Anti-Ramsey multiplicities

Jessica De Silva
California State University
Stanislaus, Turlock, CA, U.S.A.

Xiang Si Michael Tait
Carnegie Mellon University
Pittsburgh, PA, U.S.A.

Yunus Tunçbilek
Yale University, New Haven, CT, U.S.A.
Ruifan Yang
Boston College, Newton, MA, U.S.A.
Michael Young
Iowa State University, Ames, IA, U.S.A.

Abstract

The Ramsey multiplicity constant of a graph H is the minimum proportion of copies of H in the complete graph which are monochromatic under an edge-coloring of K_{n} as n goes to infinity. Graphs for which this minimum is asymptotically achieved by taking a random coloring are called common, and common graphs have been studied extensively, leading to the Burr-Rosta conjecture and Sidorenko's conjecture. Erdős and Sós asked what the maximum number of rainbow triangles is in a 3 -coloring of the edge set of K_{n}, a rainbow version of the Ramsey multiplicity question. A graph H is called r-anti-common if the maximum proportion of rainbow copies of H in any r-coloring of $E\left(K_{n}\right)$ is asymptotically achieved by taking a random coloring. In this paper, we investigate anti-Ramsey multiplicity for several families of graphs. We determine classes of graphs which are either anti-common or not. Some of these classes follow the same behavior as the monochromatic case, but some of them do not. In particular the rainbow equivalent of Sidorenko's conjecture, that all bipartite graphs are anti-common, is false.

1 Introduction

All graphs that we consider will be finite and simple. If H is a subgraph of G, we write $H \subseteq G$ and we say G contains a copy of H. An r-edge-coloring of a graph G is a function with domain $E(G)$ and codomain a set of r colors, $\{1, \ldots, r\}$. Given an edge coloring c of G, a subgraph H of G is said to be monochromatic if for every $e, f \in E(H) c(e)=c(f)$. That is, a subgraph is monochromatic if all its edges are the same color (e.g., Figure (1).

Given a complete graph K_{n} and a subgraph H of K_{n}, it is an interesting question to determine how many monochromatic copies of H are we guaranteed to find in any r-edge-coloring of K_{n}. The maximum number we can guarantee is known as the Ramsey multiplicity. In particular, the Ramsey multiplicity $M_{r}(H ; n)$ is the minimum over all r-edge-colorings of K_{n} of the number of monochromatic copies of H. We consider the Ramsey multiplicity of a graph H with m vertices relative to the number of copies of H in K_{n} via the ratio

$$
C_{r}(H ; n)=\frac{M_{r}(H ; n)}{\binom{n}{m} \frac{m!}{|\operatorname{Aut}(H)|}}
$$

Throughout the paper, m and e refers to the order and size of the subgraph, denoted here with $H . n$ refers to the size of the large complete graph that contains the subgraph. The denominator is the number of copies of H in K_{n} where $\operatorname{Aut}(H)$ is the set of automorphisms of H. Intuitively, this ratio can be thought of as the probability a randomly chosen copy of H in K_{n} is monochromatic. We can obtain an immediate bound on $C_{r}(H ; n)$ by coloring each edge of K_{n} color i independently with probability $\frac{1}{r}$. Under this random coloring, any copy of H in K_{n} is monochromatic with probability $r^{1-e(H)}$. This gives an upper bound on $C_{r}(H ; n)$ of $r^{1-e(H)}$. In [12], Jagger, Š̌̌ovíček, and Thomason show that $C_{r}(H ; n)$ is nondecreasing in n and so since it is also bounded the limit

$$
C_{r}(H)=\lim _{n \rightarrow \infty} C_{r}(H ; n)
$$

exists and is known as the Ramsey multiplicity constant of H [8].
The earliest result in this area was by Goodman in 1959 who proved $C_{2}\left(K_{3}\right)=\frac{1}{4}$ [9]. In 1962, Erdős conjectured that $C_{2}\left(K_{n}\right)=2^{1-\binom{n}{2}}$ for all cliques [6]. Burr and

Figure 1: The vertices $\{a, b, d\}$ form a monochromatic K_{3} in this 4-edge-coloring of this graph.

