (A) (2015), 43-56.
[3] R. A. Brualdi and S. A. Meyer, Combinatorial properties of integer matrices and integer matrices mod k, Lin. Multilin. Algebra 66 (2018), 1380-1402. (Corrigendum, Lin. Multilin. Algebra (2018), (to appear)).
[4] D. Gale, A theorem on flows in networks, Pacific. J. Math. 7 (1957), 1073-1082.
[5] H. J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9 (1957), 371-377.