Rosta later conjectured that for all graphs $H, C_{2}(H)=2^{1-e(H)}$ 4]. We call a graph common if it satisfies the Burr-Rosta conjecture. Sidorenko disproved the BurrRosta conjecture by showing that a triangle with a pendant edge is not common [15]. Thomason disproved the initial conjecture of Erdős by showing that for $p \geq 4$, K_{p} is not common [17]. Sidorenko conjectured instead that all bipartite graphs are common [14], this conjecture is well-known and is referred to as Sidorenko's conjecture. Much work has been done on both the Burr-Rosta conjecture (see, e.g., [4, 9, 11, 12, 15, 16]) and on Sidorenko's conjecture (c.f. [2, 5, 10, 13]). If we instead consider $r>2, H$ is called r-common if $C_{r}(H)=r^{1-e(H)}$. Jagger et al. showed that if a graph G is not r-common, then it is not $(r+1)$-common [12]. In 2011, Cummings and Young proved that no graph containing K_{3} is 3 -common [1]. Cummings et al. determined $M_{3}(K ; n)$ for all $n \in \mathbb{N}$ and, therefore, $C_{3}\left(K_{3}\right)$ [18]. There are many open questions which remain for $r>2$.

We will consider a similar parameter to the Ramsey multiplicity constant by searching for rainbow subgraphs as opposed to monochromatic subgraphs. Given an edge coloring c of G, a subgraph H of G is said to be rainbow if for every pair of distinct edges $e, f \in E(H), c(e) \neq c(f)$. In Figure 1, the edges 13 and 34 form a rainbow copy of P_{2}. In this setting, a minimization problem is uninteresting since it is possible to color all edges the same color and hence contain no rainbow copy of H (assuming $e(H)>1$). Instead, we ask what is the maximum number of rainbow copies of H we can find amongst all edge colorings of K_{n}. Let $\mathrm{rb}_{r}(H ; n)$ be the maximum over all r-edge-colorings of K_{n} of the number of rainbow copies of H and call this the anti-Ramsey multiplicity of H. In this paper, we will build the theory of the anti-Ramsey multiplicity constant and decide r-anti-commonality of various classes of graphs.

2 The anti-Ramsey multiplicity constant

Before we define the anti-Ramsey multiplicity constant, we will first prove that given a graph H, the maximum probability a copy of H is rainbow under a coloring of K_{n} is bounded and monotone as a function of n. As in the Ramsey case, we will consider the anti-Ramsey multiplicity of a graph H with m vertices relative to the number of copies of H in K_{n} via the ratio

$$
\operatorname{rbC}_{r}(H ; n)=\frac{\operatorname{rb}_{r}(H ; n)}{\binom{n}{m} \frac{m!}{|\operatorname{Aut}(H)|}}
$$

For the remainder of this section, fix a graph $H=(V, E)$ with $|V|=m$ and $e(H)=e$.

Proposition 2.1.

$$
\operatorname{rbC}_{r}(H ; n) \geq \frac{\binom{r}{e} e!}{r^{e}}
$$

Proof. We will color the edges of K_{n} uniformly and independently at random from the set $\{1, \ldots, r\}$. In particular, each edge is colored color i with probability $\frac{1}{r}$ for
$i=1, \ldots, r$. The number of possible rainbow edge assignments of a graph with e edges is $\binom{r}{e} e$! and a given edge assignment occurs with probability $\left(\frac{1}{r}\right)^{e}$. Thus the expected probability that a randomly selected copy of H in K_{n} is rainbow is given by $\frac{\binom{r}{e} e!}{r^{e}}$. Therefore there exists a coloring such that this probability is at least $\frac{\binom{r}{e} e!}{r^{e}}$ and since $\operatorname{rbC}_{r}(C ; n)$ is the maximum over all such probabilities, the inequality follows.

Proposition 2.2. For a fixed H,

$$
\operatorname{rbC}_{r}(H ; n)
$$

is monotone nonincreasing in n.
Proof. We will prove that

$$
\frac{\operatorname{rb}_{r}(H ; n)}{\operatorname{rb}_{r}(H ; n-1)} \leq \frac{n}{n-m}
$$

which is equivalent to the proposition. Consider an r-coloring of K_{n} that has exactly $\operatorname{rb}(H ; n)$ rainbow H. Every subgraph K_{n-1} contains at most $\operatorname{rb}_{r}(H ; n-1)$ rainbow H. On the other hand, every H with m vertices is contained in exactly $n-m$ different K_{n-1}. Hence,

$$
(n-m) \operatorname{rb}_{r}(H ; n) \leq n \mathrm{rb}_{r}(H ; n-1)
$$

which proves the desired result.
We are now ready to define the anti-Ramsey multiplicity constant.
Corollary 2.3. The anti-Ramsey multiplicity constant, given by

$$
\operatorname{rbC}_{r}(H)=\lim _{n \rightarrow \infty} \operatorname{rbC}_{r}(H ; n),
$$

exists and is finite.
Proof. By Propositions 2.1 and 2.2, the sequence $\left\{\operatorname{rbC}_{r}(H ; n)\right\}_{n=m}^{\infty}$ is bounded and monotone. Hence by the Monotone Convergence Theorem, the limit exists and is finite.

Note that the anti-Ramsey multiplicity constant has the same lower bound as that of Proposition 2.1, motivating the following definition.

Definition 2.4. For $r \geq m$, we say that H is r-anti-common if

$$
\operatorname{rbC}_{r}(H)=\frac{\binom{r}{e} e!}{r^{e}}
$$

If H is r-anti-common for all $r \geq m, H$ is called anti-common.

3 Anti-common graphs

In this section we will prove anti-commonality for matchings and disjoint unions of stars. We will state but not prove the number of automorphisms for each graph in question and for more details regarding automorphisms of graphs see [3]. Suppose $f(n)$ and $g(n)$ are two real-valued functions. We say

$$
f(n)=O(g(n))
$$

if and only if there exist positive constants C, N such that $|f(n)| \leq C|g(n)|$ for all $n>N$. We will sometimes abuse notation and use big-O notation in a string of inequalities. For example $f(n) \leq g(n)+O(n)$ means there exist C, N such that $f(n) \leq g(n)+C n$ for all $n \geq N$.

Lemma 3.1. $H=(V, E)$ with order m and size e. If

$$
\operatorname{rb}_{r}(H ; n) \leq \frac{n^{m}\binom{r}{e} e!}{|\operatorname{Aut}(H)| r^{e}}+O\left(n^{m-1}\right)
$$

then H is r-anti-common.
Proof. Assume that for n large enough we have $\operatorname{rb}_{r}(H ; n) \leq \frac{n^{m}\binom{r}{e} \text { e! }}{|\operatorname{Aut}(H)| r^{e}}+O\left(n^{m-1}\right)$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\operatorname{rb}_{r}(H ; n)}{\binom{n}{m} \frac{m!}{|\operatorname{Aut}(H)|}} & \leq \lim _{n \rightarrow \infty} \frac{\frac{n^{m}\binom{r}{e} e!}{\operatorname{Aut}(H) \mid r^{e}}+O\left(n^{m-1}\right)}{\binom{n}{m} \frac{m!}{\operatorname{Aut}(H) \mid}} \\
& =\frac{\binom{r}{e} e!}{r^{e}} \lim _{n \rightarrow \infty} \frac{n^{m}+O\left(n^{m-1}\right)}{\binom{n}{m} m!} \\
& =\frac{\binom{r}{e} e!}{r^{e}} \lim _{n \rightarrow \infty} \frac{n^{m}+O\left(n^{m-1}\right)}{n(n-1) \cdots(n-m+1)} \\
& =\frac{\binom{r}{e} e!}{r^{e}} .
\end{aligned}
$$

We will also use the following inequality, often referred to as Maclaurin's inequality.

Fact 3.2. Given positive integers $k \leq l$ and positive real numbers x_{1}, \ldots, x_{l},

$$
\sum_{\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq[l]} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} \leq\binom{ l}{k}\left(\frac{\sum_{i=1}^{n} x_{i}}{l}\right)^{k}
$$

The following lemma will be used in the proof of Theorem 3.4 which generalizes the result to disjoint unions of stars.

Lemma 3.3. Stars are anti-common.
Proof. Consider $S=K_{1, m-1}$ and note that

$$
|\operatorname{Aut}(S)|=(m-1)!
$$

By Lemma 3.1, It suffices to prove that

$$
\operatorname{rb}_{r}\left(K_{1, m-1} ; n\right)=\frac{\binom{r}{m-1} n^{m}}{r^{m-1}}+O\left(n^{m-1}\right)
$$

Given a vertex v of K_{n}, let q_{i} be the number of edges of color i incident with v. Then the number of rainbow copies of S with center v is

$$
\sum_{\left\{i_{1}, i_{2}, \cdots, i_{m-1}\right\} \subseteq[r]} q_{i_{1}} q_{i_{2}} \cdots q_{i_{m-1}} .
$$

Vertices of K_{n} have degree $n-1$, so by Fact 3.2 we have

$$
\sum_{\left\{i_{1}, i_{2}, \cdots, i_{m-1}\right\} \subseteq[r]} q_{i_{1}} q_{i_{2}} \cdots q_{i_{m-1}} \leq\left(\frac{n-1}{r}\right)^{m-1}\binom{r}{m-1} .
$$

Stars with centers v and v^{\prime} are distinct if $v \neq v^{\prime}$, therefore the total number of rainbow copies of S in K_{n} is at most

$$
n\left(\frac{n-1}{r}\right)^{m-1}\binom{r}{m-1}=\frac{\binom{r}{m-1} n^{m}}{r^{m-1}}+O\left(n^{m-1}\right)
$$

Theorem 3.4. Disjoint unions of stars are anti-common.
Proof. Fix positive integers $k \leq m$ and let $\mathcal{P}_{k}^{\geq 2}(m)$ denote the set of integer partitions of m into k parts with each part having size at least 2. For $P=\left\{m_{1}, \ldots, m_{k}\right\} \in$ $\mathcal{P}_{k}^{\geq 2}(m)$, let S_{P} be a disjoint union of k stars with components $S_{P, i}=K_{1, m_{i}-1}$ for $i=1, \ldots, k$. Let $m_{i_{1}}<\cdots<m_{i_{j(P)}}$ be the $j(P)$ distinct sizes of the stars in S_{P} and let M_{s} be the number of stars in S_{P} of size $m_{i_{s}}$. Then defining $\gamma(P)=\prod_{i=1}^{j(P)} M_{i}$!, we have the number of automorphisms of S_{P} is given by

$$
\left|\operatorname{Aut}\left(S_{P}\right)\right|=\gamma(P) \prod_{i=1}^{k}\left(m_{i}-1\right)!
$$

Given $P \in \mathcal{P}_{k}^{\geq 2}(m)$, define

$$
\binom{m-k}{P-1}=\binom{m-k}{m_{1}-1, \ldots, m_{k}-1}
$$

then we want to show

$$
\operatorname{rb}_{r}\left(S_{P} ; n\right)=\binom{m-k}{P-1} \frac{\binom{r}{m-k}\binom{n}{m} m!}{\gamma(P) r^{m-k}}+O\left(n^{m-1}\right)
$$

Claim 3.5.

$$
\sum_{P \in \mathcal{P}_{k}(m)} \gamma(P) \operatorname{rb}_{r}\left(S_{P} ; n\right) \leq \sum_{P \in \mathcal{P}_{k}(m)}\binom{m-k}{P-1} \frac{\binom{n}{m} m!\binom{r}{m-k}}{r^{m-k}}+O\left(n^{m-1}\right)
$$

Proof. Let $\mathcal{C}_{k}(n)$ denote the collection of sets of k vertices in K_{n}. Given $C \in \mathcal{C}_{k}(n)$, we will count the number of rainbow disjoint unions of k stars with exactly m vertices and with C as the centers of the stars. Let $q_{i}(C)$ denote the number of edges of color i incident to any vertex in C, except those edges between two vertices in C. Then the number of rainbow disjoint unions of k stars with m vertices and C as the centers is at most

$$
\begin{equation*}
\sum_{\left\{i_{1}, \ldots, i_{m-k}\right\} \subseteq[r]} q_{i_{1}}(C) \cdots q_{i_{m-k}}(C) \tag{1}
\end{equation*}
$$

Note that $\sum_{i=1}^{r} q_{i}(C)=k(n-1)-\binom{k}{2}$ and so by Fact 3.2,

$$
\sum_{\left\{i_{1}, \ldots, i_{m-k}\right\} \subseteq[r]} q_{i_{1}}(C) \cdots q_{i_{m-k}}(C) \leq\binom{ r}{m-k}\left(\frac{k(n-1)-\binom{k}{2}}{r}\right)^{m-k}
$$

Consider the sum

$$
\sum_{C \in \mathcal{C}_{k}(n)} \sum_{\left\{i_{1}, \ldots, i_{m-k}\right\} \subseteq[r]} q_{i_{1}}(C) \cdots q_{i_{m-k}}(C) .
$$

Let S_{P} be defined as above, i.e. a disjoint union of k stars with components $K_{1, m_{i}-1}$, where $P=\left\{m_{1}, \ldots, m_{k}\right\} \in \mathcal{P}_{k}^{\geq 2}(m)$. In the sum above, S_{P} will be counted $\gamma(P)$ times. Therefore,

$$
\sum_{C \in \mathcal{C}_{k}(n)} \sum_{\left\{i_{1}, \ldots, i_{m-k}\right\} \subseteq[r]} q_{i_{1}}(C) \cdots q_{i_{m-k}}(C)=\sum_{P \in \mathcal{P}_{k}(m)} \gamma(P) \operatorname{rb}_{r}\left(S_{P} ; n\right) .
$$

Since $\left|\mathcal{C}_{k}(n)\right|=\binom{n}{k} k$!, we have

$$
\begin{aligned}
\sum_{P \in \mathcal{P}_{k}(m)} \gamma(P) \operatorname{rb}_{r}\left(S_{P} ; n\right) & \leq\binom{ n}{k} k!\binom{r}{m-k}\left(\frac{k(n-1)-\binom{k}{2}}{r}\right)^{m-k} \\
& =\frac{\binom{r}{m-k} n^{m}}{r^{m-k}} k^{m-k}+O\left(n^{m-1}\right)
\end{aligned}
$$

It remains to show that

$$
\frac{\binom{r}{m-k} n^{m}}{r^{m-k}} k^{m-k}+O\left(n^{m-1}\right) \leq \sum_{P \in \mathcal{P}_{k}(m)}\binom{m-k}{P-1} \frac{\binom{n}{m} m!\binom{r}{m-k}}{r^{m-k}}+O\left(n^{m-1}\right)
$$

which holds with equality because $k^{m-k}=\sum_{P \in \mathcal{P}_{k}(m)}\binom{m-k}{P-1}$ by the multinomial theorem.

By Proposition 2.1, we have for all $P=\left\{m_{1}, \ldots, m_{k}\right\} \in \mathcal{P}_{k}^{\geq 2}(m)$,

$$
\begin{align*}
\gamma(P) \operatorname{rb}_{r}\left(S_{P} ; n\right) & \geq \frac{(m-k)!\binom{r}{m-k}\binom{n}{m} m!}{\prod_{i=1}^{k}\left(m_{i}-1\right)!r^{m-k}}+O\left(n^{m-1}\right) \tag{2}\\
& =\binom{m-k}{P-1} \frac{\binom{r}{m-k}\binom{n}{m} m!}{r^{m-k}}+O\left(n^{m-1}\right) \tag{3}
\end{align*}
$$

Therefore, Claim 3.5 and the inequality (3) above implies for each $P \in \mathcal{P}_{k}^{\geq 2}(m)$,

$$
\operatorname{rb}_{r}\left(S_{P} ; n\right)=\binom{m-k}{P-1} \frac{\binom{r}{m-k}\binom{n}{m} m!}{\gamma(P) r^{m-k}}+O\left(n^{m-1}\right)
$$

4 Graphs which are not anti-common

Not all graphs are r-anti-common for all r, and here we will prove in particular that complete graphs and K_{4} without an edge are not anti-common. We will also give sufficient conditions, based on the number of edges, for a graph to not be anticommon.

4.1 Specific graphs which are not anti-common

In order to show that a graph is not anti-common for some r, we will construct a coloring with more rainbow subgraphs than that guaranteed in Proposition 2.1. Our arguments will start with a fixed coloring of some K_{m} for m small and we will use an iterated blow-up argument to construct a coloring of a larger K_{n}.

Definition 4.1. An iterated blow-up is an inductive coloring of K_{n}, where the edges are colored as follows. Pick $m \leq n$ and fix a coloring of K_{m} with labeled vertices v_{1}, \ldots, v_{m}. Divide the vertices of K_{n} into m disjoint sets of size $\left\lfloor\frac{n}{m}\right\rfloor$ and $\left\lceil\frac{n}{m}\right\rceil$, namely V_{1}, \ldots, V_{m}. For $u_{i} \in V_{i}$ and $u_{j} \in V_{j}$, color the edge $u_{i} u_{j}$ the same color as the edge $v_{i} v_{j}$ in the coloring of K_{m}. Repeat this process with each V_{i} until there are no vertices left to be split into m disjoint sets. We call this an iterated blow-up of the initial coloring of K_{m} with n vertices.

Proposition 4.2. The graph with 4 vertices and 5 edges, namely K_{4}^{-}, is not 5 -anticommon.

Proof. Note that the 5 -edge-coloring of K_{5} in Figure 2 contains 10 rainbow copies of K_{4}^{-}. Given $n=5^{k}$ for k a positive integer, let $F(n)$ be the number of rainbow copies of K_{4}^{-}contained in an iterated blow-up of the coloring in Figure 2 on n vertices.

Figure 2: A 5 -edge-coloring of K_{5} with 10 rainbow copies of K_{4}^{-}.
Within each of the 5 parts, there are $5 F\left(\frac{n}{5}\right)$ rainbow copies of K_{4}^{-}and there are $10\left(\frac{n}{5}\right)^{4}$ with one vertex in each part. Therefore

$$
F(n) \geq 5 F\left(\frac{n}{5}\right)+10\left(\frac{n}{5}\right)^{4}
$$

and solving this recurrence gives

$$
F(n) \geq \frac{n^{4}}{62}+O\left(n^{3}\right)
$$

There are 4 automorphisms of K_{4}^{-}, hence

$$
\begin{aligned}
\operatorname{rb}_{r}\left(K_{4}^{-} ; n\right) & \geq \frac{n^{4}}{62}+O\left(n^{3}\right) \\
& >\frac{6 n^{4}}{625}+O\left(n^{3}\right) \\
& =\frac{\binom{n}{4} 4!\binom{5}{5} 5!}{4 \cdot 5^{5}}+O\left(n^{3}\right)
\end{aligned}
$$

In [7], it was shown that K_{3} is not 3 -anti-common. We will now prove for $a \geq 4$, K_{a} is not $\binom{a}{2}$-anti-common.

Theorem 4.3. The complete graph K_{a} is not $\binom{a}{2}$-anti-common for $a \geq 4$.
Proof. Consider a rainbow K_{a}, i.e. let c be an $\binom{a}{2}$-edge-coloring of K_{a} such that each edge has a different color. Given $n=a^{k}$ for k a positive integer, let $F(n)$ denote the number of rainbow copies of K_{a} contained in an iterated blow-up of the coloring c on n vertices. There are $a F\left(\frac{n}{a}\right)$ rainbow copies of K_{a} within each of the a parts, and there are $\left(\frac{n}{a}\right)^{a}$ rainbow copies of K_{a} with exactly one vertex from each part. Therefore

$$
F(n) \geq a F\left(\frac{n}{a}\right)+\left(\frac{n}{a}\right)^{a}
$$

and solving this recurrence gives

$$
F(n) \geq \frac{n^{a}}{a^{a}-a}+O\left(n^{a-1}\right)
$$

Therefore, since the number of automorphisms of K_{a} is a !, in order to show

$$
\frac{n^{a}}{a^{a}-a}+O\left(n^{a-1}\right)>\frac{\binom{n}{a}\binom{a}{2}!}{\left.\binom{a}{2}^{(a} 2\right)}
$$

we will prove

$$
\begin{equation*}
\frac{a!}{a^{a}-a}>\frac{\binom{a}{2}!}{\binom{a}{2}} . \tag{4}
\end{equation*}
$$

We will use the following bound on the factorial function

$$
\binom{a}{2}!\leq e\binom{a}{2}\left(\frac{\binom{a}{2}}{e}\right)^{\binom{a}{2}}
$$

where e is the base of the natural logarithm. From this we have

$$
\left.\frac{\binom{a}{2}!}{\binom{a}{2}} \leq \frac{\binom{a}{2}}{a_{2}^{a}}\right) ~\left(e^{\binom{a}{2}-1}\right.
$$

and also using the inequality from (4), $\frac{a!}{a^{a}-a} \geq \frac{1}{e^{a-1}}$ and therefore it suffices to show

$$
\frac{\binom{a}{2}}{e^{\binom{a}{2}-1}}<\frac{1}{e^{a-1}} .
$$

One can check that this inequality holds for $a \geq 4$ which concludes the proof.

4.2 Sufficient conditions for not anti-commonality

In what follows log represents the natural logarithm. We will also be using both sides of Stirling's approximation given below.

Theorem 4.4 (Stirling's Approximation).

$$
\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \leq n!\leq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n}} .
$$

Theorem 4.5. Suppose H is a graph with m vertices and e edges and let c be a constant such that $2 \pi m(1-c)>1$ and

$$
c+(1-c) \log (1-c) \geq \frac{2}{m-1}+\frac{1}{\binom{m}{2}^{2} 12}
$$

If $e \geq c\binom{m}{2}$, then H is not $\binom{m}{2}$-anti-common.

Proof. Let H be a graph which satisfies the hypothesis above and consider a rainbow coloring of H. An iterated blow-up of this coloring with n vertices, similarly to the proof of Theorem 4.3, yields that the number of rainbow copies of H in K_{n} is at least

$$
\frac{n^{m} m!}{m^{m}}+O\left(n^{m-1}\right)
$$

From the relations between c and m we have

$$
c\binom{m}{2}-\frac{1}{\binom{m}{2} 12}+(1-c)\binom{m}{2} \log (1-c)-m \geq 0
$$

and

$$
\exp \left(c\binom{m}{2}-\frac{1}{\binom{m}{2} 12}-m\right)(1-c)^{\binom{m}{2}(1-c)} \geq 1
$$

Then since $2 \pi m(1-c)>1$ we have

$$
\sqrt{2 \pi m(1-c)} \exp \left(c\binom{m}{2}-\frac{1}{\binom{m}{2} 12}-m\right)(1-c)^{\binom{m}{2}(1-c)}>1
$$

which is equivalent to

$$
\begin{aligned}
\frac{\sqrt{2 \pi m}}{e^{m}} & >\frac{\exp \left(\frac{1}{\binom{m}{2} 12}\right)}{\sqrt{1-c} \exp \left(c\binom{m}{2}\right)(1-c)^{\binom{m}{2}(1-c)}} \\
& =\frac{\exp \left(\frac{1}{\binom{m}{2} 12}\right)\left(\binom{m}{2} e^{-1}\right)^{\binom{m}{2}}}{\binom{m}{2}^{c\binom{m}{2}}\left(\binom{m}{2}(1-c) e^{-1}\right)^{\binom{m}{2}(1-c)} \sqrt{1-c}} \\
& \geq \frac{\binom{m}{2}!}{\binom{m}{2}^{c\binom{m}{2}}\left(\binom{m}{2}-c\binom{m}{2}\right)!\sqrt{1-c}} \\
& =\frac{\left.\left(\begin{array}{c}
\left(\begin{array}{c}
m \\
2 \\
c
\end{array}\right)\binom{m}{2}
\end{array}\right)\binom{m}{2}\right)!}{\binom{m}{2}^{c}\binom{m}{2}} \\
& \geq \frac{\binom{m}{2}}{e} \begin{array}{c}
\binom{m}{2}
\end{array}
\end{aligned}
$$

Using Stirling's approximation, we have

$$
\frac{\sqrt{2 \pi m}}{e^{m}}<\frac{\sqrt{2 \pi m}}{e^{m}} \leq \frac{m!}{m^{m}}
$$

and therefore

$$
\frac{n^{m} m!}{m^{m}}+O\left(n^{m-1}\right)>\frac{n^{m}\binom{\binom{m}{2}}{e} e!}{\binom{m}{2}^{e}}+O\left(n^{m-1}\right)
$$

Corollary 4.6. Let H be a graph on m vertices and e edges such that

$$
e>m \sqrt{m-1}
$$

Then for $m \geq 6$, H is not $\binom{m}{2}$-anti-common.
Proof. Let H be a graph that satisfies the hypothesis and set $c=\frac{2}{\sqrt{m-1}}$. Since $2 \pi m(1-c)>1$ for $m \geq 6$, we can apply Proposition 4.5 and thus it suffices to show

$$
c+(1-c) \log (1-c) \geq \frac{2}{m-1}+\frac{1}{\binom{m}{2}^{2} 12}
$$

For $m \geq 6$ we also have $|c|<1$, so we can expand the log function as follows

$$
\begin{aligned}
c+(1-c) \log (1-c) & =c+(1-c)\left(-c-\frac{c^{2}}{2}-\frac{c^{3}}{3}-\cdots\right) \\
& =\sum_{i=2}^{\infty} \frac{1}{i(i-1)} c^{i} \\
& =\frac{2}{m-1}+\frac{4}{3(m-1)^{3 / 2}}+\sum_{i=4}^{\infty} \frac{1}{i(i-1)}\left(\frac{2}{\sqrt{m-1}}\right)^{i} \\
& >\frac{2}{m-1}+\frac{1}{\binom{m}{2}^{2} 12} .
\end{aligned}
$$

Corollary 4.6 shows that for n large enough, any bipartite graph of positive density is not anticommon. In particular, a random bipartite graph will satisfy the hypotheses of Corollary 4.6 with probability tending to 1 , giving the following corollary which is in sharp contrast to Sidorenko's conjecture.

Corollary 4.7. Almost all bipartite graphs are not anti-common.
If Sidorenko's conjecture is true, this is very different behavior from the monochromatic situation.

5 Future directions

As in the Ramsey case, we wish to establish an implication between a graph being r-anti-common and $(r+1)$-anti-common. Through our investigation of this problem, we have shown the following.

Proposition 5.1. Let H be a graph with e edges, then

$$
\operatorname{rb}_{r+1}(H ; n) \geq \operatorname{rb}_{r}(H ; n) \geq\left(\frac{(r+e)(r+1-e)}{r(r+1)}\right) \operatorname{rb}_{r+1}(H ; n)
$$

Proof. Since the set of $(r+1)$-edge-colorings contains the set of r-edge-colorings, the left inequality follows immediately. Now consider an $(r+1)$-edge-coloring of K_{n} such that the number of rainbow copies of H is exactly $\mathrm{rb}_{r+1}(H ; n)$. Randomly choose a color from $[r+1]$ and call it r^{\prime}. For all edges colored r^{\prime}, recolor them randomly from the set of colors $[r+1] \backslash\left\{r^{\prime}\right\}$. In the initial coloring, the expected number of rainbow copies of H with one edge colored r^{\prime} is

$$
\frac{\operatorname{rb}(G, n, r+1) e}{r+1}
$$

With probability $\frac{r-e+1}{r}$, each of these rainbow subgraphs will remain rainbow in the new coloring. Therefore the expected number of rainbow copies of H in the new coloring is

$$
\begin{aligned}
& \left(\mathrm{rb}_{r+1}(H ; n)-\frac{\mathrm{rb}_{r+1}(H ; n) e}{r+1}\right)+\frac{\mathrm{rb}_{r+1}(H ; n) e(r-e+1)}{r(r+1)} \\
& =\left(\frac{(r+e)(r+1-e)}{r(r+1)}\right) \mathrm{rb}_{r+1}(H ; n) .
\end{aligned}
$$

This implies that there exists such a coloring of K_{n} with r colors and hence

$$
\left(\frac{(r+e)(r+1-e)}{r(r+1)}\right) \mathrm{rb}_{r+1}(H ; n) \leq \operatorname{rb}_{r}(H ; n)
$$

This inequality leads us to believe that the implication below is in fact true.
Conjecture 5.2. If H is not r-anti-common, then H is not $(r+1)$-anti-common.
There are also many other classes of graphs whose anti-commonality have yet to be studied. Preliminary results on cycles lead us to believe that for $k \geq 3$, cycles of length k are not k-anti-common. One can show using the iterated blow-up method in Section 4 that C_{4} is not 4 -anti-common and that C_{5} is not 5 -anti-common. It is also conjectured that P_{4} is 3 -anti common-flag algebra computations (on 5 vertex flags) give an upper bound of approximately 0.22222241 , nearly matching the lower bound of $2 / 9$.

Acknowledgments

We would like to thank Carnegie Mellon University for supporting the i Summer Undergraduate Applied Mathematics Institute. Additionally, we gratefully acknowledge financial support for this research from the following grants: NSF DGE-1041000 (Jessica De Silva), NSF DMS-1606350 (Michael Tait), and NSF DMS-1719841 (Michael Young).

References

[1] J. Cummings and M. Young, Graphs containing triangles are not 3-common, J. Combin. Theory Ser. B 2 (1) (2011), 1-14..
[2] G. R. Blakley and P. Roy, A Hölder type inequality for symmetric matrices with non-negative entries, Proc. Amer. Math. Soc. 16 (1965), 1244-1245.
[3] M. Bóna, A Walk Through Combinatorics, 3rd Ed., World Scientific Publishing Co. Pte. Ltd. (2011).
[4] S. A. Burr and V. Rosta, On the Ramsey multiplicity of graphs-problems and recent results, J. Graph Theory 4 (1980), 347-361.
[5] D. Conlon, J. Fox and B. Sudakov, An approximate version of Sidorenko's conjecture, Geom. Funct. Anal. 20 (6) (2010), 1354-1366.
[6] P. Erdős, On the number of complete subgraphs contained in certain graphs, Publ. Math. Inst. Hungar. Acad. Sci. 7 (1962), 459-464.
[7] P. Erdős and A. Hajnal, On Ramsey like theorems, Problems and results, Combinatorics (Proc. Conf. Combinatorial Math.), Math. Inst., Oxford (1972), 123140.
[8] J. Fox. There exist graphs with super-exponential Ramsey multiplicity constant, J. Graph Theory 57 (2) (2008), 89-98.
[9] A. W. Goodman, On sets of acquaintances and strangers at any party, Amer. Math. Monthly 66 (9) (1959), 778-783.
[10] H. Hatami, Graph norms and Sidorenko's conjecture, Israel J. Math. 175 (2010), 125-150.
[11] M.S. Jacobson, On the Ramsey multiplicity for stars, Discrete Math. 42 (1) (1982), 63-66.
[12] C. Jagger, P. Šťovíček and A. Thomason, Multiplicities of subgraphs, Combinatorica 16 (1) (1996), 123-141.
[13] J. H. Kim, C. Lee and J. Lee, Two approaches to Sidorenko's conjecture, Trans. Amer. Math. Soc. 368 (7) (2016), 5057-5074.
[14] A.F. Sidorenko, A correlation inequality for bipartite graphs, Graphs Combin. 9 (1993), 201-204.
[15] A.F. Sidorenko, Cycles in graphs and functional inequalities, Mathematical Notes of the Academy of Sciences of the USSR 46 (1989), 877-882.
[16] A.F. Sidorenko, Extremal problems in graph theory and inequalities in functional analysis, Proc. Soviet Seminar on Discrete Math. and its Applications (in Russian) (1986).
[17] A. G. Thomason, A disproof of a conjecture of Erdős in Ramsey Theory, J. London Math. Soc. 39 (2) (1989), 246-255.
[18] J. Cummings, D. Krǎľ, F. Pfender, K. Sperfeld, A. Treglown and M. Young, Monochromatic triangles in three-coloured graphs, J. Combin. Theory Ser. B 103 (4) (2013), 489-503.

